7,173 Matching Annotations
  1. Oct 2025
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The paper presents a model for sequence generation in the zebra finch HVC, which adheres to cellular properties measured experimentally. However, the model is fine-tuned and exhibits limited robustness to noise inherent in the inhibitory interneurons within the HVC, as well as to fluctuations in connectivity between neurons. Although the proposed microcircuits are introduced as units for sub-syllabic segments (SSS), the backbone of the network remains a feedforward chain of HVC_RA neurons, similar to previous models.

      Strengths:

      The model incorporates all three of the major types of HVC neurons. The ion channels used and their kinetics are based on experimental measurements. The connection patterns of the neurons are also constrained by the experiments.

      Weaknesses:

      The model is described as consisting of micro-circuits corresponding to SSS. This presentation gives the impression that the model's structure is distinct from previous models, which connected HVC_RA neurons in feedforward chain networks (Jin et al 2007, Li & Greenside, 2006; Long et al 2010; Egger et al 2020). However, the authors implement single HVC_RA neurons into chain networks within each micro-circuit and then connect the end of the chain to the start of the chain in the subsequent micro-circuit. Thus, the HVC_RA neuron in their model forms a single-neuron chain. This structure is essentially a simplified version of earlier models.

      In the model of the paper, the chain network drives the HVC_I and HVC_X neurons. The role of the micro-circuits is more significant in organizing the connections: specifically, from HVC_RA neurons to HVC_I neurons, and from HVC_I neurons to both HVC_X and HVC_RA neurons.

      We thank Reviewer 1 for their thoughtful comments.

      While the reviewer is correct about the fact that the propagation of sequential activity in this model is primarily carried by HVC<sub>RA</sub> neurons in a feed-forward manner, we need to emphasize that this is true only if there is no intrinsic or synaptic perturbation to the HVC network. For example, we showed in Figures 10 and 12 how altering the intrinsic properties of HVC<sub>X</sub> neurons or for interneurons disrupts sequence propagation. In other words, while HVC<sub>RA</sub> neurons are the key forces to carry the chain forward, the interplay between excitation and inhibition in our network as well as the intrinsic parameters for all classes of HVC neurons are equally important forces in carrying the chain of activity forward. Thus, the stability of activity propagation necessary for song production depend on a finely balanced network of HVC neurons, with all classes contributing to the overall dynamics. Moreover, all existing models that describe premotor sequence generation in the HVC either assume a distributed model (Elmaleh et al., 2021) that dictates that local HVC circuitry is not sufficient to advance the sequence but rather depends upon moment to-moment feedback through Uva (Hamaguchi et al., 2016), or assume models that rely on intrinsic connections within HVC to propagate sequential activity. In the latter case, some models assume that HVC is composed of multiple discrete subnetworks that encode individual song elements (Glaze & Troyer, 2013; Long & Fee, 2008; Wang et al., 2008), but lacks the local connectivity to link the subnetworks, while other models assume that HVC may have sufficient information in its intrinsic connections to form a single continuous network sequence (Long et al. 2010). The HVC model we present extends the concept of a feedforward network by incorporating additional neuronal classes that influence the propagation of activity (interneurons and HVC<sub>X</sub> neurons). We have shown that any disturbance of the intrinsic or synaptic conductances of these latter neurons will disrupt activity in the circuit even when HVC<sub>RA</sub> neurons properties are maintained. 

      In regard to the similarities between our model and earlier models, several aspects of our model distinguish it from prior work. In short, while several models of how sequence is generated within HVC have been proposed (Cannon et al., 2015; Drew & Abbott, 2003; Egger et al., 2020; Elmaleh et al., 2021; Galvis et al., 2018; Gibb et al., 2009a, 2009b; Hamaguchi et al., 2016; Jin, 2009; Long & Fee, 2008; Markowitz et al., 2015), all the models proposed either rely on intrinsic HVC circuitry to propagate sequential activity, rely on extrinsic feedback to advance the sequence or rely on both. These models do not capture the complex details of spike morphology, do not include the right ionic currents, do not incorporate all classes of HVC neurons, or do not generate realistic firing patterns as seen in vivo. Our model is the first biophysically realistic model that incorporates all classes of HVC neurons and their intrinsic properties. We tuned the intrinsic and the synaptic properties bases on the traces collected by Daou et al. (2013) and Mooney and Prather (2005) as shown in Figure 3. The three classes of model neurons incorporated to our network as well as the synaptic currents that connect them are based on Hodgkin- Huxley formalisms that contain ion channels and synaptic currents which had been pharmacologically identified. This is an advancement over prior models that primarily focused on the role of synaptic interactions or external inputs. The model is based on feedforward chain of microcircuits that encode for the different sub-syllabic segments and that interact with each other through structured feedback inhibition, defining an ordered sequence of cell firing. Moreover, while several models highlight the critical role of inhibitory interneurons in shaping the timing and propagation of bursts of activity in HVC<sub>RA</sub> neurons, our work offers an intricate and comprehensive model that help understand this critical role played by inhibition in shaping song dynamics and ensuring sequence propagation.

      How useful is this concept of micro-circuits? HVC neurons fire continuously even during the silent gaps. There are no SSS during these silent gaps.

      Regarding the concern about the usefulness of the 'microcircuit' concept in our study, we appreciate the comment and we are glad to clarify its relevance in our network. While we acknowledge that HVC<sub>RA</sub> neurons interconnect microcircuits, our model's dynamics are still best described within the framework of microcircuitry particularly due to the firing behavior of HVC<sub>X</sub> neurons and interneurons. Here, we are referring to microcircuits in a more functional sense, rather than rigid, isolated spatial divisions (Cannon et al. 2015), and we now make this clear on page 21. A microcircuit in our model reflects the local rules that govern the interaction between all HVC neuron classes within the broader network, and that are essential for proper activity propagation. For example, HVC<sub>INT</sub> neurons belonging to any microcircuit burst densely and at times other than the moments when the corresponding encoded SSS is being “sung”. What makes a particular interneuron belong to this microcircuit or the other is merely the fact that it cannot inhibit HVC<sub>RA</sub> neurons that are housed in the microcircuit it belongs to. In particular, if HVC<sub>INT</sub> inhibits HVC<sub>RA</sub> in the same microcircuit, some of the HVC<sub>RA</sub> bursts in the microcircuit might be silenced by the dense and strong HVC<sub>INT</sub> inhibition breaking the chain of activity again. Similarly, HVC<sub>X</sub> neurons were selected to be housed within microcircuits due to the following reason: if an HVC<sub>X</sub> neuron belonging to microcircuit i sends excitatory input to an HVC<sub>INT</sub> neuron in microcircuit j, and that interneuron happens to select an HVC<sub>RA</sub> neuron from microcircuit i, then the propagation of sequential activity will halt, and we’ll be in a scenario similar to what was described earlier for HVC<sub>INT</sub> neurons inhibiting HVC<sub>RA</sub> neurons in the same microcircuit.

      We agree that there are no sub-syllabic segments described during the silent gaps and we thank the reviewer to pointing this out. Although silent gaps are integral to the overall process of song production, we have not elaborated on them in this model due to the lack of a clear, biophysically grounded representation for the gaps themselves at the level of HVC. Our primary focus has been on modeling the active, syllable-producing phases of the song, where the HVC network’s sequential dynamics are critical for song. However, one can think the encoding of silent gaps via similar mechanisms that encode SSSs, where each gap is encoded by similar microcircuits comprised of the three classes of HVC neurons (let’s call them GAP rather than SSS) that are active only during the silent gaps. In this case, the propagation of sequential activity is carried throughout the GAPs from the last SSS of the previous syllable to the first SSS of the subsequent syllable. This is no described more clearly on page 22 of the manuscript.

      A significant issue of the current model is that the HVC_RA to HVC_RA connections require fine-tuning, with the network functioning only within a narrow range of g_AMPA (Figure 2B). Similarly, the connections from HVC_I neurons to HVC_RA neurons also require fine-tuning. This sensitivity arises because the somatic properties of HVC_RA neurons are insufficient to produce the stereotypical bursts of spikes observed in recordings from singing birds, as demonstrated in previous studies (Jin et al 2007; Long et al 2010). In these previous works, to address this limitation, a dendritic spike mechanism was introduced to generate an intrinsic bursting capability, which is absent in the somatic compartment of HVC_RA neurons. This dendritic mechanism significantly enhances the robustness of the chain network, eliminating the need to fine-tune any synaptic conductances, including those from HVC_I neurons (Long et al 2010). Why is it important that the model should NOT be sensitive to the connection strengths?

      We thank the reviewer for the comment. While mathematical models designed for highly complex nonlinear biological processes tangentially touch the biological realism, the current network as is right now is the first biologically realistic-enough network model designed for HVC that explains sequence propagation. We do not include dendritic processes in our network although that increases the realistic dynamics for various reasons. 1) The ion channels we integrated into the somatic compartment are known pharmacologically (Daou et al. 2013), but we don’t know about the dendritic compartment’s intrinsic properties of HVC neurons and the cocktail of ion channels that are expressed there. 2) We are able to generate realistic bursting in HVC<sub>RA</sub> neurons despite the single compartment, and the main emphasis in this network is on the interactions between excitation and inhibition, the effects of ion channels in modulating sequence propagation, etc … 3) The network model already incorporates thousands of ODEs that govern the dynamics of each of the HVC neurons, so we did not want to add more complexity to the network especially that we don’t know the biophysical properties of the dendritic compartments.

      Therefore, our present focus is on somatic dynamics and the interaction between HVC<sub>RA</sub> and HVC<sub>INT</sub> neurons, but we acknowledge the importance of these processes in enhancing network resiliency. Although we agree that adding dendritic processes improves robustness, we still think that somatic processes alone can offer insightful information on the sequential dynamics of the HVC network. While the network should be robust across a wide range of parameters, it is also essential that certain parameters are designed to filter out weaker signals, ensuring that only reliable, precise patterns of activity propagate. Hence, we specifically chose to make the HVC<sub>RA</sub>-to-HVC<sub>RA</sub> excitatory connections more sensitive (narrow range of values) such that only strong, precise and meaningful stimuli can propagate through the network representing the high stereotypy and precision seen in song production.

      First, the firing of HVC_I neurons is highly noisy and unreliable. HVC_I neurons fire spontaneous, random spikes under baseline conditions. During singing, their spike timing is imprecise and can vary significantly from trial to trial, with spikes appearing or disappearing across different trials. As a result, their inputs to HVC_RA neurons are inherently noisy. If the model relies on precisely tuned inputs from HVC_I neurons, the natural fluctuations in HVC_I firing would render the model non-functional. The authors should incorporate noisy HVC_I neurons into their model to evaluate whether this noise would render the model non-functional.

      We acknowledge that under baseline and singing settings, interneurons fire in an extremely noisy and inaccurate manner, although they exhibit time locked episodes in their activity (Hahnloser et al 2002, Kozhinikov and Fee 2007). In order to mimic the biological variability of these neurons, our model does, in fact, include a stochastic current to reflect the intrinsic noise and random variations in interneuron firing shown in vivo (and we highlight this in the Methods). However, to make sure the network is resilient to this randomness in interneuron firing, introduced a stochastic input current of the form I<sub>noise</sub> (t)= σ.ξ(t) where ξ(t) is a Gaussian white noise with zero mean and unit variance, and σ is the noise amplitude. This stochastic drive was introduced to every model neuron and it mimics the fluctuations in synaptic input arising from random presynaptic activity and background noise. For values of σ within 1-5% of the mean synaptic conductance, the stochastic current has no effect on network propagation. For larger values of σ, the desired network activity was disrupted or halted. We now talk about this on page 22 of the manuscript.  

      Second, Kosche et al. (2015) demonstrated that reducing inhibition by suppressing HVC_I neuron activity makes HVC_RA firing less sparse but does not compromise the temporal precision of the bursts. In this experiment, the local application of gabazine should have severely disrupted HVC_I activity. However, it did not affect the timing precision of HVC_RA neuron firing, emphasizing the robustness of the HVC timing circuit. This robustness is inconsistent with the predictions of the current model, which depends on finely tuned inputs and should, therefore, be vulnerable to such disruptions.

      We thank the reviewer for the comment. The differences between the Kosche et al. (2015) findings and the predictions of our model arise from differences in the aspect of HVC function we are modeling. Our model is more sensitive to inhibition, which is a designed mechanism for achieving precise song patterning. This is a modeling simplification we adopted to capture specific characteristics of HVC function. Hence, Kosche et al. (2015) findings do not invalidate the approach of our model, but highlights that HVC likely operates with several, redundant mechanisms that overall ensure temporal precision. 

      Third, the reliance on fine-tuning of HVC_RA connections becomes problematic if the model is scaled up to include groups of HVC_RA neurons forming a chain network, rather than the single HVC_RA neurons used in the current work. With groups of HVC_RA neurons, the summation of presynaptic inputs to each HVC_RA neuron would need to be precisely maintained for the model to function. However, experimental evidence shows that the HVC circuit remains functional despite perturbations, such as a few degrees of cooling, micro-lesions, or turnover of HVC_RA neurons. Such robustness cannot be accounted for by a model that depends on finely tuned connections, as seen in the current implementation.

      Our model of individual HVC<sub>RA</sub> neurons and as stated previously is reductive model that focuses on understanding the mechanisms that govern sequential neural activity. We agree that scaling the model to include many of HVC<sub>RA</sub> neurons poses challenges, specifically concerning the summation of presynaptic inputs. However, our model can still be adapted to a larger network without requiring the level of fine-tuning currently needed. In fact, the current fine-tuning of synaptic connections in the model is a reflection of fundamental network mechanisms rather than a limitation when scaling to a larger network. Besides, one important feature of this neural network is redundancy. Even if some neurons or synaptic connections are impaired, other neurons or pathways can compensate for these changes, allowing the activity propagation to remain intact.

      The authors examined how altering the channel properties of neurons affects the activity in their model. While this approach is valid, many of the observed effects may stem from the delicate balancing required in their model for proper function. In the current model, HVC_X neurons burst as a result of rebound activity driven by the I_H current. Rebound bursts mediated by the I_H current typically require a highly hyperpolarized membrane potential. However, this mechanism would fail if the reversal potential of inhibition is higher than the required level of hyperpolarization. Furthermore, Mooney (2000) demonstrated that depolarizing the membrane potential of HVC_X neurons did not prevent bursts of these neurons during forward playback of the bird's own song, suggesting that these bursts (at least under anesthesia, which may be a different state altogether) are not necessarily caused by rebound activity. This discrepancy should be addressed or considered in the model.

      In our HVC network model, one goal with HVC<sub>X</sub> neurons is to generate bursts in their underlying neuron population. Since HVC<sub>X</sub> neurons in our model receive only inhibitory inputs from interneurons, we rely on inhibition followed by rebound bursts orchestrated by the I<sub>H</sub> and the I<sub>CaT</sub> currents to achieve this goal. The interplay between the T-type Ca<sup>++</sup> current and the H current in our model is fundamental to generate their corresponding bursts, as they are sufficient for producing the desired behavior in the network. Due to this interplay, we do not need significant inhibition to generate rebound bursts, because the T-type Ca<sub>++</sub> current’s conductance can be stronger leading to robust rebound bursting even when the degree of inhibition is not very strong. This is now highlighted on page 42 in the revised version.

      Some figures contain direct copies of figures from published papers. It is perhaps a better practice to replace them with schematics if possible.

      We wanted on purpose to keep the results shown in Mooney and Prather (2005) to be shown as is, in order to compare them with our model simulations highlighting the degree of resemblance. We believe that creating schematics of the Mooney and Prather (2005) results will not have the same impact, similarly creating a schematic for Hahnloser et al (2002) results won’t help much. However, if the reviewer still believes that we should do that, we’re happy to do it.

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors use numerical simulations to try to understand better a major experimental discovery in songbird neuroscience from 2002 by Richard Hahnloser and collaborators. The 2002 paper found that a certain class of projection neurons in the premotor nucleus HVC of adult male zebra finch songbirds, the neurons that project to another premotor nucleus RA, fired sparsely (once per song motif) and precisely (to about 1 ms accuracy) during singing.

      The experimental discovery is important to understand since it initially suggested that the sparsely firing RA-projecting neurons acted as a simple clock that was localized to HVC and that controlled all details of the temporal hierarchy of singing: notes, syllables, gaps, and motifs. Later experiments suggested that the initial interpretation might be incomplete: that the temporal structure of adult male zebra finch songs instead emerged in a more complicated and distributed way, still not well understood, from the interaction of HVC with multiple other nuclei, including auditory and brainstem areas. So at least two major questions remain unanswered more than two decades after the 2002 experiment: What is the neurobiological mechanism that produces the sparse precise bursting: is it a local circuit in HVC or is it some combination of external input to HVC and local circuitry? And how is the sparse precise bursting in HVC related to a songbird's vocalizations? The authors only investigate part of the first question, whether the mechanism for sparse precise bursts is local to HVC. They do so indirectly, by using conductance-based Hodgkin-Huxley-like equations to simulate the spiking dynamics of a simplified network that includes three known major classes of HVC neurons and such that all neurons within a class are assumed to be identical. A strength of the calculations is that the authors include known biophysically deduced details of the different conductances of the three major classes of HVC neurons, and they take into account what is known, based on sparse paired recordings in slices, about how the three classes connect to one another. One weakness of the paper is that the authors make arbitrary and not well-motivated assumptions about the network geometry, and they do not use the flexibility of their simulations to study how their results depend on their network assumptions. A second weakness is that they ignore many known experimental details such as projections into HVC from other nuclei, dendritic computations (the somas and dendrites are treated by the authors as point-like isopotential objects), the role of neuromodulators, and known heterogeneity of the interneurons. These weaknesses make it difficult for readers to know the relevance of the simulations for experiments and for advancing theoretical understanding.

      Strengths:

      The authors use conductance-based Hodgkin-Huxley-like equations to simulate spiking activity in a network of neurons intended to model more accurately songbird nucleus HVC of adult male zebra finches. Spiking models are much closer to experiments than models based on firing rates or on 2-state neurons.

      The authors include information deduced from modeling experimental current-clamp data such as the types and properties of conductances. They also take into account how neurons in one class connect to neurons in other classes via excitatory or inhibitory synapses, based on sparse paired recordings in slices by other researchers. The authors obtain some new results of modest interest such as how changes in the maximum conductances of four key channels (e.g., A-type K+ currents or Ca-dependent K+ currents) influence the structure and propagation of bursts, while simultaneously being able to mimic accurately current-clamp voltage measurements.

      Weaknesses:

      One weakness of this paper is the lack of a clearly stated, interesting, and relevant scientific question to try to answer. In the introduction, the authors do not discuss adequately which questions recent experimental and theoretical work have failed to explain adequately, concerning HVC neural dynamics and its role in producing vocalizations. The authors do not discuss adequately why they chose the approach of their paper and how their results address some of these questions.

      For example, the authors need to explain in more detail how their calculations relate to the works of Daou et al, J. Neurophys. 2013 (which already fitted spiking models to neuronal data and identified certain conductances), to Jin et al J. Comput. Neurosci. 2007 (which already discussed how to get bursts using some experimental details), and to the rather similar paper by E. Armstrong and H. Abarbanel, J. Neurophys 2016, which already postulated and studied sequences of microcircuits in HVC. This last paper is not even cited by the authors.

      We thank the reviewer for this valuable comment, and we agree that we did not clarify enough throughout the paper the utility of our model or how it advanced our understanding of the HVC dynamics and circuitry. To that end, we revised several places of the manuscript and made sure to cite and highlight the relevance and relatedness of the mentioned papers.

      In short, and as mentioned to Reviewer 1, while several models of how sequence is generated within HVC have been proposed (Cannon et al., 2015; Drew & Abbott, 2003; Egger et al., 2020; Elmaleh et al., 2021; Galvis et al., 2018; Gibb et al., 2009a, 2009b; Hamaguchi et al., 2016; Jin, 2009; Long & Fee, 2008; Markowitz et al., 2015; Jin et al., 2007), all the models proposed either rely on intrinsic HVC circuitry to propagate sequential activity, rely on extrinsic feedback to advance the sequence or rely on both. These models do not capture the complex details of spike morphology, do not include the right ionic currents, do not incorporate all classes of HVC neurons, or do not generate realistic firing patterns as seen in vivo. Our model is the first biophysically realistic model that incorporates all classes of HVC neurons and their intrinsic properties. 

      No existing hypothesis had been challenged with our model, rather; our model is a distillation of the various models that’s been proposed for the HVC network. We go over this in detail in the Discussion. We believe that the network model we developed provide a step forward in describing the biophysics of HVC circuitry, and may throw a new light on certain dynamics in the mammalian brain, particularly the motor cortex and the hippocampus regions where precisely-timed sequential activity is crucial. We suggest that temporally-precise sequential activity may be a manifestation of neural networks comprised of chain of microcircuits, each containing pools of excitatory and inhibitory neurons, with local interplay among neurons of the same microcircuit and global interplays across the various microcircuits, and with structured inhibition as well as intrinsic properties synchronizing the neuronal pools and stabilizing timing within a firing sequence.

      The authors' main achievement is to show that simulations of a certain simplified and idealized network of spiking neurons, which includes some experimental details but ignores many others, match some experimental results like current-clamp-derived voltage time series for the three classes of HVC neurons (although this was already reported in earlier work by Daou and collaborators in 2013), and simultaneously the robust propagation of bursts with properties similar to those observed in experiments. The authors also present results about how certain neuronal details and burst propagation change when certain key maximum conductances are varied. However, these are weak conclusions for two reasons. First, the authors did not do enough calculations to allow the reader to understand how many parameters were needed to obtain these fits and whether simpler circuits, say with fewer parameters and simpler network topology, could do just as well. Second, many previous researchers have demonstrated robust burst propagation in a variety of feed-forward models. So what is new and important about the authors' results compared to the previous computational papers?

      A major novelty of our work is the incorporation of experimental data with detailed network models. While earlier works have established robust burst propagation, our model uses realistic ion channel kinetics and feedback inhibition not only to reproduce experimental neural activity patterns but also to suggest prospective mechanisms for song sequence production in the most biophysical way possible. This aspect that distinguishes our work from other feed-forward models. We go over this in detail in the Discussion. However, the reviewer is right regarding the details of the calculations conducted for the fits, we will make sure to highlight this in the Methods and throughout the manuscript with more details.

      We believe that the network model we developed provide a step forward in describing the biophysics of HVC circuitry, and may throw a new light on certain dynamics in the mammalian brain, particularly the motor cortex and the hippocampus regions where precisely-timed sequential activity is crucial. We suggest that temporally-precise sequential activity may be a manifestation of neural networks comprised of chain of microcircuits, each containing pools of excitatory and inhibitory neurons, with local interplay among neurons of the same microcircuit and global interplays across the various microcircuits, and with structured inhibition as well as intrinsic properties synchronizing the neuronal pools and stabilizing timing within a firing sequence.

      Also missing is a discussion, or at least an acknowledgment, of the fact that not all of the fine experimental details of undershoots, latencies, spike structure, spike accommodation, etc may be relevant for understanding vocalization. While it is nice to know that some models can match these experimental details and produce realistic bursts, that does not mean that all of these details are relevant for the function of producing precise vocalizations. Scientific insights in biology often require exploring which of the many observed details can be ignored and especially identifying the few that are essential for answering some questions. As one example, if HVC-X neurons are completely removed from the authors' model, does one still get robust and reasonable burst propagation of HVC-RA neurons? While part of the nucleus HVC acts as a premotor circuit that drives the nucleus RA, part of HVC is also related to learning. It is not clear that HVC-X neurons, which carry out some unknown calculation and transmit information to area X in a learning pathway, are relevant for burst production and propagation of HVCRA neurons, and so relevant for vocalization. Simulations provide a convenient and direct way to explore questions of this kind.

      One key question to answer is whether the bursting of HVC-RA projection neurons is based on a mechanism local to HVC or is some combination of external driving (say from auditory nuclei) and local circuitry. The authors do not contribute to answering this question because they ignore external driving and assume that the mechanism is some kind of intrinsic feed-forward circuit, which they put in by hand in a rather arbitrary and poorly justified way, by assuming the existence of small microcircuits consisting of a few HVC-RA, HVC-X, and HVC-I neurons that somehow correspond to "sub-syllabic segments". To my knowledge, experiments do not suggest the existence of such microcircuits nor does theory suggest the need for such microcircuits. 

      Recent results showed a tight correlation between the intrinsic properties of neurons and features of song (Daou and Margoliash 2020, Medina and Margoliash 2024), where adult birds that exhibit similar songs tend to have similar intrinsic properties. While this is relevant, we acknowledge that not all details may be necessary for every aspect of vocalization, and future models could simplify concentrate on core dynamics and exclude certain features while still providing insights into the primary mechanisms.

      The question of whether HVC<sub>X</sub> neurons are relevant for burst propagation given that our model includes these neurons as part of the network for completeness, the reviewer is correct, the propagation of sequential activity in this model is primarily carried by HVC<sub>RA</sub> neurons in a feed-forward manner, but only if there is no perturbation to the HVC network. For example, we have shown how altering the intrinsic properties of HVC<sub>X</sub> neurons or for interneurons disrupts sequence propagation. In other words, while HVC neurons are the key forces to carry the chain forward, the interplay between excitation and inhibition in our network as well as the intrinsic parameters for all classes of HVC neurons are equally important forces in carrying the chain of activity forward. Thus, the stability of activity propagation necessary for song production depend on a finely balanced network of HVC neurons, with all classes contributing to the overall dynamics.

      We agree with the reviewer however that a potential drawback of our model is that its sole focus is on local excitatory connectivity within the HVC (Kornfeld et al., 2017; Long et al., 2010), while HVC neurons receive afferent excitatory connections (Akutagawa & Konishi, 2010; Nottebohm et al., 1982) that plays significant roles in their local dynamics. For example, the excitatory inputs that HVC neurons receive from Uvaeformis may be crucial in initiating (Andalman et al., 2011; Danish et al., 2017; Galvis et al., 2018) or sustaining (Hamaguchi et al., 2016) the sequential activity. While we acknowledge this limitation, our main contribution in this work is the biophysical insights onto how the patterning activity in HVC is largely shaped by the intrinsic properties of the individual neurons as well as the synaptic properties where excitation and inhibition play a major role in enabling neurons to generate their characteristic bursts during singing. This is true and holds irrespective of whether an external drive is injected onto the microcircuits or not. We elaborated on this further in the revised version in the Discussion.

      Another weakness of this paper is an unsatisfactory discussion of how the model was obtained, validated, and simulated. The authors should state as clearly as possible, in one location such as an appendix, what is the total number of independent parameters for the entire network and how parameter values were deduced from data or assigned by hand. With enough parameters and variables, many details can be fit arbitrarily accurately so researchers have to be careful to avoid overfitting. If parameter values were obtained by fitting to data, the authors should state clearly what the fitting algorithm was (some iterative nonlinear method, whose results can depend on the initial choice of parameters), what the error function used for fitting (sum of least squares?) was, and what data were used for the fitting.

      The authors should also state clearly the dynamical state of the network, the vector of quantities that evolve over time. (What is the dimension of that vector, which is also the number of ordinary differential equations that have to be integrated?) The authors do not mention what initial state was used to start the numerical integrations, whether transient dynamics were observed and what were their properties, or how the results depended on the choice of the initial state. The authors do not discuss how they determined that their model was programmed correctly (it is difficult to avoid typing errors when writing several pages or more of a code in any language) or how they determined the accuracy of the numerical integration method beyond fitting to experimental data, say by varying the time step size over some range or by comparing two different integration algorithms.

      We thank the reviewer again. The fitting process in our model occurred only at the first stage where the synaptic parameters were fit to the Mooney and Prather as well as the Kosche results. There was no data shared and we merely looked at the figures in those papers and checked the amplitude of the elicited currents, the magnitudes of DC-evoked excitations etc … and we replicated that in our model. While this is suboptimal, it was better for us to start with it rather than simply using equations for synaptic currents from the literature for other types of neurons (that are not even HVC’s or in the songbird) and integrate them into our network model. The number of ODEs that govern the dynamics of every model neuron is listed on page 10 of the manuscript as well as in the Appendix.  Moreover, we highlighted the details of this fitting process in the revised version.

      Also disappointing is that the authors do not make any predictions to test, except rather weak ones such as that varying a maximum conductance sufficiently (which might be possible by using dynamic clamps) might cause burst propagation to stop or change its properties. Based on their results, the authors do not make suggestions for further experiments or calculations, but they should.

      We agree that making experimental testable predictions is crucial for the advancement of the model. Our predictions include testing whether eradication of a class of neurons such as HVC<sub>X</sub> neurons disrupts activity propagation which can be done through targeted neuron elimination. This also can be done through preventing rebound bursting in HVC<sub>X</sub> by pharmacologically blocking the I<sub>H</sub> channels. Others include down regulation of certain ion channels (pharmacologically done through ion blockers) and testing which current is fundamental for song production (and there a plenty of test based our results, like the SK current, the T-type Ca<sup>2+</sup> current, the A-type K<sup>+</sup> current, etc…). We incorporated these into the Discussion of the revised manuscript to better demonstrate the model's applicability and to guide future research directions.

      Main issues:

      (1) Parameters are overly fine-tuned and often do not match known biology to generate chains. This fine-tuning does not reveal fundamental insights.

      (1a) Specific conductances (e.g. AMPA) are finely tweaked to generate bursts, in part due to a lack of a dendritic mechanism for burst generation. A dendritic mechanism likely reflects the true biology of HVC neurons.

      We acknowledge that the model does not include active dendritic processes and we do not regard this as a limitation. In fact, our present approach, although simplified, is intended to focus on somatic mechanisms to identify minimal conditions required for stable sequential propagation. We know HVC<sub>RA</sub> neurons possess thin, spiny dendrites which can contribute to burst initiation and shaping. Future models that include such nonlinear dendritic mechanisms would likely reduce the need for fine tuning of specific conductances at the soma and consequently better match the known biology of HVC<sub>RA</sub> neurons. 

      In text: “While our simplified, somatically driven architecture enables better exploration of mechanisms for sequence propagation, future extensions of the model will incorporate dendritic compartments to more accurately reflect the intrinsic bursting mechanisms observed in HVC<sub>RA</sub> neurons.”

      (1b) In this paper, microcircuits are simulated and then concatenated to make the HVC chain, resulting in no representations during silent gaps. This is out of touch with the known HVC function. There is no anatomical nor functional evidence for microcircuits of the kind discussed in this paper or in the earlier and rather similar paper by Eve Armstrong and Henry Abarbanel (J. Neurophy 2016). One can write a large number of papers in which one makes arbitrary unconstrained guesses of network structure in HVC and, unless they reveal some novel principle or surprising detail, they are all going to be weak.

      Although the model is composed of sequentially activated microcircuits, the gaps between each microcircuit’s output do not represent complete silence in the network. During these periods, other neurons such as those in other microcircuits may still exhibit bursting activity. Thus, what may appear as a 'silent gap' from the perspective of a given output microcircuit is, in fact, part of the ongoing background dynamics of the larger HVC neuron network. We fully acknowledge the reviewer's point that there is no direct anatomical or physiological evidence supporting the presence of microcircuits with this structure in HVC. Our intention was not to propose the existence of such a physical model but to use it as a computational simplification to make precise sequential bursting activity feasible given the biologically realistic neuronal dynamics used. Hence, our use of 'microcircuits' refers to a modeling construct rather than a structural hypothesis. Even if the network topology is hypothetical, we still believe that the temporal structuring suggested allows us to generate specific predictions for future work about burst timing and neuronal connections.

      (1c) HVC interneuron discharge in the author's model is overly precise; addressing the observation that these neurons can exhibit noisy discharge. Real HVC interneurons are noisy. This issue is critical: All reviewers strongly recommend that the authors should, at the minimum in a revision, focus on incorporating HVC-I noise in their model.

      We agree that capturing the variability in interneuron bursting is critical for biological realism. In our model, HVC interneurons receive stochastic background current that introduces variability in their firing patterns as observed in vivo. This variability is seen in our simulations and produces more biologically realistic dynamics while maintaining sequence propagation. We clarify this implementation in the Methods section. 

      (1d) Address the finding that Kosche et al show that even with reduced inhibition, HVCra neuronal timing is preserved; it is the burst pattern that is affected.

      The differences between the Kosche et al. (2015) findings and the predictions of our model arise from differences in the aspect of HVC function we are modeling. Our model is more sensitive to inhibition, which is a designed mechanism for achieving precise song patterning. This is a modeling simplification we adopted to capture specific characteristics of HVC function. 

      We acknowledged this point in the discussion: “While findings of Kosche et al. (2015) emphasize the robustness of the HVC timing circuit to inhibition, our model is more sensitive to inhibition, highlighting that HVC likely operates with several, redundant mechanisms that overall ensure temporal precision.”

      (1e) The real HVC is robust to microlesions, cooling, and HVCra neuron turnover. The model in this paper relies on precise HVCra connectivity and is not robust.

      Although our model is grounded in the biologically observed behavior of HVC neurons in vivo, we don’t claim that it fully captures the resilience seen in the HVC network. Instead, we see this as a simplified framework that helps us explore the basic principles of sequential activity. In the future, adding features like recurrent excitation, synaptic plasticity, or homeostatic mechanisms could make the model more robust.

      (1f) There is unclear motivation for Ih-driven HVCx bursting, given past findings from the Mooney group.

      Daou et al (2013) noticed that the observed in HVC<sub>X</sub> and HVC<sub>INT</sub> neurons in response to hyperpolarizing current pulses (Dutar et al. 1998; Kubota and Saito 1991; Kubota and Taniguchi 1998) was completely abolished after the application of the drug ZD 7288 in all of the neurons tested indicating that the sag in these HVC neurons is due to the hyperpolarization-activated inward current (I<sub>h</sub>). in addition, the sag and the rebound seen in these two neuron groups were larger as for larger hyperpolarization current pulses.

      (1g) The initial conditions of the network and its activity under those conditions, as well as the possible reliance on external inputs, are not defined.

      In our model, network activity is initiated through a brief, stochastic excitatory input to a small HVC<sub>RA</sub> neuron of one microcircuit. This drive represents a simplified version of external input from upstream brain regions known to project to HVC, such as nuclei in the high vocal center's auditory pathways such as Nif and Uva. Modeling the activity of these upstream regions and their influence on HVC dynamics is an ongoing research work to be published in the future.

      (1h) It has been known from the time of Hodgkin and Huxley how to include temperature dependences for neuronal dynamics so another suggestion is for the authors to add such dependences for the three classes of neurons and see if their simulation causes burst frequencies to speed up or slow down as T is varied.

      We added this as limitation to the discussion section: “Our model was run at a fixed physiological temperature, but it's well known going all the way back to Hodgkin and Huxley that both ion channel activity and synaptic dynamics can change with temperature. In future work, adding temperature scaling (like Q10 factors) could help us explore how burst timing and sequence speed change with temperature changes, and how neural activity in HVC would/would not preserve its precision under different physiological conditions.”

      (2) The scope of the paper and its objectives must be clearly defined. Defining the scope and providing caveats for what is not considered will help the reader contextualize this study with other work.

      (2a) The paper does not consider the role of external inputs to HVC, which are very likely important for the capacity of the HVC chain to tile the entire song, including silent gaps.

      The role of afferent input to HVC particularly from nuclei such as Uva and Nif is critical in shaping the timing and initiation of HVC sequences throughout the song, including silent intervals. In fact, external inputs are likely involved in more than just triggering sequences, they may also influence the continuity of activity across motifs. However, in this study, we chose to focus on the intrinsic dynamics of HVC as a step toward understanding the internal mechanisms required for generating temporally precise sequences and for this reason, we used a simplified external input only to initiate activity in the chain.

      (2b) The paper does not consider important dendritic mechanisms that almost certainly facilitate the all-or-none bursting behavior of HVC projection neurons. the authors need to mention and discuss that current-clamped neuronal response - in which an electrode is inserted into the soma and then a constant current-step is applied - bypasses dendritic structure and dendritic processing and so is an incomplete way to characterize a neuron's properties. In particular, claiming to fit current-clamp data accurately and then claiming that one now has a biophysically accurate network model, as the authors do, is greatly misleading.

      While we addressed this is 1a, we do not suggest that our model is a fully accurate biophysical representation of HVC network. Instead, we see it as a simplified framework that helps reveal how much of HVC’s sequential activity can be explained by somatic properties and synaptic interactions alone. However, additional biological mechanisms, like dendritic processing, are likely to play an important role and should be explored in future work.

      (2c) The introduction does not provide a clear motivation for the paper - what hypotheses are being tested? What is at stake in the model outcomes? It is not inherently informative to take a known biological representation and fine-tune a limited model to replicate that representation.

      We explicitly added the hypotheses to the revised introduction.

      (2d) There have been several published modeling efforts applied to the HVC chain (Seung, Fee, Long, Greenside, Jin, Margoliash, Abarbanel). These and others need to be introduced adequately, and it needs to be crystal clear what, if anything, the present study is adding to the canon.

      While several influential models have explored how HVC might generate sequences ranging from synfire chains to recurrent dynamics or externally driven sequences (e.g., Seung, Fee, Long, Greenside, Jin, Abarbanel, and others), these models could not capture the detailed dynamics observed in vivo. Our aim was to bridge a gap in the modeling literature by exploring how far biophysically grounded intrinsic properties and experimentally supported synaptic connections that are local to the HVC can alone produce temporally precise sequences. We have proven that these mechanisms are sufficient to generate these sequences, although some missing components (such as dendritic mechanisms or external inputs) might be needed to fully capture the complexity and robustness of HVC function.

      (2e) The authors mention learning prominently in the abstract, summary, and introduction but this paper has nothing to do with learning. Most or all mentions of learning should be deleted since they are misleading.

      We appreciate the reviewer’s observation however our intent by referencing learning was not to suggest that our model directly simulates learning processes, but rather to place HVC function within the broader context of song learning and production, where temporal sequencing plays a fundamental role. Yet, repeated references to learning may be misleading given that our current model does not incorporate plasticity, synaptic modification, or developmental changes. Hence, we have carefully revised the manuscript to rephrase mentions of learning unless directly relevant to context. 

      (3) Using the model for hypothesis generation and prediction of experimental results.

      (3a) The utility of a model is to provide conceptual insight into how or why the real HVC functions as it does, or to predict outcomes in yet-to-be conducted experiments to help motivate future studies. This paper does not adequately achieve these goals.

      We revised the Discussion of the manuscript to better emphasize potential contributions and point out many experiments that could validate or challenge the model’s predictions. These include dynamic clamp or ion channel blockers targeting A-type K<sup>+</sup> in HVC<sub>RA</sub> neurons to assess their impact on burst precision, optogenetic disruption of inhibitory interneurons to observe changes in burst timing and sequence propagation, pharmacological modulation of I<sub>h</sub> or I<sub>CaT</sub> in HVC<sub>X</sub> and interneurons etc. 

      (3b) Additionally, it can be interesting to conduct an experiment on an existing model; for example, what happens to the HVCra chain in your model if you delete the HVCx neurons? What happens if you block NMDA receptors? Such an approach in a modeling paper can help motivate hypotheses and endow the paper with a sense of purpose.

      We agree that running targeted experiments to test our computational model such as removing an HVC neuron population or blocking a synaptic receptor can be a powerful way to generate new ideas and guide future experiments. While we didn’t include these specific tests in the current study, the model is well suited for this kind of exploration. For instance, removing interneurons could help us better understand their role in shaping the timing of HVC<sub>RA</sub> bursts. These are great directions for future experiments, and we now highlight this in the discussion as a way the model could be used to guide experiments.

      (4) Changes to the paper's organization may improve clarity.

      (4a) Nearly all equations should be moved to an Appendix so that the main part of the paper can focus on the science: assumptions made, details of simulations, conclusions obtained, and their significance. The authors present many equations without discussion which weakens the paper.

      Equations moved to appendix.

      (4b) There are many grammatical errors, e.g., verbs do not match the subject in terms of being single or plural. The authors need to run their manuscript through a grammar checker.

      Done.

      (4c) Many of the figures are poorly designed and should be substantially modified. E.g. in Figure 1B, too many colors are used, making it hard to grasp what is being plotted and the colors are not needed. Figures 1C and 1D are entire figures taken from other papers, and there is no way a reader will be able to see or appreciate all the details when this figure is published on a single page. Figure 2 uses colors for dots that are almost identical, and the colors could be avoided by using different symbols. Figure 5 fills an entire page but most of the figure conveys no information, there is no need to show the same details for all 120 neurons, just show the top 1/3 of this figure; the same for Figure 7, a lot of unnecessary information is being included. Figure 10, the bottom time series of spikes should be replaced with a time series of rates, cannot extract useful information.

      Adjusted as requested. 

      (4d) Table 1 is long and largely uninteresting, and should be moved to an appendix.

      Table 1 moved to appendix.

      (4e) Many sentences are not carefully written, which greatly weakens the paper. As one typical example, the first sentence in the Discussion section "In this study, we have designed a neural network model that describes [sic] zebra finch song production in the HVC." This is inaccurate, the model does not describe song production, it just explores some properties of one nucleus involved with song production. Just one or few sentences like this is ok but there are so many sentences of this kind that the reader loses faith in the authors.

      Thank you for raising this point, we revised the manuscript to improve the precision of the writing. We replaced the first sentence of the discussion with this: "In this study, we developed a biophysically realistic neural network model to explore how intrinsic neuronal properties and local connectivity within the songbird nucleus HVC may support the generation of temporally precise activity sequences associated with zebra finch song."

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary

      The authors previously published a study of RGC boutons in the dLGN in developing wild-type mice and developing mutant mice with disrupted spontaneous activity. In the current manuscript, they have broken down their analysis of RGC boutons according to the number of Homer/Bassoon puncta associated with each vGlut3 cluster.

      The authors find that, in the first post-natal week, RGC boutons with multiple active zones (mAZs) are about a third as common as boutons with a single active zone (sAZ). The size of the vGluT2 cluster associated with each bouton was proportional to the number of active zones present in each bouton. Within the author's ability to estimate these values (n=3 per group, 95% of results expected to be within ~2.5 standard deviations), these results are consistent across groups: 1) dominant eye vs. nondominant eye, 2) wild-type mice vs. mice with activity blocked, and at 3) ages P2, P4, and P8. The authors also found that mAZs and sAZs also have roughly the same number (about 1.5) of sAZs clustered around them (within 1.5 um).

      However, the authors do not interpret this consistency between groups as evidence that active zone clustering is not a specific marker or driver of activity dependent synaptic segregation. Rather, the authors perform a large number of tests for statistical significance and cite the presence or absence of statistical significance as evidence that "Eye-specific active zone clustering underlies synaptic competition in the developing visual system (title)". I don't believe this conclusion is supported by the evidence.

      We have revised the title to be descriptive: "Eye-specific differences in active zone addition during synaptic competition in the developing visual system." While our correlative approach does not establish direct causality, our findings provide important structural evidence that complements existing functional studies of activity-dependent synaptic refinement. We have carefully revised the text throughout to avoid causal language, focusing instead on the developmental patterns we observe.

      Strengths

      The source dataset is high resolution data showing the colocalization of multiple synaptic proteins across development. Added to this data is labeling that distinguishes axons from the right eye from axons from the left eye. The first order analysis of this data showing changes in synapse density and in the occurrence of multi-active zone synapses is useful information about the development of an important model for activity dependent synaptic remodeling.

      Weaknesses

      In my previous review I argued that it was not possible to determine, from their analysis, whether the differences they were reporting between groups was important to the biology of the system. The authors have made some changes to their statistics (paired t-tests) and use some less derived measures of clustering. However, they still fail to present a meaningfully quantitative argument that the observed group differences are important. The authors base most of their claims on small differences between groups. There are two big problems with this practice. First, the differences between groups appear too small to be biologically important. Second, the differences between groups that are used as evidence for how the biology works are generally smaller than the precision of the author's sampling. That is, the differences are as likely to be false positives as true positives.

      (1) Effect size. The title claims: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". Such a claim might be supported if the authors found that mAZs are only found in dominant-eye RGCs and that eye-specific segregation doesn't begin until some threshold of mAZ frequency is reached. Instead, the behavior of mAZs is roughly the same across all conditions. For example, the clear trend in Figure 4C and D is that measures of clustering between mAZ and sAZ are as similar as could reasonably be expected by the experimental design. However, some of the comparisons of very similar values produced p-values < 0.05. The authors use this fact to argue that the negligible differences between mAZ and sAZs explain the development of the dramatic differences in the distribution of ipsilateral and contralateral RGCs.

      We have changed the title to avoid implying a causal relationship between clustering and eye-specific segregation. Our key findings in Figures 4C and 4D demonstrate effect sizes >2.0 with high statistical power (Supplemental Table S2). While the absolute magnitude of differences is modest (5-7%), these high effect sizes combined with low inter-animal variability demonstrate consistent, reproducible biological phenomena. During development, small differences during critical periods can have profound downstream consequences for synaptic refinement outcomes.

      We acknowledge that significance in Figure 4 arises due to low variance between biological replicates rather than large mean differences. We have revised the text to describe these as "slight" differences and that "WT mice show a tendency toward forming more synapses near mAZ inputs," reflecting appropriate caution in our interpretation while maintaining the statistical robustness of our findings.

      (2) Sample size. Performing a large number of significance tests and comparing pvalues is not hypothesis testing and is not descriptive science. At best, with large sample sizes and controls for multiple tests, this approach could be considered exploratory. With n=3 for each group, many comparisons of many derived measures, among many groups, and no control for multiple testing, this approach constitutes a random result generator.

      The authors argue that n=3 is a large sample size for the type of high resolution / large volume data being used. It is true that many electron microscopy studies with n=1 are used to reveal the patterns of organization that are possible within an individual. However, such studies cannot control individual variation and are, therefore, not appropriate for identifying subtle differences between groups.

      In response to previous critiques along these lines, the authors argue they have dealt with this issue by limiting their analysis to within-individual paired comparisons. There are several problems with their thinking in this approach. The main problem is that they did not change the logic of their arguments, only which direction they pointed the t-tests. Instead of claiming that two groups are different because p < 0.05, they say that two groups are different because one produced p < 0.05 and the other produced p > 0.05. These arguments are not statistically valid or biologically meaningful.

      We have implemented rigorous statistical controls, applying false discovery rate (FDR) correction using the Benjamini-Hochberg method (α = 0.05) within each experimental condition (age × genotype combination). This correction strategy treats each condition as addressing a distinct experimental question: “What synaptic properties differ between left eye and right eye inputs in this specific developmental stage and genotype?” The approach appropriately controls for multiple testing while preserving power to detect biologically meaningful differences. We applied FDR correction separately to the ~20-34 measurements (varying by age and genotype) within each of the six experimental conditions, resulting in condition-specific adjusted p-values reported in updated Supplemental Table S2. This correction confirmed the robustness of our key findings. We do not base conclusions solely on comparing p-values across conditions. Our interpretations focus on effect sizes, confidence intervals, and consistent patterns within each condition, with statistical significance providing supporting evidence rather than the primary basis for biological conclusions.

      To the best of my understanding, the results are consistent with the following model:

      RGCs form mAZs at large boutons (known)

      About a quarter of week-one RGC boutons are mAZs (new observation)

      Vesicle clustering is proportional to active zone number (~new observation)

      RGC synapse density increases during the first post-week (known)

      Blocking activity reduces synapse density (known)

      Contralateral eye RGCs for more and larger synapses in the lateral dLGN (known)

      While mAZ formation is known in adult and juvenile dLGN, the formation of mAZ boutons during eye-specific competition represents new information with important functional implications. Synapses with multiple release sites should be stronger than single-active-zone synapses, suggesting a structural correlate for competitive advantage during refinement.

      We demonstrate distinct developmental patterns for sAZ versus mAZ contacts during the first postnatal week. Multi-active zone density favors the dominant eye, while single active-zone synapse density from the competing eye increases from P2-P4 to match dominant-eye levels. This reveals that newly formed synapses from the competing eye predominantly contain single release sites, marking P4-P8 as a critical window for understanding molecular mechanisms driving synaptic elimination.

      Our results show that altered retinal activity patterns (β2KO mice) reduce synapse density during eye-specific competition. We relied on β2 knockout mice, which retain retinal waves and spontaneous spike activity but with disrupted patterns and output levels compared to controls. We make no claims about complete activity blockade. Previous studies using different activity manipulations (epibatidine, TTX) have examined terminal morphology, but effects on synapse density during competition remain largely unknown. Achieving complete retinal activity blockade is technically challenging, making it of interest to revisit the role of activity using more precise manipulations to control spike output and relative timing.

      With n=3 and effect sizes smaller than 1 standard deviation, a statistically significant result is about as likely to be a false positive as a true positive.

      A true-positive statistically significant result does is not evidence of a meaningful deviation from a biological model.

      Our conclusions are based on results with effect sizes substantially larger than 1. Key findings demonstrate effect sizes exceeding 2.0. These large effect sizes, combined with rigorous FDR correction and low inter-animal variability, provide evidence against false positive results. During critical developmental periods, consistent structural differences, even those modest in absolute magnitude, can reflect important regulatory mechanisms that influence refinement outcomes. All statistical results, effect sizes, and power analyses are reported in Supplementary Tables S2, with confidence intervals in Supplementary Table S3. We have revised the text in several places where small differences are presented to reflect appropriate caution in our interpretation.

      Providing plots that show the number of active zones present in boutons across these various conditions is useful. However, I could find no compelling deviation from the above default predictions that would influence how I see the role of mAZs in activity dependent eye-specific segregation.

      Below are critiques of most of the claims of the manuscript.

      Claim (abstract): individual retinogeniculate boutons begin forming multiple nearby presynaptic active zones during the first postnatal week.

      Confirmed by data.

      Claim (abstract): the dominant-eye forms more numerous mAZ contacts,

      Misleading: The dominant-eye (by definition) forms more contacts than the nondominant eye. That includes mAZ.

      While the dominant eye forms more total contacts, the pattern depends critically on contact type and developmental stage. The dominant eye forms more mAZ contacts across all ages (Figures 2 and S1). However, for sAZ contacts, the two eyes form similar numbers at P4, with the non-dominant eye showing increased sAZ formation during this critical period. This differential pattern by synapse type represents an important aspect of how synaptic competition unfolds structurally.

      Claim (abstract): At the height of competition, the non-dominant-eye projection adds many single active zone (sAZ) synapses

      Weak: While the individual observation is strong, it is a surprising deviation based on a single n=3 experiment in a study that performed twelve such experiments (six ages, mutant/wildtype, sAZ/mAZ)

      The difference in eye-specific sAZ formation at P2 and P8 had effect sizes of ~5.3 and ~2.7 respectively (after FDR correction the difference was still significant at P2 and trending at P8). At P4, no effect was observed by paired T-test and the 5/95% confidence intervals ranged from -0.021-0.008 synapses/m<sup>3</sup>. The consistency of this pattern across P2 and P8, combined with the large effect sizes, supports the reliability of this developmental finding. We report all effect sizes and power test analyses in Supplemental Table S2, and confidence intervals in Supplemental Table S3. 

      Claim (abstract): Together, these findings reveal eye-specific differences in release site addition during synaptic competition in circuits essential for visual perception and behavior.

      False: This claim is unambiguously false. The above findings, even if true, do not argue for any functional significance to active zone clustering.

      Our phrasing “circuits essential for visual perception and behavior” referred to the general importance of binocular organization in the retinogeniculate system for visual processing and we did not intend to claim direct functional significance of our structural data. For clarity we have deleted the latter part of this sentence. In lines 35-37, the abstract now reads “Together, these findings reveal eye-specific differences in release site addition that correlate with axonal refinement outcomes during retinogeniculate refinement.”

      Claim (line 84): "At the peak of synaptic competition midway through the first postnatal week, the non-dominant-eye formed numerous sAZ inputs, equalizing the global synapse density between the two eyes"

      Weak: At one of twelve measures (age, bouton type, genotype) performed with 3 mice each, one density measure was about twice as high as expected.

      The difference in eye-specific sAZ formation at P2 and P8 had effect sizes of ~5.3 and ~2.7 respectively (after FDR correction the difference was still significant at P2 and trending at P8). At P4, no effect was observed by paired T-test and the 5/95% confidence intervals ranged from -0.021-0.008 synapses/m<sup>3</sup>. The consistency of this pattern across P2 and P8, combined with the large effect sizes, supports the reliability of this developmental finding. We report all effect sizes and power test analyses in Supplemental Table S2, and confidence intervals in Supplemental Table S3. 

      Claim (line 172): "In WT mice, both mAZ (Fig. 3A, left) and sAZ (Fig. 3B, left) inputs showed significant eye-specific volume differences at each age."

      Questionable: There appears to be a trend, but the size and consistency is unclear.

      Claim (line 175): "the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left)."

      Cherry picking. Twelve differences were measured with an n of 3, 3 each time. The biggest difference of the group was cited. No analysis is provided for the range of uncertainty about this measure (2.5 standard deviations) as an individual sample or as one of twelve comparisons.

      Claim (line 174): "In the middle of eye-specific competition at P4 in WT mice, the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left). In contrast, β2KO mice showed a smaller 1.1 fold difference at the same age (Fig. 3A, right panel). For sAZ synapses at P4, the magnitudes of eye-specific differences in VGluT2 volume were smaller: 1.35-fold in WT (Fig. 3B, left) and 0.41-fold in β2KO mice (Fig. 3B, right). Thus, both mAZ and sAZ input size favors the dominant eye, with larger eye-specific differences seen in WT mice (see Table S3)."

      No way to judge the reliability of the analysis and trivial conclusion: To analyze effect size the authors choose the median value of three measures (whatever the middle value is). They then make four comparisons at the time point where they observed the biggest difference in favor of their hypothesis. There is no way to determine how much we should trust these numbers besides spending time with the mislabeled scatter plots. The authors then claim that this analysis provides evidence that there is a difference in vGluT2 cluster volume between dominant and non-dominant RGCs and that that difference is activity dependent. The conclusion that dominant axons have bigger boutons and that mutants that lack the property that would drive segregation would show less of a difference is very consistent with the literature. Moreover, there is no context provided about what 1.35 or 1.1 fold difference means for the biology of the system.

      We focused on P4 for biological reasons rather than post-hoc selection. P4 represents the established peak of synaptic competition when eye-specific synapse densities are globally equivalent. This is a timepoint consistently highlighted throughout our manuscript and supported by previous literature. We have modified our presentation from fold changes to measured eye-specific differences in volume (mean ± standard error) and added confidence intervals in Supplemental Table S3. The effect sizes for eye-specific differences in VGluT2 volume at P4 are robust: ~2.3 and ~1.5 for mAZ and sAZ measurements in WT mice, and ~2.5 and ~1.8 in β2KO mice, with all analyses well-powered (Supplemental Table S2).

      We were unable to identify any mislabeled scatter plots and believe all figures are correctly labeled. While dominant-eye advantage in bouton size is consistent with previous literature, our study provides the first detailed analysis of how this develops specifically during the critical period of competition, with distinct patterns for single versus multi-active zone contacts. Our data show that dominant-eye inputs have larger vesicle pools that scale with active zone number. While this suggests enhanced transmission capacity, we make no direct physiological claims based on structural data alone.

      Claim (189): "This shows that vesicle docking at release sites favors the dominant-eye as we previously reported but is similar for like eye type inputs regardless of AZ number."

      Contradicts core claim of manuscript: Consistent with previous literature, there is an activity dependent relative increase in vGlut2 clustering of dominant eye RGCs. The new information is that that activity dependence is more or less the same in sAZ and mAZ. The only plausible alternative is that vGlut2 scaling only increases in mAZ which would be consistent with the claims of their paper. That is not what they found. To the extent that the analysis presented in this manuscript tests a hypothesis, this is it. The claim of the title has been refuted by figure 3.

      We report the volume of docked vesicle signal (VGluT2) nearby each active zone, finding this is greater for dominant-eye synapses. Within each eye-specific synapse population, vesicle signal per active zone is similar regardless of whether these are part of single- or multi-active zone contacts. This is consistent with a modular program of active zone assembly and maintenance: core molecular programs facilitate docking at each AZ similarly regardless of how many AZs are nearby. 

      This finding does not contradict our main conclusions but rather provides insight into how synaptic advantages are structured. The dominant eye's advantage may arise in part from forming more multi-AZ contacts (which have proportionally more docked vesicles) rather than from enhanced vesicle loading per individual active zone. This organization may reflect how developmental competition operates through contact number and active zone addition rather than fundamental changes to individual release site properties.

      We have changed the title to be descriptive rather than mechanistic.

      Claim (line 235): "For the non-dominant eye projection, however, clustered mAZ inputs outnumbered clustered sAZ inputs at P4 (Fig. 4C, bottom left panel), the age when this eye adds sAZ synapses (Fig. 2C)."

      Misleading: The overwhelming trend across 24 comparisons is that the sAZ clustering looks like mAZ clustering. That is the objective and unambiguous result. Among these 24 underpowered tests (n=3), there were a few p-values < 0.05. The authors base their interpretation of cell behavior on these crossings.

      In Figures 4C and 4D we report significant results with high effect sizes (effect sizes all greater than 2; see Supplemental Table S2). The mean differences are modest (5-7%) and significance arises due to low variance between biological replicates. We acknowledge that clustering patterns are generally similar between mAZ and sAZ inputs across most conditions. We have revised the text to describe these as “slight” differences and that “WT mice show a tendency toward forming more synapses near mAZ inputs”, reflecting appropriate caution in our interpretation while noting the statistical consistency of these patterns.

      Claim (line 328): "The failure to add synapses reduced synaptic clustering and more inputs formed in isolation in the mutants compared to controls."

      Trivially true: Density was lower in mutant.

      We have rewritten the sentence for clarity: “The failure to add synapses could explain the observation that synaptic clustering was reduced and more inputs formed in isolation in the mutants compared to controls.”

      Claim (line 332): "While our findings support a role for spontaneous retinal activity in presynaptic release site addition and clustering..."

      Not meaningfully supported by evidence: I could not find meaningful differences between WT and mutant beside the already known dramatic difference in synapse density.

      We have changed the sentence to avoid overinterpreting the results. The new sentence in lines 415-417 reads: “While our results highlight developmental changes in presynaptic release site addition and clustering, activity-dependent postsynaptic mechanisms also influence input refinement at later stages.”

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Zhang and Speer examine changes in the spatial organization of synaptic proteins during eye specific segregation, a developmental period when axons from the two eyes initially mingle and gradually segregate into eye-specific regions of the dorsal lateral geniculate. The authors use STORM microscopy and immunostain presynaptic (VGluT2, Bassoon) and postsynaptic (Homer) proteins to identify synaptic release sites. Activity-dependent changes of this spatial organization are identified by comparing the β2KO mice to WT mice. They describe two types of synapses based on Bassoon clustering: the multiple active zone (mAZ) synapse and single active zone (sAZ) synapse. In this revision, the authors have added EM data to support the idea that mAZ synapses represent boutons with multiple release sites. They have also reanalyzed their data set with different statistical approaches.

      Strengths:

      The data presented is of good quality and provides an unprecedented view at high resolution of the presynaptic components of the retinogeniculate synapse during active developmental remodeling. This approach offers an advance to the previous mouse EM studies of this synapse because of the CTB label allows identification of the eye from which the presynaptic terminal arises.

      Weaknesses:

      While the interpretation of this data set is much more grounded in this second revised submission, some of the authors' conclusions/statements still lack convincing supporting evidence. In particular, the data does not support the title: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". The data show that there are fewer synapses made for both contra- and ipsi- inputs in the β2KO mice-- this fact alone can account for the differences in clustering. There is no evidence linking clustering to synaptic competition. Moreover, the findings of differences in AZ# or distance between AZs that the authors report are quite small and it is not clear whether they are functionally meaningful.

      We thank the reviewer for their helpful suggestions that improved the manuscript in this revision. We have changed the title to remove the reference to “clustering” and to avoid implying any causal relationships. The new title is descriptive: “Eye-specific differences in active zone addition during synaptic competition in the developing visual system”.

      To further address the reviewers comments, we have removed the remaining references to activity-dependent effects on synaptic development (line 36, line 96, line 415). We have also modified the text in lines 411-413 to state that “The failure to add synapses could explain the observation that synaptic clustering was reduced and more inputs formed in isolation in the mutants compared to controls.”

      We have also updated our presentation of results for Figure 4 to ensure that we do not causally link clustering to synaptic competition. In Figures 4C and 4D we report significant results with high effect sizes (effect sizes all greater than 2; see Supplemental Table S2). The mean differences are modest (5-7%) and significance arises due to low variance between biological replicates. We acknowledge that clustering patterns are generally similar between mAZ and sAZ inputs across most conditions. We have revised the text to describe these as “slight” differences and that “WT mice show a tendency toward forming more synapses near mAZ inputs”, reflecting appropriate caution in our interpretation while noting the statistical consistency of these patterns.

      Reviewer #3 (Public review):

      This study is a follow-up to a recent study of synaptic development based on a powerful data set that combines anterograde labeling, immunofluorescence labeling of synaptic proteins, and STORM imaging (Cell Reports, 2023). Specifically, they use anti-Vglut2 label to determine the size of the presynaptic structure (which they describe as the vesicle pool size), anti-Bassoon to label active zones with the resolution to count them, and anti-Homer to identify postsynaptic densities. Their previous study compared the detailed synaptic structure across the development of synapses made with contraprojecting vs. ipsi-projecting RGCs and compared this developmental profile with a mouse model with reduced retinal waves. In this study, they produce a new detailed analysis on the same data set in which they classify synapses into "multi-active zone" vs. "single-active zone" synapses and assess the number and spacing of these synapses. The authors use measurements to make conclusions about the role of retinal waves in the generation of same-eye synaptic clusters. The authors interpret these results as providing insight into how neural activity drives synapse maturation, the strength of their conclusions is not directly tested by their analysis.

      Strengths:

      This is a fantastic data set for describing the structural details of synapse development in a part of the brain undergoing activity-dependent synaptic rearrangements. The fact that they can differentiate the eye of origin is what makes this data set unique over previous structural work. The addition of example images from the EM dataset provides confidence in their categorization scheme.

      Weaknesses:

      Though the descriptions of single vs multi-active zone synapses are important and represent a significant advance, the authors continue to make unsupported conclusions regarding the biological processes driving these changes. Although this revision includes additional information about the populations tested and the tests conducted, the authors do not address the issue raised by previous reviews. Specifically, they provide no assessment of what effect size represents a biologically meaningful result. For example, a more appropriate title is "The distribution of eye-specific single vs multiactive zone is altered in mice with reduced spontaneous activity" rather than concluding that this difference in clustering is somehow related to synaptic competition. Of course, the authors are free to speculate, but many of the conclusions of the paper are not supported by their results.

      We appreciate the reviewer’s helpful critique. We have changed the title to be descriptive and avoid implying causal relationships. 

      We have applied false discovery rate (FDR) correction using the Benjamini-Hochberg method with α = 0.05 within each experimental condition (age × genotype combination). The FDR correction treats each condition as addressing a distinct experimental question: 'What synaptic properties differ between left eye and right eye inputs in this specific developmental stage and genotype?'

      This correction strategy is appropriate because: 1) we focus our statistical comparisons within each age/genotype; 2) each age-genotype combination represents a separate biological context where different synaptic properties between eye-of-origin may be relevant; and 3) this approach controls for multiple testing within each experimental question while maintaining statistical power to detect meaningful biological differences.

      We applied FDR correction separately to the ~20-34 measurements (varying with age and genotype) within each of the six experimental conditions (P2-WT, P2-ß2, P4-WT, P4-ß2, P8-WT, P8-ß2), resulting in condition-specific adjusted p-values. These are reported in the updated Supplemental Table S2. Figures have been also been updated to reflect the FDR-adjusted values. Selected between-genotype comparisons are presented descriptively using 5/95% confidence intervals. This correction confirmed the robustness of our key findings.

      With regard to the biological significance of effect sizes, our key findings demonstrate effect sizes >2.0, indicating robust effects. During critical developmental periods, consistent structural differences, even those modest in absolute magnitude, can reflect important regulatory mechanisms that influence refinement outcomes. The differences in synaptic organization we observe occur during the first postnatal week when eyespecific competition is active, suggesting these patterns may be relevant to understanding how structural advantages emerge during synaptic refinement.

      Reviewer #1 (Recommendations for the authors):

      I have tried to understand the analysis and biology of this manuscript as best I can. I believe the analytical approach taken is not reliable and I have explained why in my public comments. I don't believe this manuscript is unique in taking this approach. I have recently published a paper on how common this approach is and why it doesn't work. I don't want to give the impression that the problem with the analysis was that it was not computationally sophisticated enough or that you did not jump through a specific statistical hoop. If I strip out the arguments that depend on misinterpretations of p-values and -instead- look at the scatterplots, I come up with a very different view of the data than what is described in the paper.

      The information in the plots could be translated into a rigorous statistical analysis of estimated differences between groups given the uncertainties of the experimental design. I don't really think that analysis would be useful. I think it would have been enough to publish the plots and report your estimates of the number of active zones in RGCs during development. I don't see evidence of an additional effect.

      We appreciate the reviewer’s helpful comments throughout the review process. Mean active zone numbers per mAZ contact are presented in Figure S2D/E. We look forward to further technical and computational advances that will help us increase our data acquisition throughput and sample sizes when designing future studies. 

      Reviewer #2 (Recommendations for the authors):

      The authors should modify the title and other text to be more consistent with the data. There is no evidence that active zone clustering has any direct relationship to synaptic competition.

      We appreciate the reviewer’s helpful suggestions to ensure appropriate language around causal effects. We have modified the title to accurately reflect the results: "Eyespecific differences in active zone addition during synaptic competition in the developing visual system." We have revised the text in the abstract, introduction, and results section for Figures 4 to be consistent with the data and not imply causality of synapse clustering on segregation phenotypes.

      Reviewer #3 (Recommendations for the authors):

      Change the title.

      We appreciate the reviewer’s feedback throughout the review process. We have modified the title to accurately reflect the results: "Eye-specific differences in active zone addition during synaptic competition in the developing visual system."

    1. Unclear Privacy Rules: Sometimes privacy rules aren’t made clear to the people using a system. For example: If you send “private” messages on a work system, your boss might be able to read them [i19]. When Elon Musk purchased Twitter, he also was purchasing access to all Twitter Direct Messages [i20] Others Posting Without Permission: Someone may post something about another person without their permission. See in particular: The perils of ‘sharenting’: The parents who share too much [i21] Metadata: Sometimes the metadata that comes with content might violate someone’s privacy. For example, in 2012, former tech CEO John McAfee was a suspect in a murder in Belize [i22], John McAfee hid out in secret. But when Vice magazine wrote an article about him, the photos in the story contained metadata with the exact location in Guatemala [i23]. Deanonymizing Data: Sometimes companies or researchers release datasets that have been “anonymized,” meaning that things like names have been removed, so you can’t directly see who the data is about. But sometimes people can still deduce who the anonymized data is about. This happened when Netflix released anonymized movie ratings data sets, but at least some users’ data could be traced back to them [i24]. Inferred Data: Sometimes information that doesn’t directly exist can be inferred through data mining (as we saw last chapter), and the creation of that new information could be a privacy violation. This includes the creation of Shadow Profiles [i25], which are information about the user that the user didn’t provide or consent to Non-User Information: Social Media sites migh

      This section makes me think on the internet nowadays, there's absolutely no way to keep your information to yourself. People's information is in so many different companies, and users would not know how their information is being used either. Users has no control over their own privacy although it's something about themselves.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      We thank the reviewer for very enthusiastic and supportive comments on our manuscript. 

      Summary:

      This manuscript presents a compelling and innovative approach that combines Track2p neuronal tracking with advanced analytical methods to investigate early postnatal brain development. The work provides a powerful framework for exploring complex developmental processes such as the emergence of sensory representations, cognitive functions, and activity-dependent circuit formation. By enabling the tracking of the same neurons over extended developmental periods, this methodology sets the stage for mechanistic insights that were previously inaccessible.

      Strengths:

      (1) Innovative Methodology:

      The integration of Track2p with longitudinal calcium imaging offers a unique capability to follow individual neurons across critical developmental windows.

      (2) High Conceptual Impact:

      The manuscript outlines a clear path for using this approach to study foundational developmental questions, such as how early neuronal activity shapes later functional properties and network assembly.

      (3) Future Experimental Potential:

      The authors convincingly argue for the feasibility of extending this tracking into adulthood and combining it with targeted manipulations, which could significantly advance our understanding of causality in developmental processes.

      (4) Broad Applicability:

      The proposed framework can be adapted to a wide range of experimental designs and questions, making it a valuable resource for the field.

      Weaknesses:

      No major weaknesses were identified by this reviewer. The manuscript is conceptually strong and methodologically sound. Future studies will need to address potential technical limitations of long-term tracking, but this does not detract from the current work's significance and clarity of vision.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Majnik and colleagues introduces "Track2p", a new tool designed to track neurons across imaging sessions of two-photon calcium imaging in developing mice. The method addresses the challenge of tracking cells in the growing brain of developing mice. The authors showed that "Track2p" successfully tracks hundreds of neurons in the barrel cortex across multiple days during the second postnatal week. This enabled the identification of the emergence of behavioral state modulation and desynchronization of spontaneous network activity around postnatal day 11.

      Strengths:

      The manuscript is well written, and the analysis pipeline is clearly described. Moreover, the dataset used for validation is of high quality, considering the technical challenges associated with longitudinal two-photon recordings in mouse pups. The authors provide a convincing comparison of both manual annotation and "CellReg" to demonstrate the tracking performance of "Track2p". Applying this tracking algorithm, Majnik and colleagues characterized hallmark developmental changes in spontaneous network activity, highlighting the impact of longitudinal imaging approaches in developmental neuroscience. Additionally, the code is available on GitHub, along with helpful documentation, which will facilitate accessibility and usability by other researchers.

      Weaknesses:

      (1) The main critique of the "Track2p" package is that, in its current implementation, it is dependent on the outputs of "Suite2p". This limits adoption by researchers who use alternative pipelines or custom code. One potential solution would be to generalize the accepted inputs beyond the fixed format of "Suite2p", for instance, by accepting NumPy arrays (e.g., ROIs, deltaF/F traces, images, etc.) from files generated by other software. Otherwise, the tool may remain more of a useful add-on to "Suite2p" (see https://github.com/MouseLand/suite2p/issues/933) rather than a fully standalone tool.

      We thank the reviewer for this excellent suggestion. 

      We have now implemented this feature, where Track2p is now compatible with ‘raw’ NumPy arrays for the three types of inputs. For more information, please check the updated documentation: https://track2p.github.io/run_inputs_and_parameters.html#raw-npy-arrays. We have also tested this feature using a custom segmentation and trace extraction pipeline using Cellpose for segmentation.

      (2) Further benchmarking would strengthen the validation of "Track2p", particularly against "CaIMaN" (Giovannucci et al., eLife, 2019), which is widely used in the field and implements a distinct registration approach.

      This reviewer suggested  further benchmarking of Track2P.  Ideally, we would want to benchmark Track2p against the current state-of-the-art method. However, the field currently lacks consensus on which algorithm performs best, with multiple methods available including CaIMaN, SCOUT (Johnston et al. 2022), ROICaT (Nguyen et al. 2023), ROIMatchPub (recommended by Suite2p documentation and recently used by Hasegawa et al. 2024), and custom pipelines such as those described by Sun et al. 2025. The absence of systematic benchmarking studies—particularly for custom tracking pipelines—makes it impossible to identify the current state-of-the-art for comparison with Track2p. While comparing Track2p against all available methods would provide comprehensive evaluation, such an analysis falls beyond the scope of this paper.

      We selected CellReg for our primary comparison because it has been validated under similar experimental conditions—specifically, 2-photon calcium imaging in developing hippocampus between P17-P25 (Wang et al. 2024)—making it the most relevant benchmark for our developmental neocortex dataset.

      That said, to support further benchmarking in mouse neocortex (P8-P14), we will publicly release our ground truth tracking dataset.

      (3) The authors might also consider evaluating performance using non-consecutive recordings (e.g., alternate days or only three time points across the week) to demonstrate utility in other experimental designs.

      Thank you for your suggestion. We have performed a similar analysis prior to submission, but we decided against including it in the final manuscript, to keep the evaluation brief and to not confuse the reader with too many different evaluation methods. We have included the results inAuthor response images 1 and 2 below.

      To evaluate performance in experimental designs with larger time spans between recordings (>1 day) we performed additional evaluation of tracking from P8 to each of the consecutive days while omitting the intermediate days (e. g. P8 to P9, P8 to P10 … P8 to P14). The performance for the three mice from the manuscript is shown below:

      Author response image 1.

      As expected with increasing time difference between the two recordings the performance drops significantly (dropping to effectively zero for 2 out of 3 mice). This could also explain why CellReg struggles to track cells across all days, since it takes P8 as a reference and attempts to register all consecutive days to that time point before matching, instead of performing registration and matching in consecutive pairs of recordings (P8-P9, P9-P10 … P13-P14) as we do.

      Finally for one of the three mice we also performed an additional test where we asked how adding an additional recording day might rescue the P8-P14 tracking performance. This corresponds to the comment from the reviewer, answering the question if we can only perform three days of recording which additional day would give the best tracking performance. 

      Author response image 2.

      As can be seen from the plot, adding the P10 or P11 recording shows the most significant improvement to the tracking performance, however the performance is still significantly lower than when including all days (see Fig. 4). This test suggests that including a day that is slightly skewed to earlier ages might improve the performance more than simply choosing the middle day between the two extremes. This would also be consistent with the qualitative observation that the FOV seems to show more drastic day-to-day changes at earlier ages in our recording conditions.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Majnik et al. developed a computational algorithm to track individual developing interneurons in the rodent cortex at postnatal stages. Considerable development in cortical networks takes place during the first postnatal weeks; however, tools to study them longitudinally at a single-cell level are scarce. This paper provides a valuable approach to study both single-cell dynamics across days and state-driven network changes. The authors used Gad67Cre mice together with virally introduced TdTom to track interneurons based on their anatomical location in the FOV and AAVSynGCaMP8m to follow their activity across the second postnatal week, a period during which the cortex is known to undergo marked decorrelation in spontaneous activity. Using Track2P, the authors show the feasibility of tracking populations of neurons in the same mice, capturing with their analysis previously described developmental decorrelation and uncovering stable representations of neuronal activity, coincident with the onset of spontaneous active movement. The quality of the imaging data is compelling, and the computational analysis is thorough, providing a widely applicable tool for the analysis of emerging neuronal activity in the cortex. Below are some points for the authors to consider.

      We thank the reviewer for a constructive and positive evaluation of our MS. 

      Major points:

      (1) The authors used 20 neurons to generate a ground truth dataset. The rationale for this sample size is unclear. Figure 1 indicates the capability to track ~728 neurons. A larger ground truth data set will increase the robustness of the conclusions.

      We think this was a misunderstanding of our ground truth dataset analysis which included 192 and not 20 neurons. Indeed, as explained in the methods section, since manually tracking all cells would require prohibitive amounts of time, we decided to generate sparse manual annotations, only tracking a subset of all cells from the first recording day onwards. To do this, we took the first recording (s0), and we defined a grid 64 equidistant points over the FOV and, for each point, identified the closest ROI in terms of euclidean distance from the median pixel of the ROI (see Fig. S3A). We then manually tracked these 64 ROIs across subsequent days. Only neurons that were detected and tracked across all sessions were taken into account and referred to as our ground truth dataset (‘GT’ in Fig. 4). This was done for 3 mice, hence 3X64 neurons and not 20 were used to generate our GT dataset. 

      (2) It is unclear how movement was scored in the analysis shown in Figure 5A. Was the time that the mouse spent moving scored after visual inspection of the videos? Were whisker and muscle twitches scored as movement, or was movement quantified as the amount of time during which the treadmill was displaced?

      Movement was scored using a ‘motion energy’ metric as in Stringer et al. 2019 (V1) or Inácio et al. 2025 (S1). This metric takes each two consecutive frames of the videography recordings and computes the difference between them by summing up the square of pixelwise differences between the two images. We made the appropriate changes in the manuscript to further clarify this in the main text and methods in order to avoid confusion.

      Since this metric quantifies global movements, it is inherently biased to whole-body movements causing more significant changes in pixel values around the whole FOV of the camera. Slight twitches of a single limb, or the whisker pad would thus contribute much less to this metric, since these are usually slight displacements in a small region of the camera FOV. Additionally, comparing neural activity across all time points (using correlation or R<sup>2</sup>) also favours movements that last longer (such as wake movements / prolonged periods of high arousal) since each time point is treated equally.

      As we suggested in the discussion, in further analysis it would be interesting to look at the link between twitches and neural activity, but this would likely require extensive manual scoring. We could then treat movements not as continuous across all time-points, but instead using event-based analysis for example peri-movement time histograms for different types of movements at different ages, which is however outside of the scope of this study.

      (3) The rationale for binning the data analysis in early P11 is unclear. As the authors acknowledged, it is likely that the decoder captured active states from P11 onwards. Because active whisking begins around P14, it is unlikely to drive this change in network dynamics at P11. Does pupil dilation in the pups change during locomotor and resting states? Does the arousal state of the pups abruptly change at P11?

      We agree that P11 does not match any change in mouse behavior that we have been able to capture. However, arousal state in mice does change around postnatal day 11. This period marks a transition from immature, fragmented states to more organized and regulated sleep-wake patterns, along with increasing influence from neuromodulatory and sensory systems. All of these changes have been recently reviewed in Wu et al. 2024 (see also Martini et al. 2021). In addition, in the developing somatosensory system, before postnatal day 11 (P11), wake-related movements (reafference) are actively gated and blocked by the external cuneate nucleus (ECN, Tiriac et al. 2016 and all excellent recent work from the Blumberg lab). This gating prevents sensory feedback from wake movements from reaching the cortex, ensuring that only sleep-related twitches drive neural responses. However, around P11, this gating mechanism abruptly lifts, enabling sensory signals from wake movements to influence cortical processing—signaling a dramatic developmental shift from Wu et al. 2024

      Reviewer #1 (Recommendations for the authors):

      This manuscript represents a significant advancement in the field of developmental neuroscience, offering a powerful and elegant framework for longitudinal cellular tracking using the Track2p method combined with robust analytical approaches. The authors convincingly demonstrate that this integrated methodology provides an invaluable template for investigating complex developmental processes, including the emergence of sensory representations and higher cognitive functions.

      A major strength of this work is its emphasis on the power of longitudinal imaging to illuminate activity-dependent development. By tracking the same neurons over time, the authors open up new possibilities to uncover how early activity patterns shape later functional outcomes and the organization of neuronal assemblies-insights that would be inaccessible using conventional cross-sectional designs.

      Importantly, the manuscript highlights the potential for this approach to be extended even further, enabling continuous tracking into adulthood and thus offering an unprecedented window into long-term developmental trajectories. The authors also underscore the exciting opportunity to incorporate targeted perturbation experiments, allowing researchers to causally link early circuit dynamics to later outcomes.

      Given the increasing recognition that early postnatal alterations can underlie the etiology of various neurodevelopmental disorders, this work is especially timely. The methods and perspectives presented here are poised to catalyze a new generation of developmental studies that can reveal mechanistic underpinnings of both typical and atypical brain development.

      In summary, this is a technically impressive and conceptually forward-looking study that sets the stage for transformative advances in developmental neuroscience.

      Thank you for the thoughtful feedback—it's greatly appreciated!

      Reviewer #2 (Recommendations for the authors):

      Minor points:

      (1) Figure 1. Consider merging or moving to Supplemental, as its rationale is well described in the text.

      We would like to retain the current figure as we believe it provides an effective visual illustration of our rationale that will capture readers' attention and could serve as a valuable reference for others seeking to justify longitudinal tracking of the developing brain. We hope the reviewer will understand our decision.

      (2) Some axis labels and panels are difficult to read due to small font sizes (e.g. smaller panels in Figures 5-7).

      Modified, thanks 

      (3) Supplementary Figures. The order of appearance in the main text is occasionally inconsistent.

      This was modified, thanks

      (4) Line 132. Add a reference to the registration toolbox used (elastix). A brief description of the affine transformation would also be helpful, either here or in the Methods section (p. 27).

      We have added reference to Ntatsis et al. 2023 and described affine transformation in the main text (lines 133-135): 

      Firstly, we estimate the spatial transformation between s0 and s1 using affine image registration (i.e. allowing shifting, rotation, scaling and shearing, see Fig. 2B, the transformation is denoted as T).

      (5) Lines 147-151. If this method is adapted from another work, please cite the source.

      Computing the intersection over union of two ROIs for tracking is a widely established and intuitive method used across numerous studies, representing standard practice rather than requiring specific citation. We have however included the reference to the paper describing the algorithm we use to solve the linear sum assignment problem used for matching neurons across a pair of consecutive days (Crouse 2016).

      (6) Line 218. "classical" or automatic?

      We meant “classical” in the sense of widely used. 

      (7) Lines 220-231. Did the authors find significant variability of successfully tracked neurons across mice? While the data for successfully tracked cells is reported (Figure 5B), the proportions are not. Could differences in neuron dropout across days and mice affect the analysis of neuronal activity statistics?

      We thank the reviewer for raising this important point. We computed the fraction of successfully tracked cells in our dataset and found substantial variability:

      Cells detected on day 0: [607, 1849, 2190, 1988, 1316, 2138] 

      Proportion successfully tracked: [0.47, 0.20, 0.36, 0.37, 0.41, 0.19]

      Notably, the number of cells detected on the first day varies considerably (607–2138 cells). There appears to be a trend whereby datasets with fewer initially detected cells show higher tracking success rates, potentially because only highly active cells are identified in these cases.

      To draw more definitive conclusions about the proportion of active cells and tracking dropout rates, we would require activity-independent cell detection methods (such as Cellpose applied to isosbestic 830 nm fluorescence, or ideally a pan-neuronal marker in a separate channel, e.g., tdTomato). We have incorporated the tracking success proportions into the revised manuscript.

      (8) Line 260. Please briefly explain, here or in the Methods, the rationale for using data from only 3 mice (rather than all 6) for evaluating tracking performance.

      We used three mice for this analysis due to the labor-intensive nature of manually annotating 64 ROIs across several days. Given the time constraints of this manual process, we determined that three subjects would provide adequate data to reliably assess tracking performance.

      (9) Line 277. Consider clarifying or rephrasing the phrase "across progressively shorter time intervals"? Do you mean across consecutive days?

      This has been rephrased as follows: 

      Additionally, to assess tracking performance over time, we quantified the proportion of reconstructed ground truth tracks over progressively longer time intervals (first two days, first three days etc. ‘Prop. correct’ in Fig. 4C-F, see Methods). This allowed us to understand how tracking accuracy depends on the number of successive sessions, as well as at which time points the algorithm might fail to successfully track cells.

      (10) Line 306. "we also provide additional resources and documentation". Please add a reference or link.

      Done, thanks

      Track2p  

      (11) Lines 342-344. Specify that the raster plots refer to one example mouse, not the entire sample.

      Done, thanks.

      (12) Lines 996-1002. Please confirm whether only successfully tracked neurons were used to compute the Pearson correlations between all pairs.

      Yes of course, this only applies to tracked neurons as it is impossible to compute this for non-tracked pairs.

      (13) Line 1003. Add a reference to scikit-learn.

      Reference was added to: 

      Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 

      (14) Typos.Correct spacing between numeric values and units.

      We did not find many typos regarding spacing between the numerical value and the unit symbol (degrees and percent should not be spaced right?).

      Reviewer #3 (Recommendations for the authors):

      The font size in many of the figures is too small. For example, it is difficult to follow individual ROIs in Figure S3.

      Figure font size has been increased, thanks. In Figure S3 there might have been a misunderstanding, since the three FOV images do not correspond to the FOV of the same mouse across three days but rather to the first recording for each of the three mice used in evaluation (the ROIs can thus not be followed across images since they correspond to a different mouse). To avoid confusion we have labelled each of the FOV images with the corresponding mouse identifier (same as in Fig. 4 and 5).

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript, the authors explore the role of the conserved transcription factor POU4-2 in planarian maintenance and regeneration of mechanosensory neurons. The authors explore the role of this transcription factor and identify potential targets of this transcription factor. Importantly, many genes discovered in this work are deeply conserved, with roles in mechanosensation and hearing, indicating that planarians may be a useful model with which to study the roles of these key molecules. This work is important within the field of regenerative neurobiology, but also impactful for those studying the evolution of the machinery that is important for human hearing. 

      Strengths: 

      The paper is rigorous and thorough, with convincing support for the conclusions of the work. 

      Weaknesses: 

      Weaknesses are relatively minor and could be addressed with additional experiments or changes in writing.

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript, the authors investigate the role of the transcription factor Smed-pou4-2 in the maintenance, regeneration, and function of mechanosensory neurons in the freshwater planarian Schmidtea mediterranea. First, they characterize the expression of pou4-2 in mechanosensory neurons during both homeostasis and regeneration, and examine how its expression is affected by the knockdown of soxB1, 2, a previously identified transcription factor essential for the maintenance and regeneration of these neurons. Second, the authors assess whether pou4-2 is functionally required for the maintenance and regeneration of mechanosensory neurons. 

      Strengths: 

      The study provides some new insights into the regulatory role of pou4-2 in the differentiation, maintenance, and regeneration of ciliated mechanosensory neurons in planarians. 

      Weaknesses: 

      The overall scope is relatively limited. The manuscript lacks clear organization, and many of the conclusions would benefit from additional experiments and more rigorous quantification to enhance their strength and impact. 

      Reviewing Editor Comments: 

      (1) Quantification of pou4-2(+) cells that express (or do not express) hmcn-1-L and/or pkd1L-2(-) is a common suggestion amongst reviewers. It is recognized that Ross et al. (2018) showed that pkd1L-2 and hmcn-1L expression is detected in separate cells by double FISH, and the analysis presented in Supplementary Figure S3 is helpful in showing that some cells expressing pou4-2 (magenta) are not labeled by the combined signal of pkd1L-2 and hmcn-1-L riboprobes (green). However, I am not sure that we can conclude that pkd1L-2 and hmcn-1-L are effectively detected when riboprobes are combined in the analysis. Therefore, quantification of labeled cells as proposed by Reviewers 1 and 2 would help.

      Combining riboprobes is a standard approach in the field, and we chose this method as a direct way to determine which cells lack expression of both genes. We agree that providing the raw quantification data would be helpful for readers, and we included this data in Supplementary File S7; the file contains the quantification information for this dFISH experiment represented in Supplementary Figure 3.

      (2) It may be helpful to comment on changes (or lack of changes) in atoh gene RNA levels in RNAseq analyses of pou4-2 animals. As mentioned by one of the reviewers, in situs that don't show signal are inconclusive in this regard. 

      We fully agree with both reviewers. Two of the planarian atonal homologs are difficult to detect and produce background signals, which we attempted and previously reported in Cowles et al. Development (2013). We conceived performing reciprocal RNAi/in situ experiments, born out of curiosity given the reported role of atonal in the pou4 cascade in other organisms. However, these exploratory experiments lacked a strong rationale for inclusion, particularly given that pou4-2 and the atonal homologs do not share expression patterns, co-expression, or differential expression in our RNA-seq dataset. Therefore, we decided to omit the atonal in situs following pou4-2 RNAi. We retained the experiments showing that knockdown of the atonal genes does not show robust effects on the mechanosensory neuron pattern, as expected. We thank the reviewing editor and reviewers for pinpointing the concern. We agree that additional experiments, such as qPCR experiments, would be needed. We reasoned that while these additional experiments could be informative, they are unlikely to alter the key conclusions of this study substantially.

      (3) There seem to be typos at bottom of Figure 10 and top of page 11 when referencing to Figure 4B (should be to 5B instead): "While mechanosensory neuronal patterned expression of Eph1 was downregulated after pou4-2 and soxB1-2 inhibition, low expression in the brain branches of the ventral cephalic ganglia persisted (Figure 4B)." 

      Thank you! We have fixed those.

      (4) Typo (page 13; kernel?): "...to test to what extent the Pou4 gene regulatory kernel is conserved among these widely divergent animals." 

      Regulatory kernels are defined as the minimal sets of interacting genes that drive developmental processes and are the core circuits within a gene regulatory network, but we recognize that this might not be as well known, so we have changed the term to “network” for clarity.

      Reviewer #1 (Recommendations for the authors): 

      (1) The authors indicate that they are interested in finding out whether POU4-2 is important in the creation of mechanosensory neurons in adulthood as well as in embryogenesis (in other words, whether the mechanism is "reused during adult tissue maintenance and regeneration"). The manuscript clearly shows that planarian POU4 -2 is important in adult neurogenesis in planarians, but there is no evidence presented to show that this is a recapitulation of embryogenesis. Is pou4-2 expressed in the planarian embryo? This might be possible to examine by ISH or through the evaluation of sequencing data that already exists in the literature. 

      We agree that these statements should be precise. We have clarified when we make comparisons to the role of Pou4 in sensory system development in other organisms versus its role in the adult planarian. We examined its expression using the existing database of embryonic gene expression. Thanks for hinting at this idea. We performed BLAST in Planosphere (Davies et al., 2017) to cross-reference our clone matching dd_Smed_v6_30562_0_1, which is identical to SMED30002016. The embryonic gene expression for SMED30002016 indicates this gene is expressed at the expected stages given prior knowledge of the timing of organ development in Schmidtea mediterranea (a positive trend begins at Stage 5, with a marked increase by Stage 6 that remains comparable to the asexual expression levels shown). We thank the reviewer for pointing out this oversight. We have incorporated this result in the paper as a Supplementary Figure and discuss how we can only speculate that it has a similar role as we detect in the adult asexual worms.

      (2) Can it be determined whether the punctate pou4-2+ cells outside of the stripes are progenitors or other neural cell types? Are there pou4-2+ neurons that are not mechanosensory cell types? Could there be other roles for POU4-2 in the neurogenesis of other cell types? It might help to show percentages of overlap in Figure 4A and discuss whether the two populations add up to 100% of cells. 

      These are good questions that arise in part from other statements that need clarification in the text (pointed out by Reviewer 2). We think some of the dorsal pou4-2<sup>+</sup> might represent progenitor cells undergoing terminal differentiation (see Supplementary Figure 4). We attempted BrdU pulse chase experiments but were not successful in consistently detecting pou4-2 at sufficient levels with our protocol. In response to this helpful comment, we have included this question as a future direction in the revised Discussion. Finally, we have edited our description of the expression pattern. We already pointed out that there are other cells on the ventral side that are not affected when soxB1-2 is knocked down. We attempted to resolve the potential identity of those cells working with existing scRNA-seq data in collaboration with colleagues, but their low abundance made it difficult to distinguish other populations. While we acknowledge this interesting possibility, we have chosen to focus this report on the role of pou4-2 downstream of soxB1-2, as this represents the most well-supported aspect of the dataset and was positively highlighted by both the reviewer and editor.

      (3) The authors discuss many genes from their analysis that play conserved roles in mechanosensation and hearing. Were there any conserved genes that came up in the analysis of pou4-2(RNAi) planarians that have not yet been studied in human hearing and neurodevelopment? I am wondering the extent to which planarians could be used as a discovery system for mechanosensory neuron function and development, and discussion of this point might increase the impact of this paper or provide critical rationale for expanding work on planarian mechanosensation. 

      Indeed, we agree that planarians could be used to identify conserved genes with roles in mechanosensation and have included this point in the Discussion. In this study, we have focused on demonstrating the conservation of gene regulation. While this study was initially based on a graduate thesis project, we have since generated a more comprehensive dataset from isolated heads, which we are currently analyzing. This has been emphasized in the revised Discussion.

      Minor: 

      (1) For Figure 6E, the authors could consider showing data along a negative axis to indicate a decrease in length in response to vibration and to more clearly show that this decrease doesn't occur as strongly after pou4-2(RNAi). 

      We displayed this behavior as the percent change, as this is a standard way to represent this data. As the percent change is a positive value, we represent the data as these positive values.

      (2) The authors should consider quantifying the decrease of pou4-2 mRNA after atonal(RNAi) conditions, either by RT-qPCR or cell quantification. Visually, the signal in the stripes after atoh8-2(RNAi) seems lower, particularly in the tail. The punctate pattern outside the stripes may also be decreased after atoh8-1(RNAi). But quantification might strengthen the argument. 

      We agree with the reviewer and acknowledge that we should have been more cautious in interpreting these results. Those two genes are difficult to detect and did not show specific patterns in Cowles et al. (2013). The reviewer is correct that additional experiments are necessary before reaching conclusions, but we do not think as discussed earlier we do not think new experiments would provide insights for the major conclusions. These experiments were exploratory in nature and tangential to our main conclusions, especially in the absence of reciprocal evidence (e.g., shared expression patterns, co-expression, or differential expression in our RNA-seq data. Therefore, we decided to eliminate the atonal in situs following pou4-2 RNAi.

      Reviewer #2 (Recommendations for the authors): 

      A. Expression of pou4-2 in ciliated mechanosensory neurons: 

      (1) The conclusion that pou4-2 is expressed in ciliated mechanosensory neurons is primarily based on co-expression analysis using a published single-cell dataset. Although the authors later show that a subset of pou4-2 cells also express pkd1L-2 (Figure 4A), a known marker of ciliated mechanosensory neurons, this finding is not properly quantified. I recommend moving Figure 4A to earlier in the manuscript (e.g., to Figure 2) and expanding the analysis to include additional known markers of this cell type. Proper quantification of the extent of co-localization is necessary to support the claim robustly. 

      As pointed out by the reviewer, there is substantive evidence from our lab and other reports. King et al. also showed pou4-2 and pkd1L-2 ‘regulation’ by their scRNA-seq data, and this function is conserved in the acoel Hofstenia miamia (Hulett et al., PNAS 2024 ). Our analysis shows convincing co-localization by scRNA-seq and expression of soxB1-2 and neural markers in the respective populations. Furthermore, we included colocalization of pou4-2 with mechanosensory genes using fluorescence in situ hybridization (Figure 3B, Supplementary Figure 4, and Supplementary File S7). We are confident the data conclusively show pou4-2 regulates pkd1L-2 expression in a subset of mechanosensory neurons. Given the strength of existing observations and previously published data, we believe that additional staining experiments are not essential to support this conclusion. 

      (2) There appears to be a conceptual inconsistency in the interpretation of pou4-2 expression dynamics. On one hand, the authors suggest that delayed pou4-2 expression indicates a role in late-stage differentiation (p.6). On the other hand, they propose that pou4-2 may be expressed in undifferentiated progenitors to initiate downstream transcriptional programs (p.8). These interpretations should be reconciled. Additionally, claims regarding pou4-2 expression in progenitor populations should be supported by co-localization with established stem cell or progenitor markers, rather than inferred from signal intensity alone. 

      This is an excellent point, and we agree with the reviewer that this section requires editing. As described in response to Reviewer 1, we attempted BrdU pulse chase experiments but were not successful in consistently detecting pou4-2 at sufficient levels with our protocol. Furthermore, we could not obtain strong signals in double labeling experiments in pou4-2 in situs combined with piwi-1 or PIWI-1 antibodies. We will include those experiments as a future direction and amend our conclusions accordingly.

      (3) The expression pattern shown in Figure 1B raises questions about the precise anatomical localization of pou4-2 cells. It is unclear whether these cells reside in the subepidermal plexus or the deeper submuscular plexus, which represent distinct neuronal layers (Ross et al., 2017). The observed signals near the ventral nerve cords could suggest submuscular localization. To clarify this, higher-resolution imaging and co-staining with region-specific neural markers are recommended. 

      In Ross et al. (2018), we showed that the pkd1L-2<sup>+</sup> cells are located submuscularly. The pkd1L-2 cells express pou4-2, thus the pou4-2<sup>+</sup> cells are located in the same location. Based on co-expression data and co-expression with PKD genes, we are confident it is submuscular.

      B. The functional requirements of pou4-2 in the maintenance of mechanosensory neurons: 

      (1) To evaluate the functional role of pou4-2 in maintaining mechanosensory neurons, the authors performed whole-animal RNA-seq on pou4-2(RNAi) and control animals, identifying a significant downregulation of genes associated with mechanosensory neuron expression. However, the presentation of these findings is fragmented across Figures 3, 4, and 5. I recommend consolidating the RNA-seq results (Figure 3) and the subsequent validation of downregulated genes (Figures 4 and 5) into a single, cohesive figure. This would improve the logical flow and clarity of the manuscript. 

      As suggested by the reviewer, we have combined Figures 3 and 4 (new Figure 3), which we believe improves the flow. We decided to keep Figure 5 (new Figure 4) as a standalone because it focuses on the characterization of new genes revealed by RNAseq and scRNA-seq data mining that were not previously reported in Ross et al. 2018 and

      2024.

      (2) In pou4-2(RNAi) animals, pkd1L-2 expression appears to be entirely lost, while hmcn-1-L shows faint expression in scattered peripheral regions. The authors suggest that an extended RNAi treatment might be necessary to fully eliminate hmcn-1-L expression. However, an alternative explanation is that pou4-2 is not essential for maintaining all hmcn-1-L cells, particularly if pou4-2 expression does not fully overlap with that of hmcn-1-L. This possibility should be acknowledged and discussed. 

      We agree and have acknowledged this point in the revised text.

      (3) On page 9, the section title claims that "Smed-pou4-2 regulates genes involved in ciliated cell structure organization, cell adhesion, and nervous system development." While some differentially expressed genes are indeed annotated with these functions based on homology, the manuscript does not provide experimental evidence supporting their roles in these biological processes in planarians. The title should be revised to avoid overstatement, and the limitations of extrapolating a function solely from gene annotation should be acknowledged. 

      Excellent point. We have edited the text to indicate that the genes were annotated or implicated.

      (4) The cilia staining presented in Figure 6B to support the claim that pou4-2 is required for ciliated cell structure organization is unconvincing. Improved imaging and more targeted analysis (e.g., co-labeling with mechanosensory markers) are needed to support this conclusion. 

      We have addressed this concern by adjusting the language to be more precise and indicate that the stereotypical banded pattern is disrupted with decreased cilia labeling along the dorsal ciliated stripe. Indeed, our conclusion overstated the observations made with the staining and imaging resolution. Thank you.

      C. The functional requirements of pou4-2 in the regeneration of mechanosensory neurons: 

      To evaluate the role of pou4-2 in the regeneration of mechanosensory neurons, the authors performed amputations on pou4-2(RNAi) and control(RNAi) animals and assessed the expression of mechanosensory markers (pkd1L-2, hmcn-1-L) alongside a functional assay. However, the results shown in Figure 4B indicate the presence of numerous pkd1L-2 and hmcn-1-L cells in the blastema of pou4-2(RNAi) animals. This observation raises the possibility that pou4-2 may not be essential for the regeneration of these mechanosensory neurons. The authors should address this alternative interpretation. 

      Our interpretation is that there were very few cells expressing the markers compared to controls. The pattern was predominantly lost, which is consistent with other experiments shown in the paper. However, we have added the additional caveat suggested by the reviewer.

      Minor points: 

      (1) On p.8, the authors wrote "every 12 hours post-irradiation". However, this is not consistent with the figure, which only shows 0, 3, 4, 4.5, 5, and 5.5 dpi. 

      We corrected this. Thank you for catching the mistake!

      (2) On p.12, the authors wrote "Analysis of pou4-2 RNAi data revealed differentially expressed genes with known roles in mechanosensory functions, such as loxhd-1, cdh23, and myo7a. Mutations in these genes can cause a loss of mechanosensation/transduction". This is misleading because, to my knowledge, the role of these genes in planarians is unknown. If the authors meant other model systems, they should clearly state this in the text and include proper references. 

      The reviewer is correct that we are referencing findings from other organisms. We have clarified this point in the revised text. The appropriate references were included and cited in the first version.

      (3) On p.7, the authors wrote, "conversely, the expression of atonal genes was unaffected in pou4-2 RNAi-treated regenerates (Supplementary Figure S2B)". However, it is unclear whether the Atoh8-1 and Atoh8-2 signals are real, as the quality of the in situ results is too low to distinguish between real signals and background noise/non-specific staining. 

      This valid concern was addressed in our response to Reviewer 1. We have adjusted the figure and the text accordingly.

      (4) On p.6 the authors wrote "pinpointed time points wherein the pou4-2 transcripts were robustly downregulated". However, the current version of the manuscript does not provide data explaining why Pou4-2 transcripts are robustly downregulated on day 12. 

      Yes, we determined the appropriate time points using qPCR for all sample extractions. As an example, see the figure for qPCR validation at day 12 showing that pou4-2 and pkd1L2 are down.

      Author response image 1.

      In this graph, samples labeled “G” represent four biological controls of gfp(RNAi) control animals, and samples labeled “P” represent four biological controls of pou4-2(RNAi)animals at day 12 in the RNAi protocol.

      (5) On p.13, the authors wrote "collecting RNA from how animals." Is this a typo? 

      Thanks for catching the typo. It should read “whole” animals. We have corrected this.

      (6) On p.14, the authors wrote "but the expression patterns of planarian atonal genes indicated that they represent completely different cell populations from pou4-2-regulated mechanosensory neurons". However, this is unclear from the images, as the in situ staining of Atoh8-1 and Atoh82 are potentially failed stainings. 

      We agree. We have edited accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript "Lifestyles shape genome size and gene content in fungal pathogens" by Fijarczyk et al. presents a comprehensive analysis of a large dataset of fungal genomes to investigate what genomic features correlate with pathogenicity and insect associations. The authors focus on a single class of fungi, due to the diversity of lifestyles and availability of genomes. They analyze a set of 12 genomic features for correlations with either pathogenicity or insect association and find that, contrary to previous assertions, repeat content does not associate with pathogenicity. They discover that the number of proteincoding genes, including the total size of non-repetitive DNA does correlate with pathogenicity. However, unique features are associated with insect associations. This work represents an important contribution to the attempts to understand what features of genomic architecture impact the evolution of pathogenicity in fungi.

      Strengths:

      The statistical methods appear to be properly employed and analyses thoroughly conducted. The manuscript is well written and the information, while dense, is generally presented in a clear manner.

      Weaknesses:

      My main concerns all involve the genomic data, how they were annotated, and the biases this could impart to the downstream analyses. The three main features I'm concerned with are sequencing technology, gene annotation, and repeat annotation.

      We thank the reviewer for all the comments. We are aware that the genome assemblies are of heterogeneous quality since they come from many sources. The goal of this study was to make the best use of the existing assemblies, with the assumption that noise introduced by the heterogeneity of sequencing methods should be overcome by the robustness of evolutionary trends and the breadth and number of analyzed assemblies. Therefore, at worst, we would expect a decrease in the power to detect existing trends. It is important to note that the only way to confidently remove all potential biases would be to sequence and analyze all species in the same way; this would require a complete study and is beyond the scope of the work presented here. Nevertheless some biases could affect the results in a negative way, eg. is if they affect fungal lifestyles differently. We therefore made an attempt to explore the impact of sequencing technology, gene and repeat annotation approach among genomes of different fungal lifestyles. Details are described in Supplementary Results and below. Overall, even though the assembly size and annotations conducted with Augustus can sometimes vary compared to annotations from other resources, such as JGI Mycocosm, we do not observe a bias associated with fungal lifestyles. Comparison of annotations conducted with Augustus and JGI Mycocosm dataset revealed variation in gene-related features that reflect biological differences rather than issues with annotation.  

      The collection of genomes is diverse and includes assemblies generated from multiple sequencing technologies including both short- and long-read technologies. Not only has the impact of the sequencing method not been evaluated, but the technology is not even listed in Table S1. From the number of scaffolds it is clear that the quality of the assemblies varies dramatically. This is going to impact many of the values important for this study, including genome size, repeat content, and gene number.

      We have now added sequencing technology in Table S1 as it was reported in NCBI. We evaluated the impact of long-read (Nanopore, PacBio, Sanger) vs short-read assemblies in Supplementary Results. In short, the proportion of different lifestyles (pathogenic vs. nonpathogenic, IA vs non-IA) were the same for short- and long-read assemblies. Indeed, longread assemblies were longer, had a higher fraction of repeats and less genes on average, but the differences between pathogenic vs. non-pathogenic (or IA vs non-IA) species were in the same direction for two sequencing technologies and in line with our results. There were some discrepancies, eg. mean intron length was longer for pathogens with long-read assemblies, but slightly shorter on average for short-read assemblies (and to lesser extent GC and pseudo tRNA count), which could explain weaker or mixed results in our study for these features.

      Additionally, since some filtering was employed for small contigs, this could also bias the results.

      The reason behind setting the lower contig length threshold was the fact that assemblies submitted to NCBI have varying lower-length thresholds. This is because assemblers do not output contigs above a certain length, and this threshold can be manipulated by the user. Setting a common min contig length was meant to remove this variation, knowing that any length cut-off will have a larger effect on short-read based assemblies than long-read-based assemblies. Notably, genome assemblies of corresponding species in JGI Mycocosm have a minimum contig length of 865 bp, not much lower than in our dataset. Importantly, in a response to a comment of previous reviewer, repeat content was recalculated on raw assembly lengths instead of on filtered assembly length. 

      I have considerable worries that the gene annotation methods could impart biases that significantly affect the main conclusions. Only 5 reference training sets were used for the Sordariomycetes and these are unequally distributed across the phylogeny. Augusts obviously performed less than ideally, as the authors reported that it under-annotated the genomes by 10%. I suspect it will have performed worse with increasing phylogenetic distance from the reference genomes. None of the species used for training were insectassociated, except for those generated by the authors for this study. As this feature was used to split the data it could impact the results. Some major results rely explicitly on having good gene annotations, like exon length, adding to these concerns. Looking manually at Table S1 at Ophiostoma, it does seem to be a general trend that the genomes annotated with Magnaporthe grisea have shorter exons than those annotated with H294. I also wonder if many of the trends evident in Figure 5 are also the result of these biases. Clades H1 and G each contain a species used in the training and have an increase in genes for example.

      We have applied 6 different reference training sets (instead of one) precisely to address the problem of increasing phylogenetic distance of annotated species. To further investigate the impact of chosen species for training, we plotted five gene features (number of genes, number of introns, intron length, exon length, fraction of genes with introns) as a function of   branch length distance from the species (or genus) used as a training set for annotation. We don’t see systematic biases across different training sets. However,  trends are very clear for clades annotated with fusarium. This set of species includes Hypocreales and Microascales, which is indeed unfortunate since Microascales is an IA group and at the same time the most distant from the fusarium genus in this set. To clarify if this trend is related to annotation bias or a biological trend, we compared gene annotations with those of Mycocosm, between Hypocreales Fusarium species, Hypocreales non-Fusarium species, and Microascales, and we observe exactly the same trends in all gene features. 

      Similarly, among species that were annotated with magnaporthe_grisea, Ophiostomatales (another IA group) are among the most distant from the training set species. Here, however, another order, Diaporthales, is similarly distant, yet the two orders display different feature ranges. In terms of exon length, top 2 species in this training set include Ophiostoma, and they reach similar exon length as the Ophiostoma species annotated using H294 as a training set. In summary, it is possible that the choice of annotation species has some effect on feature values; however, in this dataset, these biases are likely mitigated by biological differences among lifestyles and clades. 

      Unfortunately, the genomes available from NCBI will vary greatly in the quality of their repeat masking. While some will have been masked using custom libraries generated with software like Repeatmodeler, others will probably have been masked with public databases like repbase. As public databases are again biased towards certain species (Fusarium is well represented in repbase for example), this could have significant impacts on estimating repeat content. Additionally, even custom libraries can be problematic as some software (like RepeatModeler) will include multicopy host genes leading to bona fide genes being masked if proper filtering is not employed. A more consistent repeat masking pipeline would add to the robustness of the conclusions.

      We have searched for the same species in JGI Mycocosm and were able to retrieve 58 genome assemblies with matching species, with 19 of them belonging to the same strain as in our dataset. Overall we found no differences in genome assembly length. Interestingly, repeat content was slightly higher for NCBI genome assemblies compared to JGI Mycocosm assemblies, perhaps due to masking of host multicopy genes, as the reviewer mentioned. By comparing pathogenic and non-pathogenic species for the same 19 strains, we observe that JGI Mycocosm annotates fewer repeats in pathogenic species than Augustus annotations (but trends are similar when taking into account 58 matching species). Given a small number of samples, it is hard to draw any strong conclusions; however, the differences that we see are in favor of our general results showing no (or negative) correlation of repeat content with pathogenicity. 

      To a lesser degree, I wonder what impact the use of representative genomes for a species has on the analyses. Some species vary greatly in genome size, repeat content, and architecture among strains. I understand that it is difficult to address in this type of analysis, but it could be discussed.

      In our case the use of protein sequences could underestimate divergence between closely related strains from the same species. We also excluded strains of the same species to avoid overrepresentation of closely related strains with similar lifestyle traits. We agree that some changes in the genome architecture can occur very rapidly, even at the species level, though analyzing emergence of eg. pathogenicity at the population level would require a slightly different approach which accounts for population-level processes. 

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors report on the genomic correlates of the transition to the pathogenic lifestyle in Sordariomycetes. The pathogenic lifestyle was found to be better explained by the number of genes, and in particular effectors and tRNAs, but this was modulated by the type of interacting host (insect or not insect) and the ability to be vectored by insects.

      Strengths:

      The main strength of this study lies in the size of the dataset, and the potentially high number of lifestyle transitions in Sordariomycetes.

      Weaknesses:

      The main strength of the study is not the clarity of the conclusions.

      (1) This is due firstly to the presentation of the hypotheses. The introduction is poorly structured and contradictory in some places. It is also incomplete since, for example, fungusinsect associations are not mentioned in the introduction even though they are explicitly considered in the analyses.

      We thank the reviewer for pointing this out. We strived to address all comments and suggestions of the reviewer to clarify the message and remove the contradictions. We also added information about why we included insect-association trait in our analysis. 

      (2) The lack of clarity also stems from certain biases that are challenging to control in microbial comparative genomics. Indeed, defining lifestyles is complicated because many fungi exhibit different lifestyles throughout their life cycles (for instance, symbiotic phases interspersed with saprotrophic phases). In numerous fungi, the lifestyle referenced in the literature is merely the sampling substrate (such as wood or dung), which doesn't mean that this substrate is a crucial aspect of the life cycle. This issue is discussed by the authors, but they do not eliminate the underlying uncertainties.

      We agree with the reviewer that lack of certainty in the lifestyle or range of possible lifestyles of studied species is a weakness in this analysis. We are limited by the information available in the literature. We hope that our study will increase interest in collecting such data in the future.

      Reviewer #3 (Public review):

      Summary:

      This important study combines comparative genomics with other validation methods to identify the factors that mediate genome size evolution in Sordariomycetes fungi and their relationship with lifestyle. The study provides insights into genome architecture traits in this Ascomycete group, finding that, rather than transposons, the size of their genomes is often influenced by gene gain and loss. With an excellent dataset and robust statistical support, this work contributes valuable insights into genome size evolution in Sordariomycetes, a topic of interest to both the biological and bioinformatics communities.

      Strengths:

      This study is complete and well-structured.

      Bioinformatics analysis is always backed by good sampling and statistical methods. Also, the graphic part is intuitive and complementary to the text.

      Weaknesses:

      The work is great in general, I just had issues with the Figure 1B interpretation.

      I struggled a bit to find the correspondence between this sentence: "Most genomic features were correlated with genome size and with each other, with the strongest positive correlation observed between the size of the assembly excluding repeats and the number of genes (Figure 1B)." and the Figure 1B. Perhaps highlighting the key p values in the figure could help.

      We thank the reviewer for pointing out this sentence. Perhaps the misunderstanding comes from the fact that in this sentence one variable is missing. The correct version should be “Most genomic features were correlated with genome size and with each other, with the strongest positive correlation observed between the genome size, the genome size excluding repeats and the number of genes (Figure 1B)”. Also, the variable names now correspond better to those shown on the figure.

      Reviewer #1 (Recommendations for the authors):

      The authors have clearly done a lot of good work, and I think this study is worthwhile. I understand that my concerns about the underlying data could necessitate rerunning the entire analysis with better gene models, but there may be another option. JGI has a fairly standard pipeline for gene and repeat annotation. Their gene predictions are based on RNA data from the sequenced strain and should be quite good in general. One could either compare the annotations from this manuscript to those in mycocosm for genomes that are identical and see if there are systematic biases, or rerun some analyses on a subset of genomes from mycocosm. Indeed, it's possible that the large dataset used here compensates for the above concerns, but without some attempt to evaluate these issues, it's difficult to have confidence in the results.

      We very appreciate the positive reception of our manuscript. Following the reviewer’s comments we have investigated gene annotations in comparison with those of JGI Mycocosm, even though only 58 species were matching and only 19 of them were from the same strain. This dataset is not representative of the Sordariomycetes diversity (most species come from one clade), therefore will not reflect the results we obtained in this study. To note, the reason for not choosing JGI Mycocosm in the first place, was the poor representation of the insect-associated species, which we found key in this study. In general, we found that assembly lengths were nearly identical, number of genes was higher, and the repeat content was lower for the JGI Mycocosm dataset. When comparing different lifestyles (in particular pathogens vs. non-pathogens), we found the same differences for our and JGI Mycocosm annotations, with one exception being the repeat content. In the small subset (19 same-strain assemblies), our dataset showed the same level of repeats between the two lifestyles, whereas JGI Mycocosm showed lower repeat content for pathogens (but notably for all 58 species, the trend was same for our and JGI Mycocosm annotations). None of these observations are in conflict with our results where we find no or negative association of repeat content with pathogens. 

      The figures are very information-dense. While I accept that this is somewhat of a necessity for presenting this type of study, if the authors could summarize the important information in easier-to-interpret plots, that could help improve readability.

      We put a lot of effort into showing these complicated results in as approachable manner as possible. Given that other reviewers find them intuitive we decided to keep most of them as they are. To add more clarification, we added one supplementary figure showing distributions of genomic traits across lifestyles. Moreover, in Figure 5, a phylogenetic tree was added with position of selected clades, as well as a scatterplot showing distributions of mean values for genome size and number of genes for those clades. If the reviewer has any specific suggestions on what to improve and in which figure, we’re happy to consider it. 

      Reviewer #2 (Recommendations for the authors):

      I have no major comments on the analyses, which have already been extensively revised. My major criticism is the presentation of the background, which is very insufficient to understand the importance or relevance of the results presented fully.

      Lines are not numbered, unfortunately, which will not help the reading of my review.

      (1) The introduction could better present the background and hypotheses:

      (a) After reading the introduction, I still didn't have a clear understanding of the specific 'genome features' the study focuses on. The introduction fails to clearly outline the current knowledge about the genetic basis of the pathogenic lifestyle: What is known, what remains unknown, what constitutes a correlation, and what has been demonstrated? This lack of clarity makes reading difficult.

      We thank the reviewer for pointing this out. We have now included in the introduction a list of genomic traits we focus on. We also tried to be more precise about demonstrated pathogenic traits and other correlated traits in the introduction. 

      (b) Page 3. « Various features of the genome have been implicated in the evolution of the pathogenic lifestyle. » The cited studies did not genuinely link genome features to lifestyle, so the authors can't use « implicated in » - correlation does not imply causation.

      This sentence also somehow contradicts the one at the end of the paragraph: « we still have limited knowledge of which genomic features are specific to pathogenic lifestyle

      We thank the reviewer for this comment. We added a phrase “correlated with or implicated in” and changed the last sentence of the paragraph into “Yet we still have limited knowledge of how important and frequent different genomic processes are in the evolution of pathogenicity across phylogenetically distinct groups of fungi and whether we can use genomic signatures left by some of these processes as predictors of pathogenic state.”.

      (c) Page 3: « Fungal pathogen genomes, and in particular fungal plant pathogen genomes have been often linked to large sizes with expansions of TEs, and a unique presence of a compartmentalized genome with fast and slow evolving regions or chromosomes » Do the authors really need to say « often »? Do they really know how often?

      We removed “often”.

      (d) Such accessory genomic compartments were shown to facilitate the fast evolution of effectors (Dong, Raffaele, and Kamoun 2015) ». The cited paper doesn't « show » that genomic compartments facilitate the fast evolution of effectors. It's just an observation that there might be a correlation. It's an opinion piece, not a research manuscript.

      We changed the sentence to “Such accessory genomic compartments could facilitate the fast evolution of effectors”.

      (e) even though such architecture can facilitate pathogen evolution, it is currently recognized more as a side effect of a species evolutionary history rather than a pathogenicity related trait ». This sentence somehow contradicts the following one: « Such accessory genomic compartments were shown to facilitate the fast evolution of effectors".

      Here we wanted to point out that even though accessory genome compartments and TE expansions can facilitate pathogen evolution the origin of such architecture is not linked to pathogenicity. We reformulated the sentence to “Even though such architecture can facilitate pathogen evolution, it is currently recognized that its origin is more likely a side effect of a species evolutionary history rather than being caused by pathogenicity”.

      (f) As the number of genes is strongly correlated with fungal genome size (Stajich 2017), such expansions could be a major contributor to fungal genome size. » This sentence suggests that pathogens might have bigger genomes because they have more effectors. This is contradictory to the sentence right after « At the end of the spectrum are the endoparasites Microsporidia, which have among the smallest known fungal genomes ».

      The authors state that pathogens have bigger genomes and then they take an example of a pathogen that has a minimal genome. I know it's probably because they lost genes following the transition to endoparasitism and not related to their capacity to cause disease. I just want to point out that their writing could be more precise. I invite authors to think of young scholars who are new to the field of fungal evolutionary genomics.

      We thank the reviewer for prompting us to clarify the text. We rewrote this short extract as follows “Notably, not all pathogenic species experience genome or gene expansions, or show compartmentalized genome architecture. While gene family expansions are important for some pathogens, the contrary can be observed in others, such as Microsporidia. Due to transition to obligatory intracellular lifestyle these fungi show signatures of strong genome contractions and reduced gene repertoire (Katinka et al. 2001) without compromising their ability to induce disease in the host. This raises questions about universal genomic mechanisms of transition to pathogenic state.”

      (g) I find it strange that the authors do not cite - and do not present the major results of two other studies that use the same type of approach and ask the same type of question in Sordariomycetes, although not focusing on pathogenicity:

      Hensen et al.: https://pubmed.ncbi.nlm.nih.gov/37820761/

      Shen et al.: https://pubmed.ncbi.nlm.nih.gov/33148650/

      We thank the reviewer for pointing out this omission. We now added more information in the introduction to highlight the importance of the phylogenetic context in studying genome evolution as demonstrated by these studies. The following part was added to introduction:  “Other phylogenomic studies investigating a wide range of Ascomycete species, while not explicitly focusing on the neutral evolution hypothesis, have found strong phylogenetic signals in genome evolution, reflected in distinct genome characteristics (e.g., genome size, gene number, intron number, repeat content) across lineages or families (Shen et al. 2020; Hensen et al. 2023). Variation in genome size has been shown to correlate with the activity of the repeat-induced point mutation (RIP) mechanism (Hensen et al. 2023; Badet and Croll 2025), by which repeated DNA is targeted and mutated. RIP can potentially lead to a slower rate of emergence of new genes via duplication (Galagan et al. 2003), and hinder TE proliferation limiting genome size expansion (Badet and Croll 2025). Variation in genome dynamics across lineages has also been suggested to result from environmental context and lifestyle strategies (Shen et al. 2020), with Saccharomycotina yeast fungi showing reductive genome evolution and Pezizomycotina filamentous fungi exhibiting frequent gene family expansions. Given the strong impact of phylogenetic membership,  demographic history (Ne) and host-specific adaptations of pathogens on their genomes, we reasoned that further examination of genomic sequences in groups of species with various lifestyles can generate predictions regarding the architecture of pathogenic genomes.”

      (h) Genome defense mechanisms against repeated elements, such as RIP, are not mentioned while they could have a major impact on genome size (Hensen et al cited above; Badet and Croll https://www.biorxiv.org/content/10.1101/2025.01.10.632494v1.full).

      This citation is added in the text above.

      (i) Should the reader assume that the genome features to be examined are those mentioned in the first paragraph or those in the penultimate one?

      In the last paragraph of the introduction we included the complete list of investigated genomic traits.

      (j) The insect-associated lifestyle is mentioned only in the research questions on page 4, but not earlier in the introduction. Why should we care about insect-associated fungi?

      We apologize for this omission. We added a sentence explaining how neutral evolution hypotheses can explain patterns of genome evolution in endoparasites and species with specialized vectors (traits present in insect-associated species) and added a sentence in the last paragraph that this is the reason why we have selected this trait for analysis.  

      (2) Why use concatenation to infer phylogeny?

      (a) Kapli et al. https://pubmed.ncbi.nlm.nih.gov/32424311/ « Analyses of both simulated and empirical data suggest that full likelihood methods are superior to the approximate coalescent methods and to concatenation »

      (b) It also seems that a homogeneous model was used, and not a partitioned model, while the latter are more powerful. Why?

      We thank the reviewer for the comment. When we were reconstructing the phylogenetic tree  we were not aware of the publication and we followed common practices from literature for phylogenetic tree reconstruction even though currently they are not regarded as most optimal. In fact, in the first round of submission, we have included both concatenation as well as a multispecies coalescent method based on 1000 busco sequences and a concatenation method with different partitions for 250 busco sequences. All three methods produced similar topologies. Since the results were concordant, we chose to omit these analyses from the manuscript to streamline the presentation and focus on the most important results.

      (3) Other comments:

      Is there a table listing lifestyles?

      Yes, lifestyles (pathogenicity and insect-association) are listed in Supplementary Table S1. 

      (4) Summary:

      (a) seemingly similar pathogens »: meaning unclear; on what basis are they similar? why « seemingly »?

      We removed “seemingly” from the sentence.

      (b) Page 4: what's the difference between genome feature and genome trait?

      There is no difference. We apologize for the confusion. We changed “feature” to “trait” whenever it refers to the specific 13 genomic traits analyzed in this study.

      (c) Page 22: Braker, not Breaker

      corrected

      What do the authors mean when they write that genes were predicted with Augustus and Braker? Do they mean that the two sets of gene models were combined? Gene counts are based on Augustus (P24): why not Braker?

      We only meant here that gene annotation was performed using Braker pipeline, which uses a particular version of Augustus. We corrected the sentence.

      (d) Figure 2B and 2C:

      'Undetermined sign' or 'Positive/Negative' would be better than « YES » or it's just impossible to understand the figure without reading the legend.

      We changed “YES” to “UNDETERMINED SIGN” as suggested by the reviewer.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1(Public Reviews):

      Summary: 

      Here, Millet et al. consider whether the nematode C. elegans 'discounts' the value of reward due to effort in a manner similar to that shown in other species, including rodents and humans. They designed a T-maze effort choice paradigm inspired by previous literature, but manipulated how effortful the food is to consume.C. elegans worms were sensitive to this novel manipulation, exhibiting effort-discountinglike behaviour that could be shaped by varying the density of food at each alternative in order to calculate an indifference point. This discounting-like behaviour was related to worms' rates of patch leaving, which differed between the low and high effort patches in isolation. The authors also found a potential relationship to dopamine signalling, and also that this discounting behaviour was not specific to lab-based strains of C. elegans

      Strengths: 

      The question is well-motivated, and the approach taken here is novel. The authors are careful in their approach to altering and testing the properties of the effortful, elongated bacteria. Similarly, they go to some effort to understand what exactly is driving behavioural choices in this context, both through the application of simple standard models of effort discounting and a kinetic analysis of patch leaving. The comparisons to various dopamine mutants further extend the translational potential of their findings. I also appreciate the comparison to natural isolate strains, as the question of whether this behaviour may be driven by some sort of strain-specific adaptation to the environment is not regularly addressed in mammalian counterparts. The manuscript is well-written, and the figures are clear and comprehensible. 

      Weaknesses: 

      Discounting is typically defined as the alteration of a subjective value by effort (or time, risk, etc.), which is then used to guide future decision-making. By adapting the standard t-maze task for C. elegans as a patch-leaving paradigm, the authors observe behaviour strongly consistent with discounting models, but that is likely driven by a different process, in particular by an online estimate of the type of food in the current patch, which then influences patch-leaving dynamics (Figure 3). This is fundamentally different from decision-making strategies relating to effort that have been described in the rodent and human literatures. 

      We agree that in our study worms are likely making an on-line estimate of food quality in the current patch, but we wish to point out that rodents and humans also use on-line estimates in some significant effort-discounting paradigms. With respect to rodents, we call attention to effort discounting studies involving the widely used progressive ratio task (references in Discussion). In this task, animals can either lever-press for a preferred food or consume a less preferred food that is freely available nearby. However, the number of lever presses required to obtain preferred food increases as a function of the cumulative number of lever presses until the effort-cost of obtaining preferred food becomes too high and the animal switches to a freely available food. In essence, the lever and the freely available food are patches and the animal decides whether or not to leave the “lever” patch. It seems inescapable that the progressive ratio task involves an on-line assessment of the cost/benefit relationship associated with lever pressing. With respect to humans, one highly cited study (reference in Discussion) presented participants with a series of virtual apple trees. They could see how many apples are in the current tree and how much effort (squeezing a handgrip) is required to gather them. Their task was to decide whether or not to gather apples from that tree based on the perceived cost and benefit. Thus, on-line estimation is a common strategy used by animals and humans as shown in the effort discounting literature. We now make this point in the Discussion section titled A model of effort-discounting like behavior.

      Similarly, the calculation of indifference points at the group instead of at the individual level also suggests a different underlying process and limits the translational potential of their findings. The authors do not discuss the implications of these differences or why they chose not to attempt a more analogous trial-based experiment.  

      It is not clear to us why changing the read-out –– from the individual level to the population level –– necessarily suggests that a different biological mechanism is at work. In our view, there is one mechanism and it can be seen from different perspectives (e.g., individual vs population). Furthermore, the analogous trial-based experiment, as we understand it, would be to record behavior one worm at a time in the T-maze. This design is not practical because it entails recording a large number of single worms in the T-maze for 60 min each. 

      In the case of both the dopamine and natural isolate experiments, the data are very noisy despite large (relative to other C. elegans experiments) sample sizes. In the dopamine experiment, disruption of dop1, dop-2, and cat-2 had no statistically significant effect. There do not appear to be any corrections for multiple comparisons, and the single significant comparison, for dop-3, had a small effect size. 

      An ANOVA followed by a Dunnett test was used to test differences between groups in Fig. 4 and 5. The Dunnett test is a multiple comparison test comparing experimental groups to a single control group. It is used to minimize type I error while maintaining statistical power and does not require further correction for multiple comparisons. We have clarified the use of the Dunnett test in the statistical table.  The effect size for dop-3 is 0.5 (Cohen’s d), which is typically interpreted as a medium, not small, effect size.(e.g. Cohen, Psychological Bulletin, 1992, Vol. 112. No. 1,155-159). 

      More detailed behavioural analyses on both these and the wild isolate strains, for example by applying their kinetic analysis, would likely give greater insight as to what is driving these inconsistent effects. 

      More detailed behavioral analysis could reveal why we observe a difference in effort discounting in some strains and not others. However, it is not obvious what type of behavioral analysis would be needed to differentiate between pleiotropic effects of the mutations/natural isolates and more specific effects on effort discounting. A simple kinetic analysis in particular may not be enough to reveal relevant differences between mutants/natural isolates. For this reason, we think that such experiments may be better suited for future follow up studies.

      Reviewer #2 (Public Reviews)

      Summary: 

      Millet et al. show that C. elegans systematically prefers easy-to-eat bacteria but will switch its choice when harder-to-eat bacteria are offered at higher densities, producing indifference points that fit standard economic discounting models. Detailed kinetic analysis reveals that this bias arises from unchanged patch-entry rates but significantly elevated exit rates on effortful food, and dop-3 mutants lose the preference altogether, implicating dopamine in effort sensitivity. These findings extend effortdiscounting behavior to a simple nematode, pushing the phylogenetic boundary of economic costbenefit decision-making. 

      Strengths: 

      (1) Extends the well-characterized concept of effort discounting into C. elegans , setting a new phylogenetic boundary and opening invertebrate genetics to economic-behavior studies. 

      (2) Elegant use of cephalexin-elongated bacteria to manipulate "effort" without altering nutritional or olfactory cues, yielding clear preference reversals and reproducible indifference points. 

      (3) Application of standard discounting models to predict novel indifference points is both rigorous and quantitatively satisfying, reinforcing the interpretation of worm behavior in economic terms. 

      (4) The three-state patch-model cleanly separates entry and exit dynamics, showing that increased leaving rates-rather than altered re-entry-drive choice biases. 

      (5) Investigates the role of dopamine in this behavior to try to establish shared mechanisms with vertebrates. 

      (6) Demonstration of discounting in wild strain (solid evidence). 

      Weaknesses: 

      (1) The kinetic model omits rich trajectory details-such as turning angles or hazard functions-that could distinguish a bona fide roaming transition from other exit behaviors. 

      The overarching goal of present paper was to develop a simple model for effort discounting in a small, genetically tractable organism.  Accordingly,  we focused on quantitative assays that are easy to implement and analyze. The patch-leaving assay and its associated kinetic analysis are one such assay. To keep things simple in this assay, we counted the number of  transitions between the three states shown in Fig. 3A. We chose not to analyze the data in terms of turning angles or hazard functions because the metrics we developed seemed sufficient. Finally, we note that there are new modeling data showing that the presumptive transitions into the roaming state can be explained in terms of a one-state stochastic model in which there is no discrete roaming state (Elife. 2025 Jul 30;14:RP104972. doi:

      10.7554/eLife.104972.PMID: 40736321).

      (2) Only dop-3 shows an effect, and the statistical validity of this result is questionable. It is not clear if the authors corrected for multiple comparisons, and the effect size is quite small and noisy, given the large number of worms tested. Other mutants do not show effects. Given these two concerns, the role of dopamine in C. elegans effort discounting was unconvincing. 

      An ANOVA followed by a Dunnett test was used to test statistical significance in figures 4 and 5 (see above for a discussion of these tests). We believe this approach is rigorous, and the use of these tests is statistically valid. We note that the effect size for this comparison was medium.

      (3) With only five wild isolates tested (and variable data quality), it's hard to conclude that effort discounting isn't a lab-strain artifact or how broadly it varies in natural populations. 

      The fact that four of the five natural isolates tested display levels of effort discounting similar to N2 (only one natural isolate does not display effort discounting) argues against effort discounting being a laboratory adaption.  We have nevertheless weakened the claim regarding natural isolates. We now say effort discounting-like behavior may not be an adaptation to the laboratory environment.  

      (4) Detailed analysis of behavior beyond preference indices would strengthen the dopamine link and the claim of effort discounting in wild strains. 

      Going beyond preference in the behavioral analysis might or might not reveal new phenotypes that strengthen the link with dopamine. At present, however, we think such experiments are beyond the scope of the paper.

      (5) A few mechanistic statements (e.g., tying satiety exclusively to nutrient signals) would benefit from explicit citations or brief clarifications for non-worm specialists. 

      We are unable to identify a mechanistic statement tying satiety to nutrient signals in our manuscript.

      Reviewer #3 (Public Reviews)

      Summary: 

      The authors establish a behavioral task to explore effort discounting in C. eleganss . By using bacterial food that takes longer to consume, the authors show that, for equivalent effort, as measured by pumping rate, they obtain less food, as measured by fat deposition. The authors formalize the task by applying a formal neuroeconomic decision-making model that includes value, effort, and discounting. They use this to estimate the discounting that C. elegans applies based on ingestion effort by using a population-level 2-choice T-maze. They then analyze the behavioral dynamics of individual animals transitioning between on-food and off-food states. Harder to ingest bacteria led to increased food patch leaving. Finally, they examined a set of mutants defective in different aspects of dopamine signaling, as dopamine plays a key role in discounting in vertebrates and regulates certain aspects of C. elegans foraging. 

      Strengths: 

      The behavioral experiments and neuroeconomic analysis framework are compelling, interesting, and make a significant contribution to the field. While these foraging behaviors have been extensively studied, few include clearly articulated theoretical models to be tested. 

      Demonstrating that C. elegans effort discounting fits model predictions and has stable indifference points is important for establishing these tasks as a model for decision making. 

      Weaknesses: 

      The dopamine experiments are harder to interpret. The authors point out the perplexing lack of an effect of dat-1 and cat-2. dop-3 leads to general indifference. I am not sure this is the expected result if the argument is a parallel functional role to discounting in vertebrates. dop-3 causes a range of locomotor phenotypes and may affect feeding (reduced fat storage), and thus, there may be a general defect in the ability to perform the task rather than anything specific to discounting.

      That said, some of the other DA mutants also have locomotor defects and do not differ from N2. But there is no clear result here - my concern is that global mutants in such a critical pathway exhibit such pleiotropy that it's difficult to conclude there is a clear and specific role for DA in effort discounting. This would require more targeted or cell-specific approaches. 

      We agree with the reviewer that the results of the dopamine experiments are puzzling and getting a better understanding of the role of dopamine in effort-discounting will require more sensitive assays and different experimental approaches (e.g. cell-specific rescues). However, as mentioned by the reviewer, all the mutations tested have some pleiotropic effects, yet only dop-3 displays a defect in effort discounting. This, in our opinion, points to a specific role of dop-3 in effort-discounting in C. elegans. This point is now made in the Discussion in the section titled Role of dopamine signaling in effort discountinglike behavior.

      Meanwhile, there are other pathways known to affect responses to food and patch leaving decisions: serotonin, pigment-dispersing factor, tyramine, etc. The paper would have benefited from a clarification about why these were not considered as promising candidates to test (in addition to or instead of dopamine). 

      We focused on DA because of its well-established effect on effort discounting in rodents.

      Testing other pathways is a goal for future research.

      Reviewer #1 (Recommendations for the authors):

      The current results are more a reframing of data gathered from a patch-leaving paradigm, but described in the form of economic choice modelling in which discounting is one possible explanation. One more parsimonious explanation that worms estimate in real-time some rate of reward and leave the patch at some threshold, consistent with canonical foraging models, previous experiments in C. elegans, and the authors' own data (Figure 3). Therefore, I am wary about some of the claims made in this manuscript, such as 'decision-making strategies based on effort-cost trade-offs are evolutionarily conserved'. 

      These points are now addressed in the Discussion in a revised section titled A model of effortdiscounting like behavior. (i) We now call attention to the fact that our T-maze assay is a patch-leaving foraging paradigm. (ii) We now propose a revised model in which “worms make an on-line assessment of food value in the current patch which in turn alters patch-leaving dynamics, increasing the exit rates from cephalexin-treated patches as shown in Figure 3.” (iii) We now provide evidence from the rodent and human literature that the strategy of on-line assessment of reward value may be evolutionarily conserved in the case of a class of effort discounting tasks whose solution requires on-line assessments. 

      If the reason the authors chose to do a patch-leaving style task rather than a traditional t-maze is because C. elegans is unable to retain the sort of information necessary to make such simultaneous decisions - e.g., if pre-training on the two options isn't possible - then this in itself suggests that mechanisms underlying these decisions in worms and mammals are unlikely to be the same. I mention this because I would like to suggest to the authors an alternative interpretation: that patch foraging is actually 'the' canonical computation that translates across species. This would, in fact, be nicely consistent with some other recent modelling work in humans, e.g., https://www.biorxiv.org/content/10.1101/2025.05.06.652482v1

      Please see the previous response.

      Reviewer #2 (Recommendations for the authors):

      Can you provide a picture of the regular and CEPH bacteria? 

      Done (see Figure 1––figure supplement 1).

      Reviewer #3 (Recommendations for the authors):

      I would recommend testing representative mutants in other pathways in the choice task. If possible, more targeted experiments with dop-3, including either cell-specific KOs or rescues, would very much strengthen this aspect of the paper. 

      While valuable, these experiments are out of scope for the present study.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Bansal et al. present a study on the fundamental blood and nectar feeding behaviors of the critical disease vector, Anopheles stephensi. The study encompasses not just the fundamental changes in blood feeding behaviors of the crucially understudied vector, but then uses a transcriptomic approach to identify candidate neuromodulation pathways which influence blood feeding behavior in this mosquito species. The authors then provide evidence through RNAi knockdown of candidate pathways that the neuromodulators sNPF and Rya modulate feeding either via their physiological activity in the brain alone or through joint physiological activity along the brain-gut axis (but critically not the gut alone). Overall, I found this study to be built on tractable, well-designed behavioral experiments.

      Their study begins with a well-structured experiment to assess how the feeding behaviors of A. stephensi change over the course of its life history and in response to its age, mating, and oviposition status. The authors are careful and validate their experimental paradigm in the more well-studied Ae. aegypti, and are able to recapitulate the results of prior studies, which show that mating is a prerequisite for blood feeding behaviors in Ae. aegypt. Here they find A. Stephensi, like other Anopheline mosquitoes, has a more nuanced regulation of its blood and nectar feeding behaviors.

      The authors then go on to show in a Y-maze olfactometer that ,to some degree, changes in blood feeding status depend on behavioral modulation to host cues, and this is not likely to be a simple change to the biting behaviors alone. I was especially struck by the swap in valence of the host cues for the blood-fed and mated individuals, which had not yet oviposited. This indicates that there is a change in behavior that is not simply desensitization to host cues while navigating in flight, but something much more exciting is happening.

      The authors then use a transcriptomic approach to identify candidate genes in the blood-feeding stages of the mosquito's life cycle to identify a list of 9 candidates that have a role in regulating the host-seeking status of A. stephensi. Then, through investigations of gene knockdown of candidates, they identify the dual action of RYa and sNPF and candidate neuromodulators of host-seeking in this species. Overall, I found the experiments to be well-designed. I found the molecular approach to be sound. While I do not think the molecular approach is necessarily an all-encompassing mechanism identification (owing mostly to the fact that genetic resources are not yet available in A. stephensi as they are in other dipteran models), I think it sets up a rich line of research questions for the neurobiology of mosquito behavioral plasticity and comparative evolution of neuromodulator action.

      We appreciate the reviewer’s detailed summary of our work. We thank them for their positive comments and agree with them on the shortcomings of our approach.

      Strengths:

      I am especially impressed by the authors' attention to small details in the course of this article. As I read and evaluated this article, I continued to think about how many crucial details could potentially have been missed if this had not been the approach. The attention to detail paid off in spades and allowed the authors to carefully tease apart molecular candidates of blood-seeking stages. The authors' top-down approach to identifying RYamide and sNPF starting from first principles behavioral experiments is especially comprehensive. The results from both the behavioral and molecular target studies will have broad implications for the vectorial capacity of this species and comparative evolution of neural circuit modulation.

      We really appreciate that the reviewer has recognised the attention to detail we have tried to put, thank you!

      Weaknesses:

      There are a few elements of data visualizations and methodological reporting that I found confusing on a first few read-throughs. Figure 1F, for example, was initially confusing as it made it seem as though there were multiple 2-choice assays for each of the conditions. I would recommend removing the "X" marker from the x-axis to indicate the mosquitoes did not feed from either nectar, blood, or neither in order to make it clear that there was one assay in which mosquitoes had access to both food sources, and the data quantify if they took both meals, one meal, or no meals.

      We thank the reviewer for flagging the schematic in figure 1F. As suggested, we have removed the “X” markers from the x-axis and revised the axis label from “choice of food” to “choice made” to better reflect what food the mosquitoes chose in the assay. For clarity, we have now also plotted the same data as stacked graphs at the bottom of Fig. 1F, which clearly shows the proportion of mosquitoes fed on each particular choice. We avoid the stacked graph as the sole representation of this data, as it does not capture the variability in the data.

      I would also like to know more about how the authors achieved tissue-specific knockdown for RNAi experiments. I think this is an intriguing methodology, but I could not figure out from the methods why injections either had whole-body or abdomen-specific knockdown.

      The tissue-specific knockdown (abdomen only or abdomen+head) emerged from initial standardisations where we were unable to achieve knockdown in the head unless we used higher concentrations of dsRNA and did the injections in older females. We realised that this gave us the opportunity to isolate the neuronal contribution of these neuropeptides in the phenotype produced. Further optimisations revealed that injecting dsRNA into 0-10h old females produced abdomen-specific knockdowns without affecting head expression, whereas injections into 4 days old females resulted in knockdowns in both tissues. Moreover, head knockdowns in older females required higher dsRNA concentrations, with knockdown efficiency correlating with the amount injected. In contrast, abdominal knockdowns in younger females could be achieved even with lower dsRNA amounts.

      We have mentioned the knockdown conditions- time of injection and the amount dsRNA injected- for tissue-specific knockdowns in methods but realise now that it does not explain this well enough. We have now edited it to state our methodology more clearly (see lines 932-948).

      I also found some interpretations of the transcriptomic to be overly broad for what transcriptomes can actually tell us about the organism's state. For example, the authors mention, "Interestingly, we found that  after a blood meal, glucose is neither spent nor stored, and that the female brain goes into a state of metabolic 'sugar rest', while actively processing proteins (Figure S2B, S3)".

      This would require a physiological measurement to actually know. It certainly suggests that there are changes in carbohydrate metabolism, but there are too many alternative interpretations to make this broad claim from transcriptomic data alone.

      We thank the reviewer for pointing this out and agree with them. We have now edited our statement to read:

      “Instead, our data suggests altered carbohydrate metabolism  after a blood meal, with the female brain potentially entering a state of metabolic 'sugar rest' while actively processing proteins (Figure S2B, S3). However, physiological measurements of carbohydrate and protein metabolism will be required to confirm whether glucose is indeed neither spent nor stored during this period.” See lines 271-277.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Bansal et al examine and characterize feeding behaviour in Anopheles stephensi mosquitoes. While sharing some similarities to the well-studied Aedes aegypti mosquito, the authors demonstrate that mated females, but not unmated (virgin) females, exhibit suppression in their bloodfeeding behaviour. Using brain transcriptomic analysis comparing sugar-fed, blood-fed, and starved mosquitoes, several candidate genes potentially responsible for influencing blood-feeding behaviour were identified, including two neuropeptides (short NPF and RYamide) that are known to modulate feeding behaviour in other mosquito species. Using molecular tools, including in situ hybridization, the authors map the distribution of cells producing these neuropeptides in the nervous system and in the gut. Further, by implementing systemic RNA interference (RNAi), the study suggests that both neuropeptides appear to promote blood-feeding (but do not impact sugar feeding), although the impact was observed only  after both neuropeptide genes underwent knockdown.

      Strengths and/or weaknesses:

      Overall, the manuscript was well-written; however, the authors should review carefully, as some sections would benefit from restructuring to improve clarity. Some statements need to be rectified as they are factually inaccurate.

      Below are specific concerns and clarifications needed in the opinion of this reviewer:

      (1) What does "central brains" refer to in abstract and in other sections of the manuscript (including methods and results)? This term is ambiguous, and the authors should more clearly define what specific components of the central nervous system was/were used in their study.

      Central brain, or mid brain, is a commonly used term to refer to brain structures/neuropils without the optic lobes (For example: https://www.nature.com/articles/s41586-024-07686-5). In this study we have focused our analysis on the central brain circuits involved in modulating blood-feeding behaviour and have therefore excluded the optic lobes. As optic lobes account for nearly half of all the neurons in the mosquito brain (https://pmc.ncbi.nlm.nih.gov/articles/PMC8121336/), including them would have disproportionately skewed our transcriptomic data toward visual processing pathways.

      We have indicated this in figure 3A and in the methods (see lines 800-801, 812). We have now also clarified it in the results section for neuro-transcriptomics to avoid confusion (see lines 236-237).

      (2) The abstract states that two neuropeptides, sNPF and RYamide are working together, but no evidence is summarized for the latter in this section.

      We thank the reviewer for pointing this out. We have now added a statement “This occurs in the context of the action of RYa in the brain” to end of the abstract, for a complete summary of our proposed model.

      (3) Figure 1

      Panel A: This should include mating events in the reproductive cycle to demonstrate differences in the feeding behavior of Ae. aegypti.

      Our data suggest that mating can occur at any time between eclosion and oviposition in An. stephensi and between eclosion and blood feeding in Ae. aegypti. Adding these into (already busy) 1A, would cloud the purpose of the schematic, which is to indicate the time points used in the behavioural assays and transcriptomics.

      Panel F: In treatments where insects were not provided either blood or sugar, how is it that some females and males had fed? Also, it is unclear why the y-axis label is % fed when the caption indicates this is a choice assay. Also, it is interesting that sugar-starved females did not increase sugar intake. Is there any explanation for this (was it expected)?

      We apologise for the confusion. The experiment is indeed a choice assay in which sugar-starved or sugar-sated females, co-housed with males, were provided simultaneous access to both blood and sugar, and were assessed for the choice made (indicated on the x-axis): both blood and sugar, blood only, sugar only, or neither. The x-axis indicates the choice made by the mosquitoes, not the choice provided in the assay, and the y-axis indicates the percentage of males or females that made each particular choice. We have now removed the “X” markers from the x-axis and revised the axis label from “choice of food” to “choice made” to better reflect what food the mosquitoes chose to take.

      In this assay, we scored females only for the presence or absence of each meal type (blood or sugar) and are therefore unable to comment on whether sugar-starved females consumed more sugar than sugarsated females. However, when sugar-starved, a higher proportion of females consumed both blood and sugar, while fewer fed on blood alone.

      For clarity, we have now also plotted the same data as stacked graphs at the bottom of Fig. 1F, which clearly shows the proportion of mosquitoes fed on each particular choice. We avoid the stacked graph as the sole representation of this data as it does not capture the variability in the data.

      (4) Figure 3

      In the neurotranscriptome analysis of the (central) brain involving the two types of comparisons, can the authors clarify what "excluded in males" refers to? Does this imply that only genes not expressed in males were considered in the analysis? If so, what about co-expressed genes that have a specific function in female feeding behaviour?

      This is indeed correct. We reasoned that since blood feeding is exclusive to females, we should focus our analysis on genes that were specifically upregulated in them. As the reviewer points out, it is very likely that genes commonly upregulated in males and females may also promote blood feeding and we will miss out on any such candidates based on our selection criteria.

      (5) Figure 4

      The authors state that there is more efficient knockdown in the head of unfed females; however, this is not accurate since they only get knockdown in unfed animals, and no evidence of any knockdown in fed animals (panel D). This point should be revised in the results test as well.

      Perhaps we do not understand the reviewer’s point or there has been a misunderstanding. In figure 4D, we show that while there is more robust gene knockdown in unfed females, blood-fed females also showed modest but measurable knockdowns ranging from 5-40% for RYamide and 2-21% for sNPF.

      Relatedly, blood-feeding is decreased when both neuropeptide transcripts are targeted compared to uninjected (panel C) but not compared to dsGFP injected (panel E). Why is this the case if authors showed earlier in this figure (panel B) that dsGFP does not impact blood feeding?

      We realise this concern stems from our representation of the data. Since we had earlier determined that dsGFP-injected females fed similarly to uninjected females (fig 4B), we used these controls interchangeably in subsequent experiments. To avoid confusion, we have now only used the label ‘control’ in figure 4 (and supplementary figure S9) and specified which control was used for each experiment in the legend.

      In addition to this, we wanted to clarify that fig 4C and 4E are independent experiments. 4C is the behaviour corresponding to when the neuropeptides were knocked down in both heads and abdomens.

      4E is the behaviour corresponding to when the neuropeptides were knocked down in only the abdomens. We have now added a schematic in the plots to make this clearer.

      In addition, do the uninjected and dsGFP-injected relative mRNA expression data reflect combined RYa and sNPF levels? Why is there no variation in these data,…

      In these qPCRs, we calculated relative mRNA expression using the delta-delta Ct method (see line 975). For each neuropeptide its respective control was used. For simplicity, we combined the RYa and sNPF control data into a single representation. The value of this control is invariant because this method sets the control baseline to a value of 1.

      …and how do transcript levels of RYa and sNPF compare in the brain versus the abdomen (the presentation of data doesn't make this relationship clear).

      The reviewer is correct in pointing out that we have not clarified this relationship in our current presentation. While we have not performed absolute mRNA quantifications, we extracted relative mRNA levels from qPCR data of 96h old unmanipulated control females. We observed that both sNPF and RYa transcripts are expressed at much lower levels in the abdomens, as compared to those in the heads, as shown in the graphs inserted below.

      Author response image 1.

      (6) As an overall comment, the figure captions are far too long and include redundant text presented in the methods and results sections.

      We thank the reviewer for flagging this and have now edited the legends to remove redundancy.

      (7) Criteria used for identifying neuropeptides promoting blood-feeding: statement that reads "all neuropeptides, since these are known to regulate feeding behaviours". This is not accurate since not all neuropeptides govern feeding behaviors, while certainly a subset do play a role.

      We agree with the reviewer that not all neuropeptides regulate feeding behaviours. Our statement refers to the screening approach we used: in our shortlist of candidates, we chose to validate all neuropeptides.

      (8) In the section beginning with "Two neuropeptides - sNPF and RYa - showed about 25% and 40% reduced mRNA levels...", the authors state that there was no change in blood-feeding and later state the opposite. The wording should be clarified as it is unclear.

      Thank you for pointing this out. We were referring to an unchanged proportion of the blood fed females. We have now edited the text to the following:

      “Two neuropeptides - sNPF and RYa - showed about 25% and 40% reduced mRNA levels in the heads but the proportion of females that took blood meals remained unchanged”. See lines 338-340.

      (9) Just before the conclusions section, the statement that "neuropeptide receptors are often ligand promiscuous" is unjustified. Indeed, many studies have shown in heterologous systems that high concentrations of structurally related peptides, which are not physiologically relevant, might cross-react and activate a receptor belonging to a different peptide family; however, the natural ligand is often many times more potent (in most cases, orders of magnitude) than structurally related peptides. This is certainly the case for various RYamide and sNPF receptors characterized in various insect species.

      We agree with the reviewer and apologise for the mistake. We have now removed the statement.

      (10) Methods

      In the dsRNA-mediated gene knockdown section, the authors could more clearly describe how much dsRNA was injected per target. At the moment, the reader must carry out calculations based on the concentrations provided and the injected volume range provided later in this section.

      We have now edited the section to reflect the amount of dsRNA injected per target. Please see lines 921-931.

      It is also unclear how tissue-specific knockdown was achieved by performing injection on different days/times. The authors need to explain/support, and justify how temporal differences in injection lead to changes in tissue-specific expression. Does the blood-brain barrier limit knockdown in the brain instead, while leaving expression in the peripheral organs susceptible?

      To achieve tissue-specific knockdowns of sNPF and RYa, we optimised both the time of injection as well as the dsRNA concentration to be injected. Injecting dsRNA into 0-10h females produced abdomen specific knockdowns without affecting head expression, whereas injections into 96h old females resulted in knockdowns in both tissues. Head knockdowns in older females required higher dsRNA concentrations, with knockdown efficiency correlating with the amount injected. In contrast, abdominal knockdowns in younger females could be achieved even with lower dsRNA amounts, reflecting the lower baseline expression of sNPF in abdomens compared to heads and the age-dependent increase in head expression (as confirmed by qPCR). It is possible that the blood-brain barrier also limits the dsRNA entering the brain, thereby requiring higher amounts to be injected for head knockdowns.

      We have now edited this section to state our methodology more clearly (see lines 932-948).

      For example, in Figure 4, the data support that knockdown in the head/brain is only effective in unfed animals compared to uninjected animals, while there is no evidence of knockdown in the brain relative to dsGFP-injected animals. Comparatively, evidence appears to show stronger evidence of abdominal knockdown mostly for the RYa transcript (>90%) while still significantly for the sNPF transcript (>60%).

      As we explained earlier, this concern likely stems from our representation of the data. Since we had earlier determined that dsGFP-injected females fed similarly to uninjected females (fig 4B), we used these controls interchangeably in subsequent experiments. To avoid confusion, we have now only used the label ‘control’ in figure 4 (and supplementary figure S9) and specified which control was used for each experiment in the legend.

      In addition to this, we wanted to clarify that fig 4C and 4E are independent experiments. 4C is the behaviour corresponding to when the neuropeptides were knocked down in both heads and abdomens. 4E is the behaviour corresponding to when the neuropeptides were knocked down in only the abdomen. We have now added a schematic in the plots to make this clearer.

      Reviewer #3 (Public review):

      Summary:

      This manuscript investigates the regulation of host-seeking behavior in Anopheles stephensi females across different life stages and mating states. Through transcriptomic profiling, the authors identify differential gene expression between "blood-hungry" and "blood-sated" states. Two neuropeptides, sNPF and RYamide, are highlighted as potential mediators of host-seeking behavior. RNAi knockdown of these peptides alters host-seeking activity, and their expression is anatomically mapped in the mosquito brain (sNPF and RYamide) and midgut (sNPF only).

      Strengths:

      (1) The study addresses an important question in mosquito biology, with relevance to vector control and disease transmission.

      (2) Transcriptomic profiling is used to uncover gene expression changes linked to behavioral states.

      (3) The identification of sNPF and RYamide as candidate regulators provides a clear focus for downstream mechanistic work.

      (3) RNAi experiments demonstrate that these neuropeptides are necessary for normal host-seeking behavior.

      (4) Anatomical localization of neuropeptide expression adds depth to the functional findings.

      Weaknesses:

      (1) The title implies that the neuropeptides promote host-seeking, but sufficiency is not demonstrated (for example, with peptide injection or overexpression experiments).

      Demonstrating sufficiency would require injecting sNPF peptide or its agonist. To date, no small-molecule agonists (or antagonists) that selectively mimic sNPF or RYa neuropeptides have been identified in insects. An NPY analogue, TM30335, has been reported to activate the Aedes aegypti NPY-like receptor 7 (NPYLR7; Duvall et al., 2019), which is also activated by sNPF peptides at higher doses (Liesch et al., 2013). Unfortunately, the compound is no longer available because its manufacturer, 7TM Pharma, has ceased operations. Synthesising the peptides is a possibility that we will explore in the future.

      (2) The proposed model regarding central versus peripheral (gut) peptide action is inconsistently presented and lacks strong experimental support.

      The best way to address this would be to conduct tissue-specific manipulations, the tools for which are not available in this species. Our approach to achieve head+abdomen and abdomen only knockdown was the closest we could get to achieving tissue specificity and allowed us to confirm that knockdown in the head was necessary for the phenotype. However, as the reviewer points out, this did not allow us to rule out any involvement of the abdomen. This point has been addressed in lines 364-371.

      (3) Some conclusions appear premature based on the current data and would benefit from additional functional validation.

      The most definitive way of demonstrating necessity of sNPF and RYa in blood feeding would be to generate mutant lines. While we are pursuing this line of experiments, they lie beyond the scope of a revision. In its absence, we relied on the knockdown of the genes using dsRNA. We would like to posit that despite only partial knockdown, mosquitoes do display defects in blood-feeding behaviour, without affecting sugar-feeding. We think this reflects the importance of sNPF in promoting blood feeding.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Overall, I found this manuscript to be well-prepared, visually the figures are great and clearly were carefully thought out and curated, and the research is impacwul. It was a wonderful read from start to finish. I have the following recommendations:

      Thank you very much, we are very pleased to hear that you enjoyed reading our manuscript!

      (1) For future manuscripts, it would make things significantly easier on the reviewer side to submit a format that uses line numbers.

      We sincerely apologise for the oversight. We have now incorporated line numbers in the revised manuscript.

      (2) There are a few statements in the text that I think may need clarification or might be outside the bounds of what was actually studied here. For example, in the introduction "However, mating is dispensable in Anophelines even under conditions of nutritional satiety". I am uncertain what is meant by this statement - please clarify.

      We apologise for the lack of clarity in the statement and have now deleted it since we felt it was not necessary.

      (3) Typo/Grammatical minutiae:

      a) A small idiosyncrasy of using hyphens in compound words should also be fixed throughout. Typically, you don't hyphenate if the words are being used as a noun, as in the case: e.g. "Age affects blood feeding.". However, you would hyphenate if the two words are used as a compound adjective "Age affects blood-feeding behavior". This may not be an all-inclusive list, but here are some examples where hyphens need to either be removed or added. Some examples:

      "Nutritional state also influences other internal state outputs on blood-feeding": blood-feeding -> blood feeding

      "... the modulation of blood-feeding": blood-feeding -> blood feeding

      "For example, whether virgin females take blood-meals...": blood-meals -> blood meals

      ".... how internal and external cues shape meal-choice"-> meal choice

      "blood-meal" is often used throughout the text, but is correctly "blood meal" in the figures.

      There are many more examples throughout.

      We apologise for these errors and appreciate the reviewer’s keen eye. We have now fixed them throughout the manuscript.

      b) Figure 1 Caption has a typo: "co-housed males were accessed for sugar-feeding" should be "co-housed males were assessed for sugar feeding"

      We apologise for the typo and thank the reviewer for spotting it. We have now corrected this.

      c) It would be helpful in some other figure captions to more clearly label which statement is relevant to which part of the text. For example, in Figure 4's caption.

      "C,D. Blood-feeding and sugar-feeding behaviour of females when both RYa and sNPF are knocked down in the head (C). Relative mRNA expressions of RYa and sNPF in the heads of dsRYa+dssNPF - injected blood-fed and unfed females, as compared to that in uninjected females, analysed via qPCR (D)."

      I found re-referencing C and D at the end of their statements makes it look as thought C precedes the "Relative mRNA expression" and on a first read through, I thought the figure captions were backwards. I'd recommend reformating here and throughout consistently to only have the figure letter precede its relevant caption information, e.g.:

      "C. Blood-feeding and sugar-feeding behaviour of females when both RYa and sNPF are knocked down in the head. D. Relative mRNA expressions of RYa and sNPF in the heads of dsRYa+dssNPF - injected bloodfed and unfed females, as compared to that in uninjected females, analysed via qPCR."

      We have now edited the legends as suggested.

      Reviewer #2 (Recommendations for the authors):

      Separately from the clarifications and limitations listed above, the authors could strengthen their study and the conclusions drawn if they could rescue the behavioural phenotype observed following knockdown of sNPF and RYamide. This could be achieved by injection of either sNPF or RYa peptide independently or combined following knockdown to validate the role of these peptides in promoting blood-feeding in An. stephensi. Additionally, the apparent (but unclear) regionalized (or tissue-specific) knockdown of sNPF and RYamide transcripts could be visualized and verified by implementing HCR in situ hyb in knockdown animals (or immunohistochemistry using antibodies specific for these two neuropeptides).

      In a follow up of this work, we are generating mutants and peptides for these candidates and are planning to conduct exactly the experiments the reviewer suggests.

      Reviewer #3 (Recommendations for the authors):

      The loss-of-function data suggest necessity but not sufficiency. Synthetic peptide injection in non-host seeking (blood-fed mated or juvenile) mosquitoes would provide direct evidence for peptide-induced behavioral activation. The lack of these experiments weakens the central claim of the paper that these neuropeptides directly promote blood feeding.

      As noted above, we plan to synthesise the peptide to test rescue in a mutant background and sufficiency.

      Some of the claims about knockdown efficiency and interpretation are conflicting; the authors dismiss Hairy and Prp as candidates due to 30-35% knockdown, yet base major conclusions on sNPF and RYamide knockdowns with comparable efficiencies (25-40%). This inconsistency should be addressed, or the justification for different thresholds should be clearly stated.

      We have not defined any specific knockdown efficacy thresholds in the manuscript, as these can vary considerably between genes, and in some cases, even modest reductions can be sufficient to produce detectable phenotypes. For example, knockdown efficiencies of even as low as about 25% - 40% gave us observable phenotypes for sNPF and RYa RNAi (Figure S9B-G).

      No such phenotypes were observed for Hairy (30%) or Prp (35%) knockdowns. Either these genes are not involved in blood feeding, or the knockdown was not sufficient for these specific genes to induce phenotypes. We cannot distinguish between these scenarios.

      The observation that knockdown animals take smaller blood meals is interesting and could reflect a downstream effect of altered host-seeking or an independent physiological change. The relationship between meal size and host-seeking behavior should be clarified.

      We agree with the reviewer that the reduced meal size observed in sNPF and RYa knockdown animals could result from their inability to seek a host or due to an independent effect on blood meal intake. Unfortunately, we did not measure host-seeking in these animals. We plan to distinguish between these possibilities using mutants in future work.

      Several figures are difficult to interpret due to cluttered labeling and poorly distinguishable color schemes. Simplifying these and improving contrast (especially for co-housed vs. virgin conditions) would enhance readability.

      We regret that the reviewer found the figures difficult to follow. We have now revised our annotations throughout the manuscript for enhanced readability. For example, “D1<sup>B</sup>” is now “D1<sup>PBM</sup>” (post-bloodmeal) and “D1<sup>O</sup>” is now “D1<sup>PO</sup>” (post-oviposition). Wherever mated females were used, we have now appended “(m)” to the annotations and consistently depicted these females with striped abdomens in all the schematics. We believe these changes will improve clarity and readability.

      The manuscript does not clearly justify the use of whole-brain RNA sequencing to identify peptides involved in metabolic or peripheral processes. Given that anticipatory feeding signals are often peripheral, the logic for brain transcriptomics should be explained.

      The reviewer is correct in pointing out that feeding signals could also emerge from peripheral tissues. Signals from these tissues – in response to both changing nutritional and reproductive states – are then integrated by the central brain to modulate feeding choices. For example, in Drosophila, increased protein intake is mediated by central brain circuitry including those in the SEZ and central complex (Munch et al., 2022; Liu et al., 2017; Goldschmidt et al., 2023). In the context of mating, male-derived sex peptide further increases protein feeding by acting on a dedicated central brain circuitry (Walker et al., 2015). We, therefore focused on the central brain for our studies.

      The proposed model suggests brain-derived peptides initiate feeding, while gut peptides provide feedback. However, gut-specific knockdowns had no effect, undermining this hypothesis. Conversely, the authors also suggest abdominal involvement based on RNAi results. These contradictions need to be resolved into a consistent model.

      We thank the reviewer for raising this point and recognise their concern. Our reasons for invoking an involvement of the gut were two-fold:

      (1) We find increased sNPF transcript expression in the entero-endocrine cells of the midgut in blood-hungry females, which returns to baseline  after a blood-meal (Fig. 4L, M).

      (2) While the abdomen-only knockdowns did not affect blood feeding, every effective head knockdown that affected blood feeding also abolished abdominal transcript levels (Fig. S9C, F). (Achieving a head-only reduction proved impossible because (i) systemic dsRNA delivery inevitably reaches the abdomen and (ii) abdominal expression of both peptides is low, leaving little dynamic range for selective manipulation.) Consequently, we can only conclude the following: 1) that brain expression is required for the behaviour, 2) that we cannot exclude a contributory role for gut-derived sNPF. We have discussed this in lines 364-371.

      The identification of candidate receptors is promising, but the manuscript would be significantly strengthened by testing whether receptor knockdowns phenocopy peptide knockdowns. Without this, it is difficult to conclude that the identified receptors mediate the behavioral effects.

      We agree that functional validation of the receptors would strengthen the evidence for sNPF and RYa_mediated control of blood feeding in _An. stephensi. We selected these receptors based on sequence homology. A possibility remains that sNPF neuropeptides activate more than one receptor, each modulating a distinct circuit, as shown in the case of Drosophila Tachykinin (https://pmc.ncbi.nlm.nih.gov/articles/PMC10184743/). This will mean a systematic characterisation and knockdown of each of them to confirm their role. We are planning these experiments in the future.

      The authors compared the percentage changes in sugar-fed and blood-fed animals under sugar-sated or sugar-starved conditions. Figure 1F should reflect what was discussed in the results.

      Perhaps this concern stems from our representation of the data in figure 1F? We have now edited the xaxis and revised its label from “choice of food” to “choice made” to better reflect what food the mosquitoes chose to take.

      For clarity, we have now also plotted the same data as stacked graphs at the bottom of Fig. 1F, which clearly shows the proportion of mosquitoes fed on each particular choice. We avoid the stacked graph as the sole representation of this data because it does not capture the variability in the data.

      Minor issues:

      (1) The authors used mosquitoes with belly stripes to indicate mated females. To be consistent, the post-oviposition females should also have belly stripes.

      We thank the reviewer for pointing this out. We have now edited all the figures as suggested.

      (2) In the first paragraph on the right column of the second page, the authors state, "Since females took blood-meals regardless of their prior sugar-feeding status and only sugar-feeding was selectively suppressed by prior sugar access." Just because the well-fed animals ate less than the starved animals does not mean their feeding behavior was suppressed.

      Perhaps there has been a misunderstanding in the experimental setup of figure 1F, probably stemming from our data representation. The experiment is a choice assay in which sugar-starved or sugar-sated females, co-housed with males, were provided simultaneous access to both blood and sugar, and were assessed for the choice made (indicated on the x-axis): both blood and sugar, blood only, sugar only, or neither. We scored females only for the presence or absence of each meal type (blood or sugar) and did not quantify the amount consumed.

      (3) The figure legend for Figure 1A and the naming convention for different experimental groups are difficult to follow. A simplified or consistently abbreviated scheme would help readers navigate the figures and text.

      We regret that the reviewer found the figure difficult to follow. We have now revised our annotations throughout the manuscript for enhanced readability. For example, “D1<sup>B</sup>” is now “D1<sup>PBM</sup>” (post-bloodmeal) and “D1<sup>O</sup>” is now “D1<sup>PO</sup>” (post-oviposition).

      (4) In the last paragraph of the Y-maze olfactory assay for host-seeking behaviour in An. stephensi in Methods, the authors state, "When testing blood-fed females, aged-matched sugar-fed females (bloodhungry) were included as positive controls where ever possible, with satisfactory results." The authors should explicitly describe what the criteria are for "satisfactory results".

      We apologise for the lack of clarity. We have now edited the statement to read:

      “When testing blood-fed females, age-matched sugar-fed females (blood-hungry) were included wherever possible as positive controls. These females consistently showed attraction to host cues, as expected.” See lines 786-790.

      (5) In the first paragraph of the dsRNA-mediated gene knockdown section in Methods, dsRNA against GFP is used as a negative control for the injection itself, but not for the potential off-target effect.

      We agree with the reviewer that dsGFP injections act as controls only for injection-related behavioural changes, and not for off-target effects of RNAi. We have now corrected the statement. See lines 919-920.

      To control for off-target effects, we could have designed multiple dsRNAs targeting different parts of a given gene. We regret not including these controls for potential off-target effects of dsRNAs injected.

      (6) References numbers 48, 89, and 90 are not complete citations.

      We thank the reviewer for spotting these. We have now corrected these citations.

    1. Author Response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      The scale bar for fly and ovary images should be included in Figures 9, 10, and 12.

      We agree with this comment and apologize for the oversight. We have now modified Figures 9, 10, and 12 to include the scale bars for the ovary images. The fly images were acquired using a stereo microscope where scale bar calculation was not possible. However, all images were acquired at the same magnification for consistency.

      Reviewer #2 (Public review):

      A weakness of this paper is the phylogenetic analysis to investigate if there is correspondence in the phylogenetic distribution of ITP-type and Gyc76C-type genes/proteins. Unfortunately, the evidence presented is rather limited in scope. Essentially, the authors report that they only found ITP-type and Gyc76C-type genes/proteins in protostomes, but not in deuterostomes. What is needed is a more fine-grained analysis at the species level within the protostomes. However, I recognise that such a detailed analysis may extend beyond the scope of this paper, which is already rich in data.

      We thank the reviewer for their comment and the suggestion to perform a fine-grained species level comparison of ITP and Gyc76C genes across protostomes. We are unsure of the utility of this analysis for the present study given that we have now shown that ITPa can activate Gyc76C using both an ex vivo and a heterologous assay, the latter being the gold standard in GPCR and guanylate cyclase discovery (see Huang et al 2025 https://doi.org/10.1073/pnas.2420966122; Beets et al 2023 https://doi.org/10.1016/j.celrep.2023.113058); Chang et al 2009 https://doi.org/10.1073/pnas.0812593106.

      Additionally, absence of a gene in a genome/proteome is hard to prove especially when many/most of the protostomian datasets are not as high-quality as those of model systems (e.g. Drosophila melanogaster and Caenorhabditis elegans). Secondly, based on previous findings in Bombyx mori (Nagai et al. 2014 https://doi.org/10.1074/jbc.m114.590646 and Nagai et al. 2016 https://doi.org/10.1371/journal.pone.0156501) and Drosophila (Xu et al. 2023 https://doi.org/10.1038/s41586-023-06833-8 and our study) it is evident that different products of the ITP gene (ITPa and ITPL) could signal via different receptor types depending on the species. Hence, we would need to explore the presence of several genes (ITP, tachykinin, pyrokinin, tachykinin receptor, pyrokinin receptor, CG30340 orphan receptor and Gyc76C) to fully understand which components of these diverse signaling systems are present in a given species to decipher the potential for cross-talk.

      While this species-level comparison will certainly be useful in the context of ITP-Gyc76C evolution, it will not alter the conclusions of the present study – ITPa acts via Gyc76C in Drosophila. We therefore agree with the reviewer that these analyses are beyond the scope of this paper.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):  

      Summary:  

      In Drosophila melanogaster, ITP has functions on feeding, drinking, metabolism, excretion, and circadian rhythm. In the current study, the authors characterized and compared the expression of all three ITP isoforms (ITPa and ITPL1&2) in the CNS and peripheral tissues of Drosophila. An important finding is that they functionally characterized and identified Gyc76C as an ITPa receptor in Drosophila using both in vitro and in vivo approaches. In vitro, the authors nicely confirmed that the inhibitory function of recombinant Drosophila ITPa on MT secretion is Gyc76C-dependent (knockdown Gyc76C specifically in two types of cells abolished the anti-diuretic action of Drosophila ITPa on renal tubules). They also used a combination of multiple approaches to investigate the roles of ITPa and Gyc76C on osmotic and metabolic homeostasis modulation in vivo. They revealed that ITPa signaling to renal tubules and fat body modulates osmotic and metabolic homeostasis via Gyc76C.  

      Furthermore, they tried to identify the upstream and downstream of ITP neurons in the nervous system by using connectomics and single-cell transcriptomic analysis. I found this interesting manuscript to be well-written and described. The findings in this study are valuable to help understand how ITP signals work on systemic homeostasis regulation. Both anatomical and single-cell transcriptome analysis here should be useful to many in the field. 

      We thank this reviewer for the positive and thorough assessment of our manuscript.  

      Strengths:  

      The question (what receptors of ITPa in Drosophila) that this study tries to address is important. The authors ruled out the Bombyx ITPa receptor orthologs as potential candidates. They identified a novel ITP receptor by using phylogenetic, anatomical analysis, and both in vitro and in vivo approaches. 

      The authors exhibited detailed anatomical data of both ITP isoforms and Gyc76C (in the main and supplementary figures), which helped audiences understand the expression of the neurons studied in the manuscript.  

      They also performed connectomes and single-cell transcriptomics analysis to study the synaptic and peptidergic connectivity of ITP-expressing neurons. This provided more information for better understanding and further study on systemic homeostasis modulation.  

      Weaknesses:  

      In the discussion section, the authors raised the limitations of the current study, which I mostly agree with, such as the lack of verification of direct binding between ITPa and Gyc76C, even though they provided different data to support that ITPa-Gyc76C signaling pathway regulates systemic homeostasis in adult flies. 

      We now provide evidence of Gyc76C activation by ITPa in a heterologous system (new Figure 7 and Figure 7 Supplement 1).

      Reviewer #2 (Public Review):  

      Summary:  

      The physiology and behaviour of animals are regulated by a huge variety of neuropeptide signalling systems. In this paper, the authors focus on the neuropeptide ion transport peptide (ITP), which was first identified and named on account of its effects on the locust hindgut (Audsley et al. 1992). Using Drosophila as an experimental model, the authors have mapped the expression of three different isoforms of ITP (Figures 1, S1, and S2), all of which are encoded by the same gene.  

      The authors then investigated candidate receptors for isoforms of ITP. Firstly, Drosophila orthologs of G-protein coupled receptors (GPCRs) that have been reported to act as receptors for ITPa or ITPL in the insect Bombyx mori were investigated. Importantly, the authors report that ITPa does not act as a ligand for the GPCRs TkR99D and PK2-R1 (Figure S3). Therefore, the authors investigated other putative receptors for ITPs. Informed by a previously reported finding that ITP-type peptides cause an increase in cGMP levels in cells/tissues (Dircksen, 2009, Nagai et al., 2014), the authors investigated guanylyl cyclases as candidate receptors for ITPs. In particular, the authors suggest that Gyc76C may act as an ITP receptor in Drosophila.  

      Evidence that Gyc76C may be involved in mediating effects of ITP in Bombyx was first reported by Nagai et al. (2014) and here the authors present further evidence, based on a proposed concordance in the phylogenetic distribution ITP-type neuropeptides and Gyc76C (Figure 2). Having performed detailed mapping of the expression of Gyc76C in Drosophila (Figures 3, S4, S5, S6), the authors then investigated if Gyc76C knockdown affects the bioactivity of ITPa in Drosophila. The inhibitory effect of ITPa on leucokinin- and diuretic hormone-31-stimulated fluid secretion from Malpighian tubules was found to be abolished when expression of Gyc76C was knocked down in stellate cells and principal cells, respectively (Figure 4). However, as discussed below, this does not provide proof that Gyc76C directly mediates the effect of ITPa by acting as its receptor. The effect of Gyc76C knockdown on the action of ITPa could be an indirect consequence of an alteration in cGMP signalling.  

      Having investigated the proposed mechanism of ITPa in Drosophila, the authors then investigated its physiological roles at a systemic level. In Figure 5 the authors present evidence that ITPa is released during desiccation and accordingly, overexpression of ITPa increases survival when animals are subjected to desiccation. Furthermore, knockdown of Gyc76C in stellate or principal cells of Malphigian tubules decreases survival when animals are subject to desiccation. However, whilst this is correlative, it does not prove that Gyc76C mediates the effects of ITPa. The authors investigated the effects of knockdown of Gyc76C in stellate or principal cells of Malphigian tubules on i). survival when animals are subject to salt stress and ii). time taken to recover from of chill coma. It is not clear, however, why animals overexpressing ITPa were also not tested for its effect on i). survival when animals are subject to salt stress and ii). time taken to recover from of chill coma. In Figures 6 and S8, the authors show the effects of Gyc76C knockdown in the female fat body on metabolism, feeding-associated behaviours and locomotor activity, which are interesting. Furthermore, the relevance of the phenotypes observed to potential in vivo actions of ITPa is explored in Figure 7. The authors conclude that "increased ITPa signaling results in phenotypes that largely mirror those seen following Gyc76C knockdown in the fat body, providing further support that ITPa mediates its effects via Gyc76C." Use of the term "largely mirror" seems inappropriate here because there are opposing effects- e.g. decreased starvation resistance in Figure 6A versus increased starvation resistance in Figure 7A. Furthermore, as discussed above, the results of these experiments do not prove that the effects of ITPa are mediated by Gyc76C because the effects reported here could be correlative, rather than causative. 

      We thank this reviewer for an extremely thorough and fair assessment of our manuscript. 

      We have now performed salt stress tolerance and chill coma recovery assays using flies over-expressing ITPa (new Figure 10 Supplement 1).

      We agree that the use of the term “largely mirrors” to describe the effects of ITPa overexpression and Gyc76C knockdown is not appropriate and have changed this sentence. We also agree that the experiments did not provide direct evidence that the effects of ITPa are mediated by Gyc76C. To address this, we now provide evidence of Gyc76C activation by ITPa in a heterologous system (new Figure 7 and Figure 7 Supplement 1).

      Lastly, in Figures 8, S9, and S10 the authors analyse publicly available connectomic data and single-cell transcriptomic data to identify putative inputs and outputs of ITPa-expressing neurons. These data are a valuable addition to our knowledge ITPa expressing neurons; but they do not address the core hypothesis of this paper - namely that Gyc76C acts as an ITPa receptor.  

      The goal of our study was to comprehensively characterize an anti-diuretic system in Drosophila. Hence, in addition to identifying the receptor via which ITPa exerts its effects, we also wanted to understand how ITPa-producing neurons are regulated. Connectomic and single-cell transcriptomic analyses are highly appropriate for this purpose. We have now updated the connectomic analyses using an improved connectome dataset that was released during the revision of this manuscript. Our new analysis shows that lNSC<sup>ITP</sup> are connected to other endocrine cells that produce other homeostatic hormones (new Figure 13F). We also identify a pathway through which other ITP-producing neurons (LNd<sup>ITP</sup>) receive hygrosensory inputs to regulate water seeking behavior (new Figure 13E). Moreover, we now include results which showcase that ITPa-producing neurons (l-NSC<sup>ITP</sup>) are active (new Figure 8A and B) and release ITPa under desiccation. Together with other analyses, these data provide a comprehensive outlook on the when, what and how ITPa regulates systemic homeostasis.  

      Strengths:  

      (1) The main strengths of this paper are i) the detailed analysis of the expression and actions of ITP and the phenotypic consequences of overexpression of ITPa in Drosophila. ii). the detailed analysis of the expression of Gyc76C and the phenotypic consequences of knockdown of Gyc76C expression in Drosophila.  

      (2) Furthermore, the paper is generally well-written and the figures are of good quality. 

      We thank this reviewer for highlighting the strengths of this manuscript.

      Weaknesses:  

      (1) The main weakness of this paper is that the data obtained do not prove that Gyc76C acts as a receptor for ITPa. Therefore, the following statement in the abstract is premature: "Using a phylogenetic-driven approach and the ex vivo secretion assay, we identified and functionally characterized Gyc76C, a membrane guanylate cyclase, as an elusive Drosophila ITPa receptor." Further experimental studies are needed to determine if Gyc76C acts as a receptor for ITPa. In the section of the paper headed "Limitations of the study", the authors recognise this weakness. They state "While our phylogenetic analysis, anatomical mapping, and ex vivo and in vivo functional studies all indicate that Gyc76C functions as an ITPa receptor in Drosophila, we were unable to verify that ITPa directly binds to Gyc76C. This was largely due to the lack of a robust and sensitive reporter system to monitor mGC activation." It is not clear what the authors mean by "the lack of a robust and sensitive reporter system to monitor mGC activation". The discovery of mGCs as receptors for ANP in mammals was dependent on the use of assays that measure GC activity in cells (e.g. by measuring cGMP levels in cells). Furthermore, more recently cGMP reporters have been developed. The use of such assays is needed here to investigate directly whether Gyc76C acts as a receptor for ITPa. In summary, insufficient evidence has been obtained to conclude that Gyc76C acts as a receptor for ITPa. Therefore, I think there are two ways forward, either:  

      (a) The authors obtain additional biochemical evidence that ITPa is a ligand for Gyc76C.  

      or  

      (b) The authors substantially revise the conclusions of the paper (in the title, abstract, and throughout the paper) to state that Gyc76C MAY act as a receptor for ITPa, but that additional experiments are needed to prove this. 

      We thank the reviewer for this comment and agree with the two options they propose. We had previously tried different a cGMP reporter (Promega GloSensor cGMP assay) to monitor activation of Gyc76C by ITPa in a heterologous system. Unfortunately, we were not successful in monitoring Gyc76C activation by ITPa. We now utilized another cGMP sensor, Green cGull, to show that ITPa can indeed activate Gyc76C heterologously expressed in HEK cells (new Figure 7 and Figure 7 Supplement 1). However, we still cannot rule out the possibility that ITPa can act on additional receptors in vivo. This is based on our ex vivo Malpighian tubule assays (new Figure 6E and F). ITPa inhibits DH31- and LK-stimulated secretion and we show that this effect is abolished in Gyc76C knockdown specifically in principal and stellate cells, respectively. Interestingly, application of ITPa alone can stimulate secretion when Gyc76C is knocked down in principal cells (new Figure 6E). This could be explained by: 1) presence of another receptor for ITPa which results in diuretic actions and/or 2) low Gyc76C signaling activity (RNAi based knockdown lowers signaling but does not abolish it completely) could alter other intracellular messenger pathways that promote secretion. We have added text to indicate the possibility of other ITPa receptors. Nonetheless, our conclusions are supported by the heterologous assay results which indicate that ITPa can activate Gyc76C. Therefore, we do not alter the title. 

      (2) The authors state in the abstract that a phylogenetic-driven approach led to their identification of Gyc76C as a candidate receptor for ITPa. However, there are weaknesses in this claim. Firstly, because the hypothesis that Gyc76C may be involved in mediating effects of ITPa was first proposed ten years ago by Nagai et al. 2014, so this surely was the primary basis for investigating this protein. Nevertheless, investigating if there is correspondence in the phylogenetic distribution of ITP-type and Gyc76C-type genes/proteins is a valuable approach to addressing this issue. Unfortunately, the evidence presented is rather limited in scope. Essentially, the authors report that they only found ITP-type and Gyc76C-type genes/proteins in protostomes, but not in deuterostomes. What is needed is a more fine-grained analysis at the species level within the protostomes. Thus, are there protostome species in which both ITP-type and Gyc76C-type genes/proteins have been lost? Furthermore, are there any protostome species in which an ITP-type gene is present but an Gyc76C-type gene is absent, or vice versa? If there are protostome species in which an ITP-type gene is present but a Gyc76C-type gene is absent or vice versa, this would argue against Gyc76C being a receptor for ITPa. In this regard, it is noteworthy that in Figure 2A there are two ITP-type precursors in C. elegans, but there are no Gyc76Ctype proteins shown in the tree in Figure 2B. Thus, what is needed is a more detailed analysis of protostomes to investigate if there really is correspondence in the phylogenetic distribution of Gyc76C-type and ITP-type genes at the species level. 

      We thank the reviewer for this comment. While the previous study by Nagai et al had implicated Gyc76C in the ITP signaling pathway, how they narrowed down Gyc76C as a candidate was not reported. Therefore, our unbiased phylogenetic approach was necessary to ensure that we identified all suitable candidate receptors. Indeed, our phylogenetic analysis also identified Gyc32E as another candidate ITP receptor. However, we did not pursue this receptor further as our expression data (new Figure 4 Supplement 2) indicated that Gyc32E is not expressed in osmoregulatory tissues and therefore likely does not mediate the osmotic effects of ITPa. 

      We also appreciate the suggestion to perform a more detailed phylogenetic analysis for the peptide and receptor. We did not include C. elegans receptors in the phylogenetic analysis because they tend to be highly evolved and routinely cause long-branch attraction (see: Guerra and Zandawala 2024: https://doi.org/10.1093/gbe/evad108). We (specifically the senior author) have previously excluded C. elegans receptors in the phylogenetic analysis of GnRH and Corazonin receptors for similar reasons (see: Tian and Zandawala et al. 2016: 10.1038/srep28788). 

      Unfortunately, absence of a gene in a genome is hard to prove especially when they are not as high-quality as the genomes of model systems (e.g. Drosophila and mice). Moreover, given the concern of this reviewer that our physiological and behavioral data on ITPa and Gyc76C only provide correlative evidence, we decided against performing additional phylogenetic analysis which also provides correlative evidence. Our only goal with this analysis was to identify a candidate ITPa receptor. Since we have now functionally characterized this receptor using a heterologous system, we feel that the current phylogenetic analysis was able to successfully serve its purpose.  

      (3) The manuscript would benefit from a more comprehensive overview and discussion of published literature on Gyc76C in Drosophila, both as a basis for this study and for interpretation of the findings of this study.  

      We thank the reviewer for this comment. We have now included a broader discussion of Gyc76C based on published literature.  

      Reviewer #3 (Public Review):  

      Summary:  

      The goal of this paper is to characterize an anti-diuretic signaling system in insects using Drosophila melanogaster as a model. Specifically, the authors wished to characterize a role of ion transport peptide (ITP) and its isoforms in regulating diverse aspects of physiology and metabolism. The authors combined genetic and comparative genomic approaches with classical physiological techniques and biochemical assays to provide a comprehensive analysis of ITP and its role in regulating fluid balance and metabolic homeostasis in Drosophila. The authors further characterized a previously unrecognized role for Gyc76C as a receptor for ITPa, an amidated isoform of ITP, and in mediating the effects of ITPa on fluid balance and metabolism. The evidence presented in favor of this model is very strong as it combines multiple approaches and employs ideal controls. Taken together, these findings represent an important contribution to the field of insect neuropeptides and neurohormones and have strong relevance for other animals. 

      We thank this reviewer for the positive and thorough assessment of our manuscript.

      Strengths:  

      Many approaches are used to support their model. Experiments were wellcontrolled, used appropriate statistical analyses, and were interpreted properly and without exaggeration.  

      Weaknesses:  

      No major weaknesses were identified by this reviewer. More evidence to support their model would be gained by using a loss-of-function approach with ITPa, and by providing more direct evidence that Gyc76C is the receptor that mediates the effects of ITPa on fat metabolism. However, these weaknesses do not detract from the overall quality of the evidence presented in this manuscript, which is very strong.  

      We agree with this reviewer regarding the need to provide additional evidence using a loss-of-function approach with ITPa. We now characterize the phenotypes following knockdown of ITP in ITP-producing cells (new Figure 9). Our results are in agreement with phenotypes observed following Gyc76C knockdown, lending further support that ITPa mediates its effects via Gyc76C. Unfortunately, we are not able to provide evidence that ITPa acts on Gyc76C in the fat body using the assay suggested by this reviewer (explained in detail below). Instead, we now provide direct evidence of Gyc76C activation by ITPa in a heterologous system (new Figure 7 and Figure 7 Supplement 1).

      Reviewer #1 (Recommendations For The Authors):  

      Here, I have several extra concerns about the work as below:  

      (1) The authors confirmed the function of ITPa in regulating both osmotic and metabolic homeostasis by specifically overexpressing ITPa driven by ITP-RCGal4 in adult flies (Figures. 5 and 7). Have authors ever tried to knock down ITP in ITP-RC-Gal4 neurons? What was the phenotype? Especially regarding the impact on metabolic homeostasis, does knocking down ITP in ITP neurons mimic the phenotypes of Gyc76C fat body knockdown flies? 

      We thank the reviewer for this suggestion. We now characterize the phenotypes following knockdown of ITP using ITP-RC-Gal4 (new Figure 9). Our results are in agreement with phenotypes observed following Gyc76C knockdown, lending further support that ITPa mediates its effects via Gyc76C.

      The authors mentioned that the existing ITP RNAi lines target all three isoforms. It would be interesting if the authors could overexpress ITPa in ITPRC-Gal4>ITP-RNAi flies and confirm whether any phenotypes induced by ITP knockdown could be rescued. It will further confirm the role of ITPa in homeostasis regulation.  

      We thank the reviewer for this suggestion. Unfortunately, this experiment is not straightforward because knockdown with ITP RNAi does not completely abolish ITP expression (see Figure 9A). Hence, the rescue experiment needs to be ideally performed in an ITP mutant background. However, ITP mutation leads to developmental lethality (unpublished observation) so we cannot generate all the flies necessary for this experiment. Therefore, we cannot perform the rescue experiments at this time. In future studies, we hope to perform knockdown of specific ITP isoforms using the transgenes generated here (Xu et al 2023: 10.1038/s41586-023-06833-8).   

      (2) In Figures 5A and B, the authors nicely show the increased release of ITPa under desiccation by quantifying the ITPa immunolabelling intensity in different neuronal populations. It may be induced by the increased neuronal activity of ITPa neurons under the desiccated condition. Have the authors confirmed whether the activity of ITPa-expressing neurons is impacted by desiccation?  

      The TRIC system may be able to detect the different activity of those neurons before and after desiccation. This may further explain the reduced ITPa peptide levels during desiccation.  

      We thank the reviewer for this suggestion. We have now monitored the activity of ITPa-expressing neurons using the CaLexA system (Masuyama et al 2012: 10.3109/01677063.2011.642910). Our results indicate that ITPa neurons are indeed active under desiccation (new Figure 8A and B). These results are also in agreement with ITPa immunolabelling showing increased peptide release during desiccation (new Figure 8C and D). Together, these results show that ITPa neurons are activated and release ITPa under desiccation.  

      (3) What about the intensity of ITPa immunolabelling in other ITPa-positive neurons (e.g., VNC) under desiccation? If there is no change in other ITPa neurons, it will be a good control. 

      We thank the reviewer for this suggestion. Unfortunately, ITPa immunostaining in VNC neurons is extremely weak preventing accurate quantification of ITPa levels under different conditions. We did hypothesize that ITPa immunolabelling in clock neurons (5<sup>th</sup>-LN<sub>v</sub> and LN<Sub>d</sub><sup>ITP</sup>) would not change depending on the osmotic state of the animal. However, our results (Figure 8C and D) indicate that ITPa from these neurons is also released under desiccation. Interestingly, LNd<sup>ITP</sup>, which also coexpress Neuropeptide F (NPF) have recently been implicated in water seeking during thirst (Ramirez et al, 2025: 10.1101/2025.07.03.662850). Our new connectomic-driven analysis shows that these neurons can receive thermo/hygrosensory inputs (new Figure 13E). Hence, it is conceivable that other ITPa-expressing neurons also release ITPa during thirst/desiccation.

      (4) The adult stage, specifically overexpression of ITPa in ITP neurons, does show significant phenotypes compared to controls in both osmotic and metabolic homeostasis-related assays. It would be helpful if authors could show how much ITPa mRNA levels are increased in the fly heads with ITPa overexpression (under desiccation & starvation or not). 

      We thank the reviewer for this suggestion. We have now included immunohistochemical evidence showing increase in ITPa peptide levels in flies with ITPa overexpression (new Figure 10A). We feel that this is a better indicator of ITPa signaling level instead of ITPa mRNA levels.   

      (5) Another question concerns the bloated abdomens of ITPa-overexpressing flies. Are the bloated abdomens of ITPa OE female flies (Figure 5E) due to increased ovary size (Figure 7G)? Have the authors also detected similar bloated abdomens in male flies with ITPa overexpression? Since both male and female flies show more release of ITPa during the desiccation.  

      We thank the reviewer for this comment. The bloated abdomen phenotype seen in females can be attributed to increased water content since we see a similar phenotype in males (see Author response image 1 below).

      Author response image 1.

      Reviewer #2 (Recommendations For The Authors):  

      (1) Page 1 - change "Homeostasis is obtained by" to "Homeostasis is achieved by".  

      Changed

      (2) Page 1 - change "Physiological responses" to "Physiological processes". 

      Changed

      (3) Page 2 - Change "Recently, ITPL2 was also shown to mediate anti-diuretic effects via the tachykinin receptor" to "Recently, ITPL2 was also shown to exert anti-diuretic effects via the tachykinin receptor". 

      Changed

      (4) Page 9 - "(C) Adult-specific overexpression of ITPa using ITP- RC-GAL4TS (ITP-RC-T2A-GAL4 combined with temperature-sensitive tubulinGAL80) increases desiccation" Unless I am misunderstanding Fig 5C, I think what is shown is that overexpression of ITPa prolongs survival during a period of desiccation. I am not sure what the authors mean by "increases desiccation". In the text (page 9) the authors state "ITPa overexpression improves desiccation tolerance, which is a much clearer statement than what is in the figure legend. 

      We thank the reviewer for identifying this oversight. We have now changed the caption to “increases desiccation tolerance”.  

      (5) Page 11 - The authors conclude that "increased ITPa signaling results in phenotypes that largely mirror those seen following Gyc76C knockdown in the fat body, providing further support that ITPa mediates its effects via Gyc76C." Use of the term "largely mirror" seems inappropriate here because there are opposing effects- e.g. decreased starvation resistance in Figure 6A versus increased starvation resistance in Figure 7A.  

      Perhaps there is a misunderstanding of what is meant by "mirroring" - it means the same, not the opposite. 

      We thank the reviewer for this comment. We agree that the use of the term “largely mirrors” to describe the effects of ITPa overexpression and Gyc76C knockdown is not appropriate and have changed this sentence as follows: “Taken together, the phenotypes seen following Gyc76C knockdown in the fat body largely mirror those seen following ITP knockdown in ITP-RC neurons, providing further support that ITPa mediates its effects via Gyc76C.”

      (6) Page 12 - There appear to be words missing between "neurons during desiccation, as well as their downstream" and "the recently completed FlyWire adult brain connectome" 

      We thank the reviewer for highlighting this mistake. We have changed the sentence as following: “Having characterized the functions of ITP signaling to the renal tubules and the fat body, we wanted to identify the factors and mechanisms regulating the activity of ITP neurons during desiccation, as well as their downstream neuronal pathways. To address this, we took advantage of the recently completed FlyWire adult brain connectome (Dorkenwald et al., 2024, Schlegel et al., 2024) to identify pre- and post-synaptic partners of ITP neurons.”

      (7) Page 15 - "can release up to a staggering 8 neuropeptides" - I suggest that the word "staggering" is removed. The notion that individual neurons release many neuropeptides is now widely recognised (both in vertebrates and invertebrates) based on analysis of single-cell transcriptomic data. 

      Removed staggering.

      (8) Page 16 - "(Farwa and Jean-Paul, 2024)" - this citation needs to be added to the reference list and I think it needs to be changed to "Sajadi and Paluzzi, 2024". 

      We thank the reviewer for highlighting this oversight. The correct citation has now been added.

      (9) It is noteworthy that, based on a PubMed search, there are at least thirteen published papers that report on Gyc76C in Drosophila (PMIDs: 34988396, 32063902, 27642749, 26440503, 24284209, 23862019, 23213443,  21893139, 21350862, 16341244, 15485853, 15282266, 7706258). However, none of these papers are discussed/cited by the authors. This is surprising because the authors' hypothesis that Gyc76C acts as a receptor for ITPa surely needs to be evaluated and discussed with reference to all the published insights into the developmental/physiological roles of this protein. 

      We thank the reviewer for this comment. Some of the references mentioned above (21350862, 16341244, 15485853) mainly report on soluble guanylyl cyclases and not membrane guanylyl cyclase like Gyc76C. Based on other studies on Gyc76C and its role in immunity and development, we have now expanded the discussion on additional roles of ITPa.

      Reviewer #3 (Recommendations For The Authors):  

      I have only a few comments that will help the authors strengthen a couple of aspects of their model.  

      (1) The case for Gyc76C as a receptor for ITPa in regulating fluid homeostasis is clear, given the experiments the authors carried out where they applied ITPa to tubules and showed that the effects of ITPa on tubule secretion were blocked if Gyc76C was absent in tubules. This approach, or something similar, should be used to provide conclusive proof that ITPa's metabolic effects on the fat body go through Gyc76C.  

      At present (unless I missed it) the authors only show that gain of ITPa has the opposite phenotype to fat body-specific loss of Gyc76C. While this would be the expected result if ITPa/Gyc76C is a ligand-receptor pair, it is not quite sufficient to conclusively demonstrate that Gyc76C is definitely the fat body receptor. Ex vivo experiments such as soaking the adult fat body carcasses with and without Gyc76C in ITPa and monitoring fat content via Nile Red could be one way to address this lack of direct evidence. The authors could also make text changes to explicitly mention this lack of conclusive evidence and suggest it as a future direction.

      We thank the reviewer for this comment. We have now conclusively demonstrated that Gyc76C is activated by ITPa in a heterologous assay (new Figure 7 and Figure 7 Supplement 1). With this evidence, we can confidently claim that ITPa can mediate its actions via Gyc76C in various tissues including the Malpighian tubules and fat body. Nonetheless, we liked the suggestion by this reviewer to perform the ex vivo assay and test the effect of ITPa on the fat body. Unfortunately, it is challenging to do this because increased ITPa signaling (chronically using ITPa overexpression) results in increased lipid accumulation in the fat body in vivo. Therefore, we would likely not see the effect of ITPa addition in an ex vivo fat body preparation since lipogenesis will not occur in the absence of glucose. However, ITPa could counteract the effects of other lipolytic factors such as adipokinetic hormone (AKH). To test this hypothesis, we monitored fat content in the fat body incubated with and without AKH (see Author response image 2 below showing representative images from this experiment). Since we did not observe any differences in fat levels between these two conditions, we were unable to test the effects of ITPa on AKH-activity using this assay.

      Author response image 2.

      (2) I did not see any loss of function data for ITPa - is this possible? If so this would strengthen the case for a 1:1 relationship between loss of ligand and loss of receptor. Alternatively, the authors could suggest this as an important future direction. 

      We agree with this reviewer regarding the need to provide additional evidence using a loss-of-function approach with ITPa. We have now characterized the phenotypes following knockdown of ITP in ITP-producing cells (new Figure 9). Our results are in agreement with phenotypes observed following Gyc76C knockdown, lending further support that ITPa mediates its effects via Gyc76C.

      (3) For clarity, please include the sex of all animals in the figure legend. Even though the methods say 'females used unless otherwise indicated' it is still better for the reader to know within the figure legend what sex is displayed. 

      We thank the reviewer for this suggestion and have now included sex of the animals in the figure legends.  

      (4) Please state whether females are mated or not, as this is relevant for taste preferences and food intake. 

      We apologize for this oversight. We used mated females for all experiments. This has now been included in the methods.  

      (5) More discussion on the previous study on metabolic effects of ITP in this study compared with past studies would help readers appreciate any similarities and/or differences between this study and past work (Galikova 2018, 2022) 

      We thank the reviewer for this suggestion. Unfortunately, it is difficult to directly compare our phenotypes with the metabolic effects of ITP reported in Galikova and Klepsatel 2022 because the previous study used a ubiquitous driver (Da-GAL4) to manipulate ITP levels. Ectopically overexpressing ITPa in non-ITP producing cells can result in non-physiological phenotypes. This is evident in their metabolic measurements where both global overexpression and knockdown of ITP results in reduced glycogen and fat levels, and starvation tolerance. Moreover, ITP-RC-GAL4 used in our study to overexpress and knockdown ITPa is more specific than the Da-GAL4 used previously. Da-GAL4 would include other ITP cells (e.g. ITP-RD producing cells). Since ITP is broadly expressed across the animal, it is difficult to parse out the phenotypes of ITPa and other isoforms using manipulations performed with Da-GAL4. We have mentioned this limitation in the results for ITP knockdown as follows: “A previous study employing ubiquitous ITP knockdown and overexpression suggests that Drosophila ITP also regulates feeding and metabolic homeostasis (Galikova and Klepsatel, 2022) in addition to osmotic homeostais (Galikova et al., 2018). However, given the nature of the genetic manipulations (ectopic ITPa overexpression and knockdown of ITP in all tissues) utilized in those studies, it is difficult to parse the effects of ITP signaling from ITPa-producing neurons.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      (1) Legionella effectors are often activated by binding to eukaryote-specific host factors, including actin. The authors should test the following: a) whether Lfat1 can fatty acylate small G-proteins in vitro; b) whether this activity is dependent on actin binding; and c) whether expression of the Y240A mutant in mammalian cells affects the fatty acylation of Rac3 (Figure 6B), or other small G-proteins.

      We were not able to express and purify the full-length recombinant Lfat1 to perform fatty acylation of small GTPases in vitro. However, In cellulo overexpression of the Y240A mutant still retained ability to fatty acylate Rac3 and another small GTPase RheB (see Figure 6-figure supplement 2). We postulate that under infection conditions, actin-binding might be required to fatty acylate certain GTPases due to the small amount of effector proteins that secreted into the host cell.

      (2) It should be demonstrated that lysine residues on small G-proteins are indeed targeted by Lfat1. Ideally, the functional consequences of these modifications should also be investigated. For example, does fatty acylation of G-proteins affect GTPase activity or binding to downstream effectors?

      We have mutated K178 on RheB and showed that this mutation abolished its fatty acylation by Lfat1 (see Author response image 1 below). We were not able to test if fatty acylation by Lfat1 affect downstream effector binding.

      Author response image 1.

      (3) Line 138: Can the authors clarify whether the Lfat1 ABD induces bundling of F-actin filaments or promotes actin oligomerization? Does the Lfat1 ABD form multimers that bring multiple filaments together? If Lfat1 induces actin oligomerization, this effect should be experimentally tested and reported. Additionally, the impact of Lfat1 binding on actin filament stability should be assessed. This is particularly important given the proposed use of the ABD as an actin probe.

      The ABD domain does not form oligomer as evidenced by gel filtration profile of the ABD domain. However, we do see F-actin bundling in our in vitro -F-actin polymerization experiment when both actin and ABD are in high concentration (data not shown). Under low concentration of ABD, there is not aggregation/bundling effect of F-actin.

      (4) Line 180: I think it's too premature to refer to the interaction as having "high specificity and affinity." We really don't know what else it's binding to.

      We have revised the text and reworded the sentence by removing "high specificity and affinity."

      (5) The authors should reconsider the color scheme used in the structural figures, particularly in Figures 2D and S4.

      Not sure the comments on the color scheme of the structure figures.

      (6) In Figure 3E, the WT curve fits the data poorly, possibly because the actin concentration exceeds the Kd of the interaction. It might fit better to a quadratic.

      We have performed quadratic fitting and replaced Figure 3E.

      (7) The authors propose that the individual helices of the Lfat1 ABD could be expressed on separate proteins and used to target multi-component biological complexes to F-actin by genetically fusing each component to a split alpha-helix. This is an intriguing idea, but it should be tested as a proof of concept to support its feasibility and potential utility.

      It is a good suggestion. We plan to thoroughly test the feasibility of this idea as one of our future directions.

      (8) The plot in Figure S2D appears cropped on the X-axis or was generated from a ~2× binned map rather than the deposited one (pixel size ~0.83 Å, plot suggests ~1.6 Å). The reported pixel size is inconsistent between the Methods and Table 1-please clarify whether 0.83 Å refers to super-resolution.

      Yes, 0.83 Å is super-resolution.  We have updated in the cryoEM table

      Reviewer #2:

      Weaknesses:

      (1) The authors should use biochemical reactions to analyze the KFAT of Llfat1 on one or two small GTPases shown to be modified by this effector in cellulo. Such reactions may allow them to determine the role of actin binding in its biochemical activity. This notion is particularly relevant in light of recent studies that actin is a co-factor for the activity of LnaB and Ceg14 (PMID: 39009586; PMID: 38776962; PMID: 40394005). In addition, the study should be discussed in the context of these recent findings on the role of actin in the activity of L. pneumophila effectors.

      We have new data showed that Actin binding does not affect Lfat1 enzymatic activity. (see response to Reviewer #1). We have added this new data as Figure S7 to the paper. Accordingly, we also revised the discussion by adding the following paragraph.

      “The discovery of Lfat1 as an F-actin–binding lysine fatty acyl transferase raised the intriguing question of whether its enzymatic activity depends on F-actin binding. Recent studies have shown that other Legionella effectors, such as LnaB and Ceg14, use actin as a co-factor to regulate their activities. For instance, LnaB binds monomeric G-actin to enhance its phosphoryl-AMPylase activity toward phosphorylated residues, resulting in unique ADPylation modifications in host proteins  (Fu et al, 2024; Wang et al, 2024). Similarly, Ceg14 is activated by host actin to convert ATP and dATP into adenosine and deoxyadenosine monophosphate, thereby modulating ATP levels in L. pneumophila–infected cells (He et al, 2025). However, this does not appear to be the case for Lfat1. We found that Lfat1 mutants defective in F-actin binding retained the ability to modify host small GTPases when expressed in cells (Figure S7). These findings suggest that, rather than serving as a co-factor, F-actin may serve to localize Lfat1 via its actin-binding domain (ABD), thereby confining its activity to regions enriched in F-actin and enabling spatial specificity in the modification of host targets.”

      (2) The development of the ABD domain of Llfat1 as an F-actin domain is a nice extension of the biochemical and structural experiments. The authors need to compare the new probe to those currently commonly used ones, such as Lifeact, in labeling of the actin cytoskeleton structure.

      We fully agree with the reviewer’s insightful suggestion. However, a direct comparison of the Lfat1 ABD domain with commonly used actin probes such as Lifeact, as well as evaluation of the split α-helix probe (as suggested by Reviewer #1), would require extensive and technically demanding experiments. These are important directions that we plan to pursue in future studies.

      For all other minors, we have made corrections/changes in our revised text and figures.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      What are the overarching principles by which prokaryotic genomes evolve? This fundamental question motivates the investigations in this excellent piece of work. While it is still very common in this field to simply assume that prokaryotic genome evolution can be described by a standard model from mathematical population genetics, and fit the genomic data to such a model, a smaller group of researchers rightly insists that we should not have such preconceived ideas and instead try to carefully look at what the genomic data tell us about how prokaryotic genomes evolve. This is the approach taken by the authors of this work. Lacking a tight theoretical framework, the challenge of such approaches is to devise analysis methods that are robust to all our uncertainties about what the underlying evolutionary dynamics might be.

      The authors here focus on a collection of ~300 single-cell genomes from a relatively well-isolated habitat with relatively simple species composition, i.e. cyanobacteria living in hotsprings in Yellowstone National Park, and convincingly demonstrate that the relative simplicity of this habitat increases our ability to interpret what the genomic data tells us about the evolutionary dynamics.

      Using a very thorough and multi-faceted analysis of these data, the authors convincingly show that there are three main species of Synechococcus cyanobacteria living in this habitat, and that apart from very frequent recombination within each species (which is in line with insights from other recent studies) there is also a remarkably frequent occurrence of hybridization events between the different species, and with as of yet unidentified other genomes. Moreover, these hybridization events drive much of the diversity within each species. The authors also show convincing evidence that these hybridization events are not neutral but are driven by selected by natural selection.

      Strengths:

      The great strength of this paper is that, by not making any preconceived assumptions about what the evolutionary dynamics is expected to look like, but instead devising careful analysis methods to tease apart what the data tells us about what has happened in the evolution in these genomes, highly novel and unexpected results are obtained, i.e. the major role of hybridization across the 3 main species living in this habitat.

      The analysis is very thorough and reading the detailed supplementary material it is clear that these authors took a lot of care in devising these methods and avoiding the pitfalls that unfortunately affect many other studies in this research area.

      The picture of the evolutionary dynamics of these three Synechococcus species that emerge from this analysis is highly novel and surprising. I think this study is a major stepping stone toward the development of more realistic quantitative theories of genome evolution in prokaryotes.

      The analysis methods that the authors employ are also partially novel and will no doubt be very valuable for analysis of many other datasets.

      We thank the reviewer for their appreciation of our work.

      Weaknesses:

      I feel the main weakness of this paper is that the presentation is structured such that it is extremely difficult to read. I feel readers have essentially no chance to understand the main text without first fully reading the 50-page supplement with methods and 31 supplementary materials. I think this will unfortunately strongly narrow the audience for this paper and below in the recommendations for the authors I make some suggestions as to how this might be improved.<br /> A very interesting observation is that a lot of hybridization events (i.e. about half) originate from species other than the alpha, beta, and gamma Synechococcus species from which the genomes that are analyzed here derive. For this to occur, these other species must presumably also be living in the same habitat and must be relatively abundant. But if they are, why are they not being captured by the sampling? I did not see a clear explanation for this very common occurrence of hybridization events from outside of these Synechococcus species. The authors raise the possibility that these other species used to live in these hot springs but are now extinct. I'm not sure how plausible this is and wonder if there would be some way to find support for this in the data (e.g that one does not observe recent events of import from one of these unknown other species). This was one major finding that I believe went without a clear interpretation.

      We agree with the reviewer that the extent of hybridization with other species is surprising. While we do feel that our metagenome data provide convincing evidence that “X” species are not present in MS or OS, we cannot currently rule out the presence of X in other springs. In the revision we explicitly mention the alternative hypothesis (Lines 239-242).

      The core entities in the paper are groups of orthologous genes that show clear evidence of hybridization. It is thus very frustating that exactly the methods for identifying and classifying these hybridization events were really difficult to understand (sections I and V of the supplement). Even after several readings, I was unsure of exactly how orthogroups were classified, i.e. what the difference between M and X clusters is, what a `simple hybrid' corresponds to (as opposed to complex hybrids?), what precisely the definitions of singlet and non-singlet hybrids are, etcetera. It also seems that some numbers reported in the main text do not match what is shown in the supplement. For example, the main text talks about "around 80 genes with more than three clusters (SM, Sec. V; fig. S17).", but there is no group with around 80 genes shown in Fig S17! And similarly, it says "We found several dozen (100 in α and 84 in β) simple hybrid loci" and I also cannot match those numbers to what is shown in the supplement. I am convinced that what the authors did probably made sense. But as a reader, it is frustrating that when one tries to understand the results in detail, it is very difficult to understand what exactly is going on. I mention this example in detail because the hybrid classification is the core of this paper, but I had similar problems in other sections.

      We thank the reviewer for pointing out these issues with our original presentation. In the revision, we have redone most of the analysis to simplify the methods and check the consistency of the results. We did not find any qualitative differences in our results after reanalysis, but some of the numbers for different hybridization patterns have changed. The most notable difference is an increase in the number of alpha-gamma simple hybrids and a corresponding decrease in mixed-species clusters (now labeled mosaic hybrids). These transfers are difficult to assign because we only have access to a single gamma genome. We have added a short explanation of this point in Lines 219-222.

      To improve the presentation, we significantly expanded the “Results” section to better explain our analysis and the different steps we take. We included two additional figures (Figs. 3 and 4) that illustrate the different types of hybrids and the heterogeneity in the diversity of alpha which is discussed in the main text and is important for interpreting our results. We also included two additional figures (Figs. 2 and 6) that were previously in the Appendix but were mentioned in the main text. We believe these changes should address most of the issues raised by the reviewer and hopefully make the manuscript easier to read.

      Although I generally was quite convinced by the methods and it was clear that the authors were doing a very thorough job, there were some instances where I did not understand the analysis. For example, the way orthogroups were built is very much along the lines used by many in the field (i.e. orthoMCL on the graph of pairwise matchings, building phylogenies of connected components of the graph, splitting the phylogenies along long branches). But then to subdivide orthogroups into clusters of different species, the authors did not use the phylogenetic tree already built but instead used an ad hoc pairwise hierarchical average linkage clustering algorithm.

      The reviewer is correct that there is an unexplained discrepancy between the clustering methods we used at different steps in our pipeline. We followed previous work by using phylogenetic distances for the initial clustering of orthogroups. On these scales we expect hybridization to play a minor role and phylogenetic distances to correlate reasonably well with evolutionary divergence. However, because of the extensive hybridization we observed, the use of phylogenetic models for species clustering is more difficult to justify. We therefore chose to simply use pairwise nucleotide distances, which make fewer assumptions about the underlying evolutionary processes and should be more robust. We have briefly explained our reasoning and the details of our clustering method in the revision (Lines 182-190).

      Reviewer #2 (Public Review):

      Summary:

      Birzu et al. describe two sympatric hotspring cyanobacterial species ("alpha" and "beta") and infer recombination across the genome, including inter-species recombination events (hybridization) based on single-cell genome sequencing. The evidence for hybridization is strong and the authors took care to control for artefacts such as contamination during sequencing library preparation. Despite hybridization, the species remain genetically distinct from each other. The authors also present evidence for selective sweeps of genes across both species - a phenomenon which is widely observed for antibiotic resistance genes in pathogens, but rarely documented in environmental bacteria.

      Strengths:

      This manuscript describes some of the most thorough and convincing evidence to date of recombination happening within and between cohabitating bacteria in nature. Their single-cell sequencing approach allows them to sample the genetic diversity from two dominant species. Although single-cell genome sequences are incomplete, they contain much more information about genetic linkage than typical short-read shotgun metagenomes, enabling a reliable analysis of recombination. The authors also go to great lengths to quality-filter the single-cell sequencing data and to exclude contamination and read mismapping as major drivers of the signal of recombination.

      We thank the reviewer for their appreciation of our work.

      Weaknesses:

      Despite the very thorough and extensive analyses, many of the methods are bespoke and rely on reasonable but often arbitrary cutoffs (e.g. for defining gene sequence clusters etc.). Much of this is warranted, given the unique challenges of working with single-cell genome sequences, which are often quite fragmented and incomplete (30-70% of the genome covered). I think the challenges of working with this single-cell data should be addressed up-front in the main text, which would help justify the choices made for the analysis.

      We have significantly expanded the “Results” section to better justify and explain the choices we made during our analysis. We hope these changes address the reviewer’s concerns and make the manuscript more accessible to readers.

      The conclusions could also be strengthened by an analysis restricted to only a subset of the highest quality (>70% complete) genomes. Even if this results in a much smaller sample size, it could enable more standard phylogenetic methods to be applied, which could give meaningful support to the conclusions even if applied to just ~10 genomes or so from each species. By building phylogenetic trees, recombination events could be supported using bootstraps, which would add confidence to the gene sequence clustering-based analyses which rely on arbitrary cutoffs without explicit measures of support.

      It seems to us that the reviewer’s suggestion presupposes that the recombination events we find can be described as discrete events on an asexual phylogeny, similar to how rare mutations are treated in standard phylogenetic inference. Popular tools, such as ClonalFrame and its offshoots, have attempted to identify individual recombination events starting from these assumptions. But the main conclusion of both our linkage and SNP block analysis is that the ClonalFrame assumptions do not hold for our data. Under a clonal frame, the SNP blocks we observe should be perfectly linked, similar to mutations on an asexual tree. But our results in Fig. 7D show the opposite. Part of the issue may have been that in our original presentation, we only briefly discuss the results of our linkage analysis and refer readers to the Appendix for more details. To fix this issue we have added an extra figure (Fig. 2), showing rapid linkage decrease in both species and that at long distances the linkage values are essentially identical to the unlinked case, similar to sexual populations. We hope that this change will help clarify this point.

      The manuscript closes without a cartoon (Figure 4) which outlines the broad evolutionary scenario supported by the data and analysis. I agree with the overall picture, but I do think that some of the temporal ordering of events, especially the timing of recombination events could be better supported by data. In particular, is there evidence that inter-species recombination events are increasing or decreasing over time? Are they currently at steady-state? This would help clarify whether a newly arrived species into the caldera experiences an initial burst of accepting DNA from already-present species (perhaps involving locally adaptive alleles), or whether recombination events are relatively constant over time.

      The reviewer raises some very interesting questions about the dynamics of recombination in the population, which we hope to pursue in future work. We have added this as an open question in the Discussion (Lines 365-382).

      These questions could be answered by counting recombination events that occur deeper or more recently in a phylogenetic tree.

      The reviewer here seems to presuppose that recombination is rare enough that a phylogenetic tree can reliably be inferred, which is contrary to our linkage analysis (see the response to an earlier comment). Perhaps the reviewer missed this point in our original manuscript since it was discussed primarily in the Appendix. See also our response to a previous comment by the reviewer.

      The cartoon also shows a 'purple' species that is initially present, then donates some DNA to the 'blue' species before going extinct. In this model, 'purple' DNA should also be donated to the more recently arrived 'orange' species, in proportion to its frequency in the 'blue' genome. This is a relatively subtle detail, but it could be tested in the real data, and this may actually help discern the order of the inferred recombination events.

      We have included an extra figure in the main text (Fig. 6) that addresses the question of timing of events. A quantitative test of our cartoon model along the lines the reviewer suggested would certainly be worthwhile and we hope to do that in future work.  

      The abstract also makes a bold claim that is not well-supported by the data: "This widespread mixing is contrary to the prevailing view that ecological barriers can maintain cohesive bacterial species..." In fact, the two species are cohesive in the sense that they are identifiable based on clustering of genome-wide genetic diversity (as shown in Fig 1A). I agree that the mixing is 'widespread' in the sense that it occurs across the genome (as shown in Figure 2A) but it is clearly not sufficient to erode species boundaries. So I believe the data is consistent with a Biological Species Concept (sensu Bobay & Ochman, Genome Biology & Evolution 2017) that remains 'fuzzy' - such that there are still inter-species recombination events, just not sufficient to erode the cohesion of genomic clusters. Therefore, I think the data supports the emerging picture of most bacteria abiding by some version of a BSC, and is not particularly 'contrary' to the prevailing view.

      We have revised the phrase mentioned by the reviewer to “prevent genetic mixture between bacterial species,” which more accurately represents our conclusions. 

      The final Results paragraph begins by posing a question about epistatic interactions, but fails to provide a definitive answer to the extent of epistasis in these genomes. Quantifying epistatic effects in bacterial genomes is certainly of interest, but might be beyond the scope of this paper. This could be a Discussion point rather than an underdeveloped section of the Results.

      We agree with the reviewer that an exhaustive analysis of epistasis in the population is beyond the scope of the manuscript. Our original intention was to answer whether SNP blocks we discovered showed evidence of strong linkage, as might be expected if only a small number of strains are present in the population. In light of the previous comments by the reviewer regarding the consistency with the clonal frame hypothesis, we believe this is especially relevant for our results. Moreover, the results we found‑especially for the beta population‑were quite conclusive: SNP block linkages in beta are indistinguishable from an unlinked model. To avoid misdirecting the reader about the significance of our results, we have revised the relevant paragraph (Lines 316-319).

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      Although I am entirely convinced of the validity of the results, methodology, and interpretations presented in this work, I must say I found the paper very hard to read. And I think I am really quite familiar with these kinds of approaches. I fear that for people other than experts on these kinds of comparative genomic analyses, this paper will be almost impossible to read. With the aim of expanding the audience for this compelling work, I think the authors might want to consider ways to improve the presentation.

      At the end of a long project, the obtained results typically form a web of mutual interconnections and dependencies and one of the key challenges in presenting the results in a paper is having to untangle this web of connected results and analysis into a linear ordered narrative so that, at any point in the narrative, understanding the next point only depends on previous points in the narrative. I frankly feel that this paper fails at this.

      The paper reads to me as if one author put together the supplement by essentially writing a report of all the analyses that were done together with supplementary figures summarizing all those analyses, and that another author then wrote the main text by using the materials in the supplement almost in the way a cook uses ingredients for a dish. Almost every other sentence in the main text refers to results in the (31!) supplementary figures and can only be understood by reading the appropriate corresponding sections in the supplementary materials. I found it essentially impossible to read the main text without having first read the entire 50-page supplement.

      I think the paper could be hugely improved by trying to restructure the presentation so as to make it more linear. The main text can be expanded to include a summary of the crucial methods and analysis results from the supplement needed to understand the narrative in the main text. For example, as it currently stands it is really challenging to understand what is shown in figures 2 and 3 of the main text without having to first read a very substantial part of the supplement. Figure 3, even after having read the relevant sections in the supplement, took me quite a while to understand and almost felt like a puzzle to decypher. Rethinking which parts of the supplement are really necessary would also help. Finally, it would also help if the terminology was kept as simple, transparent, and consistent as possible.

      I understand that my suggestion to thoroughly reorganize the presentation may feel like a big hassle, but I am afraid that in its current form, these important results are essentially rendered inaccessible to all but a small group of experts in this area. This paper deserves a wider readership.

      We thank the reviewer for these valuable suggestions. In the revision, we have significantly expanded and restructured the “Results” section to make the presentation more linear, as the reviewer suggested (see our reply to the public comment by the reviewer for details). We hope these changes will make the manuscript easier to read.

      Reviewer #2 (Recommendations For The Authors):

      I found this paper challenging to follow since the main text was so condensed and the supplementary material so extensive. Given that eLife does not impose strong limits on the length of the main text, I suggest moving some key sections from the supplement into the main text to make it easier for the reader to follow rather than flipping back and forth. Adding to the confusion, supplementary figures were referenced out of order in the main text (e.g. S23 is referenced before S1). Please check the numbering and ensure figures are mentioned in the main text in the correct order.

      We thank the reviewer for their feedback on the presentation of the results. In response to similar comments from Reviewer #1, we have significantly expanded and restructured the “Results” section to make it easier to read (see also our responses to Reviewer #1).

      Page 2: The term 'coevolution' is typically reserved for two species that mutually impose selective pressures on one another (e.g. predator-prey interactions; see Janzen, Evolution 1980). In the context of these two cyanobacterial species, it's not clear that this is the case so I would simply refer to them 'cohabitating' or being sympatric in the same environment.

      It is true that the term "coevolution” has become associated with predator-prey interactions, as the reviewer said. However, we feel that in our case “coevolution” fairly accurately describes the continual hybridization over long time scales we observe. We have therefore chosen to keep the term.

      Page 3: The authors mention that the gamma SAG is ~70% complete, which turns out to be quite high. It would be useful to mention early in the Results the mean/median completeness across SAGs, and how this leads to some challenges in analysing the data. Some of the material from the Supplement could be moved into the Results here.

      We have added a short note on the completeness in the Results (Lines 153-154). We have also added an extra figure in Appendix 1 with the completeness of all the SAGs for interested readers.

      I was left puzzled by the sentence: "Alternatively, high rates of recombination could generate different genotypes within each genome cluster that are adapted to different temperatures, with the relative frequencies of each cluster being only a correlated and not a causal driver of temperature adaptation." This is suggesting that individual genes or alleles, rather than entire genomes, could be adapted to temperature. But figure 1B seems to imply that the entire genome is adapted to different temperatures. Anyway, this does not seem to be a key point and could probably be removed (or clarified if the authors deem this an important point, which I failed to understand).

      We have revised this section to clarify the alternative hypothesis mentioned by the reviewer (Lines 100-103).

      Page 4. 'Several dozen' hybrid genes were found, but please also specify how many genes were tested. In general, it would be good to briefly outline the sample size (SAGs or genes) considered for each analysis.

      We have added the total numbers of genes we analyzed at each step of our analysis.

      'Mosaic hybrid loci' are mentioned alongside the issue of poor alignment. Presumably, the mosaic hybrid loci are first filtered to remove the poor alignments? This should be specified, and please mention how many loci are retained before/after this filter.

      We thank the reviewer for highlighting this important point. In the revision, we have implemented a more aggressive filtering of genes with poor alignments. We have added an extra paragraph to Appendix 1 (step 5 in the pipeline analysis) briefly explaining the issue.

      Page 5. "By contrast, the diversity of mosaic loci was typical of other loci within beta, suggesting most of the beta genome has undergone hybridization." Please point to the data (figure) to support this statement.

      We have restructured our discussion of the different hybrid loci so this comment is no longer relevant. In case the reviewer is interested, the synonymous diversity within beta was 0.047, while in mosaic hybrids it was 0.064.

      Page 6. "The largest diversity trough contained 28 genes." Since this trough is discussed in detail and seems to be of interest, it would be nice to illustrate it, perhaps as an inset in Figure 2 or as a separate figure. If I understood correctly, this trough includes genes (in a nitrogen-fixation pathway) that are present in all genomes, but are exchanged by homologous recombination. So I don't think it's correct to say that the "ancestors acquired the ability to fix nitrogen." Rather, the different alleles of these same genes were present in the ancestor. So perhaps there was a selective sweep involving alleles in this region that provided adaptation to local nitrogen sources or concentrations, but not a gain of new genes. Perhaps I misunderstood, in which case clarification would be appreciated.

      The reviewer raises an interesting possibility. We agree that it is in principle possible that the ancestor contained the nitrogen fixation genes and the selective sweep simply replaced the ancestral alleles. In this particular case, there is additional evidence that the entire pathway was acquired around roughly the same time from gene order. The gene order between alpha and beta is almost entirely different, with only a few segments containing more than 2-3 genes in the same order, as shown by Bhaya et al. 2007 and confirmed by additional unpublished analysis of the SAGs. One of the few exceptions is the nitrogen fixation pathway, which has essentially the same gene order over more than 20 kbp. Thus, if the ancestor of both alpha and beta contained the nitrogen-fixation pathway, we would expect these genes to be scatter across the genome. We have revised the sentences in question to clarify this point (Lines 260-271).

      Page 6. Last paragraph on epistasis references Fig 3C, but I believe it should be Fig 3D.

      Fixed.

      Page 7. Figure 3 legend. "Note that alpha-2 is identical to gamma here." I believe it should be beta, not gamma.

      The reviewer is correct. We have fixed this error.

      Page 8. What is the evidence for "at least six independent colonizers"? I could not find the data supporting this claim.

      The statement mentioned by the reviewer was based on the maximum number of species clusters we identified in different core genes. However, during the revision, we found that only a handful of genes contained five or more clusters. We did find several tens of genes with four clusters. In addition, Rosen et al. (2018) also found additional 16S clusters at low frequency in the same springs. Based on these results we conservatively estimate that at least four independent strains colonized the caldera, but the number could be much greater. We have revised the text in question accordingly (Lines 336-339) and added Fig. 2 in Appendix 1 to support the conclusion.

      Page 9. Line 200: "acting to homogenize the population." It should be specified that the population is only homogenized at these introgressed loci, not genome-wide. Otherwise, the genome-wide species clusters seen in Fig 1 would not be maintained.

      It is true that the selective sweeps that lead to diversity throughs only homogenize the introgressed loci. But other hybrid segments could also rise to high frequency in the population during the sweep through hitchhiking. The fact that we observe SNP blocks generated through secondary recombination events of introgressed segments throughout the genome supports this view. While we do not fully understand the dynamics of this process currently, we do feel that the current evidence supports the statement that mixing is occurring throughout the genome and not just at a few loci so we have kept the original statement.

      The final sentence (lines 221-222) is vague and uninformative. On the one hand, "investigating whether hybridization plays a major role" is what the current manuscript has already done - depending on what is meant by 'major' (how much of the genome? Or whether there are ecological implications?). It is also not clear what is meant by a predictive theory and 'possible evolutionary scenarios. This should be elaborated upon, otherwise, it is not clear what the authors mean. Otherwise, this sentence could be cut.

      We thank the reviewer for their feedback. One possible source of confusion could be that in this sentence we were referring to detecting hybridization in other communities. We have changed “these communities” to “other communities” to make this clearer.

      Supplement.

      Broadly speaking, I appreciate the thorough and careful analysis of the single cell data. On the other hand, it is hard to evaluate whether these custom analyses are doing what is intended in many cases. Would it be possible to consider an analysis using more established methods, e.g. taking a subset of genomes with 'good' completeness and using Panaroo to find the core and accessory genome, then ClonalFrameML or Gubbins to infer a phylogeny and recombination events? Such analyses could probably be applied to a subset of the sample with relatively complete genomes. I don't want to suggest an overly time-consuming analysis, but the authors could consider what would be feasible.

      We have added a comparison between our analysis and that from two other methods, including ClonalFrameML mentioned by the author. One important point that we feel might have been lost in the first version is that our linkage results imply that recombination is not rare such that it can be mapped onto an asexual tree as assumed by ClonalFrameML. Note that this is not simply due to technical limitations due to incomplete coverage and is instead a consequence of the evolutionary dynamics of the population. Consistent with this, we found several inconsistencies in how recombination events were assigned by ClonalFrameML. We have summarized these conclusions in Appendix 7 of the revised manuscript.

      Page 8. Line 190. What is meant by 'minimal compositional bias'?

      We mean that the sample is not biased towards strains that grow in the lab. We have revised the sentence to clarify.

      Page 25. Figure S14 is not referenced in the text.

      We have added part of this figure to the main text since it illustrates one of our main results, namely that sites at long genomic distances are essentially unlinked.

      Page 26. The 'unlinked controls' (line 530) are very useful, but it would be even more informative to see if these controls also show the same decline in linkage with distance in the genome as observed in the real data. In particular, it would be good to know if the observed rapid decline in linkage with distance in the low-diversity regions is also observed in controls. Currently, it is unclear if this observation might be due to higher uncertainty in inferring linkage in low-diversity regions, which by definition have less polymorphism to include in the linkage calculation.

      We thank the reviewer for the suggestion. After further consideration, we have decided to remove the subsection on linkage decrease in the low-diversity regions. We feel such detailed quantitative analysis would be better suited for a more technical paper, which we hope to do at a later time.

      Page 26. There are some sections with missing identifiers (Sec ??).

      Fixed.

      Page 27. The information about the typical breadth of SAG coverage (~30%) would be better to include earlier in the Supplement, and also mentioned in the main text so the reader can more easily understand the nature of the dataset.

      We have added an extra figure with the SAG coverages to Appendix 1.

      Page 29. Any sensitivity analysis around the S = 0.9 value? Even if arbitrary, could the authors provide justification why they think this value is reasonable?

      We have significantly revised this section in response to earlier comments by one of the reviewers. We hope that this would clarify the details of our methods to interested readers. To answer the reviewer’s specific question, we chose this heuristic after examining the fraction of cells of each species in different species clusters. For the clusters assigned to alpha and beta, we found a sharp peak near one and that a cutoff of 0.9 captured most clusters while still being high enough to inconsistent with a mixed cluster.

      Page 30. I could not see where Fig. S17 was mentioned in the text. Also, how are 'simple hybrid genes' defined?

      We have removed this figure in the revision. The definition of the different types of hybrid genes have been added to the main text in response to a comment from the other reviewer.

      Page 36. It is hard to see that divergence is 'high' relative to what reference. Would it be possible to include the expected value (from ref. 12) in the plot, or at least explicitly mentioned in the text?

      We have added the mean synonymous and non-synonymous divergences between alpha and beta to the figures for reference.

      Page 38. Line 770 "would be comparable to that of beta." This is not necessarily the case since beta could have a different time to its most recent common ancestor. It could have a different time to the last bottleneck or selective sweep, etc.

      We thank the reviewer for pointing out this misleading statement. Our point here was that in the first scenario the TMRCA of alpha and beta would be similar since the diversity in the high-diversity alpha genes is similar to beta. We have clarified this statement in the revision.

      Page 39. Line 793. The use of the term 'genomic backbone' implies the presence of a clonal frame, which is not what the data seems to support. Perhaps another term such as 'genetic diversity' would more appropriately capture the intended meaning here.

      We agree with the reviewer that the low-diversity regions may not be asexual. We used “genomic backbone” to distinguish from the “clonal frame,” which is usually used to mean that the backbone is asexual. We have added a note in the revision to clarify this point.

      Page 39. Lines 802-805. I found this explanation hard to follow. Could the logic be clarified?

      We simply meant that although the beta distribution is unimodal, it is not consistent with a simple Poisson distribution, unlike in alpha. We have added an extra sentence to clarify this.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #2 (Public review):

      In this valuable manuscript, Lin et al attempt to examine the role of long non coding RNAs (lncRNAs) in human evolution, through a set of population genetics and functional genomics analyses that leverage existing datasets and tools. Although the methods are incomplete and at times inadequate, the results nonetheless point towards a possible contribution of long non coding RNAs to shaping humans, and suggest clear directions for future, more rigorous study.

      Comments on revisions:

      I thank the authors for their revision and changes in response to previous rounds of comments. As it had been nearly two years since I last saw the manuscript, I reread the full text to familiarise myself again with the findings presented. While I appreciate the changes made and think they have strengthened the manuscript, I still find parts of it a bit too speculative or hyperbolic. In particular, I think claims of evolutionary acceleration and adaptation require more careful integration with existing human/chimpanzee genetics and functional genomics literature.

      We thank the reviewer heartfully for the great patience and valuable comments, which have helped us further improve the manuscript. Before responding to comments point by point, we provide a summary here.

      (1) On parameters and cutoffs.

      Parameters and cutoffs influence data analysis. The large number of Supplementary Notes, Supplementary Figures, and Supplementary Tables indicates that we paid great attention to the influence of parameters and robustness of analyses. Specifically, here we explain the DBS sequence distance cutoff of 0.034, which determines the top 20% genes that most differentiate humans from chimpanzees and influences the gene set enrichment analysis (Figure 2). As described in the revised manuscript, we estimated this cutoff based on Song et al., verified its rationality based on Prufer et al. (Song et al. 2021; Prufer et al. 2017), and measured its influence by examining slightly different cutoff values (e.g., 0.035).

      (2) Analyses of HS TFs and HS TF DBSs.

      It is desirable to compare the contribution of HS lncRNAs and HS TFs to human evolution. Identifying HS TFs faces the challenges that different institutions (e.g., NCBI and Ensembl) annotate orthologous genes using different criteria, and that multiple human TF lists have been published by different research groups. Recently, Kirilenko et al. identified orthologous genes in hundreds of placental mammals and birds and organized different types of genes into datasets of parewise comparison (e.g., hg38-panTro6) using humans and mice as references (Kirilenko et al. Integrating gene annotation with orthology inference at scale. Science 2023). Based on (a) the many2zero and one2zero gene lists in the “hg38-panTro6” dataset, (b) three human TF lists reported by two studies (Bahram et al. 2015; Lambert et al. 2018) and used in the SCENIC package, we identified HS TFs. The number of HS TFs and HS lncRNAs (5 vs 66) alone lends strong evidence suggesting that HS lncRNAs have contributed more significantly to human evolution than HS TFs (note that 5 is the union of three intersections between <many2zero + one2zero> and the three <human TF list>).

      TF DBS (i.e., TFBS) prediction has also been challenging because they are very short (mostly about 10 bp) and TF-DNA binding involves many cofactors (Bianchi et al. Zincore, an atypical coregulator, binds zinc finger transcription factors to control gene expression. Science 2025). We used two TF DBS prediction programs to predict HS TF DBSs, including the well-established FIMO program (whose results have been incorporated into the JASPAR database) (Rauluseviciute et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles Open Access. NAR 2023) and the recently reported CellOracle program (Kamimoto et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 2023). Then, we performed downstream analyses and obtained two major results. One is that on average (per base), fewer selection signals are detected in HS TF DBSs (anyway, caution is needed because TF DBSs are very short); the other is that HS TFs and HS lncRNAs contribute to human evolution in quite different ways (Supplementary Figs. 25 and 26).

      (3) On genes with more transcripts may appear as spurious targets of HS lncRNAs.

      Now, the results of HS TF DBSs allow us to address the question of whether genes with more transcripts may appear as spurious targets of HS lncRNAs. We note that (a) we predicted HS lncRNA DBSs and HS TF DBSs in the same promoter regions before the same 179128 Ensembl-annotated transcripts (release 79), (b) we used the same GTEx transcript expression matrices in the analyses of HS TF DBSs and HS lncRNA DBSs (the GTEx database includes gene expression matrices and transcript expression matrices, the latter includes multiple transcripts of a gene). Thus, the analyses of HS TF DBSs provide an effective control for examining the question of whether genes with more transcripts may appear as spurious targets of HS lncRNAs, and consequently, cause the high percentages of HS lncRNA-target transcript pairs that show correlated expression in the brain (Figure 3). We find that the percentages of HS TF-target transcript pairs that show correlated expression are also high in the brain, but the whole profile in GTEx tissues is significantly different from that of HS lncRNA DBSs (Figure 3A; Supplementary Figure 25). On the other hand, on the distribution of significantly changed DBSs in GTEx tissues, the difference between HS lncRNA DBSs and HS TF DBSs is more apparent (Figure 3B; Supplementary Figure 26). Together, these suggest that the brain-enriched distribution of co-expressed HS lncRNA-target transcript pairs must arise from HS lncRNA-mediated transcriptional regulation rather than from the transcript number difference.

      (4) Additional notes on HS TFs and HS TF DBSs.

      First, the “many2zero” and “one2zero” gene lists in the “hg38-panTro6” dataset of Kirilenko et al. provide the most update, but not most complete, data on human-specific genes because “hg38-panTro6” is a pairwise comparison. On the other hand, the Ensembl database also annotates orthologous genes, but lacks such pairwise comparisons as “hg38-panTro6”. Therefore, not all HS genes based on “hg38-panTro6” agree with orthologous genes in the Ensembl database. Second, if HS genes are identified based on both Ensembl and Kirilenko et al., HS TFs will be fewer.

      (5) On speculative or hyperbolic claims.

      First, the title “Human-specific lncRNAs contributed critically to human evolution by distinctly regulating gene expression” is now further supported by HS TF DBSs analyses. Second, we have carefully revised the entire manuscript, trying to make it more readable, accurate, logically reasonable, and biologically acceptable. Third, specifically, in the revision, we avoid speculative or hyperbolic claims in results, interpretations, and discussions as possible as we can. This includes the tone-down of statements and claims, for example, using “reshape” to replace “rewire” and using “suggest” to replace “indicate”. Since the revisions are pervasive, we do not mark all of them, except those that are directly relevant to the reviewer’s comments.

      (1) Line 155: "About 5% of genes have significant sequence differences in humans and chimpanzees," This statement needs a citation, and a definition of what is meant by 'significant', especially as multiple lines below instead mention how it's not clear how many differences matter, or which of them, etc.

      Different studies give different estimates, from 1.24% (Ebersberger et al. Genomewide Comparison of DNA Sequences between Humans and Chimpanzees. Am J Hum Genet. 2002) to 5% (Britten RJ. Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. PNAS 2002). The 5% for significant gene sequence differences arises when considering a broader range of genetic variations, particularly insertions and deletions of genetic material (indels). To provide more accurate information, we have replaced this simple statement with a more comprehensive one and cited the above two papers.

      (2) line 187: "Notably, 97.81% of the 105141 strong DBSs have counterparts in chimpanzees, suggesting that these DBSs are similar to HARs in evolution and have undergone human-specific evolution." I do not see any support for the inference here. Identifying HARs and acceleration relies on a far more thorough methodology than what's being presented here. Even generously, pairwise comparison between two taxa only cannot polarise the direction of differences; inferring human-specific change requires outgroups beyond chimpanzee.

      Here, we actually made an analogy but not an inference; therefore, we used such words as “suggesting” and “similar” instead of using more confirmatory words. We have revised the latter half sentence, saying “raising the possibility that these sequences have evolved considerably during human evolution”.

      (3) line 210: "Based on a recent study that identified 5,984 genes differentially expressed between human-only and chimpanzee-only iPSC lines (Song et al., 2021), we estimated that the top 20% (4248) genes in chimpanzees may well characterize the human-chimpanzee differences". I do not agree with the rationale for this claim, and do not agree that it supports the cutoff of 0.034 used below. I also find that my previous concerns with the very disparate numbers of results across the three archaics have not been suitably addressed.

      (1) Indeed, “we estimated that the top 20% (4248) genes in chimpanzees may well characterize the human-chimpanzee differences” is an improper claim; we made this mistake due to the flawed use of English.

      (2) What we need is a gene number, which (a) indicates genes that effectively differentiate humans from chimpanzees, (b) can be used to set a DBS sequence distance cutoff. Since this study is the first to systematically examine DBSs in humans and chimpanzees, we must estimate this gene number based on studies that identify differentially expressed genes in humans and chimpanzees. We choose Song et al. 2021 (Song et al. Genetic studies of human–chimpanzee divergence using stem cell fusions. PNAS 2021), which identified 5984 differentially expressed genes, including 4377 genes whose differential expression is due to trans-acting differences between humans and chimpanzeees. To the best of our knowledge, this is the only published data on trans-acting differences between humans and chimpanzeees, and most HS lncRNAs and their DBSs/targets have trans-acting relationships (see Supplementary Table 2). Based on these numbers, we chose a DBS sequence distance cutoff of 0.034, which corresponds to 4248 genes (the top 20%), slightly fewer than 4377.

      (3) If we chose DBS sequence distance cutoff=0.033 or 0.035, slightly more or fewer genes would be determined, raising the question of whether they would significantly influence the downstream gene set enrichment analysis (Figure 2). We found that 91 genes have a DBS sequence distance of 0.034. Thus, if cutoff=0.035, 4248-91=4157 genes were determined, and the influence on gene set enrichment analysis was very limited.

      (4) On the disparate numbers of results across the three archaics. Figure 1A is based on Figure 2 in Prufer et al. 2017. At first glance, our Figure 1A indicates that Altai Neanderthal is older than Denisovan (upon kya), making our result “identified 1256, 2514, and 134 genes in Altai Neanderthals, Denisovans, and Vindija Neanderthals” unreasonable. However, Prufer et al. (2017) reported that “It has been suggested that Denisovans received gene flow from a hominin lineage that diverged prior to the common ancestor of modern humans, Neandertals, and Denisovans……In agreement with these studies, we find that the Denisovan genome carries fewer derived alleles that are fixed in Africans, and thus tend to be older, than the Altai Neandertal genome”. This note by Prufer et al. provides an explanation for our result, which is that more genes with large DBS sequence distances were identified in Denisovans than in Altai Neanderthals. Of course, the 1256, 2514, and 134 depend on the cutoff of 0.034. If cutoff=0.035, these numbers change slightly, but their relationships remain (i.e., more genes in Denisovans). We examined multiple cutoff values and found that more genes in Denisovans have large DBS sequence distances than in Altai Neanderthals.

      (4) I also think that there is still too much of a tendency to assume that adaptive evolutionary change is the only driving force behind the observed results in the results. As I've stated before, I do not doubt that lncRNAs contribute in some way to evolutionary divergence between these species, as do other gene regulatory mechanisms; the manuscript leans down on it being the sole, or primary force, however, and that requires much stronger supporting evidence. Examples include, but are not limited to:

      (1) Indeed, the observed results are also caused by other genomic elements and mechanisms (but it is hardly feasible to identify and differentiate them in a single study), and we do not assume that adaptive evolutionary change is the only driving force. Careful revisions have been made to avoid leaving readers the impression that we have this tendency or hold the simple assumption.

      (2) Comparing HS lncRNAs to HS TFs is critical, and we have done this.

      (5) line 230: "These results reveal when and how HS lncRNA-mediated epigenetic regulation influences human evolution." This statement is too speculative.

      We have toned down the statement, just saying “These results provide valuable insights into when and how HS lncRNA-mediated epigenetic regulation impacts human evolution”.

      Line 268: "yet the overall results agree well with features of human evolution." What does this mean? This section is too short and unclear.

      (1) First, the sentence “Selection signals in YRI may be underestimated due to fewer samples and smaller sample sizes (than CEU and CHB), yet the overall results agree well with features of human evolution” has been deleted, because CEU, CHB, and YRI samples are comparable (100, 99, and 97, respectively).

      (2) Now the sentence has been changed to “These results agree well with findings reported in previous studies, including that fewer selection signals are detected in YRI (Sabeti et al., 2007; Voight et al., 2006)”.

      (3) On “This section is too short and unclear” - To make the manuscript more readable, we adopt short sections instead of long ones. This section expresses that (a) our finding that more selection signals were detected in CEU and CHB than in YRI agrees with well-established findings (Voight et al. A Map of Recent Positive Selection in the Human Genome. PLoS Biology 2006; Sabeti et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007), (b) in considerable DBSs, selection signals were detected by multiple tests.

      Line 325: "and form 198876 HS lncRNA-DBS pairs with target transcripts in all tissues." This has not been shown in this paper - sequence based analyses simply identify the “potential” to form pairs.

      This section describes transcriptomic analysis using the GTEx data. Indeed, target transcripts of HS lncRNAs are results of sequence-based analysis, and a predicted target is not necessarily regulated by the HS lncRNA in a tissue. Here, “pair” means a pair of HS lncRNA-target transcript whose expression shows significant Pearson correlation in a GTEx tissue (by the way, we do not mean correlation equals regulation; actually, we identified HS lncRNA-mediated transcriptional regulation upon both DBS-targeting relationship and correlation relationship).

      Line 423: "Our analyses of these lncRNAs, DBSs, and target genes, including their evolution and interaction, indicate that HS lncRNAs have greatly promoted human evolution by distinctly rewiring gene expression." I do not agree that this conclusion is supported by the findings presented - this would require significant additional evidence in the form of orthogonal datasets.

      (1) As mentioned above, we have used “reshape” to replace “rewire” and used “suggest” to replace “indicate”. In addition, we have substantially revised the Discussion, in which this sentence is replaced by “our results suggest that HS lncRNAs have greatly reshaped (or even rewired) gene expression in humans”.

      (2) Multiple citations have been added, including Voight et al. 2006 (Voight et al. A Map of Recent Positive Selection in the Human Genome. PLoS Biology 2006) and Sabeti et al. 2007 (Sabeti et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007).

      (3) We have analyzed HS TF DBSs, and the obtained results also support the critical contribution of HS lncRNAs.

      I also return briefly to some of my comments before, in particular on the confounding effects of gene length and transcript/isoform number. In their rebuttal the authors argued that there was no need to control for this, but this does in fact matter. A gene with 10 transcripts that differ in the 5' end has 10 times as many chances of having a DBS than a gene with only 1 transcript, or a gene with 10 transcripts but a single annotated TSS. When the analyses are then performed at the gene level, without taking into account the number of transcripts, this could introduce a bias towards genes with more annotated isoforms. Similarly, line 246 focuses on genes with "SNP numbers in CEU, CHB, YRI are 5 times larger than the average." Is this controlled for length of the DBS? All else being equal a longer DBS will have more SNPs than a shorter one. It is therefore not surprising that the same genes that were highlighted above as having 'strong' DBS, where strength is impacted by length, show up here too.

      (1) In gene set enrichment analysis (Figure 2, which is a gene-level analysis), when determining genes differentiating humans from chimpanzees based on DBS sequence distance, if a gene has multiple transcripts/DBSs, we choose the DBS with the largest distance. That is, the input to g:Profiler is a non-redundant gene list.

      (2) In GTEx data analysis (Figure 3, which is a transcriptome-level analysis), the analyses of HS TF DBSs using the GTEx data provide evidence suggesting that different DBS/transcript numbers of genes are unlikely to cause confounding effects. As explained above, we predicted HS TF DBSs in the same promoter regions of 179128 Ensembl-annotated transcripts (release 79), but Supplementary Figures 25 and 26 are distinctly different from Figure 3AB.

      (3) In evolutionary analysis, a gene with 10 DBSs has a higher chance of having selection signals than a gene with 1 DBS. This is biologically plausible, because many conserved genes have novel transcripts whose expression is species-, tissue-, or developmental period-specific, and DBSs before these novel transcripts may differ from DBSs before conserved transcripts.

      (4) “line 246 focuses on genes with "SNP numbers in CEU, CHB, YRI are 5 times larger than the average." Is this controlled for the length of the DBS?” - This is a defect. We have now computed SNP numbers per base and used the new table to replace the old Supplementary Table 8. After examining the new table, we find that the major results of SNP analysis remain.

      (5) On “Is this controlled for length of the DBS? All else being equal a longer DBS will have more SNPs than a shorter one” - We do not think there are reasons to control for the length of DBSs; also, what “All else being equal” means matters. First, DBS sequences have specific features; thus, the feature of a long DBS is stronger than the feature of a short one, making a long DBS less likely to be generated by chance in the genome and less likely to be predicted wrongly than a short one. This means that longer DBSs are less likely to be false ones (note our explanation that the chance of a DBS of 147 bp, the mean length of DBSs, to be wrongly predicted is extremely low, p<8.2e-19 to 1.5e-48). Second, the difference in length suggests a difference in binding affinity, which in turn influences the regulation of the specific transcripts and influences the analysis of GTEx data. Third, it cannot be excluded that some SNPs may be selection signals (detecting selection signal is challenging, and many selection signals cannot be detected by statistical tests, see Grossman et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 2010).

      (6) On “It is therefore not surprising that the same genes that were highlighted above as having 'strong' DBS, where strength is impacted by length” - Indeed, strength is influenced by length, see the above response.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      Finally, figure 1 panels D and F are not legible - the font is tiny! There's also a typo in panel A, where "Homo Sapien" should be "Homo sapiens".

      (1) “Homo sapien” is changed to “Homo sapiens”.

      (2) Even if we double the font size, they are still too small. Inserting a very large panel D into Figure 1 will make Figure 1 ugly, and converting Figure 1D into an independent figure is unnecessary. Actually, panels 1D and F are illustrative figures; the full Fig.1D is Supplementary Figure 6, and the full Fig.1F is Figure 3. We have revised Fig.1’s legend to explain these.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This unique study reports original and extensive behavioral data collected by the authors on 21 living mammal taxa in zoo conditions (primates, tree shrew, rodents, carnivorans, and marsupials) on how descent along a vertical substrate can be done effectively and securely using gait variables. Ten morphological variables reflecting head size and limb proportions are examined in relationship to vertical descent strategies and then applied to reconstruct modes of vertical descent in fossil mammals.

      Strengths:

      This is a broad and data-rich comparative study, which requires a good understanding of the mammal groups being compared and how they are interrelated, the kinematic variables that underlie the locomotion used by the animals during vertical descent, and the morphological variables that are associated with vertical descent styles. Thankfully, the study presents data in a cogent way with clear hypotheses at the beginning, followed by results and a discussion that addresses each of those hypotheses using the relevant behavioral and morphological variables, always keeping in mind the relationships of the mammal groups under investigation. As pointed out in the study, there is a clear phylogenetic signal associated with vertical descent style. Strepsirrhine primates much prefer descending tail first, platyrrhine primates descend sideways when given a choice, whereas all other mammals (with the exception of the raccoon) descend head first. Not surprisingly, all mammals descending a vertical substrate do so in a more deliberate way, by reducing speed, and by keeping the limbs in contact for a longer period (i.e., higher duty factors).

      Weaknesses:

      The different gait patterns used by mammals during vertical descent are a bit more difficult to interpret. It is somewhat paradoxical that asymmetrical gaits such as bounds, half bounds, and gallops are more common during descent since they are associated with higher speeds and lower duty factors. Also, the arguments about the limb support polygons provided by DSDC vs. LSDC gaits apply for horizontal substrates, but perhaps not as much for vertical substrates.

      We analyzed gait patterns using methods commonly found in the literature and discussed our results accordingly. However, the study of limbs support polygons was indeed developed specifically for studying locomotion on horizontal supports, and may not be applicable for studying vertical locomotion, which is in fact a type of locomotion shared by all arboreal species. In the future, it would be interesting to consider new methods for analyzing vertical gaits.

      The importance of body mass cannot be overemphasized as it affects all aspects of an animal's biology. In this case, larger mammals with larger heads avoid descending head-first. Variation in trunk/tail and limb proportions also covaries with different vertical descent strategies. For example, a lower intermembral index is associated with tail-first descent. That said, the authors are quick to acknowledge that the five lemur species of their sample are driving this correlation. There is a wide range of intermembral indices among primates, and this simple measure of forelimb over hindlimb has vital functional implications for locomotion: primates with relatively long hindlimbs tend to emphasize leaping, primates with more even limb proportions are typically pronograde quadrupeds, and primates with relatively long forelimbs tend to emphasize suspensory locomotion and brachiation. Equally important is the fact that the intermembral index has been shown to increase with body mass in many primate families as a way to keep functional equivalence for (ascending) climbing behavior (see Jungers, 1985). Therefore, the manner in which a primate descends a vertical substrate may just be a by-product of limb proportions that evolved for different locomotor purposes. Clearly, more vertical descent data within a wider array of primate intermembral indices would clarify these relationships. Similarly, vertical descent data for other primate groups with longer tails, such as arboreal cercopithecoids, and particularly atelines with very long and prehensile tails, should provide more insights into the relationship between longer tail length and tail-first descent observed in the five lemurs. The relatively longer hallux of lemurs correlates with tail-first descent, whereas the more evenly grasping autopods of platyrrhines allow for all four limbs to be used for sideways descent. In that context, the pygmy loris offers a striking contrast. Here is a small primate equipped with four pincer-like, highly grasping autopods and a tail reduced to a short stub. Interestingly, this primate is unique within the sample in showing the strongest preference for head-first descent, just like other non-primate mammals. Again, a wider sample of primates should go a long way in clarifying the morphological and behavioral relationships reported in this study.

      We agree with this statement. In the future, we plan to study other species, particularly large-bodied ones with varied intermembral indexes.

      Reconstruction of the ancient lifestyles, including preferred locomotor behaviors, is a formidable task that requires careful documentation of strong form-function relationships from extant species that can be used as analogs to infer behavior in extinct species. The fossil record offers challenges of its own, as complete and undistorted skulls and postcranial skeletons are rare occurrences. When more complete remains are available, the entire evidence should be considered to reconstruct the adaptive profile of a fossil species rather than a single ("magic") trait.

      We completely agree with this, and we would like to emphasize that our intention here was simply to conduct a modest inference test, the purpose of which is to provide food for thought for future studies, and whose results should be considered in light of a comprehensive evolutionary model.

      Reviewer #2 (Public review):

      Summary:

      This paper contains kinematic analyses of a large comparative sample of small to medium-sized arboreal mammals (n = 21 species) traveling on near-vertical arboreal supports of varying diameter. This data is paired with morphological measures from the extant sample to reconstruct potential behaviors in a selection of fossil euarchontaglires. This research is valuable to anyone working in mammal locomotion and primate evolution.

      Strengths:

      The experimental data collection methods align with best research practices in this field and are presented with enough detail to allow for reproducibility of the study as well as comparison with similar datasets. The four predictions in the introduction are well aligned with the design of the study to allow for hypothesis testing. Behaviors are well described and documented, and Figure 1 does an excellent job in conveying the variety of locomotor behaviors observed in this sample. I think the authors took an interesting and unique angle by considering the influence of encephalization quotient on descent and the experience of forward pitch in animals with very large heads.

      Weaknesses:

      The authors acknowledge the challenges that are inherent with working with captive animals in enclosures and how that might influence observed behaviors compared to these species' wild counterparts. The number of individuals per species in this sample is low; however, this is consistent with the majority of experimental papers in this area of research because of the difficulties in attaining larger sample sizes.

      Yes, that is indeed the main cost/benefit trade-off with this type of study. Working with captive animals allows for large comparative studies, but there is a risk of variations in locomotor behavior among individuals in the natural environment, as well as few individuals per species in the dataset. That is why we plan and encourage colleagues to conduct studies in the natural environment to compare with these results. However, this type of study is very time-consuming and requires focusing on a single species at a time, which limits the comparative aspect.

      Figure 2 is difficult to interpret because of the large amount of information it is trying to convey.

      We agree that this figure is dense. One possible solution would be to combine species by phylogenetic groups to reduce the amount of information, as we did with Fig. 3 on the dataset relating to gaits. However, we believe that this would be unfortunate in the case of speed and duty factor because we would have to provide the complete figure in SI anyway, as the species-level information is valuable. We therefore prefer to keep this comprehensive figure here and we will enlarge the data points to improve their visibility, and provide the figure with a sufficiently high resolution to allow zooming in on the details.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #2 had several remaining suggestions:

      In some instances, the authors face well-known limitations. For example, bath application of drugs. Blockers of Gly and Gaba receptors are likely problematic when studying a network that includes a diverse set of inhibitory interneurons. Likewise, the results derived from application of AMPAR and KAR blockers should impact HC cell fxn, and presumably inner retina interneuron networks. In the Discussion the authors are encouraged to address more of these concerns (e.g., Discussion line 709).

      Rather than concluding that the bath application of drugs is without complications, they can conclude that under the experimental conditions, glutamate release from these On-bipolars continues to exhibit Transient and Sustained release. This is really the key point of their study.

      This is a good suggestion.  We have added a discussion of the complications of the pharmacology starting on line 754.  

      If indeed sustained release is a reflection of higher release rates, ribbon size is what point to but, there are many other possibilities, such as SV recycling, or recruitment of reserve pools of SVs, fusion machinery, Cav channel behavior. The authors could cite more literature in the Discussion.

      We added a sentence to this effect in the discussion, starting on line 866.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      In the retina, parallel processing of cone photoreceptor output under bright light conditions dissects critical features of our visual environment and is fundamental to visual function. Cone photoreceptor signals are sampled by several types of bipolar cells and passed onto the ganglion cells. At the output of retinal processing, retinal ganglion cells send about 40 different codes of the visual scene to the brain for further processing. In this study, the authors focus on whether subtype-specific differences in the size of synaptic ribbon-associated vesicle pools of bipolar cells contribute to different retinal ganglion cell (RGC) responses. Specifically, inputs to ON alpha RGCs producing transient versus sustained kinetics (ON-S vs. ON-T, respectively) are compared. The authors first demonstrate that ON-S vs. ON-T RGCs are readily identifiable in a whole mount preparation and respond differently to both static and to a spatially uniform, randomly fluctuating (Gaussian noise) light stimulus. Liner-nonlinear (LN) models were used to estimate the transformation between visual input and excitatory synaptic input for each RGCs; these models suggested the presence of transient versus sustained kinetics already in the excitatory inputs to ON-T and ON-S RGCs. Indeed, the authors show that (glutamatergic) excitatory inputs to ON-S vs. ON-T RGCs are of distinct kinetics. The subtypes of bipolar cells providing input to ON-S are known (i.e., type 6 and 7), but the source of excitatory bipolar inputs to ON-T RGCs needed to be determined. In a tedious process, it is elegantly shown here that ON-T RGCs receive most of their excitatory inputs from type 5 and 6 bipolars. Interestingly, the temporal properties of light-evoked responses of type 5, 6, and 7 bipolars recorded from the somas were indistinguishable and rather sustained, suggesting that the origin of transient kinetics of excitatory inputs to ON-T RGCs suggested by the LN model might be found in the processing of visual signals at the bipolar cell axon terminal. Blocking GABA- or glycinergic inhibitory inputs did not alter the light-evoked excitatory input kinetics to ON-T and ON-S RGCs. Twophoton glutamate sensor imaging revealed significantly faster kinetics of light-evoked glutamate signals at ON-T versus ON-S RGCs. Detailed EM analysis of bipolar cell ribbon synapses onto ON-T and ON-S RGCs revealed fewer ribbon-associated vesicles at ON-T synapses, which is consistent with stronger paired-flash depression of lightevoked excitatory currents in ON-T RGCS versus ON-S RGCs. This study suggests that bipolar subtype-specific differences in the size of synaptic ribbon-associated vesicle pools contribute to transient versus sustained kinetics in RGCs. 

      Strengths: 

      The use of multiple, state-of-the-art tools and approaches to address the kinetics of bipolar to ganglion cell synapse in an identified circuit. 

      Weaknesses: 

      For the most part, the data in the paper support the conclusions, and the authors were careful to try to address questions in multiple ways. Two-photon glutamate sensor imaging experiment showing that blocking GABA- and glycinergic inhibition does not change the kinetics of light-evoked glutamate signals at ON-T RGCs would strengthen the conclusion that bipolar subtype-specific differences in the size of synaptic ribbon-associated vesicle pools contribute to transient versus sustained kinetics in RGCs. 

      Thank you for this suggestion. We have revised the text throughout to be careful not to imply that amacrine cells have no role in shaping EPSCs and spike output, but instead that the transience of the On-T responses persists without amacrine cells (see for example lines 91, 450-453, 514-518, 696-714). We have also added additional iGluSnFR experiments to the paper to further test this conclusion (new Figure 7). The new data shows that the transience of glutamate release from the On-T cells is retained when 1) spiking amacrine cell activity is suppressed by blocking voltage-gated Na<sup>+</sup> channels with TTX or 2) all amacrine cell activity is suppressed by blocking AMPA receptors with NBQX. This does provide nice additional evidence that amacrine cells are not necessary for the sustained/transient distinction.

      Reviewer #2 (Public Review): 

      Summary: 

      Goal of the study. The authors tried to pinpoint the origins of transient and sustained responses measured at retinal ganglion cells (rgcs), which is the output layer of the retina. Response characteristics of rgcs are used to group them into different types. The diversity of rgc types represents the ability of the retina to transform visual inputs into distinct output channels. They find that the physical dimensions of bipolar cell's synaptic ribbons (specialized release sites/active zones) vary across the different types of cone on-bpcs, in ways that they argue could facilitate transient or sustained release. This diversity of release output is what they argue underlies the differences in on-rgcs response characteristics, and ultimately represents a mechanism for creating parallel cone-driven channels. 

      Strengths: 

      The major strengths of the study are the anatomical approaches employed and the use of the "glutamate sniffer" to assay synaptic glutamate levels. The outline of the study is elegant and reflects the strengths of the authors. 

      Weaknesses: 

      The major weakness is that the ambitious outline is not matched with a complete set of results, and the set of physiological protocols is disjointed, not sufficient to bridge the systems-level question with the presynaptic release question. 

      Thank you for this comment as it provides an opportunity (here and in the paper) for us to clarify our main goal. We wanted to link the well-established distinction between transient and sustained retinal responses to anatomy. This required locating where this difference arises within the circuitry – which we show to be at least largely the bipolar output synapse – and then examining the structure of this synapse in detail. While we would certainly be interested in connecting our results to a biophysical description of the synapse, that was not the primary focus of our study and was not something we could add without substantial additional work.  

      Major comments on the results and suggestions. 

      The ribbon model of release has been explored for decades and needs to be further adapted to systems-level work. The study under consideration by Kuo et al. takes on this task. Unfortunately, the experimental design does not permit a level of control over presynaptic/bpc behavior that is comparable to earlier studies, nor do they manipulate release in ways that test the ribbon model (i.e., paired recordings or Ribeye-ko). Furthermore, the data needs additional evaluation, and the presentation and interpretations should draw on published biophysical and molecular studies. 

      As described above, our goal was to test several possible explanations for the difference between transient and sustained responses in OnT and OnS ganglion cells: (1) differences in the light responses of the bipolar cells that convey photoreceptor signals to the relevant ganglion cells; (2) shaping of bipolar transmitter release by presynaptic inhibition; (3) shaping of ganglion cell responses by postsynaptic inhibition or spike generation; (4) differences in feedforward bipolar synapses. We were surprised to find that the feedforward bipolar synapses play a central role in this difference, and your comment nicely prompts us to relate this to the large literature on biophysical studies of release from ribbon synapses. We have made substantial revisions in the text to do this. This includes anticipating the importance of feedforward synaptic properties in the abstract and introduction (lines 36-37 and 61-64), pointers in the results (lines 539-548), and several new paragraphs in the discussion (starting on lines 751, 773 and 787). By showing that the transient/sustained differences originates largely at feedforward bipolar synapses, we set the stage for future work that shows how biophysical properties of the synapse shape physiological signals that traverse it.

      To build a ribbon-centric context, consider recent literature that supports the assertion that ribbons play a role in forming AZ release sites and facilitating exocytosis. Reference Ribeye-ko studies. For example, ribbonless bpcs show an 80% reduction in release (Maxeiner et al EMBO J 2016), the ribbonless retina exhibits signaling deficits at the output layer (Okawa et al ...Rieke, ..Wong Nat Comm 2019), and ribbonless rods show an 80% reduction the readily releasable pool (RRP) of SVs (Grabner Moser, elife 2021). In addition, the authors could refer to whole-cell membrane capacitance studies on mammalian rods, cones, and bpcs, because the size of the RRP of SVs scales with the dimensions and numbers of ribbons (total ribbon footprint). For comparison, bipolars see the review by Wan and Heidelberger 2011. For a comparison of mammalian rods and cones, see, rods: Grabner and Moser (2021 eLife), Mueller.. Regus Leidig et al. (2019; J Neurosci) and cones Grabner ...DeVries (Nat Comm 2023). A comparison of cell types shows that the extent of release is (1) proportional to the total size of the ribbon footprint, and (2) less release is witnessed when ribbons are deleted (also see photo ablation studies by Snellman.... And Mehta..Zenisek, Nat Neurosci and Neuron).

      Thank you for these pointers into the literature.  We have included much of this work in the revised Discussion (see three paragraphs starting on line 751). The revised text focuses on the evidence that larger and more numerous ribbons lead to increased release. The direct evidence from previous work for this relationship supports our (indirect) conclusions in the current paper about the role of ribbon size and associated vesicle pools in transient vs sustained responses.  

      Ribbon morphology may change in an activity-dependent manner. The rod ribbon AZ has been reported to lengthen in the dark (Dembla et al 2020), and deletion of the ribbon shortens the length of the AZ (defined by Cav1,4 or RIM2); in addition, the Ribeye-ko AZs fail to change in size with light and dark conditioning. Furthermore, EM studies on rod and cone AZs in light and dark argue that the number of SVs at the base of the ribbon increases in the dark, when PRs are depolarized (see Figure 10, Babai et al 2016 JNeurosci). Lastly, using goldfish Mb1 on-bipolars, Hull et al (2006, J Neurophysio) correlated an increase in release efficiency with an increase in ribbon numbers, which accompanied daylight. >> When release activity is high, ribbon AZ length increases (Dembla, rods), the number of docked SVs increases (Babai, rods cones), and the number of ribbons increases (Hull, diurnal Mb1s). 

      We have extensively revised the discussion section to include more discussion of ribbons, particularly emphasizing evidence supporting the general argument that larger ribbons support higher release rates. We focused on studies that provided direct links between release rates and ribbon size or number of ribbon-associated vesicles.  This includes studies that pair electrophysiology and anatomy and those that measure the consequences of ablating ribbons,

      The results under review, Kuo et al., were attained with SBF-SEM, which has the benefit of addressing large-volume questions as required here, yet it achieves lower spatial resolution than what is attained with TEM tomography and FIB-EM. Ideally, the EM description would include SV size, and the density of ribbon-tethered SVs that are docked at the plasma membrane, because this is where the SVs fuse (additional non-ribbon release sites may also exist? Mehta ... Singer 2014 J Neurosci). Studies by Graydon et al 2011 and 2014 (both in J Neurosci), and Jean ... Moser et al 2018 (eLife) are good examples of quantitative estimates of SVs docking sites at ribbons. SBF-SEM does not allow for an assessment of SVs within 5 nm of the PM, but if the authors can identify the number of SVs that appear within the limit of resolution (10 to 15 nm) from the PM, then this data would be useful. Also, what dimension(s) of the large ribbons make them larger? Typically, ribbons are fixed in height (at least in the outer retina, 200 to 250 nm), but their length varies and the number ribbons per terminal varies. Is the larger ribbon size observed in type 6 bpcs do to longer ribbons, or taller ribbons? A longer ribbon likely has more docked SVs. An additional possibility is that more SVs are about the ribbon-PM footprint, either more densely packed and/or expanding laterally (see definitions in Jean....Moser, elife 2018). 

      We have included an additional analysis of ribbon surface area from our 3D SBFSEM reconstructions. As with the volume measurements included in the original submission, ribbon surface areas are distinct between type 5i and type 6 bipolar cells (Fig. S10A), ON-T RGCs on average receive input from ribbons with smaller surface area than ON-S RGCs (Fig. S10B), and ribbon surface area predicts the number of adjacent vesicles across bipolar cell types (Fig. S10C).  We agree that a higher resolution view of presynaptic structures would be very helpful, but the resolution of our SBF-SEM data is limited (e.g. each pixel is 40 nm on a side).  This resolution does not allow us to distinguish between vesicles at vs near the membrane. 

      In our observations, both length and height of the ribbons showed variability across individual bipolar cells. And ribbons in type 6 bipolar cells tended to be either longer and/or taller compared to those in type 5 cells. We agree that a longer ribbon may accommodate more docked SVs. A more definitive analysis would benefit from higher-resolution, isotropic 3D reconstructions of ribbons, which would allow more precise shape analysis and ,together with a detailed assessment of docked SVs at the ribbons.

      The ribbon literature given above makes the argument that ribbons increase exocytotic output, and morphological studies suggest that release activity enhances 1) ribbon length (Dembla) and 2) the density of SVs near the PM (Babai). These findings could lead one to propose that type 6 bpcs (inputs to On-sustained) are more active than type 5i (feed into On-transient). Here Kuo et al. show that the bpcs have similar Vm (measured from the soma) in response to light stimulation. Does Vm predict release? Not entirely as the authors acknowledge, because: Cav channel properties, SV availability, and negative feedback are all downstream of bpc Vm. The only experiment performed to test downstream factors focused on negative feedback from amacrines. The data presented in Figures 5C-F led me to conclude the opposite of what the authors concluded. My impression is that the T-ON rgc exhibits strong disinhibition when GABA-blockers are applied (the initial phase is greatly increased in amplitude and broadened with the drug), which contrasts with the S-On rgc responses that show a change in the amplitude of the initial phase but not its width (taus would be nice). Here and in many places the authors refer to changes in release kinetics, without implementing a useful description of kinetics. For instance, take the cumulative current (charge) in Figure 5C and fit the control and drug traces to arrive at taus, and their respective amplitudes, and use these values to describe kinetic phases. One final point, the summary in Figure 5D has a p: 0.06, very close to the cutoff for significance, which begs for more than an n = 5. Given that previous studies have shown that bpc output is shaped by immediate msec GABA feedback, in ways that influence kinetic phases of release (..Mb1 bipolars, see Vigh et al 2005 Neuron), more attention to this matter is needed before the authors rule out feedback inhibition in favor of ribbon size. If by chance, type 5i bpcs are under uniquely strong feedback inhibition, then ribbon size may result from less activity, not less output resulting from smaller ribbons.

      The text surrounding Figure 5 led to some confusion, and we have revised that text and the figure for clarity.  First, the data in that figure is entirely from On-T cells (the upper and lower panels show block of GABA and glycine receptors separately).  Second, the observation that we make there is that block of inhibitory receptors increases the transience of the On-T excitatory input, rather than decreasing it as would be expected if the transience is created by presynaptic inhibition. We have added additional data and that increase in transience is now significant. Inhibitory block does substantially increase the amplitude of the postsynaptic response, and a likely origin of this change in response is inhibitory feedback to the bipolar synaptic terminal. We now indicate this in the text on page 13, lines 438-453. 

      The key result of this figure for our purposes here is that the transience of the excitatory input to the OffT cell remains with inhibitory input blocked. We have clarified throughout the text that our results indicate that inhibitory feedback is not necessary for the difference between transient release into On-T and sustained release onto On-S. This does not mean that inhibitory feedback does not shape the responses in other ways or contribute to the transient/sustained difference - just that for the specific stimuli we use that difference is retained without presynaptic inhibition. We have also added citations to past work showing that activity of amacrine cells can modulate bipolar transmitter release. 

      Whether strong feedback inhibition limits activity and therefore limits ribbon size in an activity-dependent way is an intriguing possibility. Indeed, addressing why ribbons are larger in type 6 bipolar cells vs. other bipolar types will be an interesting avenue of further study. However, it would be surprising if ribbon sizes changed during the acute pharmacological block conditions (~10-15 minutes) we employed in our study. Our point here is that there is an interesting correlation between presynaptic ribbon size and the kinetics of glutamate release. We do not think that the two possibilities stated in the last sentence (“…ribbon size may result from less activity, not less output resulting from smaller ribbons”) are mutually exclusive.

      We have not further quantified the response kinetics in the experiments of Figure 5 as the large changes induced by the pharmacology (especially GABA receptor block) make it unclear how to interpret quantitative differences.  In other places we have quantified kinetics through the STA or specified that our focus was more qualitative (i.e. transient vs sustained kinetics). 

      As mentioned above, the behavior of Cav channels is important here. This is difficult to address with voltage clamps from the soma, especially in the Vm range relevant to this study. Given that it has previously been modeled that the rod bpc to AII pathway adapts to prolonged depolarization of rbcs through downregulating Cav channel-mediated Ca<sup>2+</sup> influx (Grimes ....Rieke 2014 Neuron), it seems important for Kou et al to test if there is a difference in Cav regulation between type 6 and 5i bpcs. Ca<sup>2+</sup>  imaging with a GCaMP strategy (Baden....Lagnado Current Biology, 2011) or filling the presynapse with Ca dyes (see inner hair cells: Ozcete and Moser, EMBO J 2020) would allow for the correlation of [Ca]intra with GluSnf signals (both local readouts).

      This is a good suggestion but is outside the scope of our current paper. Our focus was on the circuit origin of the difference in response of the OnT and OnS responses rather than the specific biophysical mechanism.  We are of course interested in the mechanism, but the additional experiments needed to pin that down would need to be a part of future experiments. The work here represents an important step in that direction as it greatly reduces the number of possible locations and mechanisms for the sustained/transient difference and hence serves to focus any future mechanistic investigations.

      Stimulation protocol and presentation of Glutamate Sniffer data in Figure 6. In all of your figures where you state steady st as a % of pk amplitude, please indicate in the figure where you estimate steady state. Alternatively, if you take the cumulative dF/F signal, then you can fit the different kinetic phases. From the appearance of the data, the Sustained Glu signals look like square waves (Figure 6B ROI1-4), without a transient at onset, which is not predicted in your ribbon model that assumes different kinetic phases (1. depletion of docked SVs, and 2. refilling and repriming). The Transient responses (Figure 6B ROI5-8) are transient and more compatible with a depressing ribbon scheme. If you take the cumulative, for all of the On-S and compare it to all of the On-T responses, my guess is the cumulative dF/F will be 10 to 20 larger for the S-On. Would you conclude that bpc inputs to On-S (type 6) release 20fold more SVs per 4 seconds on a per ribbon basis, and does the surface area of the type 6 bpcs account for this difference? From Figures 8B and D, the volume of the ribbon is ~2 fold greater for type 6 vs 5i, but the Surface Area (both faces of ribbon) is more relevant to your model that claims ribbon size is the pivotal factor. If making cumulative traces, and comparisons on an absolute scale is unfounded, then we need to know how to compare different observations. The classic ribbon models always have a conversion factor such as the capacitance of an SV or q size that is used to derive SV numbers from total dCm or Qcontent. See Kim ....et al von Gersdorff, 2023, Cell Reports. Why not use the Gaussian noise stimulus in Fig 6 as in Figure 1 and 2? 

      For iGluSnFR recordings, steady-state responses were measured from the mean fluorescence over the last 1 sec of the light step (2 sec duration) response. We have included this information in the figure caption and in the Methods. 

      There is a good deal of variability in the iGluSnR responses from one ROI to another, and the ROIs shown in the original submission had a less prominent transient component than many other ROIs. We have replaced this figure with another that is more representative of the average behavior across ROIs. The full range of behavior is captured in Figure 6C; it is clear across ROIs that glutamate release near ON-S dendrites shows both sustained and transient components. The new experiments in which we block amacrine cell activity also include a few more example ROIs from ON-S cells, and those also show both transient and sustained components.

      Your suggestion to integrate the iGluSnFR signals to compare to our structural analysis of ribbons is interesting. However, we are hesitant to make a quantitative comparison between the two without further experiments to validate how the iGluSnFR signals we measure relate to release of single vesicles. For example, a quantitative measure of release based on the iGluSnR experiments would require accounting for possible differences in the expression of the indicator - which could differ both in overall level and/or location relative to release sites. 

      This comment and one above highlight the importance of measures of ribbon surface area, which we now provide (Figure S10).

      Figure 7. What is the recovery time for mammalian cones derived from ribbon-based models? There are estimates from membrane capacitance studies. Ground squirrel cones take 0.7 to 1 sec to recover the ultrafast, primed pool of SVs when probed with a paired-pulse protocol (Grabner ...DeVries 2016, Neuron). Their off-bpcs take anywhere from under 0.2 sec to a second to recover, which is a combination of many synaptic factors (Grabner ...DeVries Nat Comm 2023). Rod On bpcs take over a second (Singer Diamond 2006, reviewed Wan and Heidelberger 2011). In Figure 7B, the recovery time is ~150 ms for the responses measured at rgcs. This brief recovery time is incompatible with existing ribbon models of release. Whole-cell membrane capacitance measurements would be helpful here.

      Thanks for drawing our attention to this issue. Indeed, we see a relatively rapid recovery in the paired-flash experiments. We now discuss this recovery time in the context of past measurements of recovery of responses in cones and bipolar cells (paragraph starting on line 773). There are many factors that could contribute to the relatively rapid recovery we observe - including synaptic factors such as those highlighted by Grabner et al., (2016) either at the cone-to-bipolar synapses or the bipolar-to-RGC synapses. We are certainly interested in a more detailed understanding of this issue, but the additional experiments are outside the scope of this paper.  

      Experimental Suggestion: Add GABA blockers and see if type 5i bpc responds with more release (GluSniff) and prolonged [Ca2+] intra (GCaMP). Compare this to type 6 bpc behavior with GABA/gly blockers. This will rule in or out whether feedback inhibition is involved. 

      Figure 7 in the revised manuscript includes two new experiments examining glutamate release (without the simultaneous measurement of bipolar cell intracellular calcium) while blocking (1) all/most amacrine cell-mediated inhibition via inclusion of NBQX in the bath solution, and (2) blocking spiking amacrine cells via inclusion of TTX in the bath solution. The transient vs sustained difference in light-evoked glutamate release around ON-T and ON-S RGC dendrites remained with amacrine activity suppressed. These new results are consistent with the anatomical and pharmacological data that were included in the initial submission of the manuscript (Fig. 5) that indicate presynaptic inhibition does not have a major role in shaping release kinetics at these synapses. 

      Reviewer #3 (Public Review): 

      Summary: 

      Different types of retinal ganglion cell (RGC) have different temporal properties - most prominently a distinction between sustained vs. transient responses to contrast. This has been well established in multiple species, including mice. In general, RGCs with dendrites that stratify close to the ganglion cell layer (GCL) are sustained; whereas those that stratify near the middle of the inner plexiform layer (IPL) are transient. This difference in RGC spiking responses aligns with similar differences in excitatory synaptic currents as well as with differences in glutamate release in the respective layers - shown previously and here, with a glutamate sensor (iGluSnFR) expressed in the RGCs of interest. Differences in glutamate release were not explained by differences in the distinct presynaptic bipolar cells' voltage responses, which were quite similar to one another. Rather, the difference in transient vs. sustained responses seems to emerge at the bipolar cell axon terminals in the form of glutamate release. This difference in the temporal pattern of glutamate release was correlated with differences in the size of synaptic ribbons (larger in the bipolar cells with more sustained responses), which also correlated with a greater number of vesicles in the vicinity of the larger ribbons. 

      The main conclusion of the study relates to a correlation (because it is difficult to manipulate ribbon size or vesicle density experimentally): the bipolar cells with increased ribbon size/vesicle number would have a greater possibility of sustained release, which would be reflected in the postsynaptic RGC synaptic currents and RGC firing rates. This model proposes a mechanism for temporal channels that is independent of synaptic inhibition. Indeed, some experiments in the paper suggest that inhibition cannot explain the transient nature of glutamate release onto one of the RGC types. Still, it is surprising that such a diverse set of inhibitory interneurons in the retina would not play some role in diversifying the temporal properties of RGC responses. 

      Strengths: 

      (1) The study uses a systematic approach to evaluating temporal properties of retinal ganglion cell (RGC) spiking outputs, excitatory synaptic inputs, presynaptic voltage responses, and presynaptic glutamate release. The combination of these experiments demonstrates an important step in the conversion from voltage to glutamate release in shaping response dynamics in RGCs. 

      (2) The study uses a combination of electrophysiology, two-photon imaging, and scanning block-face EM to build a quantitative and coherent story about specific retinal circuits and their functional properties. 

      Weaknesses: 

      (1) There were some interesting aspects of the study that were not completely resolved, and resolving some of these issues may go beyond the current study. For example, it was interesting that different extracellular media (Ames medium vs. ACSF) generated different degrees of transient vs. sustained responses in RGCs, but it was unclear how these media might have impacted ion channels at different levels of the circuit that could explain the effects on temporal tuning.

      We do not have an explanation for the quantitative differences in response kinetics we observed in Ames’ medium vs. ACSF. There are modest differences in calcium and magnesium concentration and a larger difference in potassium (2.5 mM in ACSF vs 3.6 mM in Ames). It would be interesting to test which of these (or other) differences accounts for the difference in response kinetics.

      (2) It was surprising that inhibition played such a small role in generating temporal tuning. At the same time, there were some gaps in the investigation of inhibition (e.g., IPSCs were not measured in either of the RGC types; pharmacology was used to investigate responses only in the transient RGCs).

      We were also surprised at this result. We have included additional data on inhibition in the revised manuscript. Figure S3 shows light-evoked IPSC data from both RGC types (Fig. S3) and Fig. 7 shows additional iGluSnFR measurements around both ON-T and ON-S RGC dendrites with inhibition blocked via bath application of NBQX (Fig. 7) and separately with inhibition from spiking amacrine cells blocked with TTX. These experiments provide additional evidence for the small role of inhibition. We attempted to measure the kinetics of excitatory input to ON-S cells with inhibition blocked, but we found that the excitatory input showed strong spontaneous oscillations under these conditions and the light responses were changed so drastically that we did not feel we could make a clear comparison with control conditions.

      (3) There could be additional discussion and references to the literature describing several topics, including: temporal dynamics of glutamate release at different levels of the IPL; previous evidence that release sites from a single presynaptic neuron can differ in their temporal properties depending on the postsynaptic target; previous investigations of the role of inhibition in temporal tuning within retinal circuitry. 

      Thanks, we have included more discussion and references to the relevant literature as you have suggested in the recommendations to authors.

      Reviewer #1 (Recommendations For The Authors): 

      The presented raw data of the pharmacological experiments show that SR95531 and TPMPA robustly increased both the amplitude and duration of the transient component of the light step-evoked excitatory currents, with slight, if any enhancement of the sustained component in ON-T RGCs Figure 5C. Statistical analysis of the population data (n=5) with Wilcoxon signed rank test yielded no significant difference (ln 363). However, reanalyzing the data extracted from the graph (Figure 5D) revealed that the difference between the paired observations is normally distributed (Shapiro-Wilk normality test, P=0.48) allowing parametric statistics to be used, which provides higher statistical power. Accordingly, reanalyzing the presented data with paired Student's t-test data revealed significant differences (P=0.01) in the steady-state amplitude normalized to that of the peak, recorded in the presence of SR95531 and TPMPA. In other words, based on the (rough) analysis of the presented pharmacology data GABAergic feedback inhibition significantly contributes to shaping the transient portion of the light-evoked excitatory currents in ON-T RGCs, by making it more transient. I believe a similar analysis based on the actual data is necessary, and the results should be communicated either way. However, if warranted, two-photon glutamate sensor imaging experiments showing that blocking GABA- and glycinergic inhibition does not change the kinetics of light-evoked glutamate signals at ON-T RGCs should also be performed, as these would be critical in drawing a conclusion regarding the effect of feedback inhibition on glutamate release from bipolar cells.

      Thanks for this feedback. We have added another cell to the data set in Fig. 5D. With this addition, SR95531/TPMPA application significantly increases the response transience of excitatory currents measured in ON-T RGCs compared to control. This enhanced transience in GABA<sub>A/C</sub> receptor blockers is due to an increase in the amplitude of the initial peak component of the response (control peak amplitude: -833.7±103.3 pA; SR95531+TPMPA peak amplitude: 2023±372.7pA; p=0.03, Wilcoxon signed rank test), with no change to the later sustained component (control plateau amplitude: -200.7±14.71pA; SR95531+TPMPA plateau amplitude: -290.9±43.69pA; p=0.15, Wilcoxon signed rank test).

      We should clarify that this result indicates that GABAergic inhibition makes the excitatory inputs to ON-T RGCs less transient. Block of GABA receptors increased transience, thus intact GABAergic transmission appears to limit the initial peak of the response and therefore make excitatory currents more sustained. We unfortunately were not able to examine whether sustained excitatory currents in ON-S RGCs would become more transient using the same approach. In our hands, bath application of SR95531+TPMPA led to the generation of large-amplitude (>1nA) oscillatory bursts of excitatory input that developed within 5 minutes and persisted for the duration of the incubation (up to ~30 min) in drugs. Further, presentation of light steps tended to induce variable amplitude responses, likely dependent on the presence of spontaneous bursts; when large amplitude responses were evoked, these typically oscillated for several seconds after the step.

      To examine a potential role for presynaptic inhibition in transient vs. sustained bipolar cell output, we therefore chose to eliminate amacrine cell-mediated inhibition by bath application of the AMPA/kainate receptor antagonist NBQX in additional iGluSnFR measurements. This manipulation should leave ON bipolar cell responses intact while eliminating most amacrine cell-mediated responses (and OFF bipolar cell driven responses). In separate experiments, we also eliminated inhibition from spiking amacrine cells by bath application of TTX. As shown in new Fig. 7, sustained and transient responses persisted in distal versus proximal RGC dendrites, respectively. Compared to SR95531/TPMPA, bath application of NBQX was not associated with spontaneous bursts of glutamate release around ON-S dendrites. These results show that amacrine cell-mediated inhibition is not required for either sustained or transient glutamate release from bipolar cells that provide input to ON-S and ON-T RGCs.

      Small points: 

      (1) The legend of Figure 1 (D) refers to shaded areas to show {plus minus} SEM, but no shade is visible (at least in my printout).

      The SEM shading is there in Fig. 1D but is mostly obscured by the mean lines for the respective RGC types. We have added this to the figure caption.

      (2) I found the reported Vrest for the ON bipolar cells somewhat depolarized. Perhaps due to the uncompensated junction potentials? 

      These measurements are indeed not corrected for the liquid junction potential (which is approximately -10.8 mV between K-gluconate internal and Ames’ solution). We did not apply this correction since the appropriate value is not clear in perforated patch recordings as the intracellular chloride concentration is unknown (and can differ from that in the pipette solution). We have clarified this in the results text where we describe the Vrest values (lines 335-338).

      (3) It is Wilcoxon signed rank test, not Wilcoxan. 

      Thanks for catching this. This has been corrected in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors): 

      Some amacrines express vesicular Glut-3 transporter and are reported to release glutamate (Marshak, Vis Neurosci 2016). Are Amacrine vGlut3 signals postsynaptic (within ~0.5 um) to cone bpc ribbons?

      We did not characterize VgluT3-expressing amacrine cells in our SEM datasets. A recent study by Friedrichson et al. (Nat. Comm. 2024; PMID 38580652) using 3D SEM reconstructions found that Vglut3-amacrines are postsynaptic to both type 5i and type 6 bipolar cells, as well as other type 5/xbc bipolar cells (and receive >50% of their input from type 3a OFF bipolar cells).

      How far apart are the postsynaptic targets from the ribbon release sites? The ribbons at type 5i bpc/On-T input appear separated from the dendrites of On-T rgcs (Figure 8C). At least further away than the type 6 bpc ribbons are from On-S rgc dendrites (Figure 8C). Distance may create a thresholding phenomenon, whereby only multivesicular bouts at the onset of depolarization are able to elevate synaptic Glu to levels needed to activate On-T GluRs. See Grabner et al Nat Comm 2023 for such scenarios in the outer retina.

      This is an intriguing possibility, but we should point out that the presynaptic ribbons in Fig. 9C (former Fig. 8C) are similar distances (within the resolution of our reconstructions) from the ON-T and ON-S dendrites. We have increased the brightness of the dendrite segments for both RGC types in the resubmission figure; note that ON-T RGCs have spine-like protrusions that may not have been as apparent in the previously submitted version of our manuscript.

      In Figures 1 and 2, Sustained responses look like the derivative of Transient responses, minus the negative going inflection. In addition, the sustained responses appear to have a lower threshold of activation than the transient On rgcs, because there are more bouts of action potentials (and membrane depol in V-clamp) with earlier onset in sustained than transients traces. It would be great if the GLuSniff data captured these differences. Take cumulative dF/F and see what the onset time is, or an initial tau if possible.

      This is a good suggestion. However, we are reluctant to make detailed quantitative comparisons such as this without further validation of how the kinetics of the iGluSnFR signals relate to kinetics of glutamate release.  A specific concern is that differences in the location and amount of iGluSnFR expression could impact any such comparisons.

      A recent study by Kim et al von Gersdorff (Cell Reports, 2023) presents interesting phases of release in response to light flashes, measured from AIIs, and complementary results from pairs of rbcs-AIIs. The findings highlight the complexity of SV pools under well-controlled experiments. Could their results be explained as variations in rbc ribbon size through development, and possibly between rbcs or within an rbc? 

      This certainly seems possible and would be consistent with the dependence of release on ribbon size that our results support.  It would be interesting to see if there are clear anatomical correlates of that change in release properties.  

      Figure 5 is a pivotal point in the study, but my review has identified numerous weaknesses. The feedback inhibition onto bipolar cell terminals is likely to sculpt glutamate release, and the results do not convincingly rule out this possibility. The suggestions for improvements range from the data needing to be reanalyzed with regard to statistical tests, and/or adding a few more data points (n = 5) before concluding a p: 0.06 is insignificant. 

      We have added an additional recording to this data set. With n= 6 cells, there is now a statistically significant difference between ON-T RGC excitatory currents measured in control conditions versus during GABA<sub>A/C</sub> receptor blockade. Please note that all the recordings shown in Figure 5C-F are from ON-T RGCs (the two panels show separately block of GABergic and glycinergic receptors). We did not make it sufficiently clear that the original trend (now statistically significant) is opposite of that expected if presynaptic GABAergic inhibition contributes to response transience in ON-T RGCs.  What we see is that excitatory synaptic inputs to ON-T RGCs become more transient (rather than mpre sustained) during GABA<sub>A/C</sub> receptor blockade. We have revised the text in that section to make this point more clearly.

      We have also included new data from iGluSnFR measurements showing that bath application of NBQX does not affect light step-evoked glutamate release kinetics at proximal (sustained) or distal (transient) RGC dendrites (control: steady-state amp. as % of peak amp. 13 ± 10; mean ± S.D.; n = 189 ROIs/4 FOVs for ON-T dendrites vs 40 ± 12; mean ± S.D.; n = 287 ROIs/8 FOVs for ON-S dendrites; NBQX: 6 ± 3; mean ± S.D.; n = 112 ROIs/1 FOV for ON-T dendrites vs 23 ± 9; mean ± S.D.; n = 97 ROIs/2 FOVs for ON-S dendrites; *p<0.001). By blocking glutamate receptors on amacrine cells, NBQX (AMPA/KAR antagonist) eliminates all/most amacrine cell-mediated signaling in the retina and should therefore abolish presynaptic inhibitory input to bipolar cell terminals across the IPL. Taken together, our results indicate that presynaptic inhibition does not play a critical role in establishing transient versus sustained kinetics for the stimulus conditions we employed in our study.

      There is a need to cite more recent literature on bipolar cell ribbons (e.g. see Wakeham et al., Front. Cell. Neurosci., 2023), in order to support experimental design and interpretation of the results. The authors should discuss their Ribeye-KO data from Okawa et al 2019 Nat Comm, Figure 7, in the context of their new iGluSnFR results. 

      Thank you for prompting us on this issue. We have expanded the discussion regarding ribbons and included more citations to the ribbon literature. That is largely in the three paragraphs starting on line 727.

      One point deserves emphasis because it is central to the authors' ribbon model but not consistent with their data. The ribbon model as they put it, and as commonly stated, holds that a transient phase of release at the onset of depolarization indicates the depletion of the primed SVs, and the subsequent slower rate of release (steady state release in the authors' terms) reflects recruiting, priming, and release of new SVs. The On-transient dendrite GluSnf responses agree with this multiphasic process, but the sustained responses show only an elevation in glutamate without a pronounced initial peak, creating a square-wave-shaped response (Figure 6B). This does not agree with the simple ribbon-based release model. I would expect the signals from the T- and S-on dendrites to have a comparable initial phase, while the sustained phase should be greater in amplitude for the S-on dendrites. More discussion may clarify possible mechanisms.

      Thanks for pointing this out. The example iGluSnFR traces we originally included in the manuscript were not entirely representative in that they did not show much initial transient phase. Note there is a distribution of steady-state amplitudes for proximal dendrites in Fig. 6C; the examples are from ROIs from the upper end of the distribution. In the new Figure 7, we have included some additional examples that show both a clear transient and sustained component. The summary data in Figure 6C shows the distribution of sustained/transient ratios across ROIs.  

      Reviewer #3 (Recommendations For The Authors): 

      (1) It would be interesting to understand the differences in IPSCs in the two RGC types. Perhaps they are small in both types, which would explain their apparent lack of impact on temporal tuning. The authors may already have these data.

      We did make measurements of noise-evoked IPSCs (as well as EPSCs) in a subset of ON-T and ON-S recordings. We have now included this data as Figure S3. There are slight differences in the kinetics of inhibition between RGC types (Fig. S3C) and there is a trend towards stronger inhibition (relative to excitation) in ON-T RGCs compared to ON-S RGCs (Fig. S3E), although there is not a statistically significant difference. In both cases excitatory synaptic currents are as large or larger than inhibitory currents, and this does not include the difference in driving force near spike threshold which will favor excitatory input by a factor of 2-3.  Hence our data suggests that postsynaptic inhibition does not play a major role in generating the differential temporal spiking responses of ON-T and ON-S RGCs. However, additional experiments examining the relative contribution of excitation and inhibition to spiking output in these RGCs would be needed to reach a firm conclusion.

      The pharmacological experiments in which we blocked inhibition (Fig. 5C-F, new Fig. 7) were designed to test the effect of presynaptic inhibition on bipolar cell output (voltage-clamp isolation of excitatory currents in Fig. 5; iGluSnFR measurements of glutamate release in Fig. 7). We do not mean to suggest that postsynaptic inhibition does not have any role in shaping the spiking behavior of these RGC types, but that transient vs. sustained kinetics are already present in the bipolar cell output and that presynaptic inhibition of bipolar cell terminals does not appear to account for this difference.  We have revised the text throughout to be clearer on this point.

      (2) It could be convincing to show transient/sustained differences between RGC types in dim light, where the response would depend on the rod bipolar/AII circuit. In this case, any difference in temporal properties would presumably be explained by differences that localize to the cone bipolar cell axon terminals. Indeed, is that the result in Figure 1B? This seems to be a dim stimulus presented on darkness, which may be driven through the rod bipolar pathway. The authors could then discuss the interpretation of this data in terms of the rod bipolar circuit. 

      Yes, Figure 1B is a dim light step (~30R*/rod/s) presented from darkness and the distinction between cells is clear down at still lower light levels that more effectively isolate signaling through the rod bipolar pathway. Thanks for making this point that observation of distinct temporal responses under scotopic conditions where signals suggests these differences must arise at and/or downstream of cone bipolar cell output. We have included additional text (lines 361-365) in the results describing bipolar cell responses that raise this point.

      (3) Glutamate release was already measured across the full IPL depth by Borghuis et al. (2013) and Franke et al. (2017). It would be appropriate to better motivate the current study based on these existing measurements.

      We have clarified that these important studies provided important motivation for measuring excitatory synaptic input to ON-T vs. ON-S RGCs (lines 165-169).   

      (4) Line 212/213. It would be appropriate to add to the list of papers showing the different stratification of transient vs. sustained responses: Borghuis et al. (2013) and Beaudoin et al. (2019).

      Thank you - these references have been added.  

      (5) Line 635-638. It would be useful to discuss papers by Pottackal et al. (2020, 2021), which suggested that a single presynaptic cell (starburst) can signal with different temporal properties depending on the postsynaptic target (other starburst vs. DSGCs). The mechanism was not completely resolved (i.e., it was not explained by differences in presynaptic Ca channels at the two synapse types), but it at least shows that neurotransmitter release can show different filtering depending on the postsynaptic target from the same presynaptic neuron. (This could also be at play for the type 6 bipolar cell inputs to ON-S vs. ON-T RGCs in the present study.)

      We have added a reference to Pottackal et al 2021 in this section.

      (6) Line 714. Should describe the procedure for embedding the tissue in agarose. 

      We have added more detail regarding agarose embedding for preparation of retinal slices in the methods.

      (7) Line 775. Need a better description of the virus (not the construct), what serotype? Provide the Addgene number if available. 

      This has been added to the methods.

      (8) Line 808. Was the SD for the gaussian really 50%? That would cut off a lot of the distribution, i.e., it would get clipped at 0. 

      Yes, the SD for Gaussian noise was 50%. This high contrast stimulus was used in part to achieve measurable signals from bipolar cells. You are correct that some of the distribution was clipped at 0 (it was also clipped at twice the mean to make sure that the distribution remained symmetrical). The clipping was accounted for during our LN analyses.

      (9) The paper should discuss Swygart et al. (2024) results showing different spatial surround properties of neighboring synapses from a type 6 bipolar cell. Based on this result, it would seem very likely that amacrine cells could play a role in shaping the temporal processing of bipolar cell glutamate release as well. Indeed, spatial and temporal processing will not be completely independent in a typical experiment. For example, with the spot stimulus used in the present study, bipolar cells within the center versus the edge of the spot will have different balances of center/surround activation, which could potentially influence their temporal processing.

      We have included discussion of results from Swygart et al 2024 in the section of the Discussion in which we point out differences in surround inhibition between ON-S and ON-T RGCs (lines 710-714). We agree that spatial and temporal processing are not completely independent. Our results with SR95531/TPMPA indicate ON-T RGCs receive stronger GABAergic surround inhibition than ON-S RGCs (Fig. S8). However, our results in Fig. 5C-D show GABAergic surround inhibition makes ON-T excitation more sustained rather than more transient. So even though bipolar cells presynaptic to ON-T RGCs receive stronger surround inhibition (Fig. S8), this inhibition does not establish the transient kinetics of glutamate release from these bipolar cells (in fact, it works to make release more sustained). Additional iGluSnFR experiments where we used NBQX to block all/most amacrine cell-mediated responses also suggest presynaptic inhibition does not have an important role in establishing differential glutamate release kinetics onto ON-S vs. ON-T RGC dendrites (Fig. 7).

      (10) Cui et al. 2016 described ON-S Alpha as having a divisive suppression mechanism that explained the temporal properties of white-noise response better than a standard LN model. Do the authors think the divisive suppression reflects a property of the excitatory synapses independent of inhibition?

      This is an interesting question, but one for which we don’t have a good answer for now. As mentioned in some of the above responses and as we have tried to clarify in the manuscript, we do not mean to imply that there is no role for presynaptic inhibition in modulating bipolar cell output, including for the divisive suppression described by Cui et al. Rather, our point is that the distinction between transient and sustained excitatory input to ON-T and ON-S RGCs does not require presynaptic inhibition and is more likely an intrinsic property of the bipolar cell synapses. 

      (11) Do the authors mean to imply that the pool size at bipolar cell ribbon synapses could depend on the use of Ames vs. ACSF? 

      For now, we do not have a good answer as to why there are quantitative differences in response kinetics between Ames and ACSF. We have not done any experiments to investigate whether ribbon sizes or ribbon pools are different in the different solutions.

      (12) More generally, different mean luminance levels could drive different levels of baseline glutamate release, which could alter the available pool of vesicles at bipolar cell ribbon synapses. Can we explain varying degrees of transient/sustained in the same cell at different levels of mean luminance based on this mechanism (e.g., Grimes et al., 2014)?

      Yes, the emergence of a transient component of excitatory input to ON-S RGCs at ~100 R*/rod/s versus at scotopic levels (0.5 R*/rod/s) in Grimes et al. (2014) could be due to differences in the number of releasable vesicles (due to different type 6 bipolar cell axon terminal membrane potentials and hence differences in spontaneous release rates) at the different light levels.

      We should note that although ON-T and ON-S RGCs exhibit some changes in transient/sustained kinetics across different light levels, the relative differences between these RGC types are preserved across light levels. We have included a statement about this in the text (lines 361-367).

      (13) Figure 1. Have the authors considered performing the LN analysis of the firing responses, to compare the degree of rectification between the two RGC types?

      This is a good suggestions. From an LN analysis of spiking responses, we do not observe a clear difference between the static nonlinearity component of the model for ON-T and ON-S RGCs. Both RGC types are strongly rectified under our experimental conditions.  

      (14) Figure 5. Do the authors have the pharmacology data for the ON-S cells? There are examples of sustained EPSCs in amacrine cells that become more transient after blocking inhibition, which at least suggests that inhibition can play some role in the transient/sustained nature of glutamate release (Park et al., 2015, Figure 3). Perhaps ON-S cells likewise become more transient with inhibition blocked. 

      (The colored symbols in A were not visible in a printout. It would be useful to indicate the cell type (ON-T) in C and E). 

      As described above in the response to reviewer 1’s recommendation for authors, we were not able to use SR95531/TPMPA for recordings from ON-S RGCs. Bath application of these drugs led to oscillatory bursts of excitatory input to ON-S RGCs. However, the lack of effect of bath-applied NBQX on the kinetics of glutamate release around either ON-T or ON-S RGC dendrites (new Fig. 7) suggests that presynaptic inhibition does not contribute to generating sustained excitation to ON-S RGCs (or transient excitation to ON-T RGCs).  

      We have corrected Fig. 5A to include the referenced colored symbols and have also edited Fig 5C and E to clarify that measurements in Fig. 5C-F are from ON-T RGCs.

      (15) Figure 6 legend. Should be Kcng4-Cre, not KCNG-Cre. Also, it should make clear that this is cre-dependent expression of iGluSnFR. For C, were the statistics based on the number of FOVs? 

      Thanks for catching this, we have corrected Figure 6 legend. The methods section includes a description of how we achieved iGluSnFR expression on alpha RGC dendrites via a cre-dependent viral strategy in Kcng4-Cre mice.  We have also clarified that the statistics are based on ROIs in Figure 6C.

      (16) Figure 7, Flashes were apparently 400% contrast on a dim background. What was the background? Is there a rod component to the response in this case? 

      In Figure 7 (now Figure 8), the same background (~3300 R*/rod/s; 2000 P*/Scone/s) was used as in the Gaussian noise and step response experiments. At this light level, the response should be primarily be mediated by cones.

      (17) Figure S1. The colors here differ from those in previous figures (Here, ON-T, magenta; ON-S, cyan). Is something mislabeled? 

      Thanks for catching this. We mistakenly swapped the labels in the legend for Fig. S1. The figure colors were correct, but we have corrected the legend in the revised manuscript.

      (18) Figure S2. For the LN model for RGC synaptic currents, the ON-S are more rectified than some previous recordings (Cui et al., 2016). Is this perhaps explained by different light levels?

      We aren’t sure why ON-S excitatory currents are more strongly rectified in our recordings compared to Cui et al., 2016. Cui et al. used an ~20-fold higher background light intensity (~40,000 P*/cone/s vs. ~2000 P*/cone/s in our study), so different light levels may be a factor (although we should point out that rectification increases in these RGCs between scotopic to low photopic light levels (see Grimes et al., 2014 and Kuo et al., 2016).

      (19) The study is apparently comparing PV1 and PV2 described in Farrow et al. (2013; see Supplementary information for stratification analysis), which should be cited.

      Thanks, we have corrected this oversight in the revised manuscript. We now cite Farrow et al and mention the connection to PV1 and PV2 in the first paragraph of Results (lines 104-108).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Major comments:

      (comment #1)- It is interesting that TRF2 loss not only fails to increase γH2AX/53BP1 levels but may even slightly reduce them (e.g., Fig. S2c and the IF images). While the main hypothesis is that TRF2 loss does not trigger telomere dysfunction in NSCs, this observation raises the possibility that TRF2 itself contributes to DDR signaling (ATM-P, γH2AX, 53BP1) in these cells and that in its absence, cells are not able to form those foci. To exclude the possibility that telomere-specific DDR is being missed due to an overall dampened DDR response in the absence of TRF2, it would be informative to induce exogenous DSBs in TRF2-depleted cells and test DDR competence (e.g., IF for γH2AX/53BP1). In other words, are those NSC lacking TRF2 even able to form H2AX/53BP1 foci when damaged? In addition, it would be interesting to perform telomere fusion analysis in TRF2 silenced cells (and TRF1 silenced cells as a positive control).

      We acknowledge a slight reduction; however, this difference is not statistically significant (Fig S2c,e). We will quantify the levels of DDR markers upon TRF2 loss and exogenous DSBs and include it in the subsequent revision.

      (comment #2)-A TRF2 ChIP-seq should be performed in NSC as this list of genes (named TAN genes in the text) was determined using a ChIP performed in another cell line (HT1080). For the ChIP-qPCR in the various conditions, primers for negative control regions should be included to show the specific binding of TRF2 to the promoter of the genes associated with neuronal differentiation. For example, an intergenic region and/or promoters of genes that are not associated with neuronal differentiation (or don't contain a potential G4). The same comment goes true for the gene expression analysis: a few genes that are not bound by TRF2 should be included as negative controls to exclude a potential global effect of TRF2 loss on gene expression (ideally a RNA-seq would be performed instead). We have performed NSC-specific TRF2 ChIP-seq for an upcoming manuscript, which confirms TRF2 occupancy at multiple promoters of differentiation-associated genes. These data are provided solely for confidential evaluation by the designated reviewers.

      Regarding the ChIP-qPCR control experiments: We thank reviewer for pointing this out, indeed we included controls in our PCR assays as positive (telomeric) and TRF2-nonbinding loci (GAPDH, RPS18, and ACTB, based on HT1080 TRF2 ChIP-seq data) as negative controls. These results were not included earlier for clarity given that we were presenting several ChIP-PCR figures - in response to the comment we have included this now in the revised version (Fig. S3d,e). Gene expression analyses show selective upregulation of the TAN genes upon TRF2 loss (data normalised to GAPDH); whereas negative control genes lacking TRF2 binding (RPS18, ACTB) remain unchanged, ruling out non-specific effects. (Fig S3f,g,j,k).

      -(comment #3) A co-IP should be performed between the TRF2 PTM mutant K176R or WT TRF2 and REST and PRC2 components to directly show a defect of interaction between them when TRF2 is mutated (a co-IP with DNase/RNase treatment to exclude nucleic-acid bridging). The TRF2 PTM mutant T188N also seems to lead to an increased differentiation (Fig. S5a). Could the author repeat the measure of gene expression and co-IP with REST upon the overexpression of this mutant too?

      We confirm that DNase/RNase is routinely included in our pull-down experiments to exclude nucleic-acid bridging, with detailed methodology now elaborated in the Methods section. Not including this in the manuscript Methods was an oversight from our side. Our data demonstrate that only REST directly interacts with TRF2, while TRF2 engages PRC2 indirectly via REST, as also previously shown by us and others (page 6; ref. [62]; Sharma et al., ref. [15]).

      We thank the reviewer for noting the apparent differentiation in Fig. S5a. However, this observation represents rare spontaneous differentiation event and is not statistically significant (as shown in Fig S5b). Consistently, gene expression analysis of the TRF2-T188N mutant shows no significant change in TRF2-associated neuronal differentiation (TAN) genes. Therefore, Co-IP for TRF2-T188N with REST was not done.

      (comment #4) - The authors show that the G4 ligands SMH14.6 and Bis-indole carboxamide upregulate TAN genes and promote neuronal differentiation, but the underlying mechanism remains unclear. Bis-indole carboxamide is generally considered a G4 stabilizer, while SMH14.6 is less characterized and should be better introduced. The authors should clarify how G4 stabilization would interfere with TRF2 binding, it seems that it would likely be by blocking access. A more detailed discussion, and ideally TRF2 ChIP after ligand treatment and/or G4 helicase treatment, would strengthen the model.

      We clarify that Bis-indole carboxamide acts as a G4 stabilizer, while SMH14.6 is also a noted G4-binding ligand that stabilizes G4s (ref. [15]). The exclusion of TRF2 from G4 motifs in gene promoters by G4-binding ligands has also been documented previously (ref. [18]). In line with these findings, ChIP experiments performed following ligand treatment revealed a decreased occupancy of TRF2 at TAN gene promoters, supporting the proposed mechanism (added Fig. 6h).

      Minor comments:

      • Supp Figures related to the scRNA-seq are difficult to read (blurry).

      Corrected

      • Fig S1h: The red box mentioned in the legend is not visible

      Corrected

      • In the text, the Figures 1 f-g are misannotated as Fig 1m and l

      Corrected

      • The symbol γ of γH2AX is missing in the text

      Corrected

      • Fig.3d, please indicate in the legend that it is done in SH-SY5Y.

      Added SH-SY5Y in the legend of Fig. 3d.

      • Fig. S3b: Please consider replotting this panel with an increased y-axis scale. As currently presented, the TRF2 ChIP-seq peaks at several promoters appear truncated by the scaling.

      Corrected

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      1. For most of the data graphs in the manuscript, there is no indication of the number of independent biological replicates carried out (which should ideally be plotted as individual dots overlaying the column graphs), or what the error bars represent, or what statistical test was used. All the figure legends and methods have now been updated with the corresponding biological replicates per experiment, with error bars as SD/SEM and the corresponding statistical test along with p values.

      Figure S1.1a: needs a marker to show that the tissue is dentate gyrus.

      We acknowledge the reviewers' concern that high-magnification images alone make it difficult to verify whether the fields are taken from the correct anatomical location. The dentate gyrus (DG) of the hippocampus is a well-defined structure. In the revised figure (Fig S1.1a), we now include a low-magnification image showing the entire hippocampus, including the CA fields, along with two high-magnification fields specifically from the DG region. Consistent with our claim, the co-immunostaining demonstrates that Sox2-positive neural stem cells in the DG are also positive for TRF2.

      Figure 1c (and all other flow cytometry panels throughout the manuscript): it is not clear if the expression of any of these proteins, except maybe MAP2, are significantly different in the presence or absence of TRF2. These differences need to be presented more quantitatively, with the results compiled from multiple biological replicates and analysed statistically. I am not sure that flow cytometry is the best way to determine differences in protein expression levels for non-surface proteins, because many of the reported differences are not at all convincing.

      To detect intracellular/nuclear proteins by flow cytometry, cells were permeabilized using pre-chilled 0.2% Triton X-100 for 10 minutes, as described in the Methods section.

      We have revised the figures (Fig 1c,e) and now included statistical analysis from three independent biological replicates for these experiments.(Fig S1.4h-j, S2e, S6d)

      Fig 1d: has TRF2 been effectively silenced in this experiment? There appears to be just as many TRF2+ nuclei in the "TRF2 silenced" panel vs the control, including in the cells with neurite outgrowths.

      Quantification of nuclear levels of TRF2 showing decrease in nuclear TRF2 has been included in supplementary Fig S1g.

      Fig 2a-c: these experiments need a positive control, showing increased expression of these proteins in mNSC and SH-SY5Y cells in response to a DNA damaging agent. Again, flow cytometry may not be the best method for this; immunofluorescence combined with telomere FISH would be more convincing.

      We confirm that doxorubicin induces 53BP1 foci (IF-FISH Sup Fig. S2b) and TRF1 silencing elevates γH2AX (Sup Fig. S2c) validating DDR sensitivity. Unlike TRF2 loss (Fig. 2a-c), no TIFs appear with IF and telomere probes (Fig. 2d, Sup Fig. 2a), and without TIFs, there is no telomeric fusion. Flow cytometry was performed with Triton X- 100 to target nuclear protein. These findings adequately address the concern; therefore, further IF-FISH experiments were not included in the present study.

      To conclude that telomere damage is not occurring, an independent marker of such damage, such as telomere fusions, should also be measured.

      In response to uncapped telomeres, ATM kinase activates the DNA damage response (DDR), recruiting γH2AX and 53BP1 to telomeres, which precedes the end-to-end fusions (Takai et al., 2003; Maciejowski & de Lange, 2015; Takai et al., 2003; d'Adda di Fagagna et al., 2003; Cesare & Reddel, 2010; Hayashi et al., 2012; Sarek et al., 2015). We observe no DDR activation or foci (Fig. 2; Sup. Fig. 2). This absence of a DDR response and TIFs indicates no telomere uncapping, negating the need for direct telomere fusion analysis.

      Figure S2b is lacking a no-doxorubicin control.

      Untreated control has been included Fig. S2b.

      Figures 3a and 3b need a positive control (e.g. TRF2 binding to telomeric DNA) and a negative control (e.g. a promoter that did not show any TRF2 binding in the HT1080 ChiP-seq experiment in Fig S3).

      We have included positive (telomere) and negative (GAPDH) controls (based on HT1080 TRF2 ChIP-seq data) for the TRF2 ChIP assay in Supplementary Fig. S3d,e. Additionally, positive and negative controls for all ChIP experiments conducted in this study are presented in Supplementary Figs. S3d, S3e, S3h, S3i, S4c-h, and S5c-e

      The data in Figure 3 would be more compelling if all experiments were also performed in fibroblasts to confirm the cell-type specificity of the effect.

      Our HT1080 fibrosarcoma ChIP-seq data (ref. [18]; Sup. Fig. 3a,b) show TRF2 binding to TAN gene promoters in a fibroblast-derived model, with enrichment in neurogenesis-related genes (refs. [19,20]). In fibroblasts TRF2 depletion, as expected, induce telomere dysfunction and DDR (Fig. 2d; Sup. Fig. 2a), and eventually cell-cycle arrest and cell death as also reported earlier (van Steensel et al., 1998; Smogorzewska & de Lange, 2002). Therefore, the suggested experiments which would require sustained TRF2-depletion are not possible to perform in fibroblasts. TRF2 occupancy on the promoter of the genes in question in cells other than NSC was noted in HT1080 cells (ref. [18]; Sup. Fig. 3a,b).

      No references are provided for the TRF2 posttranslational modifications on R17, K176, K190 and T188. What is the evidence for these modifications, and is it known if they participate in the telomeric role of TRF2?

      These lines with references have been included in the manuscript (highlighted in blue).

      R17 methylation enhances telomere stability (66). K176/K190 acetylation stabilizes telomeres and is deacetylated by SIRT6 (67). T188 phosphorylation facilitates telomere repair after DSBs(68). These PTMs primarily support telomeric roles.

      The experiments in Fig 5 should also be performed with WT TRF2, to confirm that effects are not due to the overexpression of TRF2.

      WT TRF2 shows no differentiation phenotype and change in TAN gene expression (Fig. 1f,g; 3h, Sup Fig. 5a). Confirming effects are not due to TRF2 overexpression.

      Fig 5c has not been described in the text, and there are multiple technical problems with the TRF2 WT experiment: i) There appears to be significant background binding of REST to the IgG beads, though this blot has such high background it is hard to tell (the REST blot in Fig S4b is also of poor quality), ii) TRF2 is migrating at two different positions in the Input and IP lanes, and the TRF2 band in the K176R blot is at a different position to either, and iii) the relative loading of the Input and IP lanes is not indicated, so it's not clear why K176R appears to be so enriched in the IP.

      We acknowledge the oversight in not citing Fig 5c in the manuscript. This has been corrected, and, highlighted in blue in the revised manuscript.

      i) Multiple optimization attempts were made for the Co-IP experiments, and the presented figure reflects the best achievable result despite REST blot smearing, a pattern also reported previously (Ref. 65). The TRF2-REST interaction is well established, and a similar background was also observed in the cited study

      ii)Variable migration patterns of TRF2 were also noted in the cited study (Ref. 65), consistent with our observations. Our primary emphasis, however, is on the TRF2 K176R mutant, which clearly disrupts its interaction with REST.

      iii)The input loading corresponds to 10% of the total lysate. As the experiments were conducted independently, variations in transfection and pull-down efficiencies may account for observed differences.

      To rule out indirect effects of the G4 ligands on the results in Fig 6g, the binding of BG4 and TRF2 at the promoters of these genes should be measured by ChIP.

      To confirm that G4 ligand effects on TAN gene promoters are direct, TRF2 occupancy was assessed using ChIP. Significantly decreased occupancy of TRF2 was noted at TAN gene promoters, (added Fig. 6h). This implies that ligand-induced changes in TRF2 binding are directly linked to promoter-level G4 stabilization.

      Minor comments:

      1. The size of all the size markers in western blots should be added to the figures. Size has been included in all the western blots

      2. There are several figure panels that are incorrectly referenced in the text, e.g. Fig S1.1 (e-f) should be Fig S1.1 (e-h); Fig. 1m should be Fig. 1f; Figs 5e and 5f have been swapped.

      Corrected.

      1. Fig S1.4 is not referred to in the text. It is not clear what the purpose of Fig S1.4a is.

      The following line has been included in the manuscript highlighted in blue.

      Neurospheres were characterized using PAX6, a NSC marker (Fig S1.4a).

      Are the experiments in Figs 3e, 4a, 4c and 4e using 4-OHT treatment, or siRNA? If the latter, I don't think a control for the effectiveness of the knockdown in this cell type has been included anywhere in the manuscript.

      It is using siRNA, a western blot showing the effectiveness of knockdown is presented in supplementary figure S4c (now S4a).

      The lanes of the western blots in Fig S4c are not labelled.

      Corrected.

      1. Given that the experiments in Fig 5 were carried out on a background of endogenous WT TRF2 expression, presumably the K176R mutant is having a dominant negative effect. To understand the mechanism of this effect (e.g, is it simply due to replacement of endogenous WT TRF2 at its genomic binding sites by a large excess of exogenous K176R, or is dimerisation with WT TRF2 needed?) it would be helpful to know the relative expression levels of endogenous and K176R TRF2.

      To address the query, qRT-PCR with 3′ UTR-specific primers showed no change in endogenous TRF2 mRNA upon K176R expression in SH-SY5Y cells, while primers detecting total TRF2 revealed ~10-fold higher expression of K176R compared to control (Figure below). This indicates the absence of suppression of endogenous TRF2 mRNA. Given that the mutant's DNA binding is intact (Fig. 5f), the dominant-negative effect of K176R likely arises from overexpression of the exogenous mutant.

      For the sentence "...and critical for transcription factor binding including epigenetic functions that are G4 dependent" (bottom of page 3 of the PDF), the authors cite only their own prior papers, but there are examples from others that could be cited.

      We have incorporated citations from other research groups, now included as references 23-26.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful and constructive feedback, which helped us strengthen the study on both the computational and biological side. In response, we added substantial new analyses and results in a total of 26 new supplementary figures and a new supplementary note. Importantly, we demonstrated that our approach generalizes beyond tissue outcomes by predicting final-timepoint morphology clusters from early frames with good accuracy as new Figure 4C. Furthermore, we completely restructured and expanded the human expert panel: six experts now provided >30,000 annotations across evenly spaced time intervals, allowing us to benchmark human predictions against CNNs and classical models under comparable conditions. We verified that morphometric trajectories are robust: PCA-based reductions and nearest-neighbor checks confirmed that patterns seen in t-SNE/UMAP are genuine, not projection artifacts. To test whether z-stacks are required, we re-did all analyses with sum- and maximum-intensity projections across five slices; results were unchanged, showing that single-slice imaging is sufficient. From a bioinformatics perspective, we performed negative-label baselines, downsampling analyses to quantify dataset needs, and statistical tests confirming CNNs significantly outperform classical models. Biologically, we clarified that each well contains one organoid, further introduced the Latent Determination Horizon concept tied to expert visibility thresholds, and discussed limits in cross-experiment transfer alongside strategies for domain adaptation and adaptive interventions. Finally, we clarified methods, corrected terminology and a scaler leak, and made all code and raw data publicly available.

      Together, these revisions in our opinion provide an even clearer, more reproducible, and stronger case for the utility of predictive modeling in retinal organoid development.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This study presents predictive modeling for developmental outcome in retinal organoids based on high-content imaging. Specifically, it compares the predictive performance of an ensemble of deep learning models with classical machine learning based on morphometric image features and predictions from human experts for four different task: prediction of RPE presence and lense presence (at the end of development) as well as the respective sizes. It finds that the DL model outperforms the other approaches and is predictive from early timepoints on, strongly indicating a time-frame for important decision steps in the developmental trajectory.

      Response: We thank the reviewer for the constructive and thoughtful feedback. In response to the review as found below, we have made substantial revisions and additions to the manuscript. Specifically, we clarified key aspects of the experimental setup, changed terminology regarding training/validation/test sets, and restructured our human expert baseline analysis by collecting and integrating a substantially larger dataset of expert annotations according to suggestion. We introduced the Latent Determination Horizon concept with clearer rationale and grounding. Most importantly, we significantly expanded our interpretability analyses across three CNN architectures and eight attribution methods, providing comprehensive quantitative evaluations and supplementary figures that extend beyond the initial DenseNet121 examples (new Supplementary Figures S29-S37). We also ensured full reproducibility by making both code and raw data publicly available with documentation. While certain advanced interpretability methods (e.g., Discover) could not be integrated despite considerable effort, we believe the revised manuscript presents a robust, well-documented, and carefully qualified analysis of CNN predictions in retinal organoid development.

      Major comments: I find the paper over-all well written and easy to understand. The findings are relevant (see significance statement for details) and well supported. However, I have some remarks on the description and details of the experimental set-up, the data availability and reproducibility / re-usability of the data.

      1. Some details about the experimental set-up are unclear to me. In particular, it seems like there is a single organoid per well, as the manuscript does not mention any need for instance segmentation or tracking to distinguish organoids in the images and associate them over time. Is that correct? If yes, it should be explicitly stated so. Are there any specific steps in the organoid preparation necessary to avoid multiple organoids per well? Having multiple organoids per well would require the aforementioned image analysis steps (instance segmentation and tracking) and potentially add significant complexity to the analysis procedure, so this information is important to estimate the effort for setting up a similar approach in other organoid cultures (for example cancer organoids, where multiple organoids per well are common / may not be preventable in certain experimental settings).

      Response: We thank the reviewer for this question. We agree that these preprocessing steps would add more complexity to our presented preprocessing steps and would definitely be required in some organoid systems. In our experimental setup, there is only one organoid per well which forms spontaneously after cell seeding from (almost) all seeded cells. There are no additional steps necessary in order to ensure this behaviour in our setup. We amended the Methods section to now explicitly state this accordingly (paragraph ‘Organoid timelapse imaging’).

      The terminology used with respect to the test and validation set is contrary to the field, and reporting the results on the test set (should be called validation set), should be avoided since it is used to select models. In more detail: the terms "test set" and "validation set" (introduced in 213-221) are used with the opposite meaning to their typical use in the deep learning literature. Typically, the validation set refers to a separate split that is used to monitor convergence / avoid overfitting during training, and the test set refers to an external set that is used to evaluate the performance of trained models. The study uses these terms in an opposite manner, which becomes apparent from line 624: "best performing model ... judged by the loss of the test set.". Please exchange this terminology, it is confusing to a machine learning domain expert. Furthermore, the performance on the test set (should be called validation set) is typically not reported in graphs, as this data was used for model selection, and thus does not provide an unbiased estimate of model performance. I would remove the respective curves from Figures 3 and 4.

      Response: We are thankful for the reviewers comments on this matter. Indeed, we were using an opposite terminology compared to what is commonly used within the field. We have adjusted the Results, Discussion and Methods sections as well as the figures accordingly. Further, we added a corresponding disclaimer for the code base in the github repository. However, we prefer to not remove the respective curves from the figures. We think that this information is crucial to interpret the variability in accuracy between organoids from the same experiments and organoids acquired from a different, independent experiment. The results suggest that the accuracy for organoids within the same experiments is still higher, indicating to users the potential accuracy drop resulting from independent experiments. As we think that this is crucial information for the interpretability of our results, we would like to still include it side-by-side with the test data in the figures.

      The experimental set-up for the human expert baseline is quite different to the evaluation of the machine learning models. The former is based on the annotation of 4,000 images by seven expert, the latter based on a cross-validation experiments on a larger dataset. First of all, the details on the human expert labeling procedure is very sparse, I could only find a very short description in the paragraph 136-144, but did not find any further details in the methods section. Please add a methods section paragraph that explains in more detail how the images were chosen, how they were assigned to annotators, and if there was any redundancy in annotation, and if yes how this was resolved / evaluated. Second, the fact that the set-up for human experts and ML models is quite different means that these values are not quite comparable in a statistical sense. Ideally, human estimators would follow the same set-up as in ML (as in, evaluate the same test sets). However, this would likely prohibitive in the required effort, so I think it's enough to state this fact clearly, for example by adding a comment on this to the captions of Figure 3 and 4.

      Response: We thank the reviewer for this constructive suggestion. We agree that the curves for human evaluations in the original draft were calculated differently compared to the curves for the classification algorithms, mostly stemming from feasibility of data set annotation at the time. In order to still address this suggestion, we went on to repeat and substantially expand the number of images annotated and thus revised the full human expert annotation. Each one of 6 human experts was asked to predict/interpret 6 images of each organoid within the full dataset. In order to select the images, we divided the time course (0-72h) into 6 evenly spaced intervals of 12 hours. For each interval, one image per organoid and human expert was randomly selected and assigned. This resulted in a total of 31,626 classified images (up from 4000 in the original version of the manuscript), from which the assigned images were overlapping between experts for each source interval but not for the individual images. We then changed the calculation of the curves to be the same as for the classification analysis: F1 data were calculated for each experiment over 6 timeframes and all experts, and plotted within the respective figure. We have amended the Methods section accordingly and replaced the respective curves within Figures 3 and 4 and Supplementary Figures S1, S8 and S19.

      It is unclear to me where the theoretical time window for the Latent Determination Horizon in Figure 5 (also mentioned in line 350) comes from? Please explain this in more detail and provide a citation for it.

      Response: We thank the reviewer for this important point. The Latent Determination Horizon (LDH) is a conceptual framework we introduced in this study to describe the theoretical period during which the eventual presence of a tissue outcome of interest (TOI) is being determined but not yet detectable. It is derived from two main observations in our dataset: (i) the inherent intra- and inter-experimental heterogeneity of organoid outcomes despite standardized protocols, and (ii) the progressive increase in predictive performance of our deep learning models over time, which suggests that informative morphological features only emerge gradually. We have now clarified this rationale in the manuscript (Discussion section) further and explicitly stated that the LDH is a concept we introduce here, rather than a previously described or cited term.

      The timewindow is defined by the TOI visibility, which is defined empirically as indicated by the results of our human expert panel (compare also Supplementary Figure S1).

      The intepretability analysis (Figure 4, 634-639) based on relevance backpropagation was performed based on DenseNet121 only. Why did you choose this model and not the ResNet / MobileNet? I think it is quite crucial to see if there are any differences between these model, as this would show how much weight can be put on the evidence from this analysis and I would suggest to add an additional experiment and supplementary figure on this.

      Response: We thank the reviewer for this important comment regarding the interpretability analysis and the choice of model. In the original submission, we restricted the attribution analyses shown in originial Figure 4C to DenseNet121, which served as our main reference model throughout the study. This choice was made primarily for clarity and to avoid redundancy in the main figures, as all three convolutional neural network (CNN) architectures (DenseNet121, ResNet50, MobileNetV3_Large) achieved comparable classification performance on our tasks.

      In response to the reviewer’s concern, we have now extended the interpretability analyses to include all three CNN architectures and a total of eight attribution methods (new Supplementary Note 1). Specifically, we generated saliency maps for DenseNet121, ResNet50, and MobileNetV3_Large across multiple time points and evaluated them using a systematic set of metrics: pairwise method agreement within each model (new Supplementary Figure S29), cross-model consistency per method (new Supplementary Figure S34), entropy and diffusion of saliencies over time (new Supplementary Figure S35), regional voting overlap across methods (new Supplementary Figure S36), and spatial drift of saliency centers of mass (new Supplementary Figure S37).

      These pooled analyses consistently showed that attribution methods differ markedly in the regions they prioritize, but that their relative behaviors were mostly stable across the three CNN architectures. For example, Grad-CAM and Guided Grad-CAM exhibited strong internal agreement and progressively focused relevance into smaller regions, while gradient-based methods such as DeepLiftSHAP and Integrated Gradients maintained broader and more diffuse relevance patterns but were the most consistent across models. Perturbation-based methods like Feature Ablation and Kernel SHAP often showed decreasing entropy and higher spatial drift, again similarly across architectures.

      To further address the reviewer’s point, we visualized the organoid depicted in original Figure 4C across all three CNNs and all eight attribution methods (new Supplementary Figures S30-S33). These comparisons confirm and extend analysis of the qualitative patterns described in original Figure 4C and show that they are not specific to DenseNet121, but are representative of the general behavior across architectures.

      In sum, we observed notable differences in how relevance was assigned and how consistently these assignments aligned. Highlighted organoid patterns were not consistent enough across attribution methods for us to be comfortable to base unequivocal biological interpretation on them. Nevertheless we believe that the analyses in response to the reviewer’s suggestions (new Supplementary Note 1 and new Supplementary Figures S29-S37) add valuable context to what can be expected from machine learning models in an organoid research setting.

      As we did not base further unequivocal biological claims on the relevance backpropagation, we decided to move the analyses to the Supporting Information and now show a new model predicting organoid morphology by morphometrics clustering at the final imaging timepoint in new Figure 4C in line with suggestions by Reviewer #3.

      The code referenced in the code availability statement is not yet present. Please make it available and ensure a good documentation for reproducibility. Similarly, it is unclear to me what is meant by "The data that supports the findings will be made available on HeiDoc". Does this only refer to the intermediate results used for statistical analysis? I would also recommend to make the image data of this study available. This could for example be done through a dedicated data deposition service such as BioImageArchive or BioStudies, or with less effort via zenodo. This would ensure both reproducibility as well as potential re-use of the data. I think the latter point is quite interesting in this context; as the authors state themselves it is unclear if prediction of the TOIs isn't even possible at an earlier point that could be achieved through model advances, which could be studied by making this data available.

      Response: We thank the reviewer for this comment. We have now made the repository and raw data public on the suggested platform (Zenodo) and apologize for this oversight. The links are contained within the github repository which is stated in the manuscript under “Data availability”.

      Minor comments:

      Line 315: Please add a citation for relevance backpropagation here.

      Response: We have included citations for all relevance backpropagation methods used in the paper.

      Line 591: There seems to be typo: "[...] classification of binary classification [...]"

      Response: Corrected as suggested.

      Line 608: "[...] where the images of individual organoids served as groups [...]" It is unclear to me what this means.

      Response: We wanted to express that organoid images belonging to one organoid were assigned in full to a training/validation set. We have now stated this more clearly in the Methods section.

      Reviewer #1 (Significance (Required)):

      General assessment: This study demonstrates that (retinal) organoid development can be predicted from early timepoints with deep learning, where these cannot be discerned by human experts or simpler machine learning models. This fact is very interesting in itself due to its implication for organoid development, and could provide a valuable tool for molecular analysis of different organoid populations, as outlined by the authors. The contribution could be strengthened by providing a more thorough investigation of what features in the image are predictive at early timepoints, using a more sophisticated approach than relevance backprop, e.g. Discover (https://www.nature.com/articles/s41467-024-51136-9). This could provide further biological insight into the underlying developmental processes and enhance the understanding of retinal organoid development.

      Response: We thank the reviewer for this assessment and suggestion. We agree that identifying image features predictive at early timepoints would add important biological context. We therefore attempted to apply Discover to our dataset. However, we were unable to get the system to run successfully. After considerable effort, we concluded that this approach could not be integrated into our current analysis. Instead, we report our substantially expanded results obtained with relevance backpropagation, which provided the most interpretable and reproducible insights for our study as described above (New Supplementary Note 1, new Supplementary Figures S29-S37).

      Advance: similar studies that predict developmental outcome based on image data, for example cell proliferation or developmental outcome exist. However, to the best of my knowledge, this study is the first to apply such a methodology to organoids and convincingly shows is efficacy and argues is potential practical benefits. It thus constitutes a solid technical advance, that could be especially impactful if it could be translated to other organoid systems in the future.

      Response: We thank the reviewer for this positive assessment of our work and for highlighting its novelty and potential impact. We are encouraged that the reviewer recognizes the value of applying predictive modeling to organoids and the opportunities this creates for translation to other organoid systems.

      Audience: This research is of interest to a technical audience. It will be of immediate interest to researchers working on retinal organoids, who could adapt and use the proposed system to support experiments by better distinguishing organoids during development. To enable this application, code and data availability should be ensured (see above comments on reproducibility). It is also of interest to researchers in other organoid systems, who may be able to adapt the methodology to different developmental outcome predictions. Finally, it may also be of interest to image analysis / deep learning researchers as a dataset to improve architectures for predictive time series modeling.

      My research background: I am an expert in computer vision and deep learning for biomedical imaging, especially in microscopy. I have some experience developing image analysis for (cancer) organoids. I don't have any experience on the wet lab side of this work.

      Response: We thank the reviewer for this encouraging feedback and for recognizing the broad relevance of our work across retinal organoid research, other organoid systems, and the image analysis community. We are pleased that the potential utility of our dataset and methodology is appreciated by experts in computer vision and biomedical imaging. We have now made the repository and raw data public and apologize for this oversight. The links are provided in the manuscript under “Data availability”.

      Constantin Pape


      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: Afting et al. present a computational pipeline for analyzing timelapse brightfield images of retinal organoids derived from Medaka fish. Their pipeline processes images along two paths: 1) morphometrics (based on computer vision features from skimage) and 2) deep learning. They discovered, through extensive manual annotation of ground truth, that their deep learning method could predict retinal pigmented epithelium and lens tissue emergence in time points earlier than either morphometrics or expert predictions. Our review is formatted based on the review commons recommendation.

      Response: We thank the reviewer for the detailed and constructive feedback, which has greatly improved the clarity and rigor of our manuscript. In response, we have corrected a potential data leakage issue, re-ran the affected analyses, and confirmed that results remain unchanged. We clarified the use of data augmentation in CNN training, tempered some claims throughout the text, and provided stronger justification for our discretization approach together with new supplementary analyses (New Supplementary Figures S26, S27). We substantially expanded our interpretability analyses across three CNN architectures and eight attribution methods, quantified their consistency and differences (new Supplementary Figures S29, S34-S37, new Supplementary Note 1), and added comprehensive visualizations (New S30-S33). We also addressed technical artifact controls, provided downsampling analyses to support our statement on sample size sufficiency (new Supplementary Figure S28), and included negative-control baselines with shuffled labels in Figures 3 and 4. Furthermore, we improved the clarity of terminology, figures, and methodological descriptions, and we have now made both code and raw data publicly available with documentation. Together, we believe these changes further strengthen the robustness, reproducibility, and interpretability of our study while carefully qualifying the claims.

      Major comments:

      Are the key conclusions convincing?

      Yes, the key conclusion that deep learning outperforms morphometric approaches is convincing. However, several methodological details require clarification. For instance, were the data splitting procedures conducted in the same manner for both approaches? Additionally, the authors note in the methods: "The validation data were scaled to the same range as the training data using the fitted scalers obtained from the training data." This represents a classic case of data leakage, which could artificially inflate performance metrics in traditional machine learning models. It is unclear whether the deep learning model was subject to the same issue. Furthermore, the convolutional neural network was trained with random augmentations, effectively increasing the diversity of the training data. Would the performance advantage still hold if the sample size had not been artificially expanded through augmentation?

      Response: We thank the reviewer for raising these important methodological points. As Reviewer #1 correctly noted, our use of the terms validation and test may have contributed to confusion. To clarify: in the original analysis the scalers were fitted on the training and validation data and then applied to the test data. This indeed constitutes a form of data leakage. We have corrected the respective code, re-ran all analyses that were potentially affected, and did not observe any meaningful change in the reported results. The Methods section has been amended to clarify this important detail.

      For the neural networks, each image was normalized independently (per image), without using dataset-level statistics, thereby avoiding any risk of data leakage.

      Regarding data augmentation, the convolutional neural network was indeed trained with augmentations. Early experiments without augmentation led to severe overfitting, confirming that the performance advantage would not hold without artificially increasing the effective sample size. We have added a clarifying statement in the Methods section to make this explicit.

      Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? Their claims are currently preliminary, pending increased clarity and additional computational experiments described below.

      Response: We believe our additionally performed computational experiments qualify all the claims we make in the revised version of the manuscript.

      Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      • The authors discretize continuous variables into four bins for classification. However, a regression framework may be more appropriate for preserving the full resolution of the data. At a minimum, the authors should provide a stronger justification for this binning strategy and include an analysis of bin performance. For example, do samples near bin boundaries perform comparably to those near the bin centers? This would help determine whether the discretization introduces artifacts or obscures signals.

      Response: We thank the reviewer for this thoughtful suggestion. We agree that regression frameworks can, in principle, preserve the full resolution of continuous outcome variables. However, in our setting we deliberately chose a discretization approach. First, the discretized outcome categories correspond to ranges of tissue sizes that are biologically meaningful and allow direct comparison to expert annotations. In practice, human experts also tend to judge tissue presence and size in categorical rather than strictly continuous terms, which was mirrored by our human expert annotation strategy. As we aimed to compare deep learning with classical machine learning models and with expert annotations across the same prediction tasks, a categorical outcome formulation provided the most consistent and fair framework. Secondly, the underlying outcome variables did not follow a normal distribution, but instead exhibited a skewed and heterogeneous spread. Regression models trained on such distributions often show biases toward the most frequent value ranges, which may obscure less common but biologically important outcomes. Discretization mitigated this issue by balancing the prediction task across defined size categories.

      In line with the reviewer’s request, we have now analyzed the performance in relation to the distance of each sample from the bin center. These results are provided as new Supplementary Figures S26 and S27. Interestingly, for the classical machine learning classifiers, F1 scores tended to be somewhat higher for samples close to bin edges. For the convolutional neural networks, however, F1 scores were more evenly distributed across distances from bin centers. While the reason for this difference remains unclear, the analysis demonstrates that the discretization did not obscure predictive signals in either framework. We have amended the results section accordingly.

      • The relevance backpropagation interpretation analysis is not convincing. The authors argue that the model's use of pixels across the entire image (rather than just the RPE region) indicates that the deep learning approach captures holistic information. However, only three example images are shown out of hundreds, with no explanation for their selection, limiting the generalizability of the interpretation. Additionally, it is unclear how this interpretability approach would work at all in earlier time points, particularly before the model begins making confident predictions around the 8-hour mark. It is also not specified whether the input used for GradSHAP matches the input used during CNN training. The authors should consider expanding this analysis by quantifying pixel importance inside versus outside annotated regions over time. Lastly, Figure 4C is missing a scale bar, which would aid in interpretability.

      Response: We thank the reviewer for raising these important concerns. In the initial version we showed examples of relevance backpropagation that suggested CNNs rely on visible RPE or lens tissue for their predictions (original Figure 4C). Following the reviewer’s comment, we expanded the analysis extensively across all models and attribution methods (compare new Supplementary Note 1), and quantified agreement, consistency, entropy, regional overlap, and drift (new Supplementary Figures S29 and S34-S37), as well as providing comprehensive visualizations across models and methods (new Supplementary Figures S30-S33).

      This extended analysis showed that attribution methods behave very differently from each other, but consistently so across the three CNN architectures. Each method displayed characteristic patterns, for example in entropy or center-of-mass drift, but the overlap between methods was generally low. While integrated gradients and DeepLiftSHAP tended to concentrate on tissue regions, other methods produced broader or shifting relevance patterns, and overall we could not establish robust or interpretable signals from a biological point of view that would support stronger conclusions.

      We have therefore revised the text to focus on descriptive results only, without making claims about early structural information or tissue-specific cues being used by the networks. We also added missing scale bars and clarified methodological details. Together, the revised section now reflects the extensive work performed while remaining cautious about what can and cannot be inferred from saliency methods in this setting.

      • The authors claim that they removed technical artifacts to the best of their ability, but it is unclear if the authors performed any adjustment beyond manual quality checks for contamination. Did the authors observe any illumination artifacts (either within a single image or over time)? Any other artifacts or procedures to adjust?

      Response: We thank the reviewer for this comment. We have not performed any adjustment beyond manual quality control post organoid seeding. The aforementioned removal of technical artifacts included, among others, seeding at the same time of day, seeding and cell processing by the same investigator according to a standardized protocol, usage of reproducible chemicals (same LOT, frozen only once, etc.) and temperature control during image acquisition. We adhered strictly to internal, previously published workflows that were aimed to reduce any variability due to technical variations during cell harvesting, organoid preparation and imaging. We have clarified this important point in the Methods section.

      • In line 434-436 the authors state "In this work, we used 1,000 organoids in total, to achieve the reported prediction accuracies. Yet, we suspect that as little as ~500 organoids are sufficient to reliably recapitulate our findings." It is unclear what evidence the authors use to support this claim? The authors could perform a downsampling analysis to determine tradeoff between performance and sample size.

      Response: We thank the reviewer for this important comment. To clarify, our statement regarding the sufficiency of ~500 organoids was based on a downsampling-style analysis we had already performed. In this analysis, we systematically reduced the number of experiments used for training and assessed predictive performance for both CNN- and classifier-based approaches (former Supplementary Figure S11, new Supplementary Figure S28). For CNNs, performance curves plateaued at approximately six experiments (corresponding to ~500 organoids), suggesting that increasing the sample size further only marginally improved prediction accuracy. In contrast, we did not observe a clear plateau for the machine learning classifiers, indicating that these models can achieve comparable performance with fewer training experiments. We have revised the manuscript text to clarify that this conclusion is derived from these analyses, and continue to include Supplementary Figure S11 as new Supplementary Figure S28 for transparency (compare Supplementary Note 1).

      Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. Yes, we believe all experiments are realistic in terms of time and resources. We estimate all experiments could be completed in 3-6 months.

      Response: We confirm that the suggested experiments are realistic in terms of time and resources and have been able to complete them within 6 months.

      Are the data and the methods presented in such a way that they can be reproduced? No, the code is not currently available. We were not able to review the source code.

      Response: We have now made the repository public. We apologize for this initial oversight. The links are provided in the revised version of the manuscript under “Data availability”.

      Are the experiments adequately replicated and statistical analysis adequate?

      • The experiments are adequately replicated.

      • The statistical analysis (deep learning) is lacking a negative control baseline, which would be helpful to observe if performance is inflated.

      Response: We thank the reviewer for this comment. We have calculated the respective curves with neural networks and machine learning classifiers that were trained on data with shuffled labels and have included these results as a separate curve in the respective Figures 3 and 4. We have also amended the Methods section accordingly.

      Minor comments:

      Specific experimental issues that are easily addressable.

      Are prior studies referenced appropriately?

      Yes.

      Are the text and figures clear and accurate?

      The authors must improve clarity on terminology. For example, they should define a comprehensive dataset, significant, and provide clarity on their morphometrics feature space. They should elaborate on what they mean by "confounding factor of heterogeneity".

      Response: We thank the reviewer for highlighting the need to clarify terminology. We have revised the manuscript accordingly. Specifically, we now explicitly define comprehensive dataset as longitudinal brightfield imaging of ~1,000 organoids from 11 independent experiments, imaged every 30 minutes over several days, covering a wide range of developmental outcomes at high temporal resolution. Furthermore, we replaced the term significantly with wording that avoids implying statistical significance, where appropriate. We have clarified the morphometrics feature space in the Methods section in a more detailed fashion, describing the custom parameters that we used to enhance the regionprops_table function of skimage.

      Do you have suggestions that would help the authors improve the presentation of their data and conclusions? - Figure 2C describes a distance between what? The y axis is likely too simple. Same confusion over Figure 2D. Was distance computed based on tsne coordinates?

      Response: We thank the reviewer for pointing out this potential source of confusion. The distances shown in original Figures 2C and 2D were not calculated in tSNE space. Instead, morphometrics features were first Z-scaled, and then dimensionality reduction by PCA was applied, with the first 20 principal components retaining ~93% of the variance. Euclidean distances were subsequently computed in this 20-dimensional PC space. For inter-organoid distances (Figure 2C), we calculated mean pairwise Euclidean distances between all organoids at each imaging time point, capturing the global divergence of organoid morphologies over time in an experiment-specific manner. For intra-organoid distances (Figure 2D), we calculated Euclidean distances between consecutive time points (n vs. n+1) for each individual organoid, thereby quantifying the extent of morphological change within organoids over time. We have revised the Figure legend and Methods section to make these definitions clearer.

      • The authors perform a Herculean analysis comparing dozens of different machine learning classifiers. They select two, but they should provide justification for this decision.

      Response: We thank the reviewer for this comment. In our initial machine learning analyses, we systematically benchmarked a broad set of classifiers on the morphometrics feature space, using cross-validation and hyperparameter tuning where appropriate. The classifiers that we ultimately focused on were those that consistently achieved the best performance in these comparisons. This process is described in the Methods and summarized in the Supplementary Figures S4 and S15 (for sum- and maximum-intensity z-projections new Supplementary Figures S5/6 and S16/17), which show the results of the benchmarking. We have clarified the text to state that the selected classifiers were chosen on the basis of their superior performance in these evaluations.

      • It would be good to get a sense for how these retinal organoids grow - are they moving all over the place? They are in Matrigel so maybe not, but are they rotating?

      Can the author's approach predict an entire non-emergence experiment? The authors tried to standardize protocol, but ultimately if It's deriving this much heterogeneity, then how well it will actually generalize to a different lab is a limitation.

      Response: We thank the reviewer for these thoughtful questions. The retinal organoids in our study were embedded in low concentrations of Matrigel and remained relatively stable in position throughout imaging. We did not observe substantial displacement or lateral movement of organoids, and no systematic rotation could be detected in our dataset. Small morphological rearrangements within organoids were observed, but the gross positioning of organoids within the wells remained consistent across time-lapse recordings.

      Regarding generalization across laboratories, we agree with the reviewer that this is an important limitation. While we minimized technical variability by adhering to a highly standardized, published protocol (see Methods), considerable heterogeneity remained at both intra- and inter-experimental levels. This variability likely reflects inherent properties of the system, similar the reportings in the literature across organoid systems, rather than technical artifacts, and poses a potential challenge for applying our models to independently generated datasets. We therefore highlight the need for future work to test the robustness of our models across laboratories, which will be essential to determine the true generalizability of our approach. We have amended the Discussion accordingly.

      • The authors should dampen claims throughout. For example, in the abstract they state, "by combining expert annotations with advanced image analysis". The image analysis pipelines use common approaches.

      Response: We thank the reviewer for this comment. We agree that the individual image analysis steps we used, such as morphometric feature extraction, are based on well-established algorithms. By referring to “advanced image analysis,” we intended to highlight not the novelty of each single algorithm, but rather the way in which we systematically combined a large number of quantitative parameters and leveraged them through machine learning models to generate predictive insights into organoid development.

      • The authors state: "the presence of RPE and lenses were disagreed upon by the two independently annotating experts in a considerable fraction of organoids (3.9 % for RPE, 2.9% for lenses).", but it is unclear why there were two independently annotating experts. The supplements say images were split between nine experts for annotation.

      Response: We thank the reviewer for pointing out this ambiguity. To clarify, the ground truth definition at the final time point was established by two experts who annotated all organoids. These two annotators were part of the larger group of six experts who contributed to the earlier human expert annotation tasks. Thus, while six experts provided annotations for subsets of images during the expert prediction experiments, the final annotation for every single organoid at its last time frame was consistently performed by the same two experts to ensure a uniform ground truth. We have amended this in the revised manuscript to make this distinction clear.

      • Details on the image analysis pipeline would be helpful to clarify. For example, why did they choose to measure these 165 morphology features? Which descriptors were used to quantify blur? Did the authors apply blur metrics per FOV or per segmented organoid?

      Response: We thank the reviewer for this comment. To clarify, we extracted 165 morphometric features per segmented organoid, combining standard scikit-image region properties with custom implementations (e.g., blur quantified as the variance of the Laplace filter response within the organoid mask). All metrics, including blur, were calculated per segmented organoid rather than per full field of view. This broad feature space was deliberately chosen to capture size, shape, and intensity distributions in a comprehensive and unbiased manner. We now provide a more detailed description of the preprocessing steps, the full feature list, and the exact code implementations are provided in the Methods section (“Large-scale time-lapse Image analysis”) of the revised version of the manuscript as well as in the source code github repository.

      • The description of the number of images is confusing and distracts from the number of organoids. The number of organoids and number of timepoints used would provide a better description of the data with more value. For example, does this image count include all five z slices?

      Response: We thank the reviewer for this comment. The reported image count includes slice 3 only, which we based our models on. The five z-slices that we used to create the MAX- and SUM-intensity z-projections would increase this number 5-fold. While we agree that the number of organoids and time points are highly informative metrics and have provided these details in the manuscript, we also believe that reporting the image count is valuable, as it directly reflects the size of the dataset processed by our analysis pipelines. For this reason, we prefer to keep the current description.

      • The authors should consider applying a maximum projection across the five z slices (rather than the middle z) as this is a common procedure in image analysis. Why not analyze three-dimensional morphometrics or deep learning features? Might this improve performance further?

      Response: We thank the reviewer for this valuable suggestion. To address this point, we repeated all analyses using both sum- and maximum-intensity z-projections and have included the results as new Supplementary Figures S8-S10, S13/S14 for TOI emergence and new Supplementary Figures S19-S21, S24/S25 for TOI sizes (classifier benchmarking and hyperparameter tuning in new Supplementary Figures S5/S6 and S16/S17). These additional analyses did not reveal a noticeable improvement in performance, suggesting that projections incorporating all slices are not strictly necessary in our setting. An analysis that included all five z-slices separately for classification would indeed be of interest, but was not feasible within the scope of this study, as it would substantially increase the computational demands beyond the available resources and timeframe.

      • There is a lot of manual annotation performed in this work, the authors could speculate how this could be streamlined for future studies. How does the approach presented enable streamlining?

      Response: We thank the reviewer for raising this important point. The current study relied on expert visual review, which is time-intensive, but our findings suggest several ways to streamline future work. For instance, model-assisted prelabeling could be used to automatically accept high-confidence cases while routing only uncertain cases to experts. Active sampling strategies, focusing expert review on boundary cases or rare classes, as well as programmatic checks from morphometrics (e.g., blur or contrast to flag low-quality frames), could further reduce effort. Consensus annotation could be reserved only for cases where the model and expert disagree or confidence is low. Finally, new experiments could be bootstrapped with a small seed set of annotated organoids for fine-tuning before switching to such a model-assisted workflow. These possibilities are enabled by our approach, where organoids are imaged individually, morphometrics provide automated quality indicators, and the CNN achieves reliable performance at early developmental stages, making model-in-the-loop annotation a feasible and efficient strategy for future studies. We have added a clarifying paragraph to the Discussion accordingly.

      Reviewer #2 (Significance (Required)):

      Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. The paper's advance is technical (providing new methods for organoid quality control) and conceptual (providing proof of concept that earlier time points contain information to predict specific future outcomes in retinal organoids)

      Place the work in the context of the existing literature (provide references, where appropriate).

      • The authors do a good job of placing their work in context in the introduction.
      • The work presents a simple image analysis pipeline (using only the middle z slice) to process timelapse organoid images. So not a 4D pipeline (time and space), just 3D (time). It is likely that more and more of these approaches will be developed over time, and this article is one of the early attempts.

      • The work uses standard convolutional neural networks.

      Response: We thank the reviewer for this assessment. We agree that our work represents one of the early attempts in this direction, applying a straightforward pipeline with standard convolutional neural networks, and we appreciate the reviewer’s acknowledgment of how the study has been placed in context within the Introduction.

      State what audience might be interested in and influenced by the reported findings. - Data scientists performing image-based profiling for time lapse imaging of organoids.

      • Retinal organoid biologists

      • Other organoid biologists who may have long growth times with indeterminate outcomes.

      Response: We thank the reviewer for outlining the relevant audiences. We agree that the reported findings will be of interest to data scientists working on image-based profiling, retinal organoid biologists, and more broadly to organoid researchers facing long culture times with uncertain developmental outcomes.

      Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. - Image-based profiling/morphometrics

      • Organoid image analysis

      • Computational biology

      • Cell biology

      • Data science/machine learning

      • Software

      This is a signed review:

      Gregory P. Way, PhD

      Erik Serrano

      Jenna Tomkinson

      Michael J. Lippincott

      Cameron Mattson

      Department of Biomedical Informatics, University of Colorado


      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      This manuscript by Afting et. al. addresses the challenge of heterogeneity in retinal organoid development by using deep learning to predict eventual tissue outcomes from early-stage images. The central hypothesis is that deep learning can forecast which tissues an organoid will form (specifically retinal pigmented epithelium, RPE, and lens) well before those tissues become visibly apparent. To test this, the authors assembled a large-scale time-lapse imaging dataset of ~1,000 retinal organoids (~100,000 images) with expert annotations of tissue outcomes. They characterized the variability in organoid morphology and tissue formation over time, focusing on two tissues: RPE (which requires induction) and lens (which appears spontaneously). The core finding is that a deep learning model can accurately predict the emergence and size of RPE and lens in individual organoids at very early developmental stages. Notably, a convolutional neural network (CNN) ensemble achieved high predictive performance (F1-scores ~0.85-0.9) hours before the tissues were visible, significantly outperforming human experts and classical image-analysis-based classifiers. This approach effectively bypasses the issue of stochastic developmental heterogeneity and defines an early "determination window" for fate decisions. Overall, the study demonstrates a proof-of-concept that artificial intelligence can forecast organoid differentiation outcomes non-invasively, which could revolutionize how organoid experiments are analyzed and interpreted.

      Recommendation:

      While this manuscript addresses an important and timely scientific question using innovative deep learning methodologies, it currently cannot be recommended for acceptance in its present form. The authors must thoroughly address several critical limitations highlighted in this report. In particular, significant issues remain regarding the generalizability of the predictive models across different experimental conditions, the interpretability of deep learning predictions, and the use of Euclidean distance metrics in high-dimensional morphometric spaces-potentially leading to distorted interpretations of organoid heterogeneity. These revisions are essential for validating the general applicability of their approach and enhancing biological interpretability. After thoroughly addressing these concerns, the manuscript may become suitable for future consideration.

      Response: We thank the reviewer for the thoughtful and constructive comments. In response, we expanded our analyses in several key ways. We clarified limitations regarding external datasets. Interpretability analyses were greatly extended across three CNN architectures and eight attribution methods (new Supplementary Figures S29-S37, new Supplementary Note 1), showing consistent but method-specific behaviors; as no reproducible biologically interpretable signals emerged, we now present these results descriptively and clearly state their limitations. We further demonstrated the flexibility of our framework by predicting morphometric clusters in addition to tissue outcomes (new Figure 4C), confirmed robustness of the morphometrics space using PCA and nearest-neighbor analyses (new Supplementary Figure S3), and added statistical tests confirming CNNs significantly outperform classical classifiers (Supplementary File 1). Finally, we made all code and raw data publicly available, clarified species context, and added forward-looking discussion on adaptive interventions. We believe these revisions now further improve the rigor and clarity of our work.

      Major Issues (with Suggestions):

      1. Generalization to Other Batches or Protocols: The drop in performance on independent validation experiments suggests the model may partially overfit to specific experimental conditions. A major concern is how well this approach would work on organoids from a different batch or produced by a slightly different differentiation protocol. Suggestion: The authors should clarify the extent of variability between their "independent experiment" and training data (e.g., were these done months apart, with different cell lines or minor protocol tweaks?). To strengthen confidence in the model's robustness, I recommend testing the trained model on one or more truly external datasets, if available (for instance, organoids generated in a separate lab or under a modified protocol). Even a modest analysis showing the model can be adapted (via transfer learning or re-training) to another dataset would be valuable. If new data cannot be added, the authors should explicitly discuss this limitation and perhaps propose strategies (like domain adaptation techniques or more robust training with diverse conditions) to handle batch effects in future applications.

      Response: We thank the reviewer for this important comment. We fully agree with the reviewer that this would be an amazing addition to the manuscript. Unfortunately we are not able to obtain the requested external data set. Although retinal organoid systems exist and are widely used across different species lines, to the best of our knowledge our laboratory is the only one currently raising retinal organoids from primary embryonic pluripotent stem cells of Oryzias latipes and there is currently only one known (and published) differentiation protocol which allows the successful generation of these organoids. We note that our datasets were collected over the course of nine months, which already introduces variability across time and thus partially addresses concerns regarding batch effects. While we did not have access to truly external datasets (e.g., from other laboratories), we have clarified this limitation as suggested in the revised version of the manuscript and outlined strategies such as domain adaptation and training on more diverse conditions as promising future directions to improve robustness.

      Biological Interpretation of Early Predictive Features: The study currently concludes that the CNN picks up on complex, non-intuitive features that neither human experts nor conventional analysis could identify. However, from a biological perspective, it would be highly insightful to know what these features are (e.g., subtle texture, cell distribution patterns, etc.). Suggestion: I encourage the authors to delve deeper into interpretability. They might try complementary explainability techniques (for example, occlusion tests where parts of the image are masked to see if predictions change, or activation visualization to see what patterns neurons detect) beyond GradientSHAP. Additionally, analyzing false predictions might provide clues: if the model is confident but wrong for certain organoids, what visual traits did those have? If possible, correlating the model's prediction confidence with measured morphometrics or known markers (if any early marker data exist) could hint at what the network sees. Even if definitive features remain unidentified, providing the reader with any hypothesis (for instance, "the network may be sensing a subtle rim of pigmentation or differences in tissue opacity") would add value. This would connect the AI predictions back to biology more strongly.

      Response: We thank the reviewer for this thoughtful suggestion. We agree that linking CNN predictions to specific biological features would be highly valuable. In response, we expanded our interpretability analyses beyond GradientSHAP to a broad set of attribution methods and quantified their behavior across models and timepoints (new Supplementary Figures S29-S37, new Supplementary Note 1). While some methods (e.g., Integrated Gradients, DeepLiftSHAP) occasionally highlighted visible tissue regions, others produced diffuse or shifting relevance, and overall overlap was low. Therefore, our results did not yield reproducible, interpretable biological signals.

      Given these results, we have refrained from speculating about specific early image features and now present the interpretability analyses descriptively. We agree that future studies integrating imaging with molecular markers will be required to directly link early predictive cues to defined biological processes.

      Expansion to Other Outcomes or Multi-Outcome Prediction: The focus on RPE and lens is well-justified, but these are two outcomes within retinal organoids. A major question is whether the approach could be extended to predict other cell types or structures (e.g., presence of certain retinal neurons, or malformations) or even multiple outcomes at once. Suggestion: The authors should discuss the generality of their approach. Could the same pipeline be trained to predict, say, photoreceptor layer formation or other features if annotated? Are there limitations (like needing binary outcomes vs. multi-class)? Even if outside the scope of this study, a brief discussion would reassure readers that the method is not intrinsically limited to these two tissues. If data were available, it would be interesting to see a multi-label classification (predict both RPE and lens presence simultaneously) or an extension to other organoid systems in future. Including such commentary would highlight the broad applicability of this platform.

      Response: We thank the reviewer for this helpful and important suggestion. While our study focused on RPE and lens as the most readily accessible tissues of interest in retinal organoids, our new analyses demonstrate that the pipeline is not limited to these outcomes. In addition to tissue-specific predictions, we trained both a convolutional neural network (on image data) and a decision tree classifier (on morphometrics features) to predict more abstract morphological clusters defined at the final timepoint using the morphometrics features, showing that both approaches could successfully capture non-tissue features from early frames (new Figure 4C). This illustrates that the framework can be extended beyond binary tissue outcomes to multi-class problems, and predict relevant outcomes like the overall organoid morphology. Given appropriate annotations, the framework could in principle be trained to detect additional structures such as photoreceptor layers or malformations. Furthermore, the CNN architecture we employed and the morphometrics feature space are compatible with multi-label classification, meaning simultaneous prediction of several outcomes would also be feasible. We have clarified this point in the discussion to highlight the methodological flexibility and potential generality of our approach and are excited to share this very interesting, additional model with the readership.

      Curse of high dimensionality: Using Euclidean distance in a 165-dimensional morphometric space likely suffers from the curse of dimensionality, which diminishes the meaning of distances as dimensionality increases. In such high-dimensional settings, the range of pairwise distances tends to collapse, undermining the ability to discern meaningful intra- vs. inter-organoid differences. Suggestion: To address this, I would encourage the authors to apply principal component analysis (PCA) in place of (or prior to) tSNE. PCA would reduce the data to a few dominant axes of variation that capture most of the morphometric variance, directly revealing which features drive differences between organoids. These principal components are linear combinations of the original 165 parameters, so one can examine their loadings to identify which morphometric traits carry the most information - yielding interpretable axes of biological variation (e.g., organoid size, shape complexity, etc.). In addition, I would like to mention an important cautionary remark regarding tSNE embeddings. tSNE does not preserve global geometry of the data. Distances and cluster separations in a tSNE map are therefore not faithful to the original high-dimensional distances and should be interpreted with caution. See Chari T, Pachter L (2023), The specious art of single-cell genomics, PLoS Comput Biol 19(8): e1011288, for an enlightening discussion in the context of single cell genomics. The authors have shown that extreme dimensionality reduction to 2D can introduce significant distortions in the data's structure, meaning the apparent proximity or separation of points in a tSNE plot may be an artifact of the algorithm rather than a true reflection of morphometric similarity. Implementing PCA would mitigate high-dimensional distance issues by focusing on the most informative dimensions, while also providing clear, quantitative axes that summarize organoid heterogeneity. This change would strengthen the analysis by making the results more robust (avoiding distance artifacts) and biologically interpretable, as each principal component can be traced back to specific morphometric features of interest.

      Response: We thank the reviewer for this mention. Indeed, high dimensionality and dimensionality reductions can lead to false interpretations. We approached this issue as follows: First, we calculated the same TSNE projections and distances using the first 20 PCs and supplied these data as the new Figure 2 and new Supplementary Figure 2. While the scale of the data shifted slightly, there were no differences in the data distribution that would contradict our prior conclusions.

      In order to confirm the findings and further emphasize the validity of our dimensionality reduction, we calculated the intersection of 30 nearest neighbors in raw data space (or pca space) compared and 30 nearest neighbors in reduced space (TSNE or UMAP, as we wanted to emphasize that this was not an effect specific for TSNE projections and would also be valid in a dimensionality reduction which is more known to preserve global structure rather than local structure). As shown in the new Supplementary Figure S3 (A-D), the high jaccard index confirmed that our projections accurately reflect the data’s structure obtained from raw distance measurements. Moreover, the jaccard index generally increased over time, which is best explained by a stronger morphological similarity of organoids at timepoint 0 and reflected by the dense point cloud in the TSNE projections at that timepoint. The described effects were independent of the usage of data derived from 20 PCs versus data derived from all 165 dimensions.

      We next wanted to confirm the conclusion that data points obtained from organoids at later timepoints were more closely related to each other than data points from different organoids. We therefore identified the 30 nearest neighbor data points, showing that at later timepoints these 30 nearest neighbor data points were almost all attributable to the same organoid (new Supplementary Figure S3 E/F). This was only not the case for experiments that lacked in between timepoints (E007 and E002), therefore misaligning the organoids in the reduced space and convoluting the nearest neighbor analysis.

      We have included the respective new Figures and new Supplementary Figures and linked them in the main manuscript.

      Statistical Reporting and Significance: The manuscript focuses on F1-score as the metric to report accuracy over time, which is appropriate. However, it's not explicitly stated whether any statistical significance tests were performed on the differences between methods (e.g., CNN vs human, CNN vs classical ML). Suggestion: The authors could report statistical significance of the performance differences, perhaps using a permutation test or McNemar's test on predictions. For example, is the improvement of the CNN ensemble over the Random Forest/QDA classifier statistically significant across experiments? Given the n of organoids, this should be assessable. Demonstrating significance would add rigor to the analysis.

      Response: We thank the reviewer for this helpful suggestion. Following the recommendation, we quantified per-experiment differences in predictive performance by calculating the area under the F1-score curves (AUC) for each classifier and experiment. We then compared methods using paired Wilcoxon signed-rank tests across experiments, with Holm-Bonferroni correction for multiple comparisons. This analysis confirmed that the CNN consistently and significantly outperformed the baseline models and classical machine learning classifiers in validation and test organoids, while CNNs were notably but not significantly better performing in test organoids for RPE area and lens sizes compared to the machine learning classifiers. In summary, the findings add the requested statistical rigor to our findings. The results of these tests are now provided in the Supplementary Material as Supplementary File 1.

      Minor Issues (with Suggestions):

      1. Data Availability: Given the resource-intensive nature of the work, the value to the community will be highest if the data is made publicly available. I understand that this is of course at the behest of the authors and they do mention that they will make the data available upon publication of the manuscript. For the time being, the authors can consider sharing at least a representative subset of the data or the trained model weights. This will allow others to build on their work and test the method in other contexts, amplifying the impact of the study.

      Response: We have now made the repository and raw data public and apologize for this oversight. The link for the github repository is now provided in the manuscript under “Data availability”, while the links for the datasets are contained within the github repository.

      Discussion - Future Directions: The Discussion does a good job of highlighting applications (like guiding molecular analysis). One minor addition could be speculation on using this approach to actively intervene: for example, could one imagine altering culture conditions mid-course for organoids predicted not to form RPE, to see if their fate can be changed? The authors touch on reducing variability by focusing on the window of determination; extending that thought to an experimental test (though not done here) would inspire readers. This is entirely optional, but a sentence or two envisioning how predictive models enable dynamic experimental designs (not just passive prediction) would be a forward-looking note to end on.

      Response: We thank the reviewer for this constructive suggestion. We have expanded the discussion to briefly address how predictive modeling could go beyond passive observation. Specifically, we now discuss that predictive models may enable dynamic interventions, such as altering culture conditions mid-course for organoids predicted not to form RPE, to test whether their developmental trajectory can be redirected. While outside the scope of the present work, this forward-looking perspective emphasizes how predictive modeling could inspire adaptive experimental strategies in future studies.

      I believe with the above clarifications and enhancements - especially regarding generalizability and interpretability - the paper will be suitable for broad readership. The work represents an exciting intersection of developmental biology and AI, and I commend the authors for this contribution.

      Response: We thank the reviewer for the positive assessment and their encouraging remarks regarding the contribution of our work to these fields.

      Novelty and Impact:

      This work fills an important gap in organoid biology and imaging. Previous studies have used deep learning to link imaging with molecular profiles or spatial patterns in organoids, but there remained a "notable gap" in predicting whether and to what extent specific tissues will form in organoids. The authors' approach is novel in applying deep learning to prospectively predict organoid tissue outcomes (RPE and lens) on a per-organoid basis, something not previously demonstrated in retinal organoids. Conceptually, this is a significant advance: it shows that fate decisions in a complex 3D culture model can be predicted well in advance, suggesting the existence of subtle early morphogenetic cues that only a sophisticated model can discern. The findings will be of broad interest to researchers in organoid technology, developmental biology, and biomedical AI.

      Response: We thank the reviewer for this thoughtful and encouraging assessment. We agree that our study addresses an important gap by prospectively predicting tissue outcomes at the single-organoid level, and we appreciate the recognition that this represents a conceptual advance with relevance not only for retinal organoids but also for broader applications in organoid biology, developmental biology, and biomedical AI.

      Methodological Rigor and Technical Quality:

      The study is methodologically solid and carefully executed. The authors gathered a uniquely large dataset under consistent conditions, which lends statistical power to their analyses. They employ rigorous controls: an expert panel provided human predictions as a baseline, and a classical machine learning pipeline using quantitative image-derived features was implemented for comparison. The deep learning approach is well-chosen and technically sound. They use an ensemble of CNN architectures (DenseNet121, ResNet50, and MobileNetV3) pre-trained on large image databases, fine-tuning them on organoid images. The use of image segmentation (DeepLabV3) to isolate the organoid from background is appropriate to ensure the models focus on the relevant morphology. Model training procedures (data augmentation, cross-entropy loss with class balancing, learning rate scheduling, and cross-validation) are thorough and follow best practices. The evaluation metrics (primarily F1-score) are suitable for the imbalanced outcomes and emphasize prediction accuracy in a biologically relevant way. Importantly, the authors separate training, test, and validation sets in a meaningful manner: images of each organoid are grouped to avoid information leakage, and an independent experiment serves as a validation to test generalization. The observation that performance is slightly lower on independent validation experiments underscores both the realism of their evaluation and the inherent heterogeneity between experimental batches. In addition, the study integrates interpretability (using GradientSHAP-based relevance backpropagation) to probe what image features the network uses. Although the relevance maps did not reveal obvious human-interpretable features, the attempt reflects a commendable thoroughness in analysis. Overall, the experimental design, data analysis, and reporting are of high quality, supporting the credibility of the conclusions.

      Response: We thank the reviewer for their very positive and detailed assessment. We appreciate the recognition of our efforts to ensure methodological rigor and reproducibility, and we agree that interpretability remains an important but challenging area for future work.

      Reviewer #3 (Significance (Required)):

      Scientific Significance and Conceptual Advances:

      Biologically, the ability to predict organoid outcomes early is quite significant. It means researchers can potentially identify when and which organoids will form a given tissue, allowing them to harvest samples at the right moment for molecular assays or to exclude organoids that will not form the desired structure. The manuscript's results indicate that RPE and lens fate decisions in retinal organoids are made much earlier than visible differentiation, with predictive signals detectable as early as ~11 hours for RPE and ~4-5 hours for lens. This suggests a surprising synchronization or early commitment in organoid development that was not previously appreciated. The authors' introduction of deep learning-derived determination windows refines the concept of a developmental "point of no return" for cell fate in organoids. Focusing on these windows could help in pinpointing the molecular triggers of these fate decisions. Another conceptual advance is demonstrating that non-invasive imaging data can serve a predictive role akin to (or better than) destructive molecular assays. The study highlights that classical morphology metrics and even expert eyes capture mainly recognition of emerging tissues, whereas the CNN detects subtler, non-intuitive features predictive of future development. This underlines the power of deep learning to uncover complex phenotypic patterns that elude human analysis, a concept that could be extended to other organoid systems and developmental biology contexts. In sum, the work not only provides a tool for prediction but also contributes conceptual insights into the timing of cell fate determination in organoids.

      Response: We thank the reviewer for this thoughtful and positive assessment. We agree that the determination windows provide a valuable framework to study early fate decisions in organoids, and we have emphasized this point in the discussion to highlight the biological significance of our findings.

      Strengths:

      The combination of high-resolution time-lapse imaging with advanced deep learning is innovative. The authors effectively leverage AI to solve a biological uncertainty problem, moving beyond qualitative observations to quantitative predictions. The study uses a remarkably large dataset (1,000 organoids, >100k images), which is a strength as it captures variability and provides robust training data. This scale lends confidence that the model isn't overfit to a small sample. By comparing deep learning with classical machine learning and human predictions, the authors provide context for the model's performance. The CNN ensemble consistently outperforms both the classical algorithms and human experts, highlighting the value added by the new method. The deep learning model achieves high accuracy (F1 > 0.85) at impressively early time points. The fact that it can predict lens formation just ~4.5 hours into development with confidence is striking. Performance remained strong and exceeded human capability at all assessed times. Key experimental and analytical steps (segmentation, cross-validation between experiments, model calibration, use of appropriate metrics) are executed carefully. The manuscript is transparent about training procedures and even provides source code references, enhancing reproducibility. The manuscript is generally well-written with a logical flow from the problem (organoid heterogeneity) to the solution (predictive modeling) and clear figures referenced.

      Response: We thank the reviewer for this very positive and encouraging assessment of our study, particularly regarding the scale of our dataset, the methodological rigor, and the reproducibility of our approach.

      Weaknesses and Limitations:

      Generalizability Across Batches/Conditions: One limitation is the variability in model performance on organoids from independent experiments. The CNN did slightly worse on a validation set from a separate experiment, indicating that differences in the experimental batch (e.g., slight protocol or environmental variations) can affect accuracy. This raises the question of how well the model would generalize to organoids generated under different protocols or by other labs. While the authors do employ an experiment-wise cross-validation, true external validation (on a totally independent dataset or a different organoid system) would further strengthen the claim of general applicability.

      Response: We thank the reviewer for this important point. We agree that generalizability across batches and experimental conditions is a key consideration. We have carefully revised the discussion to explicitly address this limitation and to highlight the variability observed between independent experiments.

      Interpretability of the Predictions: Despite using relevance backpropagation, the authors were unable to pinpoint clear human-interpretable image features that drive the predictions. In other words, the deep learning model remains somewhat of a "black box" in terms of what subtle cues it uses at early time points. This limits the biological insight that can be directly extracted regarding early morphological indicators of RPE or lens fate. It would be ideal if the study could highlight specific morphological differences (even if minor) correlated with fate outcomes, but currently those remain elusive.

      Response: We thank the reviewer for raising this important point. Indeed, while our models achieved robust predictive performance, the underlying morphological cues remained difficult to interpret using relevance backpropagation. We believe this limitation reflects both the subtlety of the early predictive signals and the complexity of the features captured by deep learning models, which may not correspond to human-intuitive descriptors. We have clarified this limitation in the Discussion and Supplementary Note 1 and emphasize that further methodological advances in interpretability, or integration with complementary molecular readouts, will be essential to uncover the precise morphological correlates of fate determination.

      Scope of Outcomes: The study focuses on two particular tissues (RPE and lens) as the outcomes of interest. These were well-chosen as examples (one induced, one spontaneous), but they do not encompass the full range of retinal organoid fates (e.g., neural retina layers). It's not a flaw per se, but it means the platform as presented is specialized. The method might need adaptation to predict more complex or multiple tissue outcomes simultaneously.

      Response: We agree with the reviewer that our study focuses on two specific tissues, RPE and lens, which served as proof-of-concept outcomes representing both induced and spontaneous differentiation events. While this scope is necessarily limited, we believe it demonstrates the general feasibility of our approach. We have clarified in the Discussion that the same framework could, in principle, be extended to additional retinal fates such as neural retina layers, or even to multi-label prediction tasks, provided appropriate annotations are available. We now provide additional experiments showing that even abstract morphological classes are well predictable. This will be an important next step to broaden the applicability of our platform.

      Requirement of Large Data and Annotations: Practically, the approach required a very large imaging dataset and extensive manual annotation; each organoid's RPE and lens outcome, plus manual masking for training the segmentation model. This is a substantial effort that may be challenging to reproduce widely. The authors suggest that perhaps ~500 organoids might suffice to achieve similar results, but the data requirement is still high. Smaller labs or studies with fewer organoids might not immediately reap the full benefits of this approach without access to such imaging throughput.

      Response: We thank the reviewer for highlighting this important point. We agree that the generation of a large imaging dataset and the associated annotations represent a substantial investment of time and resources. At the same time, we consider this effort highly relevant, as it reflects the intrinsic heterogeneity of organoid systems rather than technical artifacts, and therefore ensures robust model training. We have clarified this limitation in the discussion. While our full dataset included ~1,000 organoids, our downsampling analysis suggests that as few as ~500 organoids may already be sufficient to reproduce the key findings, which we believe makes the approach feasible for many organoid systems (compare new Supplementary Note 1). Moreover, as we outline in the Discussion, future refinements such as combining image- and tabular-based features or incorporating fluorescence data could further enhance predictive power and reduce annotation effort.

      Medaka Fish vs. Other Systems: The retinal organoids in this study appear to be from medaka fish, whereas much organoid research uses human iPSC-derived organoids. It's not fully clear in the manuscript as to how the findings translate to mammalian or human organoids. If there are species-specific differences, the applicability to human retinal organoids (which are important for disease modeling) might need discussion. This is a minor point if the biology is conserved, but worth noting as a potential limitation.

      Response: We thank the reviewer for pointing out this important consideration. We have now explicitly clarified in the Discussion that our proof-of-concept study was performed in medaka organoids, which offer high reproducibility and rapid development. While species-specific differences may exist, the predictive framework is not inherently restricted to medaka and should, in principle, be transferable to mammalian or human iPSC/ESC-derived organoids, provided sufficiently annotated datasets are available. We have amended the Discussion accordingly.

      Predicting Tissue Size is Harder: The model's accuracy in predicting how much tissue (relative area) an organoid will form, while good, is notably lower than for simply predicting presence/absence. Final F1 scores for size classes (~0.7) indicate moderate success. This implies that quantitatively predicting organoid phenotypic severity or extent is more challenging, perhaps due to more continuous variation in size. The authors do acknowledge the lower accuracy for size and treat it carefully.

      Response: We thank the reviewer for this observation and agree with their interpretation. We have already acknowledged in the manuscript that predicting tissue size is more challenging than predicting tissue presence/absence, and we believe we have treated these results with appropriate caution in the revised version of the manuscript.

      Latency vs. Determination: While the authors narrow down the time window of fate determination, it remains somewhat unclear whether the times at which the model reaches high confidence truly correspond to the biological "decision point" or are just the earliest detection of its consequences. The manuscript discusses this caveat, but it's an inherent limitation that the predictive time point might lag the actual internal commitment event. Further work might be needed to link these predictions to molecular events of commitment.

      Response: We agree with the reviewer. As noted in the Discussion, the time points identified by our models likely reflect the earliest detectable morphological consequences of fate determination, rather than the exact molecular commitment events themselves. Establishing a direct link between predictive signals and underlying molecular mechanisms will require future experimental work.

    1. And crawled head downward down a blackened wall And upside down in air were towers Tolling reminiscent bells, that kept the hours And voices singing out of empty cisterns and exhausted wells

      Last year, Addie annotated this exact section and described how Eliot purposefully confuses the reader's sense of right-side-up and upside-down. In an especially insightful section of analysis she claims that if the reader were to orient herself with respect to Dracula (whom "crawled head downward down a blackened wall"), the tower down which he crawls becomes inverted - and the corresponding Tarot Card, the Dark Tower, is similarly flipped. Nested in this idea is a broader understanding: that in the chaos and turbulency of the modern world, the only form of agency we truly have is our perspective. When Dracula is flipped upside down, the world appears to him inverted; and though in fact it remains exactly the same as it always was, in his mind's eye all has been reoriented. That's precisely Eliot's point. Though the world itself may be a wasteland, there exists a copy of this world - a world of shadows, of impressions, of perspectives and opinions - which is completely up to interpretation. I think he invokes Tarot as a way of imbuing this doppelganger realm with purpose and value: Tarot is all about perspective. Your interpretation of the card, and what it tells you about your life in this theoretical duplicate of reality, informs the way you act in the real physical world - and so perhaps our agency, though constrained to our own perspectives, is more powerful than we think. The following two lines are relevant insofar as they condense several central thematic discussions: the voices, time, familiarity and remembrance, and water. All of these strands weave together a picture of reality IN FACT: that is, a world in which people are consigned to make the same mistakes over and over, a world where several voices overlap but never really hear one another, a world analogous to a dry rock. I think Eliot piles up all these images to drive home the fact that though our perspectives may change (though the Dark Tower may become inverted, or vice versa), objective reality is constant. In this way he DOES put a pessimistic constraint on the extent to which our conception of life can actually influence the events occuring around us; but nevertheless I do think there are some shards of positivity embedded in there.

    2. But dry sterile thunder without rain

      This line stood out to me due to its connection with the title "What the Thunder said," and similar connotation to the Gospel of John. This line appears after a somewhat odd repetition of a lack of water within the land. Rather, the speaker is left in a desolate landscape of "only rock." One may think that this baren image would also prompt a stillness of silence in nature. However, Eliot is quick to point out the presence of loud booms of thunder in my highlighted line. In particular, the thunder is "dry and sterile," therefor connecting to the state of the land; the rocky terrain is indeed also dry due to the emphasized absence of water and also sterile as a result. In The Gospel of John (line 29), thunder holds a contrasting purpose. 29] The people therefore, that stood by, and heard it, said that it thundered: others said, An angel spake to him. Therefore, the voice of God in John is expressed through thunder, showing the great force of divinity over the world. However, Eliot's vivid descriptions of the thunder in his wasteland could not be more different. The thunder is "dry and sterile." and in my opinion, lacks the religious importance evident in John, In connection the title, my reading of this line suggests that Eliot does not believe the thunder is saying anything (What the Thunder Said). Instead, we are trapped in a dry and sterile land mass with no divine connection to guide us out.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02830

      Corresponding author(s): Julien, Sage

      1. General Statements

      We thank the Reviewers for a fair review of our work and helpful suggestions. We have significantly revised the manuscript in response to these suggestions. We provide a point-by-point response to the Reviewers below but wanted to highlight in our response a recurring concern related to the strong cell cycle arrest observed upon the acute FAM53C knock-down being different than the limited phenotypes in other contexts, including the knockout mice and DepMap data.

      First, we now show that we can recapitulate the strong G1 arrest resulting from the FAM53C knock-down using two independent siRNAs in RPE-1 cells, supporting the specificity of the effects.

      Second, the G1 arrest that results from the FAM53C knock-down is also observed in cells with inactive p53, suggesting it is not due to a non-specific stress response due to “toxic” siRNAs. In addition, the arrest is dependent on RB, which fits with the genetic and biochemical data placing FAM53C upstream of RB, further supporting a specific phenotype.

      Third, we have performed experiments in other human cells, including cancer cell lines. As would be expected for cancer cells, the G1 arrest is less pronounced but is still significant, indicating that the G1 arrest is not unique to RPE-1 cells.

      Fourth, it is not unexpected that compensatory mechanisms would be activated upon loss of FAM53C during development or in cancer – which may explain the lack of phenotypes in vivo or upon long-term knockout. This has been true for many cell cycle regulators, either because of compensation by other family members that have overlapping functions, or by a larger scale rewiring of signaling pathways.

      2. Point-by-point description of the revisions

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      Summary:

      Taylar Hammond and colleagues identified new regulators of the G1/S transition of the cell cycle. They did so by screening public available data from the Cancer Dependency Map, and identified FAM53C as a positive regulator of the G1/S transition. Using biochemical assays they then show that FAM53 interacts with the DYRK1A kinase to inhibit its function. DYRK1A in its is known to induce degradation of cyclin D, leading the authors to propose a model in which DYRK1A-dependent cyclin D degradation is inhibited by FAM53C to permit S-phase entry. Finally the authors assess the effect of FAM53C deletion in a cortical organoid model, and in Fam53c knockout mice. Whereas proliferation of the organoids is indeed inhibited, mice show virtually no phenotype.

      Major comments:

      The authors show convincing evidence that FAM53C loss can reduce S-phase entry in cell cultures, and that it can bind to DYRK1A. However, FAM53 has multiple other binding partners and I am not entirely convinced that negative regulation of DYRK1A is the predominant mechanism to explain its effects on S-phase entry. Some of the claims that are made based on the biochemical assays, and on the physiological effects of FAM53C are overstated. In addition, some choices made methodology and data representation need further attention.

      1. The authors do note that P21 levels increase upon FAM53C. They show convincing evidence that this is not a P53-dependent response. But the claim that " p21 upregulation alone cannot explain the G1 arrest in FAM53C-deficient cells (line 138-139) is misleading. A p53-independent p21 response could still be highly relevant. The authors could test if FAM53C knockdown inhibits proliferation after p21 knockdown or p21 deletion in RPE1 cells. The Reviewer raises a great point. Our initial statement needed to be clarified and also need more experimental support. We have performed experiments where we knocked down FAM53C and p21 individually, as well as in combination, in RPE-1 cells. These experiment show that p21 knock-down is not sufficient to negate the cell cycle arrest resulting from the FAM53C knock-down in RPE-1 cells (Figure 4B,C and Figure S4C,D).

      We now extended these experiments to conditions where we inhibited DYRK1A, and we also compared these data to experiments in p53-null RPE-1 cells. Altogether, these experiments point to activation of p53 downstream of DYRK1A activation upon FAM53C knock-down, and indicate that p21 is not the only critical p53 target in the cell cycle arrest observed in FAM53C knock-down cells (Figure 4 and Figure S4).

      The authors do not convincingly show that FAM53C acts as a DYRK1A inhibitor in cells. Figures 4B+C and S4B+C show extremely faint P-CycD1 bands, and tiny differences in ratios. The P values are hovering around the 0.05, so n=3 is clearly underpowered here. Total CycD1 levels also correlate with FAM53C levels, which seems to affect the ratios more than the tiny pCycD1 bands. Why is there still a pCycD1 band visible in 4B in the GFP + BTZ + DYRK1Ai condition? And if I look at the data points I honestly don't understand how the authors can conclude from S4C that knockdown of siFAM53C increases (DYRK1A dependent) increases in pCycD1 (relative to total CycD1). In figure 5C, no blot scans are even shown, and again the differences look tiny. So the authors should either find a way to make these assays more robust, or alter their claims appropriately.

      We appreciate these comments from the Reviewer and have significantly revised the manuscript to address them.

      The analysis of Cyclin D phosphorylation and stability are complicated by the upregulation of p21 upon FAM53C knock-down, in particular because p21 can be part of Cyclin D complexes, which may affect its protein levels in cells (as was nicely showed in a previous study from the lab of Tobias Meyer – Chen et al., Mol Cell, 2013). Instead of focusing on Cyclin D levels and stability, we refocused the manuscript on RB and p53 downstream of FAM53C loss.

      We removed previous panel 4B from the revised manuscript. For panels 4E and S4B (now panels S3J and S3K)), we used a true “immunoassay” (as indicated in the legend – not an immunoblot), which is much more quantitative and avoids error-prone steps in standard immunoblots (“Western blots”). Briefly, this system was developed by ProteinSimple. It uses capillary transfer of proteins and ELISA-like quantification with up to 6 logs of dynamic range (see their web site https://www.proteinsimple.com/wes.html). The “bands” we show are just a representation of the luminescence signals in capillaries. We made sure to further clarify the figure legends in the revised manuscript.

      The representative Western blot images for 5C-D (now 5F-G) in the original submission are shown in Figure 5E, we apologize if this was not clear. The differences are small, which we acknowledge in the revised manuscript. Note that several factors can affect Cyclin D levels in cells, including the growth rate and the stage of the cell cycle. Our FACS analysis shows that normal organoids have ~63% of cells in G1 and ~13% in S phase; the overall lower proportion of S-phase cells in organoids may make the immunoblot difference appear smaller, with fewer cycling cells resulting in decreased Cyclin D phosphorylation.

      Nevertheless, the Reviewer brings up a good point and comments from this Reviewer and the others made us re-think how to best interpret our results. As discussed above, we re-read carefully the Meyer paper and think that FAM53C’s role and DYRK1A activity in cells may be understood when considering levels of both CycD and p21 at the same time in a continuum. While our genetic and biochemical data support a role for FAM53C in DYRK1A inhibition, it is likely that the regulation of cell cycle progression by FAM53C is not exclusively due to this inhibition. As discussed above and below, we noted an upregulation of p21 upon FAM53C knock-down, and activation of p53 and its targets likely contributes significantly to the phenotypes observed. We added new experiments to support this more complex model (Figure 4 and Figure S4, with new model in S4L).

      The experiments to test if DYRK1A inhibition could rescue the G1 arrest observed upon FAM53C knockdown are not entirely convincing either. It would be much more convincing if they also perform cell counting experiments as they have done in Figures 1F and 1G, to complement the flow cytometry assays. I suggest that the authors do these cell counting experiments in RPE1 +/- P53 cells as well as HCT116 cells. In addition, did the authors test if P21 is induced by DYRK1Ai in HCT116 cells?

      We repeated the experiments with the DYRK1A inhibitor and counted the cells. In p53-null RPE-1 cells, we found that cell numbers do not increase in these conditions where we had observed a cell cycle re-entry (Fig. 4E), which was accompanied by apoptotic cell death (Fig. S4I). Thus, cells re-enter the cell cycle but die as they progress through S-phase and G2/M. We note that inhibition of DYRK1A has been shown to decrease expression of G2/M regulators (PMID: 38839871), which may contribute to the inability of cells treated to DYRK1Ai to divide. Because our data in RPE-1 cells showed that p21 knock-down was not sufficient to allow the FAM53C knock-down cells to re-enter the cell cycle, we did not further analyze p21 in HCT-116 cells.

      The data in Figure 5C and 5D are identical, although they are supposed to represent either pCycD1 ratios or p21 levels. This is a problem because at least one of the two cannot be true. Please provide the proper data and show (representative) images of both data types.

      We apologize for these duplicated panels in the original submission. We now replaced the wrong panel with the correct data (Fig. 5F,G).

      Line 246: "Fam53c knockout mice display developmental and behavioral defects." I don't agree with this claim. The mutant mice are born at almost the expected Mendelian ratios, the body weight development is not consistently altered. But more importantly, no differences in adult survival or microscopic pathology were seen. The authors put strong emphasis on the IMPC behavioral analysis, but they should be more cautious. The IMPC mouse cohorts are tested for many other phenotypes related to behavior and neurological symptoms and apparently none of these other traits were changed in the IMPC Famc53c-/- cohort. Thus, the decreased exploration in a new environment could very well be a chance finding. The authors need to take away claims about developmental and behavioral defects from the abstract, results and discussion sections; the data are just too weak to justify this.

      We agree with the Reviewer that, although we observed significant p-values, this original statement may not be appropriate in the biological sense. We made sure in the revised manuscript to carefully present these data.

      Minor comments:

      Can the authors provide a rationale for each of the proteins they chose to generate the list of the 38 proteins in the DepMap analysis? I looked at the list and it seems to me that they do not all have described functions in the G1/S transition. The analysis may thus be biased.

      To address this point, we updated Table S1 (2nd tab) to provide a better rationale for the 38 factors chosen. Our focus was on the canonical RB pathway and we included RB binding proteins whose function had suggested they may also be playing a role in the G1/S transition. We do agree that there is some bias in this selection (e.g., there are more RB binding factors described) but we hope the Reviewer will agree with us that this list and the subsequent analysis identified expected factors, including FAM53C. Future studies using this approach and others will certainly identify new regulators of cell cycle progression.

      Figure 1B is confusing to me. Are these just some (arbitrarily) chosen examples? Consider leaving this heatmap out altogether, of explain in more detail.

      We agree with the Reviewer that this panel was not necessarily useful and possibly in the wrong place, and we removed it from the manuscript. We replaced it with a cartoon of top hits in the screen.

      The y-axes in Figures 2C, 2D, 2E, and 4D are misleading because they do not start at 0. Please let the axis start at 0, or make axis breaks.

      We re-graphed these panels.

      Line 229: " Consequences ... brain development." This subheader is misleading, because the in vitro cortical organoid system is a rather simplistic model for brain development, and far away from physiological brain development. Please alter the header.

      We changed the header to “Consequences of FAM53C inactivation in human cortical organoids in culture”.

      Figure S5F: the gating strategy is not clear to me. In particular, how do the authors know the difference between subG1 and G1 DAPI signals? Do they interpret the subG1 as apoptotic cells? If yes, why are there so many? Are the culturing or harvesting conditions of these organoids suboptimal? Perhaps the authors could consider doing IF stainings on EdU or BrdU on paraffin sections of organoids to obtain cleaner data?

      Thank you for your feedback. The subG1 population in the original Figure S5F represents cells that died during the dissociation step of the organoids for FACS analysis. To address this point, we performed live & dead staining to exclude dead cells and provide clearer data. We refined gating strategy for better clarity in the new S5F panel.

      Figure S6A; the labeling seems incorrect. I would think that red is heterozygous here, and grey mutant.

      We fixed this mistake, thank you.

      __Reviewer #1 (Significance (Required)): __

      The finding that the poorly studied gene FAM53C controls the G1/S transition in cell lines is novel and interesting for the cell cycle field. However, the lack of phenotypes in Famc53-/- mice makes this finding less interesting for a broader audience. Furthermore, the mechanisms are incompletely dissected. The importance of a p53-indepent induction of p21 is not ruled out. And while the direct inhibitory interaction between FAM53C and DYRK1A is convincing (and also reported by others; PMID: 37802655), the authors do not (yet) convincingly show that DYRK1A inhibition can rescue a cell proliferation defect in FAM53C-deficient cells.

      Altogether, this study can be of interest to basic researchers in the cell cycle field.

      I am a cell biologist studying cell cycle fate decisions, and adaptation of cancer cells & stem cells to (drug-induced) stress. My technical expertise aligns well with the work presented throughout this paper, although I am not familiar with biolayer interferometry.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Summary

      In this study Hammond et al. investigated the role of Dual-specificity Tyrosine Phosphorylation regulated Kinase 1A (DYRK1) in G1/S transition. By exploiting Dependency Map portal, they identified a previously unexplored protein FAM53C as potential regulator of G1/S transition. Using RNAi, they confirmed that depletion of FAM53C suppressed proliferation of human RPE1 cells and that this phenotype was dependent on the presence protein RB. In addition, they noted increased level of CDKN1A transcript and p21 protein that could explain G1 arrest of FAM53C-depleted cells but surprisingly, they did not observe activation of other p53 target genes. Proteomic analysis identified DYRK1 as one of the main interactors of FAM53C and the interaction was confirmed in vitro. Further, they showed that purified FAM53C blocked the ability of DYRK1 to phosphorylate cyclin D in vitro although the activity of DYRK1 was likely not inhibited (judging from the modification of FAM53C itself). Instead, it seems more likely that FAM53C competes with cyclin D in this assay. Authors claim that the G1 arrest caused by depletion of FAM53C was rescued by inhibition of DYRK1 but this was true only in cells lacking functional p53. This is quite confusing as DYRK1 inhibition reduced the fraction of G1 cells in p53 wild type cells as well as in p53 knock-outs, suggesting that FAM53C may not be required for regulation of DYRK1 function. Instead of focusing on the impact of FAM53C on cell cycle progression, authors moved towards investigating its potential (and perhaps more complex) roles in differentiation of IPSCs into cortical organoids and in mice. They observed a lower level of proliferating cells in the organoids but if that reflects an increased activity of DYRK1 or if it is just an off target effect of the genetic manipulation remains unclear. Even less clear is the phenotype in FAM53C knock-out mice. Authors did not observe any significant changes in survival nor in organ development but they noted some behavioral differences. Weather and how these are connected to the rate of cellular proliferation was not explored. In the summary, the study identified previously unknown role of FAM53C in proliferation but failed to explain the mechanism and its physiological relevance at the level of tissues and organism. Although some of the data might be of interest, in current form the data is too preliminary to justify publication.

      Major points

      1. Whole study is based on one siRNA to Fam53C and its specificity was not validated. Level of the knock down was shown only in the first figure and not in the other experiments. The observed phenotypes in the cell cycle progression may be affected by variable knock-down efficiency and/or potential off target effects. We thank the Reviewer for raising this important point. First, we need to clarify that our experiments were performed with a pool of siRNAs (not one siRNA). Second, commercial antibodies against FAM53C are not of the best quality and it has been challenging to detect FAM53C using these antibodies in our hands – the results are often variable. In addition, to better address the Reviewer’s point and control for the phenotypes we have observed, we performed two additional series of experiments: first, we have confirmed G1 arrest in RPE-1 cells with individual siRNAs, providing more confidence for the specificity of this arrest (Fig. S1B); second, we have new data indicating that other cell lines arrest in G1 upon FAM53C knock-down (Fig. S1E,F and Fig. 4F).

      Experiments focusing on the cell cycle progression were done in a single cell line RPE1 that showed a strong sensitivity to FAM53C depletion. In contrast, phenotypes in IPSCs and in mice were only mild suggesting that there might be large differences across various cell types in the expression and function of FAM53C. Therefore, it is important to reproduce the observations in other cell types.

      As mentioned above, we have new data indicating that other cell lines arrest in G1 upon FAM53C knock-down (three cancer cell lines) (Fig. S1E,F and Fig. 4F).

      Authors state that FAM53C is a direct inhibitor of DYRK1A kinase activity (Line 203), however this model is not supported by the data in Fig 4A. FAM53C seems to be a good substrate of DYRK1 even at high concentrations when phosphorylations of cyclin D is reduced. It rather suggests that DYRK1 is not inhibited by FAM53C but perhaps FAM53C competes with cyclin D. Further, authors should address if the phosphorylation of cyclin D is responsible for the observed cell cycle phenotype. Is this Cyclin D-Thr286 phosphorylation, or are there other sites involved?

      We revised the text of the manuscript to include the possibility that FAM53C could act as a competitive substrate and/or an inhibitor.

      We removed most of the Cyclin D phosphorylation/stability data from the revised manuscript. As the Reviewers pointed out, some of these data were statistically significant but the biological effects were small. As discussed above in our response to Reviewer #1, the analysis of Cyclin D phosphorylation and stability are complicated by the upregulation of p21 upon FAM53C knock-down, in particular because p21 can be part of Cyclin D complexes, which may affect its protein levels in cells (as was nicely showed in a previous study from the lab of Tobias Meyer – Chen et al., Mol Cell, 2013). Instead of focusing on Cyclin D levels and stability, we refocused the manuscript on RB and p53 downstream of FAM53C loss.

      We note, however, that we used specific Thr286 phospho-antibodies, which have been used extensively in the field. Our data in Figure 1 with palbociclib place FAM53C upstream of Cyclin D/CDK4,6. We performed Cyclin D overexpression experiments but RPE-1 cells did not tolerate high expression of Cyclin D1 (T286A mutant) and we have not been able to conduct more ‘genetic’ studies.

      At many places, information on statistical tests is missing and SDs are not shown in the plots. For instance, what statistics was used in Fig 4C? Impact of FAM53C on cyclin D phosphorylation does not seem to be significant. In the same experiment, does DYRK1 inhibitor prevent modification of cyclin D?

      As discussed above, we removed some of these data and re-focused the manuscript on p53-p21 as a second pathway activated by loss of FAM53C.

      Validation of SM13797 compound in terms of specificity to DYRK1 was not performed.

      This is an important point. We had cited an abstract from the company (Biosplice) but we agree that providing data is critical. We have now revised the manuscript with a new analysis of the compound’s specificity using kinase assays. These data are shown in Fig. S3F-H.

      A fraction of cells in G1 is a very easy readout but it does not measure progression through the G1 phase. Extension of the S phase or G2 delay would indirectly also result in reduction of the G1 fraction. Instead, authors could measure the dynamics of entry to S phase in cells released from a G1 block or from mitotic shake off.

      The Reviewer made a good point. As discussed in our response to Reviewer #1, with p53-null RPE-1 cells, we found that cell numbers do not increase in these conditions where we had observed a cell cycle re-entry (Fig. 4E), which was accompanied by apoptotic cell death (Fig. S4I). Thus, cells re-enter the cell cycle but die as they progress through S-phase and G2/M. We note that inhibition of DYRK1A has been shown to decrease expression of G2/M regulators (PMID: 38839871), which may contribute to the inability of cells treated to DYRK1Ai to divide. Because our data in RPE-1 cells showed that p21 knock-down was not sufficient to allow the FAM53C knock-down cells to re-enter the cell cycle, we did not further analyze p21 in HCT-116 cells. These data indicate that G1 entry by flow cytometry will not always translate into proliferation.

      Other points:

      Fig. 2C, 2D, 2E graphs should begin with 0

      We remade these graphs.

      Fig. 5D shows that the difference in p21 levels is not significant in FAM53C-KO cells but difference is mentioned in the text.

      We replaced the panel by the correct panel; we apologize for this error.

      Fig. 6D comparison of datasets of extremely different sizes does not seem to be appropriate

      We agree and revised the text. We hope that the Reviewer will agree with us that it is worth showing these data, which are clearly preliminary but provide evidence of a possible role for FAM53C in the brain.

      Could there be alternative splicing in mice generating a partially functional protein without exon 4? Did authors confirm that the animal model does not express FAM53C?

      We performed RNA sequencing of mouse embryonic fibroblasts derived from control and mutant mice. We clearly identified fewer reads in exon 4 in the knockout cells, and no other obvious change in the transcript (data not shown). However, immunoblot with mouse cells for FAM53C never worked well in our hands. We made sure to add this caveat to the revised manuscript.

      __Reviewer #2 (Significance (Required)): __

      Main problem of this study is that the advanced experimental models in IPSCs and mice did not confirm the observations in the cell lines and thus the whole manuscript does not hold together. Although I acknowledge the effort the authors invested in these experiments, the data do not contribute to the main conclusion of the paper that FAM53C/DYRK1 regulates G1/S transition.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This paper identifies FAM53C as a novel regulator of cell cycle progression, particularly at the G1/S transition, by inhibiting DYRK1A. Using data from the Cancer Dependency Map, the authors suggest that FAM53C acts upstream of the Cyclin D-CDK4/6-RB axis by inhibiting DYRK1A.

      Specifically, their experiments suggest that FAM53C Knockdown induces G1 arrest in cells, reducing proliferation without triggering apoptosis. DYRK1A Inhibition rescues G1 arrest in P53KO cells, suggesting FAM53C normally suppresses DYRK1A activity. Mass Spectrometry and biochemical assays confirm that FAM53C directly interacts with and inhibits DYRK1A. FAM53C Knockout in Human Cortical Organoids and Mice leads to cell cycle defects, growth impairments, and behavioral changes, reinforcing its biological importance.

      Strength of the paper:

      The study introduces a novel cell cycle control signalling module upstream of CDK4/6 in G1/S regulation which could have significant impact. The identification of FAM53C using a depmap correlation analysis is a nice example of the power of this dataset. The experiments are carried out mostly in a convincing manner and support the conclusions of the manuscript.

      Critique:

      1) The experiments rely heavily on siRNA transfections without the appropriate controls. There are so many cases of off-target effects of siRNA in the literature, and specifically for a strong phenotype on S-phase as described here, I would expect to see solid results by additional experiments. This is especially important since the ko mice do not show any significant developmental cell cycle phenotypes. Moreover, FAM53C does not show a strong fitness effect in the depmap dataset, suggesting that it is largely non-essential in most cancer cell lines. For this paper to reach publication in a high-standard journal, I would expect that the authors show a rescue of the S-phase phenotype using an siRNA-resistant cDNA, and show similar S-phase defects using an acute knock out approach with lentiviral gRNA/Cas9 delivery.

      We thank the Reviewer for this comment. Please refer to the initial response to the three Reviewers, where we discuss our use of single siRNAs and our results in multiple cell lines. Briefly, we can recapitulate the G1 arrest upon FAM53C knock-down using two independent siRNAs in RPE-1 cells. We also observe the same G1 arrest in p53 knockout cells, suggesting it is not due to a non-specific stress response. In addition, the arrest is dependent on RB, which fits with the genetic and biochemical data placing FAM53C upstream of RB, further supporting a specific phenotype. Human cancer cell lines also arrest in G1 upon FAM53C knock-down, not just RPE-1 cells. Finally, we hope the Reviewer will agree with us that compensatory mechanisms are very common in the cell cycle – which may explain the lack of phenotypes in vivo or upon long-term knockout of FAM53C.

      2) The S-phase phenotype following FAM53C should be demonstrated in a larger variety of TP53WT and mutant cell lines. Given that this paper introduces a new G1/S control element, I think this is important for credibility. Ideally, this should be done with acute gRNA/Cas9 gene deletion using a lentiviral delivery system; but if the siRNA rescue experiments work and validate an on-target effect, siRNA would be an appropriate alternative.

      We now show data with three cancer cell lines (U2OS, A549, and HCT-116 – Fig. S1E,F and Fig. 4F), in addition to our results in RPE-1 cells and in human cortical organoids. We note that the knock-down experiments are complemented by overexpression data (Fig. 1G-I), by genetic data (our original DepMap screen), and our biochemical data (showing direct binding of FAM53C to DYRK1A).

      3) The western blot images shown in the MS appear heavily over-processed and saturated (See for example S4B, 4A, B, and E). Perhaps the authors should provide the original un-processed data of the entire gels?

      For several of our panels (e.g., 4E and S4B, now panels S3J and S3K)), we used a true “immunoassay” (as indicated in the legend – not an immunoblot), which is much more quantitative and avoids error-prone steps in standard immunoblots (“Western blots”). Briefly, this system was developed by ProteinSimple. It uses capillary transfer of proteins and ELISA-like quantification with up to 6 logs of dynamic range (see their web site https://www.proteinsimple.com/wes.html). The “bands” we show are just a representation of the luminescence signals in capillaries. We made sure to further clarify the figure legends in the revised manuscript.

      Data in 4A are also not a western blot but a radiograph.

      For immunoblots, we will provide all the source data with uncropped blots with the final submission.

      4) A critical experiment for the proposed mechanism is the rescue of the FAM53C S-phase reduction using DYRK1A inhibition shown in Figure 4. The legend here states that the data were extracted from BrdU incorporation assays, but in Figure S4D only the PI histograms are shown, and the S-phase population is not quantified. The authors should show the BrdU scatterplot and quantify the phenotype using the S-phase population in these plots. G1 measurements from PI histograms are not precise enough to allow for conclusions. Also, why are the intensities of the PI peaks so variable in these plots? Compare, for example, the HCT116 upper and lower panels where the siRNA appears to have caused an increase in ploidy.

      We apologize for the confusion and we fixed these errors, for most of the analyses, we used PI to measure G1 and S-phase entry. We added relevant flow cytometry plots to supplemental figures (Fig. S1G, H, I, as well as Fig. S4E and S4K, and Fig. S5F).

      5) There's an apparent contradiction in how RB deletion rescues the G1 arrest (Figure 2) while p21 seems to maintain the arrest even when DYRK1A is inhibited. Is p21 not induced when FAM53C is depleted in RB ko cells? This should be measured and discussed.

      This comment and comments from the two other Reviewers made us reconsider our model. We re-read carefully the Meyer paper and think that DYRK1A activity may be understood when considering levels of both CycD and p21 at the same time in a continuum (as was nicely showed in a previous study from the lab of Tobias Meyer – Chen et al., Mol Cell, 2013). While our genetic and biochemical data support a role for FAM53C in DYRK1A inhibition, it is obvious that the regulation of cell cycle progression by FAM53C is not exclusively due to this inhibition. As discussed above and below, we noted an upregulation of p21 upon FAM53C knock-down, and activation of p53 and its targets likely contributes significantly to the phenotypes observed. We added new experiments to support this more complex model (Figure 4 and Figure S4, with new model in S4L).

      __Reviewer #3 (Significance (Required)): __

      In conclusion, I believe that this MS could potentially be important for the cell cycle field and also provide a new target pathway that could be relevant for cancer therapy. However, the paper has quite a few gaps and inconsistencies that need to be addressed with further experiments. My main worry is that the acute depletion phenotypes appear so strong, while the gene is non-essential in mice and shows only a minor fitness effect in the depmap screens. More convincing controls are necessary to rule out experimental artefacts that misguide the interpretation of the results.

      We appreciate this comment and hope that the Reviewer will agree it is still important to share our data with the field, even if the phenotypes in mice are modest.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank all the reviewers for their valuable comments and criticisms. We have thoroughly revised the manuscript and the resource to address all the points raised by the reviewers. Below, we provide a point-by-point response for the sake of clarity.

      Reviewer #1

      __Evidence, reproducibility and clarity __

      Summary: This manuscript, "MAVISp: A Modular Structure-Based Framework for Protein Variant Effects," presents a significant new resource for the scientific community, particularly in the interpretation and characterization of genomic variants. The authors have developed a comprehensive and modular computational framework that integrates various structural and biophysical analyses, alongside existing pathogenicity predictors, to provide crucial mechanistic insights into how variants affect protein structure and function. Importantly, MAVISp is open-source and designed to be extensible, facilitating reuse and adaptation by the broader community.

      Major comments: - While the manuscript is formally well-structured (with clear Introduction, Results, Conclusions, and Methods sections), I found it challenging to follow in some parts. In particular, the Introduction is relatively short and lacks a deeper discussion of the state-of-the-art in protein variant effect prediction. Several methods are cited but not sufficiently described, as if prior knowledge were assumed. OPTIONAL: Extend the Introduction to better contextualize existing approaches (e.g., AlphaMissense, EVE, ESM-based predictors) and clarify what MAVISp adds compared to each.

      We have expanded the introduction on the state-of-the-art of protein variant effects predictors, explaining how MAVISp departs from them.

      - The workflow is summarized in Figure 1(b), which is visually informative. However, the narrative description of the pipeline is somewhat fragmented. It would be helpful to describe in more detail the available modules in MAVISp, and which of them are used in the examples provided. Since different use cases highlight different aspects of the pipeline, it would be useful to emphasize what is done step-by-step in each.

      We have added a concise, narrative description of the data flow for MAVISp, as well as improved the description of modules in the main text. We will integrate the results section with a more comprehensive description of the available modules, and then clarify in the case studies which modules were applied to achieve specific results.

      OPTIONAL: Consider adding a table or a supplementary figure mapping each use case to the corresponding pipeline steps and modules used.

      We have added a supplementary table (Table S2) to guide the reader on the modules and workflows applied for each case study

      We also added Table S1 to map the toolkit used by MAVISp to collect the data that are imported and aggregated in the webserver for further guidance.

      - The text contains numerous acronyms, some of which are not defined upon first use or are only mentioned in passing. This affects readability. OPTIONAL: Define acronyms upon first appearance, and consider moving less critical technical details (e.g., database names or data formats) to the Methods or Supplementary Information. This would greatly enhance readability.

      We revised the usage of acronyms following the reviewer’s directions of defying them at first appearance.

      • The code and trained models are publicly available, which is excellent. The modular design and use of widely adopted frameworks (PyTorch and PyTorch Geometric) are also strong points. However, the Methods section could benefit from additional detail regarding feature extraction and preprocessing steps, especially the structural features derived from AlphaFold2 models. OPTIONAL: Include a schematic or a table summarizing all feature types, their dimensionality, and how they are computed.

      We thank the reviewer for noticing and praising the availability of the tools of MAVISp. Our MAVISp framework utilizes methods and scores that incorporate machine learning features (such as EVE or RaSP), but does not employ machine learning itself. Specifically, we do not use PyTorch and do not utilize features in a machine learning sense. We do extract some information from the AlphaFold2 models that we use (such as the pLDDT score and their secondary structure content, as calculated by DSSP), and those are available in the MAVISp aggregated csv files for each protein entry and detailed in the Documentation section of the MAVISp website.

      • The section on transcription factors is relatively underdeveloped compared to other use cases and lacks sufficient depth or demonstration of its practical utility. OPTIONAL: Consider either expanding this section with additional validation or removing/postponing it to a future manuscript, as it currently seems preliminary.

      We have removed this section and included a mention in the conclusions as part of the future directions.

      Minor comments: - Most relevant recent works are cited, including EVE, ESM-1v, and AlphaFold-based predictors. However, recent methods like AlphaMissense (Cheng et al., 2023) could be discussed more thoroughly in the comparison.

      We have revised the introduction to accommodate the proper space for this comparison.

      • Figures are generally clear, though some (e.g., performance barplots) are quite dense. Consider enlarging font sizes and annotating key results directly on the plots.

      We have revised Figure 2 and presented only one case study to simplify its readability. We have also changed Figure 3, whereas retained the other previous figures since they seemed less problematic.

      • Minor typographic errors are present. A careful proofreading is highly recommended. Below are some of the issues I identified: Page 3, line 46: "MAVISp perform" -> "MAVISp performs" Page 3, line 56: "automatically as embedded" -> "automatically embedded" Page 3, line 57: "along with to enhance" -> unclear; please revise Page 4, line 96: "web app interfaces with the database and present" -> "presents" Page 6, line 210: "to investigate wheatear" -> "whether" Page 6, lines 215-216: "We have in queue for processing with MAVISp proteins from datasets relevant to the benchmark of the PTM module." -> unclear sentence; please clarify Page 15, line 446: "Both the approaches" -> "Both approaches" Page 20, line 704: "advantage of multi-core system" -> "multi-core systems"

      We have done a proofreading of the entire article, including the points above

      Significance

      General assessment: the strongest aspects of the study are the modularity, open-source implementation, and the integration of structural information through graph neural networks. MAVISp appears to be one of the few publicly available frameworks that can easily incorporate AlphaFold2-based features in a flexible way, lowering the barrier for developing custom predictors. Its reproducibility and transparency make it a valuable resource. However, while the technical foundation is solid and the effort substantial, the scientific narrative and presentation could be significantly improved. The manuscript is dense and hard to follow in places, with a heavy use of acronyms and insufficient explanation of key design choices. Improving the descriptive clarity, especially in the early sections, would greatly enhance the impact of this work.

      Advance

      to the best of my knowledge, this is one of the first modular platforms for protein variant effect prediction that integrates structural data from AlphaFold2 with bioinformatic annotations and even clinical data in an extensible fashion. While similar efforts exist (e.g., ESMfold, AlphaMissense), MAVISp distinguishes itself through openness and design for reusability. The novelty is primarily technical and practical rather than conceptual.

      Audience

      this study will be of strong interest to researchers in computational biology, structural bioinformatics, and genomics, particularly those developing variant effect predictors or analyzing the impact of mutations in clinical or functional genomics contexts. The audience is primarily specialized, but the open-source nature of the tool may diffuse its use among more applied or translational users, including those working in precision medicine or protein engineering.

      Reviewer expertise: my expertise is in computational structural biology, molecular modeling, and (rather weak) machine learning applications in bioinformatics. I am familiar with graph-based representations of proteins, AlphaFold2, and variant effects based on Molecular Dynamics simulations. I do not have any direct expertise in clinical variant annotation pipelines.

      Reviewer #2

      __Evidence, reproducibility and clarity __

      Summary: The authors present a pipeline and platform, MAVISp, for aggregating, displaying and analysis of variant effects with a focus on reclassification of variants of uncertain clinical significance and uncovering the molecular mechanisms underlying the mutations.

      Major comments: - On testing the platform, I was unable to look-up a specific variant in ADCK1 (rs200211943, R115Q). I found that despite stating that the mapped refseq ID was NP_001136017 in the HGVSp column, it was actually mapped to the canonical UniProt sequence (Q86TW2-1). NP_001136017 actually maps to Q86TW2-3, which is missing residues 74-148 compared to the -1 isoform. The Uniprot canonical sequence has no exact RefSeq mapping, so the HGVSp column is incorrect in this instance. This mapping issue may also affect other proteins and result in incorrect HGVSp identifiers for variants.

      We would like to thank the reviewer for pointing out these inconsistencies. We have revised all the entries and corrected them. If needed, the history of the cases that have been corrected can be found in the closed issues of the GitHub repository that we use for communication between biocurators and data managers (https://github.com/ELELAB/mavisp_data_collection). We have also revised the protocol we follow in this regard and the MAVISp toolkit to include better support for isoform matching in our pipelines for future entries, as well as for the revision/monitoring of existing ones, as detailed in the Method Section. In particular, we introduced a tool, uniprot2refseq, which aids the biocurator in identifying the correct match in terms of sequence length and sequence identity between RefSeq and UniProt. More details are included in the Method Section of the paper. The two relevant scripts for this step are available at: https://github.com/ELELAB/mavisp_accessory_tools/

      - The paper lacks a section on how to properly interpret the results of the MAVISp platform (the case-studies are helpful, but don't lay down any global rules for interpreting the results). For example: How should a variant with conflicts between the variant impact predictors be interpreted? Are specific indicators considered more 'reliable' than others?

      We have added a section in Results to clarify how to interpret results from MAVISp in the most common use cases.

      • In the Methods section, GEMME is stated as being rank-normalised with 0.5 as a threshold for damaging variants. On checking the data downloaded from the site, GEMME was not rank-normalised but rather min-max normalised. Furthermore, Supplementary text S4 conflicts with the methods section over how GEMME scores are classified, S4 states that a raw-value threshold of -3 is used.

      We thank the reviewer for spotting this inconsistency. This part in the main text was left over from a previous and preliminary version of the pre-print, we have revised the main text. Supplementary Text S4 includes the correct reference for the value in light of the benchmarking therewithin.

      • Note. This is a major comment as one of the claims is that the associated web-tool is user-friendly. While functional, the web app is very awkward to use for analysis on any more than a few variants at once. The fixed window size of the protein table necessitates excessive scrolling to reach your protein-of-interest. This will also get worse as more proteins are added. Suggestion: add a search/filter bar. The same applies to the dataset window.

      We have changed the structure of the webserver in such a way that now the whole website opens as its own separate window, instead of being confined within the size permitted by the website at DTU. This solves the fixed window size issue. Hopefully, this will improve the user experience.

      We have refactored the web app by adding filtering functionality, both for the main protein table (that can now be filtered by UniProt AC, gene name or RefSeq ID) and the mutations table. Doing this required a general overhaul of the table infrastructure (we changed the underlying engine that renders the tables).

      • You are unable to copy anything out of the tables.
      • Hyperlinks in the tables only seem to work if you open them in a new tab or window.

      The table overhauls fixed both of these issues

      • All entries in the reference column point to the MAVISp preprint even when data from other sources is displayed (e.g. MAVE studies).

      We clarified the meaning of the reference column in the Documentation on the MAVISp website, as we realized it had confused the reviewer. The reference column is meant to cite the papers where the computationally-generated MAVISp data are used, not external sources. Since we also have the experimental data module in the most recent release, we have also refactored the MAVISp website by adding a “Datasets and metadata” page, which details metadata for key modules. These include references to data from external sources that we include in MAVISp on a case-by-case basis (for example the results of a MAVE experiment). Additionally, we have verified that the papers using MAVISp data are updated in https://elelab.gitbook.io/mavisp/overview/publications-that-used-mavisp-data and in the csv file of the interested proteins.

      Here below the current references that have been included in terms of publications using MAVISp data:

      SMPD1

      ASM variants in the spotlight: A structure-based atlas for unraveling pathogenic mechanisms in lysosomal acid sphingomyelinase

      Biochim Biophys Acta Mol Basis Dis

      38782304

      https://doi.org/10.1016/j.bbadis.2024.167260

      TRAP1

      Point mutations of the mitochondrial chaperone TRAP1 affect its functions and pro-neoplastic activity

      Cell Death & Disease

      40074754

      https://doi.org/10.1038/s41419-025-07467-6

      BRCA2

      Saturation genome editing-based clinical classification of BRCA2 variants

      Nature

      39779848

      0.1038/s41586-024-08349-1

      TP53, GRIN2A, CBFB, CALR, EGFR

      TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins

      Cell Death & Disease

      37085483

      10.1038/s41419-023-05780-6

      KIF5A, CFAP410, PILRA, CYP2R1

      Computational analysis of five neurodegenerative diseases reveals shared and specific genetic loci

      Computational and Structural Biotechnology Journal

      38022694

      https://doi.org/10.1016/j.csbj.2023.10.031

      KRAS

      Combining evolution and protein language models for an interpretable cancer driver mutation prediction with D2Deep

      Brief Bioinform

      39708841

      https://doi.org/10.1093/bib/bbae664

      OPTN

      Decoding phospho-regulation and flanking regions in autophagy-associated short linear motifs

      Communications Biology

      40835742

      10.1038/s42003-025-08399-9

      DLG4,GRB2,SMPD1

      Deciphering long-range effects of mutations: an integrated approach using elastic network models and protein structure networks

      JMB

      40738203

      doi: 10.1016/j.jmb.2025.169359

      Entering multiple mutants in the "mutations to be displayed" window is time-consuming for more than a handful of mutants. Suggestion: Add a box where multiple mutants can be pasted in at once from an external document.

      During the table overhaul, we have revised the user interface to add a text box that allows free copy-pasting of mutation lists. While we understand having a single input box would have been ideal, the former selection interface (which is also still available) doesn’t allow copy-paste. This is a known limitation in Streamlit.

      Minor comments

      • Grammar. I appreciate that this manuscript may have been compiled by a non-native English speaker, but I would be remiss not to point out that there are numerous grammar errors throughout, usually sentence order issues or non-pluralisation. The meaning of the authors is mostly clear, but I recommend very thoroughly proof-reading the final version.

      We have done proofreading on the final version of the manuscript

      • There are numerous proteins that I know have high-quality MAVE datasets that are absent in the database e.g. BRCA1, HRAS and PPARG.

      Yes, we are aware of this. It is far from trivial to properly import the datasets from multiplex assays. They often need to be treated on a case-by-case basis. We are in the process of carefully compiling locally all the MAVE data before releasing it within the public version of the database, so this is why they are missing. We are giving priorities to the ones that can be correlated with our predictions on changes in structural stability and then we will also cover the rest of the datasets handling them in batches. Having said this, we have checked the dataset for BRCA1, HRAS, and PPARG. We have imported the ones for PPARG and BRCA1 from ProtGym, referring to the studies published in 10.1038/ng.3700 and 10.1038/s41586-018-0461-z, respectively. Whereas for HRAS, checking in details both the available data and literature, while we did identify a suitable dataset (10.7554/eLife.27810), we struggled to understand what a sensible cut-off for discriminating between pathogenic and non-pathogenic variants would be, and so ended up not including it in the MAVISp dataset for now. We will contact the authors to clarify which thresholds to apply before importing the data.

      • Checking one of the existing MAVE datasets (KRAS), I found that the variants were annotated as damaging, neutral or given a positive score (these appear to stand-in for gain-of-function variants). For better correspondence with the other columns, those with positive scores could be labelled as 'ambiguous' or 'uncertain'.

      In the KRAS case study presented in MAVISP, we utilized the protein abundance dataset reported in (http://dx.doi.org/10.1038/s41586-023-06954-0) and made available in the ProteinGym repository (specifically referenced at https://github.com/OATML-Markslab/ProteinGym/blob/main/reference_files/DMS_substitutions.csv#L153). We adopted the precalculated thresholds as provided by the ProteinGym authors. In this regard, we are not really sure the reviewer is referring to this dataset or another one on KRAS.

      • Numerous thresholds are defined for stabilizing / destabilizing / neutral variants in both the STABILITY and the LOCAL_INTERACTION modules. How were these thresholds determined? I note that (PMC9795540) uses a ΔΔG threshold of 1/-1 for defining stabilizing and destabilizing variants, which is relatively standard (though they also say that 2-3 would likely be better for pinpointing pathogenic variants).

      We improved the description of our classification strategies for both modules in the Documentation page of our website. Also, we explained more clearly the possible sources of ‘uncertain’ annotations for the two modules in both the web app (Documentation page) and main text. Briefly, in the STABILITY module, we consider FoldX and either Rosetta or RaSP to achieve a final classification. We first classify one and the other independently, according to the following strategy:

      If DDG ≥ 3, the mutation is Destabilizing If DDG ≤ −3, the mutation is Stabilizing If −2 We then compare the classifications obtained by the two methods: if they agree, then that is the final classification, if they disagree, then the final classification is Uncertain. The thresholds were selected based on a previous study, in which variants with changes in stability below 3 kcal/mol were not featuring a markedly different abundance at cellular level [10.1371/journal.pgen.1006739, 10.7554/eLife.49138]

      Regarding the LOCAL_INTERACTION module, it works similarly as for the Stability module, in that Rosetta and FoldX are considered independently, and an implicit classification is performed for each, according to the rules (values in kcal/mol)

      If DDG > 1, the mutation is Destabilizing. If DDG Each mutation is therefore classified for both methods. If the methods agree (i.e., if they classify the mutation in the same way), their consensus is the final classification for the mutation; if they do not agree, the final classification will be Uncertain.

      If a mutation does not have an associated free energy value, the relative solvent accessible area is used to classify it: if SAS > 20%, the mutation is classified as Uncertain, otherwise it is not classified.

      Thresholds here were selected according to best practices followed by the tool authors and more in general in the literature, as the reviewer also noticed.

      • "Overall, with the examples in this section, we illustrate different applications of the MAVISp results, spanning from benchmarking purposes, using the experimental data to link predicted functional effects with structural mechanisms or using experimental data to validate the predictions from the MAVISp modules."

      The last of these points is not an application of MAVISp, but rather a way in which external data can help validate MAVISp results. Furthermore, none of the examples given demonstrate an application in benchmarking (what is being benchmarked?).

      We have revised the statements to avoid this confusion in the reader.

      • Transcription factors section. This section describes an intended future expansion to MAVISp, not a current feature, and presents no results. As such, it should be moved to the conclusions/future directions section.

      We have removed this section and included a mention in the conclusions as part of the future directions.

      • Figures. The dot-plots generated by the web app, and in Figures 4, 5 and 6 have 2 legends. After looking at a few, it is clear that the lower legend refers to the colour of the variant on the X-axis - most likely referencing the ClinVar effect category. This is not, however, made clear either on the figures or in the app.

      The reviewer’s interpretation on the second legend is correct - it does refer to the ClinVar classification. Nonetheless, we understand the positioning of the legend makes understanding what the legend refers to not obvious. We also revised the captions of the figures in the main text. On the web app, we have changed the location of the figure legend for the ClinVar effect category and added a label to make it clear what the classification refers to.

      • "We identified ten variants reported in ClinVar as VUS (E102K, H86D, T29I, V91I, P2R, L44P, L44F, D56G, R11L, and E25Q, Fig.5a)" E25Q is benign in ClinVar and has had that status since first submitted.

      We have corrected this in the text and the statements related to it.

      Significance

      Platforms that aggregate predictors of variant effect are not a new concept, for example dbNSFP is a database of SNV predictions from variant effect predictors and conservation predictors over the whole human proteome. Predictors such as CADD and PolyPhen-2 will often provide a summary of other predictions (their features) when using their platforms. MAVISp's unique angle on the problem is in the inclusion of diverse predictors from each of its different moules, giving a much wider perspective on variants and potentially allowing the user to identify the mechanistic cause of pathogenicity. The visualisation aspect of the web app is also a useful addition, although the user interface is somewhat awkward. Potentially the most valuable aspect of this study is the associated gitbook resource containing reports from biocurators for proteins that link relevant literature and analyse ClinVar variants. Unfortunately, these are only currently available for a small minority of the total proteins in the database with such reports. For improvement, I think that the paper should focus more on the precise utility of the web app / gitbook reports and how to interpret the results rather than going into detail about the underlying pipeline.

      We appreciate the interest in the gitbook resource that we also see as very valuable and one of the strengths of our work. We have now implemented a new strategy based on a Python script introduced in the mavisp toolkit to generate a template Markdown file of the report that can be further customized and imported into GitBook directly (​​https://github.com/ELELAB/mavisp_accessory_tools/). This should allow us to streamline the production of more reports. We are currently assigning proteins in batches for reporting to biocurator through the mavisp_data_collection GitHub to expand their coverage. Also, we revised the text and added a section on the interpretation of results from MAVISp. with a focus on the utility of the web-app and reports.

      In terms of audience, the fast look-up and visualisation aspects of the web-platform are likely to be of interest to clinicians in the interpretation of variants of unknown clinical significance. The ability to download the fully processed dataset on a per-protein database would be of more interest to researchers focusing on specific proteins or those taking a broader view over multiple proteins (although a facility to download the whole database would be more useful for this final group).

      While our website only displays the dataset per protein, the whole dataset, including all the MAVISp entries, is available at our OSF repository (https://osf.io/ufpzm/), which is cited in the paper and linked on the MAVISp website. We have further modified the MAVISp database to add a link to the repository in the modes page, so that it is more visible.

      My expertise. - I am a protein bioinformatician with a background in variant effect prediction and large-scale data analysis.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Evidence, reproducibility and clarity:

      Summary:

      The authors present MAVISp, a tool for viewing protein variants heavily based on protein structure information. The authors have done a very impressive amount of curation on various protein targets, and should be commended for their efforts. The tool includes a diverse array of experimental, clinical, and computational data sources that provides value to potential users interested in a given target.

      Major comments:

      Unfortunately I was not able to get the website to work correctly. When selecting a protein target in simple mode, I was greeted with a completely blank page in the app window. In ensemble mode, there was no transition away from the list of targets at all. I'm using Firefox 140.0.2 (64-bit) on Ubuntu 22.04. I would like to explore the data myself and provide feedback on the user experience and utility.

      We have tried reproducing the issue mentioned by the reviewer, using the exact same Ubuntu and Firefox versions, but unfortunately failed to produce it. The website worked fine for us under such an environment. The issue experienced by the reviewer may have been due to either a temporary issue with the web server or a problem with the specific browser environment they were working in, which we are unable to reproduce. It would be useful to know the date that this happened to verify if it was a downtime on the DTU IT services side that made the webserver inaccessible.

      I have some serious concerns about the sustainability of the project and think that additional clarifications in the text could help. Currently is there a way to easily update a dataset to add, remove, or update a component (for example, if a new predictor is published, an error is found in a predictor dataset, or a predictor is updated)? If it requires a new round of manual curation for each protein to do this, I am worried that this will not scale and will leave the project with many out of date entries. The diversity of software tools (e.g., three different pipeline frameworks) also seems quite challenging to maintain.

      We appreciate the reviewer’s concerns about long-term sustainability. It is a fair point that we consider within our steering group, who oversee and plans the activities and meet monthly. Adding entries to MAVISp is moving more and more towards automation as we grow. We aim to minimize the manual work where applicable. Still, an expert-based intervention is really needed in some of the steps, and we do not want to renounce it. We intend to keep working on MAVISp to make the process of adding and updating entries as automated as possible, and to streamline the process when manual intervention is necessary. From the point of view of the biocurators, they have three core workflows to use for the default modules, which also automatically cover the source of annotations. We are currently working to streamline the procedures behind LOCAL_INTERACTION, which is the most challenging one. On the data manager and maintainers' side, we have workflows and protocols that help us in terms of automation, quality control, etc, and we keep working to improve them. Among these, we have workflows to use for the old entries updates. As an example, the update of erroneously attributed RefSeq data (pointed out by reviewer 2) took us only one week overall (from assigning revisions and importing to the database) because we have a reduced version of Snakemake for automation that can act on only the affected modules. Also, another point is that we have streamlined the generation of the templates for the gitbook reports (see also answer to reviewer 2).

      The update of old entries is planned and made regularly. We also deposit the old datasets on OSF for transparency, in case someone needs to navigate and explore the changes. We have activities planned between May and August every year to update the old entries in relation to changes of protocols in the modules, updates in the core databases that we interact with (COSMIC, Clinvar etc). In case of major changes, the activities for updates continue in the Fall. Other revisions can happen outside these time windows if an entry is needed or a specific research project and needs updates too.

      Furthermore, the community of people contributing to MAVISp as biocurators or developers is growing and we have scientists contributing from other groups in relation to their research interest. We envision that for this resource to scale up, our team cannot be the only one producing data and depositing it to the database. To facilitate this we launched a pilot for a training event online (see Event page on the website) and we will repeat it once per year. We also organize regular meetings with all the active curators and developers to plan the activities in a sustainable manner and address the challenges we encounter.

      As stated in the manuscript, currently with the team of people involved, automatization and resources that we have gathered around this initiative we can provide updates to the public database every third month and we have been regularly satisfied with them. Additionally, we are capable of processing from 20 to 40 proteins every month depending also on the needs of revision or expansion of analyses on existing proteins. We also depend on these data for our own research projects and we are fully committed to it.

      Additionally, we are planning future activities in these directions to improve scale up and sustainability:

      • Streamlining manual steps so that they are as convenient as fast as possible for our curators, e.g. by providing custom pages on the MAVISp website
      • Streamline and automatize the generation of useful output, for instance the reports, by using a combination of simple automation and large language models
      • Implement ways to share our software and scripts with third parties, for instance by providing ready made (or close to) containers or virtual machines
      • For a future version 2 if the database grows in a direction that is not compatible with Streamlit, the web data science framework we are currently using, we will rewrite the website using a framework that would allow better flexibility and performance, for instance using Django and a proper database backend. On the same theme, according to the GitHub repository, the program relies on Python 3.9, which reaches end of life in October 2025. It has been tested against Ubuntu 18.04, which left standard support in May 2023. The authors should update the software to more modern versions of Python to promote the long-term health and maintainability of the project.

      We thank the reviewer for this comment - we are aware of the upcoming EOL of Python 3.9. We tested MAVISp, both software package and web server, using Python 3.10 (which is the minimum supported version going forward) and Python 3.13 (which is the latest stable release at the time of writing) and updated the instructions in the README file on the MAVISp GitHub repository accordingly.

      We plan on keeping track of Python and library versions during our testing and updating them when necessary. In the future, we also plan to deploy Continuous Integration with automated testing for our repository, making this process easier and more standardized.

      I appreciate that the authors have made their code and data available. These artifacts should also be versioned and archived in a service like Zenodo, so that researchers who rely on or want to refer to specific versions can do so in their own future publications.

      Since 2024, we have been reporting all previous versions of the dataset on OSF, the repository linked to the MAVISp website, at https://osf.io/ufpzm/files/osfstorage (folder: previous_releases). We prefer to keep everything under OSF, as we also use it to deposit, for example, the MD trajectory data.

      Additionally, in this GitHub page that we use as a space to interact between biocurators, developers, and data managers within the MAVISp community, we also report all the changes in the NEWS space: https://github.com/ELELAB/mavisp_data_collection

      Finally, the individual tools are all available in our GitHub repository, where version control is in place (see Table S1, where we now mapped all the resources used in the framework)

      In the introduction of the paper, the authors conflate the clinical challenges of variant classification with evidence generation and it's quite muddled together. They should strongly consider splitting the first paragraph into two paragraphs - one about challenges in variant classification/clinical genetics/precision oncology and another about variant effect prediction and experimental methods. The authors should also note that they are many predictors other than AlphaMissense, and may want to cite the ClinGen recommendations (PMID: 36413997) in the intro instead.

      We revised the introduction in light of these suggestions. We have split the paragraph as recommended and added a longer second paragraph about VEPs and using structural data in the context of VEPs. We have also added the citation that the reviewer kindly recommended.

      Also in the introduction on lines 21-22 the authors assert that "a mechanistic understanding of variant effects is essential knowledge" for a variety of clinical outcomes. While this is nice, it is clearly not the case as we can classify variants according to the ACMG/AMP guidelines without any notion of specific mechanism (for example, by combining population frequency data, in silico predictor data, and functional assay data). The authors should revise the statement so that it's clear that mechanistic understanding is a worthy aspiration rather than a prerequisite.

      We revised the statement in light of this comment from the reviewer

      In the structural analysis section (page 5, lines 154-155 and elsewhere), the authors define cutoffs with convenient round numbers. Is there a citation for these values or were these arbitrarily chosen by the authors? I would have liked to see some justification that these assignments are reasonable. Also there seems to be an error in the text where values between -2 and -3 kcal/mol are not assigned to a bin (I assume they should also be uncertain). There are other similar seemingly-arbitrary cutoffs later in the section that should also be explained.

      We have revised the text making the two intervals explicit, for better clarity.

      On page 9, lines 294-298 the authors talk about using the PTEN data from ProteinGym, rather than the actual cutoffs from the paper. They get to the latter later on, but I'm not sure why this isn't first? The ProteinGym cutoffs are somewhat arbitrarily based on the median rather than expert evaluation of the dataset, and I'm not sure why it's even worth mentioning them when proper classifications are available. Regarding PTEN, it would be quite interesting to see a comparison of the VAMP-seq PTEN data and the Mighell phosphatase assay, which is cited on page 9 line 288 but is not actually a VAMP-seq dataset. I think this section could be interesting but it requires some additional attention.

      We have included the data from Mighell’s phosphatase assay as provided by MAVEdb in the MAVISp database, within the experimental_data module for PTEN, and we have revised the case study, including them and explaining better the decision of supporting both the ProteinGym and MAVEdb classification in MAVISp (when available). See revised Figure3, Table 1 and corresponding text.

      The authors mention "pathogenicity predictors" and otherwise use pathogenicity incorrectly throughout the manuscript. Pathogenicity is a classification for a variant after it has been curated according to a framework like the ACMG/AMP guidelines (Richards 2015 and amendments). A single tool cannot predict or assign pathogenicity - the AlphaMissense paper was wrong to use this nomenclature and these authors should not compound this mistake. These predictors should be referred to as "variant effect predictors" or similar, and they are able to produce evidence towards pathogenicity or benignity but not make pathogenicity calls themselves. For example, in Figure 4e, the terms "pathogenic" and "benign" should only be used here if these are the classifications the authors have derived from ClinVar or a similar source of clinically classified variants.

      The reviewer is correct, we have revised the terminology we used in the manuscript and refers to VEPs (Variant Effect Predictors)

      Minor comments:

      The target selection table on the website needs some kind of text filtering option. It's very tedious to have to find a protein by scrolling through the table rather than typing in the symbol. This will only get worse as more datasets are added.

      We have revised the website, adding a filtering option. In detail, we have refactored the web app by adding filtering functionality, both for the main protein table (that can now be filtered by UniProt AC, gene name, or RefSeq ID) and the mutations table. Doing this required a general overhaul of the table infrastructure (we changed the underlying engine that renders the tables).

      The data sources listed on the data usage section of the website are not concordant with what is in the paper. For example, MaveDB is not listed.

      We have revised and updated the data sources on the website, adding a metadata section with relevant information, including MaveDB references where applicable.

      Figure 2 is somewhat confusing, as it partially interleaves results from two different proteins. This would be nicer as two separate figures, one on each protein, or just of a single protein.

      As suggested by the reviewer, we have now revised the figure and corresponding legends and text, focusing only on one of the two proteins.

      Figure 3 panel b is distractingly large and I wonder if the authors could do a little bit more with this visualization.

      We have revised Figure 3 to solve these issues and integrating new data from the comparison with the phosphatase assay

      Capitalization is inconsistent throughout the manuscript. For example, page 9 line 288 refers to VampSEQ instead of VAMP-seq (although this is correct elsewhere). MaveDB is referred to as MAVEdb or MAVEDB in various places. AlphaMissense is referred to as Alphamissense in the Figure 5 legend. The authors should make a careful pass through the manuscript to address this kind of issues.

      We have carefully proofread the paper for these inconsistencies

      MaveDB has a more recent paper (PMID: 39838450) that should be cited instead of/in addition to Esposito et al.

      We have added the reference that the reviewer recommended

      On page 11, lines 338-339 the authors mention some interesting proteins including BLC2, which has base editor data available (PMID: 35288574). Are there plans to incorporate this type of functional assay data into MAVISp?

      The assay mentioned in the paper refers to an experimental setup designed to investigate mutations that may confer resistance to the drug venetoclax. We started the first steps to implement a MAVISp module aimed at evaluating the impact of mutations on drug binding using alchemical free energy perturbations (ensemble mode) but we are far from having it complete. We expect to import these data when the module will be finalized since they can be used to benchmark it and BCL2 is one of the proteins that we are using to develop and test the new module.

      Reviewer #3 (Significance (Required)):

      Significance:

      General assessment:

      This is a nice resource and the authors have clearly put a lot of effort in. They should be celebrated for their achievments in curating the diverse datasets, and the GitBooks are a nice approach. However, I wasn't able to get the website to work and I have raised several issues with the paper itself that I think should be addressed.

      Advance:

      New ways to explore and integrate complex data like protein structures and variant effects are always interesting and welcome. I appreciate the effort towards manual curation of datasets. This work is very similar in theme to existing tools like Genomics 2 Proteins portal (PMID: 38260256) and ProtVar (PMID: 38769064). Unfortunately as I wasn't able to use the site I can't comment further on MAVISp's position in the landscape.

      We have expanded the conclusions section to add a comparison and cite previously published work, and linked to a review we published last year that frames MAVISp in the context of computational frameworks for the prediction of variant effects. In brief, the Genomics 2 Proteins portal (G2P) includes data from several sources, including some overlapping with MAVISp such as Phosphosite or MAVEdb, as well as features calculated on the protein structure. ProtVar also aggregates mutations from different sources and includes both variant effect predictors and predictions of changes in stability upon mutation, as well as predictions of complex structures. These approaches are only partially overlapping with MAVISp. G2P is primarily focused on structural and other annotations of the effect of a mutation; it doesn’t include features about changes of stability, binding, or long-range effects, and doesn’t attempt to classify the impact of a mutation according to its measurements. It also doesn’t include information on protein dynamics. Similarly, ProtVar does include information on binding free energies, long effects, or dynamical information.

      Audience:

      MAVISp could appeal to a diverse group of researchers who are interested in the biology or biochemistry of proteins that are included, or are interested in protein variants in general either from a computational/machine learning perspective or from a genetics/genomics perspective.

      My expertise:

      I am an expert in high-throughput functional genomics experiments and am an experienced computational biologist with software engineering experience.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      The authors present MAVISp, a tool for viewing protein variants heavily based on protein structure information. The authors have done a very impressive amount of curation on various protein targets, and should be commended for their efforts. The tool includes a diverse array of experimental, clinical, and computational data sources that provides value to potential users interested in a given target.

      Major comments:

      Unfortunately I was not able to get the website to work properly. When selecting a protein target in simple mode, I was greeted with a completely blank page in the app window, and in ensemble mode, there was no transition away from the list of targets at all. I'm using Firefox 140.0.2 (64-bit) on Ubuntu 22.04. I would have liked to be able to explore the data myself and provide feedback on the user experience and utility.

      I have some serious concerns about the sustainability of the project and think that additional clarifications in the text could help. Currently is there a way to easily update a dataset to add, remove, or update a component (for example, if a new predictor is published, an error is found in a predictor dataset, or a predictor is updated)? If it requires a new round of manual curation for each protein to do this, I am worried that this will not scale and will leave the project with many out of date entries. The diversity of software tools (e.g., three different pipeline frameworks) also seems quite challenging to maintain.

      On the same theme, according to the GitHub repository, the program relies on Python 3.9, which reaches end of life in October 2025. It has been tested against Ubuntu 18.04, which left standard support in May 2023. The authors should update the software to more modern versions of Python to promote the long-term health and maintainability of the project.

      I appreciate that the authors have made their code and data available. These artifacts should also be versioned and archived in a service like Zenodo, so that researchers who rely on or want to refer to specific versions can do so in their own future publications.

      In the introduction of the paper, the authors conflate the clinical challenges of variant classification with evidence generation and it's quite muddled together. The y should strongly consider splitting the first paragraph into two paragraphs - one about challenges in variant classification/clinical genetics/precision oncology and another about variant effect prediction and experimental methods. The authors should also note that they are many predictors other than AlphaMissense, and may want to cite the ClinGen recommendations (PMID: 36413997) in the intro instead.

      Also in the introduction on lines 21-22 the authors assert that "a mechanistic understanding of variant effects is essential knowledge" for a variety of clinical outcomes. While this is nice, it is clearly not the case as we are able to classify variants according to the ACMG/AMP guidelines without any notion of specific mechanism (for example, by combining population frequency data, in silico predictor data, and functional assay data). The authors should revise the statement so that it's clear that mechanistic understanding is a worthy aspiration rather than a prerequisite.

      In the structural analysis section (page 5, lines 154-155 and elsewhere), the authors define cutoffs with convenient round numbers. Is there a citation for these values or were these arbitrarily chosen by the authors? I would have liked to see some justification that these assignments are reasonable. Also there seems to be an error in the text where values between -2 and -3 kcal/mol are not assigned to a bin (I assume they should also be uncertain). There are other similar seemingly-arbitrary cutoffs later in the section that should also be explained.

      On page 9, lines 294-298 the authors talk about using the PTEN data from ProteinGym, rather than the actual cutoffs from the paper. They get to the latter later on, but I'm not sure why this isn't first? The ProteinGym cutoffs are somewhat arbitrarily based on the median rather than expert evaluation of the dataset and I'm not sure why it's even worth mentioning them when proper classifications are available. Regarding PTEN, it would be quite interesting to see a comparison of the VAMP-seq PTEN data and the Mighell phosphatase assay, which is cited on page 9 line 288 but is not actually a VAMP-seq dataset. I think this section could be interesting but it requires some additional attention.

      The authors mention "pathogenicity predictors" and otherwise use pathogenicity incorrectly throughout the manuscript. Pathogenicity is a classification for a variant after it has been curated according to a framework like the ACMG/AMP guidelines (Richards 2015 and amendments). A single tool cannot predict or assign pathogenicity - the AlphaMissense paper was wrong to use this nomenclature and these authors should not compound this mistake. These predictors should be referred to as "variant effect predictors" or similar, and they are able to produce evidence towards pathogenicity or benignity but not make pathogenicity calls themselves. For example, in Figure 4e, the terms "pathogenic" and "benign" should only be used here if these are the classifications the authors have derived from ClinVar or a similar source of clinically classified variants.

      Minor comments:

      The target selection table on the website needs some kind of text filtering option. It's very tedious to have to find a protein by scrolling through the table rather than typing in the symbol. This will only get worse as more datasets are added.

      The data sources listed on the data usage section of the website are not concordant with what is in the paper. For example, MaveDB is not listed.

      I found Figure 2 to be a bit confusing in that it partially interleaves results from two different proteins. I think this would be nicer as two separate figures, one on each protein, or just of a single protein.

      Figure 3 panel b is distractingly large and I wonder if the authors could do a little bit more with this visualization.

      Capitalization is inconsistent throughout the manuscript. For example, page 9 line 288 refers to VampSEQ instead of VAMP-seq (although this is correct elsewhere). MaveDB is referred to as MAVEdb or MAVEDB in various places. AlphaMissense is referred to as Alphamissense in the Figure 5 legend. The authors should make a careful pass through the manuscript to address this kind of issues.

      MaveDB has a more recent paper (PMID: 39838450) that should be cited instead of/in addition to Esposito et al.

      On page 11, lines 338-339 the authors mention some interesting proteins including BLC2, which has base editor data available (PMID: 35288574). Are there plans to incorporate this type of functional assay data into MAVISp?

      Significance

      General assessment:

      This is a nice resource and the authors have clearly put a lot of effort in. They should be celebrated for their achievments in curating the diverse datasets, and the GitBooks are a nice approach. However, I wasn't able to get the website to work and I have raised several issues with the paper itself that I think should be addressed.

      Advance:

      New ways to explore and integrate complex data like protein structures and variant effects are always interesting and welcome. I appreciate the effort towards manual curation of datasets. This work is very similar in theme to existing tools like Genomics 2 Proteins portal (PMID: 38260256) and ProtVar (PMID: 38769064). Unfortunately as I wasn't able to use the site I can't comment further on MAVISp's position in the landscape.

      Audience:

      MAVISp could appeal to a diverse group of researchers who are interested in the biology or biochemistry of proteins that are included, or are interested in protein variants in general either from a computational/machine learning perspective or from a genetics/genomics perspective.

      My expertise:

      I am an expert in high-throughput functional genomics experiments and am an experienced computational biologist with software engineering experience.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      The authors present a pipeline and platform, MAVISp, for aggregating, displaying and analysis of variant effects with a focus on reclassification of variants of uncertain clinical significance and uncovering the molecular mechanisms underlying the mutations.

      Major comments:

      • On testing the platform, I was unable to look-up a specific variant in ADCK1 (rs200211943, R115Q). I found that despite stating that the mapped refseq ID was NP_001136017 in the HGVSp column, it was actually mapped to the canonical UniProt sequence (Q86TW2-1). NP_001136017 actually maps to Q86TW2-3, which is missing residues 74-148 compared to the -1 isoform. The Uniprot canonical sequence has no exact RefSeq mapping, so the HGVSp column is incorrect in this instance. This mapping issue may also affect other proteins and result in incorrect HGVSp identifiers for variants.
      • The paper lacks a section on how to properly interpret the results of the MAVISp platform (the case-studies are useful, but don't lay down any global rules for interpreting the results). For example: How should a variant with conflicts between the variant impact predictors be interpreted? Are certain indicators considered more 'reliable' than others?
      • In the Methods section, GEMME is stated as being rank-normalised with 0.5 as a threshold for damaging variants. On checking the data downloaded from the site, GEMME was not rank-normalised but rather min-max normalised. Furthermore, Supplementary text S4 conflicts with the methods section over how GEMME scores are classified, S4 states that a raw-value threshold of -3 is used.
      • Note. This is a major comment as one of the claims is that the associated web-tool is user-friendly. While functional, the web app is very awkward to use for analysis on any more than a few variants at once.
        • The fixed window size of the protein table necessitates excessive scrolling to reach your protein-of-interest. This will also get worse as more proteins are added. Suggestion: add a search/filter bar.
        • The same applies to the dataset window.
        • You are unable to copy anything out of the tables.
        • Hyperlinks in the tables only seem to work if you open them in a new tab or window.
        • All entries in the reference column point to the MAVISp preprint even when data from other sources is displayed (e.g. MAVE studies).
        • Entering multiple mutants in the "mutations to be displayed" window is time-consuming for more than a handful of mutants. Suggestion: Add a box where multiple mutants can be pasted in at once from an external document.

      Minor comments

      • Grammar. I appreciate that this manuscript may have been compiled by a non-native English speaker, but I would be remiss not to point out that there are numerous grammar errors throughout, usually sentence order issues or non-pluralisation. The meaning of the authors is mostly clear, but I recommend very thoroughly proof-reading the final version.
      • There are numerous proteins that I know have high-quality MAVE datasets that are absent in the database e.g. BRCA1, HRAS and PPARG.
      • Checking one of the existing MAVE datasets (KRAS), I found that the variants were annotated as damaging, neutral or given a positive score (these appear to stand-in for gain-of-function variants). For better correspondence with the other columns, those with positive scores could be labelled as 'ambiguous' or 'uncertain'.
      • Numerous thresholds are defined for stabilizing / destabilizing / neutral variants in both the STABILITY and the LOCAL_INTERACTION modules. How were these thresholds determined? I note that (PMC9795540) uses a ΔΔG threshold of 1/-1 for defining stabilizing and destabilizing variants, which is relatively standard (though they also say that 2-3 would likely be better for pinpointing pathogenic variants).
      • "Overall, with the examples in this section, we illustrate different applications of the MAVISp results, spanning from benchmarking purposes, using the experimental data to link predicted functional effects with structural mechanisms or using experimental data to validate the predictions from the MAVISp modules."

      The last of these points is not an application of MAVISp, but rather a way in which external data can help validate MAVISp results. Furthermore, none of the examples given demonstrate an application in benchmarking (what is being benchmarked?). - Transcription factors section. This section describes an intended future expansion to MAVISp, not a current feature, and presents no results. As such, it should probably be moved to the conclusions/future directions section. - Figures. The dot-plots generated by the web app, and in Figures 4, 5 and 6 have 2 legends. After looking at a few, it is clear that the lower legend refers to the colour of the variant on the X-axis - most likely referencing the ClinVar effect category. This is not, however, made clear either on the figures or in the app. - "We identified ten variants reported in ClinVar as VUS (E102K, H86D, T29I, V91I, P2R, L44P, L44F, D56G, R11L, and E25Q, Fig.5a)"

      E25Q is benign in ClinVar and has had that status since first submitted.

      Significance

      Platforms that aggregate predictors of variant effect are not a new concept, for example dbNSFP is a database of SNV predictions from variant effect predictors and conservation predictors over the whole human proteome. Predictors such as CADD and PolyPhen-2 will often provide a summary of other predictions (their features) when using their platforms. MAVISp's unique angle on the problem is in the inclusion of diverse predictors from each of its different moules, giving a much wider perspective on variants and potentially allowing the user to identify the mechanistic cause of pathogenicity. The visualisation aspect of the web app is also a useful addition, although the user interface is somewhat awkward. Potentially the most valuable aspect of this study is the associated gitbook resource containing reports from biocurators for proteins that link relevant literature and analyse ClinVar variants. Unfortunately, these are only currently available for a small minority of the total proteins in the database with such reports.

      For improvement, I think that the paper should focus more on the precise utility of the web app / gitbook reports and how to interpret the results rather than going into detail about the underlying pipeline.

      In terms of audience, the fast look-up and visualisation aspects of the web-platform are likely to be of interest to clinicians in the interpretation of variants of unknown clinical significance. The ability to download the fully processed dataset on a per-protein database would be of more interest to researchers focusing on specific proteins or those taking a broader view over multiple proteins (although a facility to download the whole database would be more useful for this final group).

      My expertise.

      • I am a protein bioinformatician with a background in variant effect prediction and large-scale data analysis.
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      This study explores chromatin organization around trans-splicing acceptor sites (TASs) in the trypanosomatid parasites Trypanosoma cruzi, T. brucei and Leishmania major. By systematically re-analyzing MNase-seq and MNase-ChIP-seq datasets, the authors conclude that TASs are protected by an MNase-sensitive complex that is, at least in part, histone-based, and that single-copy and multi-copy genes display differential chromatin accessibility. Altogether, the data suggest a common chromatin landscape at TASs and imply that chromatin may modulate transcript maturation, adding a new regulatory layer to an unusual gene-expression system.

      I value integrative studies of this kind and appreciate the careful, consistent data analysis the authors implemented to extract novel insights. That said, several aspects require clarification or revision before the conclusions can be robustly supported. My main concerns are listed below, organized by topic/result section.

      TAS prediction * Why were TAS predictions derived only from insect-stage RNA-seq data? Restricting TAS calls to one life stage risks biasing predictions toward transcripts that are highly expressed in that stage and may reduce annotation accuracy for lowly expressed or stage-specific genes. Please justify this choice and, if possible, evaluate TAS robustness using additional transcriptomes or explicitly state the limitation.

      TAS predictions derived only from insect-stage RNA-seq data because in a previous study it was shown that there are no significant differences between stages in the 5’UTR procesing in T. cruzi life stages (https://doi.org/10.3389/fgene.2020.00166) We are not testing an additional transcriptome here, because the robustness of the software was already probed in the original article were UTRme was described (Radio S, 2018 doi:10.3389/fgene.2018.00671).

      Results - "There is a distinctive average nucleosome arrangement at the TASs in TriTryps": * You state that "In the case of L. major the samples are less digested." However, Supplementary Fig. S1 suggests that replicate 1 of L. major is less digested than the T. brucei samples, while replicate 2 of L. major looks similarly digested. Please clarify which replicates you reference and correct the statement if needed.

      The reviewer has a good point. We made our statement based on the value of the maximum peak of the sequenced DNA molecules, which in general is a good indicative of the extension of the digestion achieved by the sample (Cole H, NAR, 2011).

      As the reviewer correctly points, we should have also considered the length of the DNA molecules in each percentile. However, in this case both, T. brucei’s and L major’s samples were gel purified before sequencing and it is hard to know exactly what fragments were left behind in each case. Therefore, it is better not to over conclude on that regard.

      We have now comment on this in the main manuscript, and we have clarified in the figure legends which data set we used in each case.

      * It appears you plot one replicate in Fig. 1b and the other in Suppl. Fig. S2. Please indicate explicitly which replicate is in each plot. For T. brucei, the NDR upstream of the TAS is clearer in Suppl. Fig. S2 while the TAS protection is less prominent; based on your digestion argument, this should correspond to the more-digested replicate. Please confirm.

      The replicates used for the construction of each figure are explicitly indicated in Table S1. Although we have detailed in the table the original publication, the project and accession number for each data set, the reviewer is correct that in this case it was still not completely clear to which length distribution heatmap was each sample associated with. To avoid this confusion, we have now added the accession number for each data set to the figure legends and also clarified in Table S1. Regarding the reviewer’s comment on the correspondence between the observed TAS protection and the extent of samples digestion, he/she is correct that for a more digested sample we would expect a clearer NDR. In this case, the difference in the extent of digestion between these two samples is minor, as observed the length of the main peak in the length distribution histogram for sequenced DNA molecules is the same. These two samples GSM5363006, represented in Fig1 b, and GSM5363007, represented in S2, belong to the same original paper (Maree et al 2017), and both were gel purified before sequencing. Therefore, any difference between them could not only be the result of a minor difference in the digestion level achieved in each experiment but could be also biased by the fragments included or not during gel purification. Therefore, I would not over conclude about TAS protection from this comparison. We have now included a brief comment on this, in the figure discussion

      * The protected region around the TAS appears centered on the TAS in T. brucei but upstream in L. major. This is an interesting difference. If it is technical (different digestion or TAS prediction offset), explain why; if likely biological, discuss possible mechanisms and implications.

      We appreciate the reviewer suggestion. We cannot assure if it is due to technical or biological reasons, but there is evidence that L. major ‘s genome has a different dinucleotide content and it might have an impact on nucleosome assembly. We have now added a comment about this observation in the final discussion of the manuscript.

      Results - "An MNase sensitive complex occupies the TASs in T. brucei": * The definition of "MNase activity" and the ordering of samples into Low/Intermediate/High digestion are unclear. Did you infer digestion levels from fragment distributions rather than from controlled experimental timepoints? In Suppl. Fig. S3a it is not obvious how "Low digestion" was defined; that sample's fragment distribution appears intermediate. Please provide objective metrics (e.g., median fragment length, fraction 120-180 bp) used to classify digestion levels.

      As the reviewer suggests, the ideal experiment would be to perform a time course of MNase reaction with all the samples in parallel, or to work with a fixed time point adding increasing amounts of MNase. However, even when making controlled experimental timepoints, you need to check the length distribution histogram of sequenced DNA molecules to be sure which level of digestion you have achieved.

      In this particular case, we used public available data sets to make this analysis. We made an arbitrary definition of low, intermediate and high level of digestion, not as an absolute level of digestion, but as a comparative output among the tested samples. We based our definition on the comparison of __the main peak in length distribution heatmaps because this parameter is the best metric to estimate the level of digestion of a given sample. It represents the percentage of the total DNA sequenced that contains the predominant length in the sample tested. __Hence, we considered:

      low digestion: when the main peak is longer than the expected protection for a nucleosome (longer than 150 bp). We expect this sample to contain additional longer bands that correspond to less digested material.

      intermediate digestion, when the main peak is the expected for the nucleosome core-protection (˜146-150bp).

      high digestion, when the main peak is shorter than that (shorter than 146 bp). This case, is normally accompanied by a bigger dispersion in fragment sizes.

      To do this analysis, we chose samples that render different MNase protection of the TAS when plotting all the sequenced DNA molecules relative to this point and we used this protection as a predictor of the extent of sample digestion (Figure 2). To corroborate our hypothesis, that the degree of TAS protection was indeed related to the extent of the MNase digestion of a given sample, we looked at the length distribution histogram of the sequenced DNA molecules in each case. It is the best measurement of the extent of the digestion achieved, especially, when sequencing the whole sample without any gel purification and representing all the reads in the analysis as we did. The only caveat is with the sample called “intermediate digestion 1” that belongs to the original work of Mareé 2017, since only this data set was gel purified.

      Whether the sample used in Figure 1 (from Mareé 2017) is also from the same lab and is an MNase-seq. Strictly speaking, there is no methodological difference between MNase-seq and the input of a native MNase-ChIP-seq, since the input does not undergo the IP.

      * Several fragment distributions show a sharp cutoff at ~100-125 bp. Was this due to gel purification or bioinformatic filtering? State this clearly in Methods. If gel purification occurred, that can explain why some datasets preserve the MNase-sensitive region.

      The sharp cutoff is neither due to gel purification or bioinformatic filtering, it is just due to the length of the paired-end read used in each case. In earlier works the most common was to sequence only 50bp, with the improvement of technologies it went up to 75,100 or 125 bp. We have now clarified in Table S1 the length of the paired-reads used in each case when possible.

      * Please reconcile cases where samples labeled as more-digested contain a larger proportion of >200 bp fragments than supposedly less-digested samples; this ordering affects the inference that digestion level determines the loss/preservation of TAS protection. Based on the distributions I see, "Intermediate digestion 1" appears most consistent with an expected MNase curve - please confirm and correct the manuscript accordingly.

      As explained above, it's a common observation in MNase digestion of chromatin that more extensive digestion can still result in a broad range of fragment sizes, including some longer fragments. This seemingly counter-intuitive result is primarily due to the non-uniform accessibility of chromatin and the sequence preference of the MNase enzyme, which has a preference for AT reach sequences.

      The rationale of this is as follows: when you digest chromatin with MNase and the objective is to map nucleosomes genome-wide, the ideal situation would be to get the whole material contained in the mononucleosome band. Given that MNase is less efficient to digest protected DNA but, if the reaction proceeds further, it always ends up destroying part of it, the result is always far from perfect. The better situation we can get, is to obtain samples were ˜80% of the material is contained in the mononucloesome band. __And here comes the main point: __even in the best scenario, you always get some additional longer bands, such as those for di or tri nucleosomes. If you keep digesting, you will get less than 80 % in the nucleosome band and, those remaining DNA fragments that use to contain di and tri nucleosomes start getting digested as well, originating a bigger dispersion in fragments sizes. How do we explain persistence of Long Fragments? The longest fragments (di-, tri-nucleosomes) that persist in a highly digested sample are the ones that were originally most highly protected by proteins or higher-order structure, or by containing a poor AT sequence content, making their linker DNA extremely resistant to initial cleavage. Once the majority of the genome is fragmented, these few resistant longer fragments become a more visible component of the remaining population, contributing to a broader size dispersion. Hence, you end up observing a bigger dispersion in length distributions in the final material. Bottom line, it is not a good practice to work with under or over digested samples. Our main point, is to emphasize that especially when comparing samples, it important to compare those with comparable levels of digestion. Otherwise, a different sampling of the genome will be represented in the remaining sequenced DNA.

      Results - "The MNase sensitive complexes protecting the TASs in T. brucei and T. cruzi are at least partly composed of histones": * The evidence that histones are part of the MNase-sensitive complex relies on H3 MNase-ChIP signal in subnucleosomal fragment bins. This seems to conflict with the observation (Fig. 1) that fragments protecting TASs are often nucleosome-sized. Please reconcile these points: are H3 signals confined to subnucleosomal fragments flanking the TAS while the TAS itself is depleted of H3? Provide plots that compare MNase-seq and H3 ChIP signals stratified by consistent fragment-size bins to clarify this.

      What we learned from other eukaryotic organisms that were deeply studied, such as yeast, is that NDRs are normally generated at regulatory points in the genome. In this sense, yeast tRNA genes have a complex with a bootprint smaller than a nucleosome formed by TFIIIC-TFIIB (Nagarajavel, doi: 10.1093/nar/gkt611). On the other hand, many promotor regions have an MNase-sensitive complex with a nucleosome-size footprint, but it does not contain histones (Chereji, et al 2017, doi:10.1016/j.molcel.2016.12.009). The reviewer is right that from Figure 1 and S2 we could observe that the footprint of whatever occupies the TAS region, especially in T. brucei, is nucleosome-size. However, it only shows the size, but it doesn’t prove the nature of its components. Nevertheless, those are only MNase-seq data sets. Since it does not include a precipitation with specific antibodies, we cannot confirm the protecting complex is made up by histones. In parallel, a complementary study by Wedel 2017, from Siegel’s lab, shows that using a properly digested sample and further immunoprecipitating with a-H3 antibody, the TAS is not protected by nucleosomes at least not when analyzing nucleosome size-DNA molecules. Besides, Briggs et. al 2018 (doi: 10.1093/nar/gky928) showed that at least at intergenic regions H3 occupancy goes down while R-loops accumulation increases. We have now added a supplemental figure associated to Figure 3 (new Suplemental 5) replotting R-loops and MNase-ChIP-seq for H3 relative to our predicted TAS showing this anti-correlation and how it partly correlates with MNase protection as well. As a control we show that Rpb9 trends resembles H3 as Siegel’s lab have shown in Wedel 2018.

      * Please indicate which datasets are used for each panel in Suppl. Fig. S4 (e.g., Wedel et al., Maree et al.), and avoid calling data from different labs "replicates" unless they are true replicates.

      In most of our analysis we used real replicated experiments. Such is the case MNase-seq data used in Figure 1, with the corresponding replicate experiments used in Figure S2; T. cruzi MNase-ChIP-seq data used in Figure 3b and 4a with the respective replicate used in Figures S4 and S5 (now S6 in the revised manuscript). The only case in which we used experiments coming from two different laboratories, is in the case of MNase-ChIP-seq for H3 from T. brucei. Unfortunately, there are only two public data sets coming each of them from different laboratories. The samples used in Fig 3 (from Siegel’s lab) whether the IP from H3 represented in S4 and S5 (S6 n the updated version) comes from another lab (Patterton’s). To be more rigorous, we now call them data 1 and 2 when comparing these particular case.

      The reviewer is right that in this particular case one is native chromatin (Pattertons’) while the other one is crosslinked (Siegel’s). We have now clarified it in the main text that unfortunately we do not count on a replicate but even under both condition the result remains the same, and this is compatible with my own experience, were crosslinking does not affect the global nucleosome patterns (compared nucleosome organization from crosslinked chromatin MNAse-seq inputs Chereji, Mol Cell, 2017 doi: 10.1016/j.molcel.2016.12.009 and native MNase-seq from Ocampo, NAR, 2016 doi: 10.1093/nar/gkw068).

      * Several datasets show a sharp lower bound on fragment size in the subnucleosomal range (e.g., ~80-100 bp). Is this a filtering artifact or a gel-size selection? Clarify in Methods and, if this is an artifact, consider replotting after removing the cutoff.

      We have only filtered adapter dimmer or overrepresented sequences when needed. In Figures 2 and S3 we represented all the sequenced reads. In other figures when we sort fragments sizes in silico, such as nucleosome range, dinucleosome or subnucleosome size, we make a note in the figure legends. What the reviewer points is related to the length of the sequence DNA fragment in each experiment. As we explained above, the older data-sets were performed with 50 bp paired-end reads, the newer ones are 75, 100 or 125bp. This is information is now clarified in Table S1.

      __Results - "The TASs of single and multi-copy genes are differentially protected by nucleosomes": __

      __ __* Please include T. brucei RNA-seq data in Suppl. Fig. S5b as you did for T. cruzi.

      We have shown chromatin organization for T. brucei in S5b to show that there is a similar trend. Unfortunately, we did not get a robust list of multi-copy genes for T. brucei as we did get for T. cruzi, therefore we do not want to over conclude showing the RNA-seq for these subsets of genes. The limitation is related to the fact that UTRme restrict the search and is extremely strict when calling sites at repetitive regions.

      * Discuss how low or absent expression of multigene families affects TAS annotation (which relies on RNA-seq) and whether annotation inaccuracies could bias the observed chromatin differences.

      The mapping of occurrence and annotations that belong to repetitive regions has great complexity. UTRme is specially designed to avoid overcalling those sites. In other words, there is a chance that we could be underestimating the number of predicted TASs at multi-copy genes. Regarding the impact on chromatin analysis, we cannot rule out that it might have an impact, but the observation favors our conclusion, since even when some TASs at multi-copy genes can remain elusive, we observe more nucleosome density at those places.

      * The statement that multi-copy genes show an "oscillation" between AT and GC dinucleotides is not clearly supported: the multi-copy average appears noisier and is based on fewer loci. Please tone down this claim or provide statistical support that the pattern is periodic rather than noisy.

      We have fixed this now in the preliminary revised version

      * How were multi-copy genes defined in T. brucei? Include the classification method in Methods.

      This classification was done the same way it was explained for T. cruzi

      Genomes and annotations: * If transcriptomic data for the Y strain was used for T. cruzi, please explain why a Y strain genome was not used (e.g., Wang et al. 2021 GCA_015033655.1), or justify the choice. For T. brucei, consider the more recent Lister 427 assembly (Tb427_2018) from TriTrypDB. Use strain-matched genomes and transcriptomes when possible, or discuss limitations.

      The most appropriate way to analyze high throughput data, is to aline it to the same genome were the experiments were conducted. This was clearly illustrated in a previous publication from our group were we explained how should be analyzed data from the hybrid CL Brener strain. A common practice in the past was to use only Esmeraldo-like genome for simplicity, but this resulted in output artifacts. Therefore, we aligned it to CL Brener genome, and then focused the main analysis on the Esmeraldo haplotype (Beati Plos ONE, 2023). Ideally, we should have counted on transcriptomic data for the same strain (CL Brener or Esmeraldo). Since this was not the case at that moment, we used data from Y strain that belongs to the same DTU with Esmeraldo.

      In the case of T. brucei, when we started our analysis and the software code for UTRme was written, the previous version of the genome was available. Upon 2018 version came up, we checked chromatin parameters and observed that it did not change the main observations. Therefore, we continue working with our previous setups.

      Reproducibility and broader integration: * Please share the full analysis pipeline (ideally on GitHub/Zenodo) so the results are reproducible from raw reads to plots.

      We are preparing a full pipeline in GitHub. We will make it available before manuscript full revision

      * As an optional but helpful expansion, consider including additional datasets (other life stages, BSF MNase-seq, ATAC-seq, DRIP-seq) where available to strengthen comparative claims.

      We are now including a new suplemental figure including DRIP-seq and Rp9 ChIP-seq (revised S5). Additionally, we added a new panel c to figure 4, representing FAIRE-seq data for T. cruzi fore single and multi-copy genes

      We are working on ATAC-seq analysis and BSF MNase-seq

      Optional analyses that would strengthen the study: * Stratify single-copy genes by expression (high / medium / low) and examine average nucleosome occupancy at TASs for each group; a correlation between expression and NDR depth would strengthen the functional link to maturation.

      We have now included a panel in suplemental figure 5 (now revised S6), showing the concordance for chromatin organization of stratified genes by RNA-seq levels relative to TAS.

      __Minor / editorial comments: __ * In the Introduction, the sentence "transcription is initiated from dispersed promoters and in general they coincide with divergent strand switch regions" should be qualified: such initiation sites also include single transcription start regions.

      We have clarified this in the preliminary revised version

      * Define the dotted line in length distribution plots (if it is not the median, please clarify) and consider placing it at 147 bp across plots to ease comparison.

      The dotted line is just to indicate where the maximum peak is located. It is now clarified in figure legends.

      * In Suppl. Fig. 4b "Replicate2" the x-axis ticks are misaligned with labels - please fix.

      We have now fixed the figure. Thanks for noticing this mistake.

      * Typo in the Introduction: "remodellingremodeling" → "remodeling

      Thanks for noticing this mistake, it is fixed in the current version of the manuscript

      **Referee cross-commenting** Comment 1: I think Reviewer #2 and Reviewer #3 missed that they authors of this manuscript do cite and consider the results from Wedel at al. 2017. They even re-analysed their data (e.g. Figure 3a). I second Reviewer #2 comment indicating that the inclusion of a schematic figure to help readers visualize and better understand the findings would be an important addition.

      Comment 2: I agree with Reviewer #3 that the use of different MNase digestion procedures in the different datasets have to be considered. On the other hand, I don't think there is a problem with figure 1 showing an MNase-protected TAS for T. brucei as it is based on MNase-seq data and reproduces the reported results (Maree et al. 2017). What the Siegel lab did in Wedel et al. 2017 was MNase-ChIPseq of H3 showing nucleosome depletion at TAS, but both results are not necessary contradictory: There could still be something else (which does not contain H3) sitting on the TAS protecting it from MNase digestion.

      Reviewer #1 (Significance (Required)):

      This study provides a systematic comparative analysis of chromatin landscapes at trans-splicing acceptor sites (TASs) in trypanosomatids, an area that has been relatively underexplored. By re-analyzing and harmonizing existing MNase-seq and MNase-ChIP-seq datasets, the authors highlight conserved and divergent features of nucleosome occupancy around TASs and propose that chromatin contributes to the fidelity of transcript maturation. The significance lies in three aspects: 1. Conceptual advance: It broadens our understanding of gene regulation in organisms where transcription initiation is unusual and largely constitutive, suggesting that chromatin can still modulate post-transcriptional processes such as trans-splicing. 2. Integrative perspective: Bringing together data from T. cruzi, T. brucei and L. major provides a comparative framework that may inspire further mechanistic studies across kinetoplastids. 3. Hypothesis generation: The findings open testable avenues about the role of chromatin in coordinating transcript maturation, the contribution of DNA sequence composition, and potential interactions with R-loops or RNA-binding proteins. Researchers in parasitology, chromatin biology, and RNA processing will find it a useful resource and a stimulus for targeted experimental follow-up.

      My expertise is in gene regulation in eukaryotic parasites, with a focus on bioinformatic analysis of high-throughput sequencing data

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Siri et al. perform a comparative analysis using publicly available MNase-seq data from three trypanosomatids (T. brucei, T. cruzi, and Leishmania), showing that a similar chromatin profile is observed at TAS (trans-splicing acceptor site) regions. The original studies had already demonstrated that the nucleosome profile at TAS differs from the rest of the genome; however, this work fills an important gap in the literature by providing the most reliable cross-species comparison of nucleosome profiles among the tritryps. To achieve this, the authors applied the same computational analysis pipeline and carefully evaluated MNase digestion levels, which are known to influence nucleosome profiling outcomes.

      In my view, the main conclusion is that the profiles are indeed similar-even when comparing T. brucei and T. cruzi. This was not clear in previous studies (and even appeared contradictory, reporting nucleosome depletion versus enrichment) largely due to differences in chromatin digestion across these organisms. The manuscript could be improved with some clarifications and adjustments:

      1. The authors state from the beginning that available MNase data indicate altered nucleosome occupancy around the TAS. However, they could also emphasize that the conclusions across the different trypanosomatids are inconsistent and even contradictory: NDR in T. cruzi versus protection-in different locations-in T. brucei and Leishmania.

      We start our manuscript by referring to the first MNase-seq data sets publicly available for each TriTryp and we point that one of the main observations, in each of them, is the occurrence of a change in nucleosome density or occupancy at intergenic regions. In T. cruzi, in a previous publication from our group, we stablished that this intergenic drop in nucleosome density occurs near the trans-splicing acceptor site. In this work, we extend our study to the other members of TriTryps: T. brucei and L. major.

      In T. brucei the papers from Patterton’s lab and Siegel’s lab came out almost simultaneously in 2017. Hence, they do not comment on each other’s work. The first one claims the presence of a well-positioned nucleosome at the TAS by using MNase-seq, while the second one, shows an NDR at the TAS by using MNase-ChIP-seq. However, we do not think they are contradictory, or they have inconsistency. We brought them together along the manuscript because we think these works can provide complementary information.

      On one hand, we infer data from Pattertons lab is slightly less digested than the sample from Siegel’s lab. Therefore, we discuss that this moderate digestion must be the reason why they managed to detect an MNase protecting complex sitting at the TAS (Figure 1). On the other hand, Sigel’s lab includes an additional step by performing MNase-ChIP-seq, showing that when analyzing nucleosome size fragments, histones are not detected at the TAS. Here, we go further in this analysis on figure 3, showing that only when looking at subnucleosome-size fragments, we are able to detect histone H3. And this is also true for T. cruzi.

      By integrating every analysis in this work and the previous ones, we propose that TASs are protected by an MNase-sensitive complex (probed in Figure 2). This complex most likely is only partly formed by histones, since only when analyzing sub-nucleosomes size DNA molecules we can detect histone H3 (Figure 3). To be absolutely sure that the complex is not entirely made up by histones, future studies should perform an MNse-ChIP-seq with less digested samples. However, it was previously shown that R-loops are enriched at those intergenic NDRs (Briggs, 2018 doi: 10.1093/nar/gky928) and that R-loops have plenty of interacting proteins (Girasol, 2023 10.1093/nar/gkad836). Therefore, most likely, this MNase-sensitive complexed have a hybrid nature made up by H3 and some other regulatory molecules, possibly involved in trans-splicing. We have now added a new figure S5 showing R-loop co-localization with the NDR.

      Regarding the comparison between different organisms, after explaining the sensitivity to MNase of the TAS protecting complex, we discuss that when comparing equally digested samples T. cruzi and T. brucei display a similar chromatin landscape with a mild NDR at the TAS (See T. cruzi represented in Figure 1 compared to T. brucei represented in Intermediate digestion 2 in Figure 2, intermediate digestion in the revised manuscript). Unfortunately, we cannot make a good comparison with L. major, since we do not count on a similar level of digestion.

      Another point that requires clarification concerns what the authors mean in the introduction and discussion when they write that trypanosomes have "...poorly organized chromatin with nucleosomes that are not strikingly positioned or phased." On the other hand, they also cite evidence of organization: "...well-positioned nucleosome at the spliced-out region.. in Leishmania (ref 34)"; "...a well-positioned nucleosome at the TASs for internal genes (ref37)"; "...a nucleosome depletion was observed upstream of every gene (ref 35)." Aren't these examples of organized chromatin with at least a few phased nucleosomes? In addition, in ref 37, figure 4 shows at least two (possibly three to four) nucleosomes that appear phased. In my opinion, the authors should first define more precisely what they mean by "poorly organized chromatin" and clarify that this interpretation does not contradict the findings highlighted in the cited literature.

      For a better understanding of nucleosome positioning and phasing I recommend the review: Clark 2010 doi:10.1080/073911010010524945, Figure 4. Briefly, in a cell population there are different alternative positions that a given nucleosome can adopt. However, some are more favorable. When talking about favorable positions, we refer to the coordinates in the genome that are most likely covered by a nucleosome and are predominant in the cell population. Additionally, nucleosomes could be phased or not. This refers not only the position in the genome, but to the distance relative to a given point. In yeast, or in highly transcribed genes of more complex eukaryotes, nucleosomes are regularly spaced and phased relative to the transcription start site (TSS) or to the +1 nucleosome (Ocampo, NAR, 2016, doi:10.1093/nar/gkw068). In trypanosomes, nucleosomes have some regular distribution when making a browser inspection but, given that they are not properly phased with respect to any point, it is almost impossible to make a spacing estimation from paired-end data. This is also consistent with a chromatin that is transcribed in an almost constitutive manner.

      As the reviewer mention, we do site evidence of organization. We think the original observations are correct, but we do not fully agree with some of the original statements. In this manuscript our aim is to take the best we learned from their original works and to make a constructive contribution adding to the original discussions. In this regard, in trypanosomes there are some conserved patterns in the chromatin landscape, but their nucleosomes are far from being well-positioned or phased. For a better understanding, compare the variations observed in the y axis when representing av. nucleosome occupancy in yeast with those observed in trypanosomes and you will see that the troughs and peaks are much more prominent in yeast than the ones observed in any TryTryp member.

      Following the reviewer’s suggestion we have now clarified this in the main text

      The paper would also benefit from the inclusion of a schematic figure to help readers visualize and better understand the findings. What is the biological impact of having nucleosomes, di-nucleosomes, or sub-nucleosomes at TAS? This is not obvious to readers outside the chromatin field. For example, the following statement is not intuitive: "We observed that, when analyzing nucleosome-size (120-180 bp) DNA molecules or longer fragments (180-300 bp), the TASs of either T. cruzi or T. brucei are mostly nucleosome-depleted. However, when representing fragments smaller than a nucleosome-size (50-120 bp) some histone protection is unmasked (Fig. 3 and Fig. S4). This observation suggests that the MNase sensitive complex sitting at the TASs is at least partly composed of histones." Please clarify.

      We appreciate the reviewer’s suggestion to make a schematic figure. We are working on this and will be added to the manuscript upon final revision.

      Regarding the biological impact of having mono, di or subnucleosome fragments, it is important to unveil the fragment size of the protected DNA to infer the nature of the protecting complex. In the case of tRNA genes in yeast, at pol III promoters they found footprints smaller than a nucleosome size that ended up being TFIIB-TFIIC (Nagarajavel, doi: 10.1093/nar/gkt611). Therefore, detecting something smaller than a nucleosome might suggest the binding of trans-acting factors different than histones or involving histones in a mixed complex. These mixed complexes are also observed, and that is the case of the centromeric nucleosome which has a very peculiar composition (Ocampo and Clark, Cells Reports, 2015). On the other hand, if instead we detect bigger fragments, it could be indicative of the presence of bigger protecting molecules or that those regions are part of higher order chromatin organization still inaccessible for MNase linker digestions.

      Here we show on 2Dplots, that complex or components protecting the TAS have nucleosome size, but we cannot assure they are entirely made up by histones, since, only when looking at subnucleosome-size fragments, we are able to detect histone H3. We have now added part of this explanation to the discussion.

      By integrating every analysis in this work and the previous ones, we propose that the TAS is protected by an MNase-sensitive complex (Figure 2). This complex most likely is only partly formed by histones, since only when analyzing sub-nucleosomes size DNA molecules we can detect histone H3 (Figure 3). As explained above, to be absolutely sure that the complex is not entirely made up by histones, future studies should perform an MNse-ChIP-seq with less digested samples. However, it was previously shown that R-loops are enriched at those intergenic NDRs (Briggs 2018) and that R-loops have plenty of interacting proteins (Girasol, 2023). Therefore, most likely, this MNase-sensitive complexed have a hybrid nature made up by H3 and some other regulatory molecules. We have now added a new S5 figure showing R-loop co-localization.

      Some references are missing or incorrect:

      we will make a thorough revision

      "In trypanosomes, there are no canonical promoter regions." - please check Cordon-Obras et al. (Navarro's group). Thank you for the appropiate suggestion.

      We have now added this reference

      Please, cite the study by Wedel et al. (Siegel's group), which also performed MNase-seq analysis in T. brucei.

      We understand that reviewer number 2# missed that we cited this reference and that we did used the raw data from the manuscript of Wedel et. al 2017 form Siegel’s group. We used the MNase-ChIP-seq data set of histone H3 in our analysis for Figures 3, S4b and S5b (S6c in the revised version), also detailed in table S1. To be even more explicit we have now included the accession number of each data set in the figure legend.

      Figure-specific comments: Fig. S3: Why does the number of larger fragments increase with greater MNase digestion? Shouldn't the opposite be expected?

      This a good observation. As we also explained to reviewer#1:

      It's a common observation in MNase digestion of chromatin that more extensive digestion can still result in a broad range of fragment sizes, including some longer fragments. This seemingly counter-intuitive result is primarily due to the non-uniform accessibility of chromatin and the sequence preference of the MNase enzyme.

      The rationale of this is as follows: when you digest chromatin with MNase and the objective is to map nucleosomes genome-wide, the ideal situation would to get the whole material contained in the mononucleosome band. Given that MNase is less efficient to digest protected DNA but, if the reaction proceeds further, it always ends up destroying part of it, the result is always far from perfect. The better situation we can get, is to obtain samples were ˜80% of the material is contained in the mononucloesome band. __And here comes the main point: __even in the best scenario, you always have some additional longer bands, such as those for di or tri nucleosomes. If you keep digesting, you will get less than 80 % in the nucleosome band and, those remaining DNA fragments that use to contain di and tri nucleosomes start getting digested as well originating a bigger dispersion in fragments sizes. How do we explain persistence of Long Fragments? The longest fragments (di-, tri-nucleosomes) that persist in a highly digested sample are the ones that were originally most highly protected by proteins or higher-order structure, making their linker DNA extremely resistant to initial cleavage. Once the majority of the genome is fragmented, these few resistant longer fragments become a more visible component of the remaining population, contributing to a broader size dispersion. Hence, there you end up having a bigger dispersion in length distributions in the final material. Bottom line, it is not a good practice to work with under or overdigested samples. Our main point is to emphasize that especially when comparing samples, it important to compare those with comparable levels of digestion. Otherwise, a different sampling of the genome will be represented in the remaining sequenced DNA Fig. S5B: Why not use MNase conditions under which T. cruzi and T. brucei display comparable profiles at TAS? This would facilitate interpretation.

      The reviewer made a reasonable observation. The reason why we used MNase-ChIP_seq instead of just MNase to test occupancy at TAS at the subsets of genes, is because we intended to be more certain if we were talking about the presence of histones or something else. By using IP for histone H3 we can see that at multi-copy genes this protein is present when looking at nucleosome-size fragments. Additionally, as shown in figure S4b, length distribution histograms are also similar for the compared IPs.

      Minor points:

      There are several typos throughout the manuscript.

      Thanks for the observation. We will check carefully.

      Methods: "Dinucelotide frecuency calculation."

      We will add a code in GitHub

      Reviewer #2 (Significance (Required)):

      In my view, the main conclusion is that the profiles are indeed similar-even when comparing T. brucei and T. cruzi. This was not clear in previous studies (and even appeared contradictory, reporting nucleosome depletion versus enrichment) largely due to differences in chromatin digestion across these organisms. Audience: basic science and specialized readers.

      Expertise: epigenetics and gene expression in trypanosomatids.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      The authors analysed publicly accessible MNase-seq data in TriTryps parasites, focusing on the chromatin structure around trans-splicing acceptor sites (TASs), which are vital for processing gene transcripts. They describe a mild nucleosome depletion at the TAS of T. cruzi and L. major, whereas a histone-containing complex protects the TASs of T. brucei. In the subsequent analysis of T. brucei, they suggest that a Mnase-sensitive complex is localised at the TASs. For single-copy versus multi-copy genes, the authors show different di-nucleotide patterns and chromatin structures. Accordingly, they propose this difference could be a novel mechanism to ensure the accuracy of trans-splicing in these parasites.

      Before providing an in- depth review of the manuscript, I note that some missing information would have helped in assessing the study more thoroughly; however, in the light of the available information, I provide the following comments for consideration.

      The numbering of the figures, including the figure legends, is missing in the PDF file. This is essential for assessing the provided information.

      We apologized for not including the figure numbers in the main text, although they are located in the right place when called in the text. The omission was unwillingly made when figure legends were moved to the bottom of the main text. This is now fixed in the updated version of the manuscript.

      The publicly available Mnase- seq data are manyfold, with multiple datasets available for T. cruzi, for example. It is unclear from the manuscript which dataset was used for which figure. This must be clarified.

      This was detailed in Table S1. We have now replaced the table by an improved version, and we have also included the accession number of each data set used in the figure legends.

      Why do the authors start in figure 1 with the description of an MNase- protected TAS for T.brucei, given that it has been clearly shown by the Siegel lab that there is a nucleosome depletion similar to other parasites?

      We did not want to ignore the paper from Patterton’s lab because it was the first one to map nucleosomes genome-wide in T. brucei and the main finding of that paper claimed the existence of a well-positioned nucleosome at intergenic regions, what we though constitutes a point worth to be discussed. While Patterton’s work use MNase-seq from gel-purified samples and provides replicated experiments sequenced in really good depth; Siegel’s lab uses MNase-ChIP-seq of histone H3 but performs only one experiment and its input was not sequenced. So, each work has its own caveats and provides different information that together contributes to make a more comprehensive study. We think that bringing up both data sets to the discussion, as we have done in Figures 1 and 3, helps us and the community working in the field to enrich the discussion.

      If the authors re- analyse the data, they should compare their pipeline to those used in the other studies, highlighting differences and potential improvements.

      We are working on this point. We will provide a more detail description in the final revision.

      Since many figures resemble those in already published studies, there seems little reason to repeat and compare without a detailed comparison of the pipelines and their differences.

      Following the reviewer advice, we are now working on highlighting the main differences that justify analyzing the data the way we did and will be added in the finally revised method section.

      At a first glance, some of the figures might look similar when looking at the original manuscripts comparing with ours. However, with a careful and detailed reading of our manuscripts you can notice that we have added several analyses that allow to unveil information that was not disclosed before.

      First, we perform a systematic comparison analyzing every data set the same way from beginning to end, being the main difference with previous studies the thorough and precise prediction of TAS for the three organisms. Second, we represent the average chromatin organization relative to those predicted TASs for TriTryps and discuss their global patterns. Third, by representing the average chromatin into heatmaps, we show for the very first time, that those average nucleosome landscape are not just an average, they keep a similar organization in most of the genome. These was not done in any of the previous manuscripts except for our own (Beati, PLOS One 2023). Additionally, we introduce the discussion of how the extension of MNase reaction can affect the output of these experiments and we show 2D-plots and length distribution heatmaps to discuss this point (a point completely ignored in all the chromatin literature for trypanosomes). Furthermore, we made a far-reaching analysis by considering the contributions of each publish work even when addressed by different techniques. Finally, we discuss our findings in the context of a topic of current interest in the field, such as TriTryp’s genome compartmentalization.

      Several previous Mnase- seq analysis studies addressing chromatin accessibility emphasized the importance of using varying degrees of chromatin digestion, from low to high digestion (30496478, 38959309, 27151365).

      The reviewer is correct, and this point is exactly what we intended to illustrate in figure number 2. We appreciate he/she suggests these references that we are now citing in the final discussion. Just to clarify, using varying degrees of chromatin digestion is useful to make conclusions about a given organism but when comparing samples, strains, histone marks, etc. It is extremely important to do it upon selection of similar digested samples.

      No information on the extent of DNA hydrolysis is provided in the original Mnase- seq studies. This key information can not be inferred from the length distribution of the sequenced reads.

      The reviewer is correct that “No information on the extent of DNA hydrolysis is provided in the original Mnase-seq studies” and this is another reason why our analysis is so important to be published and discussed by the scientific community working in trypanosomes. We disagree with the reviewer in the second statement, since the level of digestion of a sequenced sample is actually tested by representing the length distribution of the total DNA sequenced. It is true that before sequencing you can, and should, check the level of digestion of the purified samples in an agarose gel and/or in a bioanalyzer. It could be also tested after library preparation, but before sequencing, expecting to observe the samples sizes incremented in size by the addition of the library adapters. But, the final test of success when working with MNase digested samples is to analyze length of DNA molecules by representing the histograms with length distribution of the sequenced DNA molecules. Remarkably, on occasions different samples might look very similar when run in a gel, but they render different length distribution histograms and this is because the nucleosome core could be intact but they might have suffered a differential trimming of the linker DNA associated to it or even be chewed inside (see Cole Hope 2011, section 5.2, doi: 10.1016/B978-0-12-391938-0.00006-9, for a detailed explanation).

      As the input material are selected, in part gel- purified mono- nucleosomal DNA bands. Furthermore the datasets are not directly comparable, as some use native MNase, while others employ MNase after crosslinking; some involve short digestion times at 37 {degree sign} C, while others involve longer digestion at lower temperatures. Combining these datasets to support the idea of an MNase- sensitive complex at the TAS of T. brucei therefore may not be appropriate, and additional experiments using consistent methodologies would strengthen the study's conclusions.

      In my opinion, describing an MNase- sensitive complex based solely on these data is not feasible. It requires specifically designed experiments using a consistent method and well- defined MNase digestion kinetics.

      As the reviewer suggests, the ideal experiment would be to perform a time course of MNase reaction with all the samples in parallel, or to work with a fix time point adding increasing amounts of MNase. However, the information obtained from the detail analysis of the length distribution histogram of sequenced DNA molecules the best test of the real outcome. In fact, those samples with different digestion levels were probably not generated on purpose.

      The only data sets that were gel purified are those from Mareé 2017 (Patterton’s lab), used in Figures 1, S1 and S2 and those from L. major shown in Fig 1. It was a common practice during those years, then we learned that is not necessary to gel purify, since we can sort fragment sizes later in silico when needed.

      As we explained to reviewer #1, to avoid this conflict, we decided to remove this data from figures 2 and S3. In summary, the 3 remaining samples comes from the same lab, and belong to the same publication (Mareé 2022). These sample are the inputs of native MNase ChIp-seq, obtain the same way, totally comparable among each other.

      Reviewer #3 (Significance (Required)):

      Due to the lack of controlled MNase digestion, use of heterogeneous datasets, and absence of benchmarking against previous studies, the conclusions regarding MNase-sensitive complexes and their functional significance remain speculative. With standardized MNase digestion and clearly annotated datasets, this study could provide a valuable contribution to understanding chromatin regulation in TriTryps parasites.

      As we have explained in the previous point our conclusions are valid since we do not compare in any figure samples coming from different treatments. The only exception to this comment could be in figure 3 when talking about MNase-ChIP-seq. We have now added a clear and explicit comment in the section and the discussion that despite having subtle differences in experimental procedures we arrive to the same results. This is the case for T. cruzi IP, run from crosslinked chromatin, compared to T. brucei’s IP, run from native chromatin.

      Along the years it was observed in the chromatin field that nucleosomes are so tightly bound to DNA that crosslinking is not necessary. However, it is still a common practice specially when performing IPs. In our own hands, we did not observe any difference at the global level neither in T. cruzi or in my previous work with yeast.

      ...

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript, the authors describe a good-quality ancient maize genome from 15th-century Bolivia and try to link the genome characteristics to Inca influence. Overall, the manuscript is below the standard in the field. In particular, the geographic origin of the sample and its archaeological context is not well evidenced. While dating of the sample and the authentication of ancient DNA have been evidenced robustly, the downstream genetic analyses do not support the conclusion that genomic changes can be attributed to Inca influence. Furthermore, sections of the manuscript are written incoherently and with logical mistakes. In its current form, this paper is not robust and possibly of very narrow interest. 

      Strengths: 

      Technical data related to the maize sample are robust. Radiocarbon dating strongly evidenced the sample age, estimated to be around 1474 AD. Authentication of ancient DNA has been done robustly. Spontaneous C-to-T substitutions, which are present in all ancient DNA, are visible in the reported sample with the expected pattern. Despite a low fraction of C-to-T at the 1st base, this number could be consistent with the cool and dry climate in which the sample was preserved. The distribution of DNA fragment sizes is consistent with expectations for a sample of this age. 

      Weaknesses: 

      Thank you for all your thoughtful comments. See below for comments on each.

      (1) Archaeological context for the maize sample is weakly supported by speculation about the origin and has unreasonable claims weighing on it. Perhaps those findings would be more convincing if the authors were to present evidence that supports their conclusions: i) a map of all known tombs near La Paz, ii) evidence supporting the stone tomb origins of this assemblage, and iii) evidence supporting non-Inca provenance of the tomb. 

      We believe we are clear about what information we have about context.  First, the intake records from the MSU Museum from 1890 are not as detailed as we would like, but we cannot enhance them. The mummified girl and her accoutrements, including the maize, came from a stone tower or chullpa south of La Paz, in what is now Bolivia. We do not know which stone chullpa, so a map would be of limited use.  The mortuary group is identified as Inca, but as we note the accoutrements do not appear of high status, so it is possible that she is not an elite.  Mud tombs are normally attributed to the local population, and stone towers to Inca or elites. We have clarified at multiple places in the text that the maize is from the period of Inca incursion in this part of Bolivia and have modified text to reflect greater uncertainty of Inca or local origin, but that selection for environmentally favorable characteristics had taken place.  Regardless, there are three 15th c CE or AD AMS ages on the maize, a cucurbita rind, and a camelid fiber.  The maize is almost certainly mid to late 15th century CE.

      (2) Dismissal of the admixture in the reported samples is not evidenced correctly. Population f3 statistic with an outgroup is indeed one of the most robust metrics for sample relatedness; however, it should not be used as a test of admixture. For an admixture test, the population f3 statistic should be used in the form: i) target population, ii) one possible parental population, iii) another possible parental population. This is typically done iteratively with all combinations of possible parental populations. Even in such a form, the population f3 statistic is not very sensitive to admixture in cases of strong genetic drift, and instead population f4 statistic (with an outgroup) is a recommended test for admixture. 

      We have removed “Our admixture f3-statistics test results suggest aBM is not admixed” in our revised manuscript. Since our goal here is to identify which group(s) has(have) the highest relatedness with aBM, so population f3 statistic with an outgroup is the most robust metric to do the test and to support our conclusion here.

      (3) The geographic placement of the sample based on genetic data is not robust. To make use of the method correctly, it would be necessary to validate that genetic samples in this region follow the assumption of the 'isolation-by-distance' with dense sampling, which has not been done. Additionally, the authors posit that "This suggests that aBM might not only be genetically related to the archaeological maize from ancient Peru, but also in the possible geographic location." The method used to infer the location is based on pure genetic estimation. The above conclusion is not supported by this method, and it directly contradicts the authors' suggestion that the sample comes from Bolivia.  

      We understood that it is necessary to validate the assumption of the 'isolation-by-distance' with dense sampling. But we did not do it because: 1) the ancient maize age ranges from ~5000BP to ~100BP and they were found in very different countries at different times. 2) isolation-by-distance is a population genetic concept and it's often used to test whether populations that are geographically farther apart are also more genetically different. Considering we only have 17 ancient samples in total our sample size is not sufficient for a big population test.

      For "It directly contradicts the authors' suggestion that the sample comes from Bolivia.”, as we described in our manuscript that “Given the provenience of the aBM and its age, it is possible the samples were local or alternatively were introduced into western highland Bolivia from the Inca core area – modern Peru.” The sample recording file did show the aBM sample was found in Bolivia, but we do not know where aBM originally came from before it was found in Bolivia. To answer this question, we used locator.py to predict the potential geographic location that aBM may have originally come from, and our results showed that the predicted location is inside of modern Peru and is also very close to archaeological Peruvian maize.  

      Therefore, our conclusion that "This suggests that aBM might not only be genetically related to the archaeological maize from ancient Peru, but also in the possible geographic location” does not contradict that the sample was found Bolivia.

      (4) The conclusion that Ancient Andean maize is genetically similar to European varieties and hence shares a similar evolutionary history is not well supported. The PCA plot in Figure 4 merely represents sample similarity based on two components (jointly responsible for about 20% of the variation explained), and European samples could be very distant based on other components. Indeed, the direct test using the outgroup f3 statistic does not support that European varieties are particularly closely related to ancient Andean maize. Perhaps these are more closely related to Brazil? We do not know, as this has not been measured. 

      Our conclusion is “We also found that a few types of maize from Europe have a much closer distance to the archaeological maize cluster compared to other modern maize, which indicates maize from Europe might expectedly share certain traits or evolutionary characteristics with ancient maize. It is also consistent with the historical fact that maize spread to Europe after Christopher Columbus's late 15th century voyages to the Americas. But as shown, maize also has diversity inside the European maize cluster. It is possible that European farmers and merchants may have favored different phenotypic traits, and the subsequent spread of specific varieties followed the new global geopolitical maps of the Colonial era”.

      We understood your concerns that two components only explain about 20% of the variation. But as you can see from the Figure 2b in Grzybowski, M.W. et al., 2023 publication, it described that “the first principal component (PC1) of variation for genetic marker data roughly corresponded to the division between domesticated maize and maize wild relatives is only 1.3%”. It shows this is quite common in maize, especially when the datasets include landraces, hybrids, and wild relatives. For our maize dataset, we have archaeological maize data ranging from ~5,000BP to ~100BP, and we also have modern maize, which makes the genetic structure of our data more complicated. Therefore, we think our two components are currently the best explanation currently possible. We also included PCA plot based on component 1 and 3 in Fig4_PCA13.pdf. It does not show that the European samples are very distant.

      For “Perhaps these are more closely related to Brazil?”, thank you for this very good question, but we apologize that we cannot answer this question from our current study because our study focuses on identifying the location where aBM originally came from, establishing and explaining patterns of genetic variability of maize, with a specific focus on maize strains that are related to our current aBM. Thus, we will not explore the story between maize from Brazil and European maize in our current study.

      (5) The conclusion that long branches in the phylogenetic tree are due to selection under local adaptation has no evidence. Long branches could be the result of missing data, nucleotide misincorporations, genetic drift, or simply due to the inability of phylogenetic trees to model complex population-level relationships such as admixture or incomplete lineage sorting. Additionally, captions to Figure S3, do not explain colour-coding.  

      We have removed “aBM tends to have long branches compare to tropicalis maize, which can be explained by adaption for specific local environment by time.” in our revised manuscript.

      We have added the color-coding information under Fig. S3 in our revised manuscript.

      (6) The conclusion that selection detected in aBM sample is due to Inca influence has no support. Firstly, selection signature can be due to environmental or other factors. To disentangle those, the authors would need to generate the data for a large number of samples from similar cultural contexts and from a wide-ranging environmental context, followed by a formal statistical test. Secondly, allele frequency increase can be attributed to selection or demographic processes, and alone is not sufficient evidence for selection. The presented XP-EHH method seems more suitable. Overall, methods used in this paper raise some concerns: i) how accurate are allele-frequency tests of selection when only single individual is used as a proxy for a whole population, ii) the significance threshold has been arbitrary fixed to an absolute number based on other studies, but the standard is to use, for example, top fifth percentile. Finally, linking selection to particular GO terms is not strong evidence, as correlation does not imply causation, and links are unclear anyway. 

      In sum, this manuscript presents new data that seems to be of high quality, but the analyses are frequently inappropriate and/or over-interpreted. 

      Regarding your suggestion that “from similar cultural contexts and from a wide-ranging environmental context, followed by a formal statistical test”, we apologize that this cannot be done in our current study because we could not find other archaeological maize samples/datasets that are from similar cultural contexts.

      For “Secondly, allele frequency increase can be attributed to selection or demographic processes, and alone is not sufficient evidence for selection.” Yes, we agree, and that’s why we said it “inferred” the conclusion instead of “indicated”. Furthermore, we revised the whole manuscript following all reviewers’ comments and reorganized and reduced the part on selection on aBM.

      For “The presented XP-EHH method seems more suitable”, we do not think XP-EHH is the best method that could be used here because we only have one aBM sample, but XP-EHH is more suitable for a population analysis.

      For “Finally, linking selection to particular GO terms is not strong evidence, as correlation does not imply causation, and links are unclear anyway.”, as we described in our manuscript, our results “inferred” instead of “indicated” the conclusion.

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript presents valuable new datasets from two ancient maize seeds that contribute to our growing understanding of the maize evolution and biodiversity landscape in pre-colonial South America. Some of the analyses are robust, but the selection elements are not supported. 

      Strengths: 

      The data collection is robust, and the data appear to be of sufficiently high quality to carry out some interesting analytical procedures. The central finding that aBM maize is closely related to maize from the core Inca region is well supported, although the directionality of dispersal is not supported. 

      Weaknesses: 

      Thank you for your comments and suggestions. See below for responses and explanations.

      The selection results are not justified, see examples in the detailed comments below. 

      (1) The manuscript mentions cultural and natural selection (line 76), but then only gives a couple of examples of selecting for culinary/use traits. There are many examples of selection to tolerate diverse environments that could be relevant for this discussion, if desired. 

      We have added related examples with references supported in our revised manuscript.  

      (2) I would be extremely cautious about interpreting the observations of a Spanish colonizer (lines 95-99) without very significant caveats. Indigenous agriculture and food ways would have been far more nuanced than what could be captured in this context, and the genocidal activities of the Europeans would have impacted food production activities to a degree, and any contemporaneous accounts need to be understood through that lens.  

      We agree with the first part of this comment and have softened our use of this particular textual material such that it is far less central to interpretation.While of interest, we cannot evaluate the impact of colonial European activities or observational bias for purposes of this analysis.

      (3) The f3 stats presented in Figure 2 are not set up to test any specific admixture scenarios, so it is unsupported to conclude that the aBM maize is not admixed on this basis (lines 201-202). The original f3 publication (Patterson et al, 2012) describes some scenarios where f3 characteristics associate with admixture, but in general, there are many caveats to this approach, and it's not the ideal tool for admixture testing, compared with e.g., f4 and D (abba-baba) statistics.  

      You make an important point that f3 stats is not the ideal tool for admixture testing. Since our study goal here is to identify which group(s) has(have) the highest relatedness with aBM, the population f3 statistic with an outgroup is the most robust metrics with which to do the test and to support our conclusion here. We have removed the “Our admixture f3-statistics test results suggest aBM is not admixed” in our revised manuscript.

      (4) I'm a little bit skeptical that the Locator method adds value here, given the small training sample size and the wide geographic spread and genetic diversity of the ancient samples that include Central America. The paper describing that method (Battey et al 2020 eLife) uses much larger datasets, and while the authors do not specifically advise on sample sizes, they caution about small sample size issues. We have already seen that the ancient Peruvian maize has the most shared drift with aBM maize on the basis of the f3 stats, and the Locator analysis seems to just be reiterating that. I would advise against putting any additional weight on the Locator results as far as geographic origins, and personally I would skip this analysis in this case.  

      As we described in our manuscript, we have 17 archaeological samples in total. Please find more detailed information from the “geographical location prediction” section.

      We cannot add more ancient samples because they are all that we could find from all previous publications. We may still want to keep this analysis because f3 stats indicates the genome similarity, but the purpose of locator.py analysis is indicating the predicted location of origin of a genetic sample by comparing it to a set of samples of known geographic origin. 

      (5) The overlap in PCA should not be used to confirm that aBM is authentically ancient, because with proper data handling, PCA placement should be agnostic to modern/ancient status (see lines 224-226). It is somewhat unexpected that the ancient Tehuacan maize (with a major teosinte genomic component) falls near the ancient South American maize, but this could be an artifact of sampling throughout the PCA and the lack of teosinte samples that might attract that individual.  

      We have removed “which supports the authenticity of aBM as archaeological maize” in our revised manuscript. The PCA was only applied for all maize samples, so we did not include any teosinte samples in the analysis.

      (6) What has been established (lines 250-251) is genetic similarity to the Inca core area, not necessarily the directionality. Might aBM have been part of a cultural region supplying maize to the Inca core region, for example? Without a specific test of dispersal directionality, which I don't think is possible with the data at hand, this is somewhat speculative. 

      We added this and re-wrote this part in our revised manuscript.

      (7) Singleton SNPs are not a typical criterion for identifying selection; this method needs some citations supporting the exact approach and validation against neutral expectations (line 278). Without Datasets S2 and S3, which are not included with this submission, it is difficult to assess this result further. However, it is very unexpected that ~18,000 out of ~49,000 SNPs would be unique to the aBM lineage. This most likely reflects some data artifact (unaccounted damage, paralogs not treated for high coverage, which are extremely prevalent in maize, etc). I'm confused about unique SNPs in this context. How can they be unique to the aBM lineage if the SNPs used overlap the Grzybowski set? The GO results do not include any details of the exact method used or a statistical assessment of the results. It is not clear if the GO terms noted are statistically enriched.  

      We have added references 53 and 54 in our revised manuscript, and we also uploaded the Datasets S2 and S3.

      For “I'm confused about unique SNPs in this context. How can they be unique to the aBM lineage if the SNPs used overlap the Grzybowski set?”, as we described in our materials and method part that “To achieve potential unique selection on aBM, we calculated the allele frequency for each SNPs between aBM and other archaeological maize, resulting in allele frequency data for 49,896 SNPs. Of these,18,668 SNPs were unique to aBM.”  Thus, the unique SNPs for aBM came from the comparison between aBM with other archaeological maize, and we did not use any modern maize data from the Grzybowski set.

      For “The GO results do not include any details of the exact method used or a statistical assessment of the results. It is not clear if the GO terms noted are statistically enriched.” We did not do GO Term enrichment, so there are no statistical assessments for the results. What we have done was we retained the GO Terms information for each gene by checking their biological process from MaizeGDB, after that, we summarized the results in Dataset S4.

      (8) The use of XP-EHH with pseudo haplotype variant calls is not viable (line 293). It is not clear what exact implementation of XP-EHH was used, but this method generally relies on phased or sometimes unphased diploid genotype calls to observe shared haplotypes, and some minimum population size to derive statistical power. No implementation of XP-EHH to my knowledge is appropriate for application to this kind of dataset. 

      We used the same XP-EHH as this publication “Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913-918 (2007).” Specifically in our analysis, the SNP information of modern maize was compared with ancient maize. The code is available in https://doi.org/10.5061/dryad.w6m905qtd.

      XP-EHH is a statistical method used in population genetics to detect recent positive selection in one population compared to another, and it often applied in modern large maize populations in previous research. In our study, we wanted to detect recent positive selection in modern maize compared to ancient maize, thus, we applied XP-EHH here. Although the population size of ancient maize is not big, it is the best method that we can apply for our dataset here to detect recent selection on modern maize.

      Reviewer #3 (Public review): 

      Summary: 

      The authors seek to place archaeological maize samples (2 kernels) from Bolivia into genetic and geographical context and to assess signatures of selection. The kernels were dated to the end of the Incan empire, just prior to European colonization. Genetic data and analyses were used to characterize the distance from other ancient and modern maize samples and to predict the origin of the sample, which was discovered in a tomb near La Paz, Bolivia. Given the conquest of this region by the Incan empire, it is possible that the sample could be genetically similar to populations of maize in Peru, the center of the Incan empire. Signatures of selection in the sample could help reveal various environmental variables and cultural preferences that shaped maize genetic diversity in this region at that time. 

      Strengths: 

      The authors have generated substantial genetic data from these archaeological samples and have assembled a data set of published archaeological and modern maize samples that should help to place these samples in context. The samples are dated to an interesting time in the history of South America during a period of expansion of the Incan empire and just prior to European colonization. Much could be learned from even this small set of samples. 

      Weaknesses: 

      Many thanks for your comments and suggestions.  We have addressed these below and provided further explanation.

      (1) Sample preparation and sequencing: 

      Details of the quality of the samples, including the percentage of endogenous DNA are missing from the methods. The low percentage of mapped reads suggests endogenous DNA was low, and this would be useful to characterize more fully. Morphological assessment of the samples and comparison to morphological data from other maize varieties is also missing. It appears that the two kernels were ground separately and that DNA was isolated separately, but data were ultimately pooled across these genetically distinct individuals for analysis. Pooling would violate assumptions of downstream analysis, which included genetic comparison to single archaeological and modern individuals. 

      We did not do the morphological assessment of the samples and comparison to morphological data from other maize varieties because we only have 2 aBM kernels, and we do not have other archaeological samples that could be used to do comparison.

      For “It appears that the two kernels were ground separately and that DNA was isolated separately, but data were ultimately pooled across these genetically distinct individuals for analysis”, as you can see from our Materials and Methods section that “Whole kernels were crushed in a mortar and pestle”, these two kernels were ground together before sequenced. 

      While morphological assessment of the sample would be interesting, most morphological data reported for maize are from microremains (starch, phytoliths, pollen) and this is beyond the scope of our study. Most studies of macrobotanical remains do not appear to focus solely on individual kernels, but instead on (or in combination with) cob and ear shape, which were not available in the assemblage.

      (2) Genetic comparison to other samples: 

      The authors did not meaningfully address the varying ages of the other archaeological samples and modern maize when comparing the genetic distance of their samples. The archaeological samples were as old as >5000 BP to as young as 70 BP and therefore have experienced varying extents of genetic drift from ancestral allele frequencies. For this reason, age should explicitly be included in their analysis of genetic relatedness. 

      We have changed related part in our revised manuscript.

      (3) Assessment of selection in their ancient Bolivian sample: 

      This analysis relied on the identification of alleles that were unique to the ancient sample and inferred selection based on a large number of unique SNPs in two genes related to internode length. This could be a technical artifact due to poor alignment of sequence data, evidence supporting pseudogenization, or within an expected range of genetic differentiation based on population structure and the age of the samples. More rigor is needed to indicate that these genetic patterns are consistent with selection. This analysis may also be affected by the pooling of the Bolivian archaeological samples.  

      We do not think it is because of poor alignment of sequence data since we used BWA v0.7.17 with disabled seed (-l 1024) and 0 mismatch alignment. Therefore, there are no SNPs that could come from poor alignment. Please see our detailed methods description here “For the archaeological maize samples, adapters were removed and paired reads were merged using AdapterRemoval60 with parameters --minquality 20 --minlength 30. All 5՛ thymine and 3՛ adenine residues within 5nt of the two ends were hard-masked, where deamination was most concentrated. Reads were then mapped to soft-masked B73 v5 reference genome using BWA v0.7.17 with disabled seed (-l 1024 -o 0 -E 3) and a quality control threshold (-q 20) based on the recommended parameter61 to improve ancient DNA mapping”.

      For “More rigor is needed to indicate that these genetic patterns are consistent with selection”, Could you please be more specific about which method or approach we should use here? For example, methods from specific publications that could be referenced? Or which specific tool could be used?

      “This analysis may also be affected by the pooling of the Bolivian archaeological samples.” As we could not prove these two seeds came from two different individual plants, we do not think this analysis was affected by the pooling of the Bolivian archaeological samples.

      (4) Evidence of selection in modern vs. ancient maize: In this analysis, samples were pooled into modern and ancient samples and compared using the XP-EHH statistic. One gene related to ovule development was identified as being targeted by selection, likely during modern improvement. Once again, ancient samples span many millennia and both South, Central, and North America. These, and the modern samples included, do not represent meaningfully cohesive populations, likely explaining the extremely small number of loci differentiating the groups. This analysis is also complicated by the pooling of the Bolivian archaeological samples. 

      Yes, it is possible that ovule development might be a modern improvement. We re-wrote this part in our revised manuscript.

      Reviewer #1 (Recommendations for the authors): 

      My suggestion is to address the comments that outline why the methods used or results obtained are not sufficient to support your conclusions. Overall, I suggest limiting the narrative of Inca influence and framing it as speculation in the discussion section. Presenting conclusions of Inca influence in the title and abstract is not appropriate, given the very questionable evidence. 

      We agree and have changed the title to “Fifteenth century CE Bolivian maize reveals genetic affinities with ancient Peruvian maize”.

      Reviewer #2 (Recommendations for the authors): 

      (1) Line 74: Mexicana is another subspecies of teosinte; the distinction is between ssp. mexicana and ssp. parviglumis (Balsas teosinte), not mexicana and teosinte. 

      We have corrected this in our revised manuscript.

      (2) Line 100-102: This is a bit confusing, it cannot have been a symbol of empire "since its first introduction", since its introduction long predates the formation of imperial politics in the region. Reference 17 only treats the late precolonial Inca context, while ref 22 (which cites maize cultivation at 2450 BC, not 3000 BC) makes no reference to ritual/feasting contexts; it simply documents early phytolith evidence for maize cultivation. As such, this statement is not supported by the references offered.

      lines 100-102. This point is well taken and was poor prose on our part.  We have modified this discussion to reflect both the confusing statement and we have corrected our mistake in age for reference 22. associated prose has been modified accordingly.

      We have corrected them as “Indeed, in the Andes, previous research showed that under the Inca empire, maize was fulfilled multiple contextual roles. In some cases, it operated as a sacred crop” and “…since its first introduction to the region around 2500 BC”.

      (3) Line 161: IntCal is likely not the appropriate calibration curve for this region; dates should probably be calibrated using SHCal.  

      We greatly appreciate this important (and correct) observation. We have completely recalibrated the maize AMS result based on the southern hemisphere calibration curve, discussed the new calibrations, and have also invoked two other AMS dates also subjected to the southern hemisphere calibration on associated material for comparison.We are confident in a 15th century AD/CE age for the maize, most likely mid- to late 15th century.  

      (4) Lines 167-169: The increase of G and A residues shown in Supplementary Figure S1a is just before the 5' end of the read within the reference genome context, and is related to fragmentation bias - a different process from postmortem deamination. Deamination leads to 5' C->T and 3' G->A, resulting in increased T at 5' ends and increased A at 3' ends, and the diagnostic damage curve. The reduction of C/T just before reads begin is not a result of deamination. 

      We have removed the “Both features are indicative of postmortem deamination patterns” in our revised manuscript.

      (5) Lines 187-196 This section presents a lot of important external information establishing hypotheses, and needs some references.  

      We have added the related references here.

      (6) Line 421: This makes it sound like damage masking was done BEFORE read mapping. However, this conflicts with the previous paragraph about map Damage, and Supplementary Figure 1 still shows a slight but perceptible damage curve, which is impossible if all terminal Ts and As are hard-masked. This should be reconciled.  

      The Supplementary Figure 1 shows the raw ancient maize DNA sample before damage masking. Specifically, Step1: We used map Damage to check/estimate if the damage exists, and we made the Supplementary Figure 1. Step 2: Then we used our own code hard-masked the damage bases and did read mapping.

      The purpose of Supplementary Figure 1 is to show the authenticity of aBM as archaeological maize. Therefore, it should show a slight but perceptible damage curve.

      (7) Line 460: PCA method is not given (just the LD pruning and the plotting).  

      The merged dataset of SNPs for archaeological and modern maize was used for PCA analysis by using “plink –pca”.

      (8) "tropicalis" maize is not common usage, it is not clear to me what this refers to. 

      We have changed all “tropicalis maize” as “tropical maize” in our revised manuscript.

      (9) The Figure 4 color palette is not accessible for colorblind/color-deficient vision.  

      We have changed the color of Figure 4. Please find the new colors in our upload Figure 4.

      (10) Datasets S2 and S3 are not included with this submission. 

      Thank you for letting us know and your suggestion. We have included Datasets S2 and S3 here.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      We thank the Reviewers for their thorough attention to our paper and the interesting discussion about the findings. Before responding to more specific comments, here some general points we would like to clarify:

      (1) Ecological niche models are indeed correlative models, and we used them to highlight environmental factors associated with HPAI outbreaks within two host groups. We will further revise the terminology that could still unintentionally suggest causal inference. The few remaining ambiguities were mainly in the Discussion section, where our intent was to interpret the results in light of the broader scientific literature. Particularly, we will change the following expressions:

      -  “Which factors can explain…” to  “Which factors are associated with…” (line 75);

      -  “the environmental and anthropogenic factors influencing” to “the environmental and anthropogenic factors that are correlated with” (line 273);

      -  “underscoring the influence” to “underscoring the strong association” (line 282).

      (2) We respectfully disagree with the suggestion that an ecological niche modelling (ENM) approach is not appropriate for this work and the research question addressed therein. Ecological niche models are specifically designed to estimate the spatial distribution of the environmental suitability of species and pathogens, making them well suited to our research questions. In our study, we have also explicitly detailed the known limitations of ecological niche models in the Discussion section, in line with prior literature, to ensure their appropriate interpretation in the context of HPAI.

      (3) The environmental layers used in our models were restricted to those available at a global scale, as listed in Supplementary Information Resources S1 (https://github.com/sdellicour/h5nx_risk_mapping/blob/master/Scripts_%26_data/SI_Resource_S1.xlsx). Naturally, not all potentially relevant environmental factors could be included, but the selected layers are explicitly documented and only these were assessed for their importance. Despite this limitation, the performance metrics indicate that the models performed well, suggesting that the chosen covariates capture meaningful associations with HPAI occurrence at a global scale.

      Reviewer #1 (Public review):

      The authors aim to predict ecological suitability for transmission of highly pathogenic avian influenza (HPAI) using ecological niche models. This class of models identify correlations between the locations of species or disease detections and the environment. These correlations are then used to predict habitat suitability (in this work, ecological suitability for disease transmission) in locations where surveillance of the species or disease has not been conducted. The authors fit separate models for HPAI detections in wild birds and farmed birds, for two strains of HPAI (H5N1 and H5Nx) and for two time periods, pre- and post-2020. The authors also validate models fitted to disease occurrence data from pre-2020 using post-2020 occurrence data. I thank the authors for taking the time to respond to my initial review and I provide some follow-up below.

      Detailed comments:

      In my review, I asked the authors to clarify the meaning of "spillover" within the HPAI transmission cycle. This term is still not entirely clear: at lines 409-410, the authors use the term with reference to transmission between wild birds and farmed birds, as distinct to transmission between farmed birds. It is implied but not explicitly stated that "spillover" is relevant to the transmission cycle in farmed birds only. The sentence, "we developed separate ecological niche models for wild and domestic bird HPAI occurrences ..." could have been supported by a clear sentence describing the transmission cycle, to prime the reader for why two separate models were necessary.

      We respectfully disagree that the term “spillover” is unclear in the manuscript. In both the Methods and Discussion sections (lines 387-391 and 409-414), we explicitly define “spillover” as the introduction of HPAI viruses from wild birds into domestic poultry, and we distinguish this from secondary farm-to-farm transmission. Our use of separate ecological niche models for wild and domestic outbreaks reflects not only the distinction between primary spillover and secondary transmission, but also the fundamentally different ecological processes, surveillance systems, and management implications that shape outbreaks in these two groups. We will clarify this choice in the revised manuscript when introducing the separate models. Furthermore, on line 83, we will add “as these two groups are influenced by different ecological processes, surveillance biases, and management contexts”.

      I also queried the importance of (dead-end) mammalian infections to a model of the HPAI transmission risk, to which the authors responded: "While spillover events of HPAI into mammals have been documented, these detections are generally considered dead-end infections and do not currently represent sustained transmission chains. As such, they fall outside the scope of our study, which focuses on avian hosts and models ecological suitability for outbreaks in wild and domestic birds." I would argue that any infections, whether they are in dead-end or competent hosts, represent the presence of environmental conditions to support transmission so are certainly relevant to a niche model and therefore within scope. It is certainly understandable if the authors have not been able to access data of mammalian infections, but it is an oversight to dismiss these infections as irrelevant.

      We understand the Reviewer’s point, but our study was designed to model HPAI occurrence in avian hosts only. We therefore restricted our analysis to wild birds and domestic poultry, which represent the primary hosts for HPAI circulation and the focus of surveillance and control measures. While mammalian detections have been reported, they are outside the scope of this work.

      Correlative ecological niche models, including BRTs, learn relationships between occurrence data and covariate data to make predictions, irrespective of correlations between covariates. I am not convinced that the authors can make any "interpretation" (line 298) that the covariates that are most informative to their models have any "influence" (line 282) on their response variable. Indeed, the observation that "land-use and climatic predictors do not play an important role in the niche ecological models" (line 286), while "intensive chicken population density emerges as a significant predictor" (line 282) begs the question: from an operational perspective, is the best (e.g., most interpretable and quickest to generate) model of HPAI risk a map of poultry farming intensity?

      We agree that poultry density may partly reflect reporting bias, but we also assumed it a meaningful predictor of HPAI risk. Its importance in our models is therefore expected. Importantly, our BRT framework does more than reproduce poultry distribution: it captures non-linear relationships and interactions with other covariates, allowing a more nuanced characterisation of risk than a simple poultry density map. Note also that we distinguished in our models intensive and extensive chicken poultry density and duck density. Therefore, it is not a “map of poultry farming intensity”. 

      At line 282, we used the word “influence” while fully recognising that correlative models cannot establish causality. Indeed, in our analyses, “relative influence” refers to the importance metric produced by the BRT algorithm (Ridgeway, 2020), which measures correlative associations between environmental factors and outbreak occurrences. These scores are interpreted in light of the broader scientific literature, therefore our interpretations build on both our results and existing evidence, rather than on our models alone. However, in the next version of the paper, we will revise the sentence as: “underscoring the strong association of poultry farming practices with HPAI spread (Dhingra et al., 2016)”. 

      I have more significant concerns about the authors' treatment of sampling bias: "We agree with the Reviewer's comment that poultry density could have potentially been considered to guide the sampling effort of the pseudo-absences to consider when training domestic bird models. We however prefer to keep using a human population density layer as a proxy for surveillance bias to define the relative probability to sample pseudo-absence points in the different pixels of the background area considered when training our ecological niche models. Indeed, given that poultry density is precisely one of the predictors that we aim to test, considering this environmental layer for defining the relative probability to sample pseudo-absences would introduce a certain level of circularity in our analytical procedure, e.g. by artificially increasing to influence of that particular variable in our models." The authors have elected to ignore a fundamental feature of distribution modelling with occurrence-only data: if we include a source of sampling bias as a covariate and do not include it when we sample background data, then that covariate would appear to be correlated with presence. They acknowledge this later in their response to my review: "...assuming a sampling bias correlated with poultry density would result in reducing its effect as a risk factor." In other words, the apparent predictive capacity of poultry density is a function of how the authors have constructed the sampling bias for their models. A reader of the manuscript can reasonably ask the question: to what degree are is the model a model of HPAI transmission risk, and to what degree is the model a model of the observation process? The sentence at lines 474-477 is a helpful addition, however the preceding sentence, "Another approach to sampling pseudo-absences would have been to distribute them according to the density of domestic poultry," (line 474) is included without acknowledgement of the flow-on consequence to one of the key findings of the manuscript, that "...intensive chicken population density emerges as a significant predictor..." (line 282). The additional context on the EMPRES-i dataset at line 475-476 ("the locations of outbreaks ... are often georeferenced using place name nomenclatures") is in conflict with the description of the dataset at line 407 ("precise location coordinates"). Ultimately, the choices that the authors have made are entirely defensible through a clear, concise description of model features and assumptions, and precise language to guide the reader through interpretation of results. I am not satisfied that this is provided in the revised manuscript.

      We thank the Reviewer for this important point. To address it, we compared model predictive performance and covariate relative influences obtained when pseudo-absences were weighted by poultry density versus human population density (Author response table 1). The results show that differences between the two approaches are marginal, both in predictive performance (ΔAUC ranging from -0.013 to +0.002) and in the ranking of key predictors (see below Author response images 1 and 2). For instance, intensive chicken density consistently emerged as an important predictor regardless of the bias layer used.

      Note: the comparison was conducted using a simplified BRT configuration for computational efficiency (fewer trees, fixed 5-fold random cross-validation, and standardised parameters). Therefore, absolute values of AUC and variable importance may differ slightly from those in the manuscript, but the relative ranking of predictors and the overall conclusions remain consistent.

      Given these small differences, we retained the approach using human population density. We agree that poultry density partly reflects surveillance bias as well as true epidemiological risk, and we will clarify this in the revised manuscript by noting that the predictive role of poultry density reflects both biological processes and surveillance systems. Furthermore, on line 289, we will add “We note, however, that intensive poultry density may reflect both surveillance intensity and epidemiological risk, and its predictive role in our models should be interpreted in light of both processes”.

      Author response table 1.

      Comparison of model predictive performances (AUC) between pseudo-absence sampling were weighted by poultry density and by human population density across host groups, virus types, and time periods. Differences in AUC values are shown as the value for poultry-weighted minus human-weighted pseudo-absences.

      Author response image 1.

      Comparison of variable relative influence (%) between models trained with pseudo-absences weighted by poultry density (red) and human population density (blue) for domestic bird outbreaks. Results are shown for four datasets: H5N1 (<2020), H5N1 (>2020), H5Nx (<2020), and H5Nx (>2020).

      Author response image 2.

      Comparison of variable relative influence (%) between models trained with pseudo-absences weighted by poultry density (red) and human population density (blue) for wild bird outbreaks. Results are shown for three datasets: H5N1 (>2020), H5Nx (<2020), and H5Nx (>2020).

      The authors have slightly misunderstood my comment on "extrapolation": I referred to "environmental extrapolation" in my review without being particularly explicit about my meaning. By "environmental extrapolation", I meant to ask whether the models were predicting to environments that are outside the extent of environments included in the occurrence data used in the manuscript. The authors appear to have understood this to be a comment on geographic extrapolation, or predicting to areas outside the geographic extent included in occurrence data, e.g.: "For H5Nx post-2020, areas of high predicted ecological suitability, such as Brazil, Bolivia, the Caribbean islands, and Jilin province in China, likely result from extrapolations, as these regions reported few or no outbreaks in the training data" (lines 195-197). Is the model extrapolating in environmental space in these regions? This is unclear. I do not suggest that the authors should carry out further analysis, but the multivariate environmental similarly surface (MESS; see Elith et al., 2010) is a useful tool to visualise environmental extrapolation and aid model interpretation.

      On the subject of "extrapolation", I am also concerned by the additions at lines 362-370: "...our models extrapolate environmental suitability for H5Nx in wild birds in areas where few or no outbreaks have been reported. This discrepancy may be explained by limited surveillance or underreporting in those regions." The "discrepancy" cited here is a feature of the input dataset, a function of the observation distribution that should be captured in pseudo-absence data. The authors state that Kazakhstan and Central Asia are areas of interest, and that the environments in this region are outside the extent of environments captured in the occurrence dataset, although it is unclear whether "extrapolation" is informed by a quantitative tool like a MESS or judged by some other qualitative test. The authors then cite Australia as an example of a region with some predicted suitability but no HPAI outbreaks to date, however this discussion point is not linked to the idea that the presence of environmental conditions to support transmission need not imply the occurrence of transmission (as in the addition, "...spatial isolation may imply a lower risk of actual occurrences..." at line 214). Ultimately, the authors have not added any clear comment on model uncertainty (e.g., variation between replicated BRTs) as I suggested might be helpful to support their description of model predictions.

      Many thanks for the clarification. Indeed, we interpreted your previous comments in terms of geographic extrapolations. We thank the Reviewer for these observations. We will adjust the wording to further clarify that predictions of ecological suitability in areas with few or no reported outbreaks (e.g., Central Asia, Australia) are not model errors but expected extrapolations, since ecological suitability does not imply confirmed transmission (for instance, on Line 362: “our models extrapolate environmental suitability” will be changed to “Interestingly, our models extrapolate geographical”). These predictions indicate potential environments favorable to circulation if the virus were introduced.

      In our study, model uncertainty is formally assessed when comparing the predictive performances of our models (Fig. S3, Table S1), the relative influence (Table S3) and response curves (Fig. 2) associated with each environmental factor (Table S2). All the results confirming a good converge between these replicates. Finally, we indeed did not use a quantitative tool such as a MESS to assess extrapolation but did rely on qualitative interpretation of model outputs.

      All of my criticisms are, of course, applied with the understanding that niche modelling is imperfect for a disease like HPAI, and that data may be biased/incomplete, etc.: these caveats are common across the niche modelling literature. However, if language around the transmission cycle, the niche, and the interpretation of any of the models is imprecise, which I find it to be in the revised manuscript, it undermines all of the science that is presented in this work.

      We respectfully disagree with this comment. The scope of our study and the methods employed are clearly defined in the manuscript, and the limitations of ecological niche modelling in this context are explicitly acknowledged in the Discussion section. While we appreciate the Reviewer’s concern, the comment does not provide specific examples of unclear or imprecise language regarding the transmission cycle, niche, or interpretation of the models. Without such examples, it is difficult to identify further revisions that would improve clarity.

      Reviewer #2 (Public review):

      The geographic range of highly pathogenic avian influenza cases changed substantially around the period 2020, and there is much interest in understanding why. Since 2020 the pathogen irrupted in the Americas and the distribution in Asia changed dramatically. This study aimed to determine which spatial factors (environmental, agronomic and socio-economic) explain the change in numbers and locations of cases reported since 2020 (2020--2023). That's a causal question which they address by applying correlative environmental niche modelling (ENM) approach to the avian influenza case data before (2015--2020) and after 2020 (2020--2023) and separately for confirmed cases in wild and domestic birds. To address their questions they compare the outputs of the respective models, and those of the first global model of the HPAI niche published by Dhingra et al 2016.

      We do not agree with this comment. In the manuscript, it is well established that we are quantitatively assessing factors that are associated with occurrences data before and after 2020. We do not claim to determine the causality. One sentence of the Introduction section (lines 75-76) could be confusing, so we intend to modify it in the final revision of our manuscript. 

      ENM is a correlative approach useful for extrapolating understandings based on sparse geographically referenced observational data over un- or under-sampled areas with similar environmental characteristics in the form of a continuous map. In this case, because the selected covariates about land cover, use, population and environment are broadly available over the entire world, modelled associations between the response and those covariates can be projected (predicted) back to space in the form of a continuous map of the HPAI niche for the entire world.

      We fully agree with this assessment of ENM approaches.

      Strengths:

      The authors are clear about expected bias in the detection of cases, such geographic variation in surveillance effort (testing of symptomatic or dead wildlife, testing domestic flocks) and in general more detections near areas of higher human population density (because if a tree falls in a forest and there is no-one there, etc), and take steps to ameliorate those. The authors use boosted regression trees to implement the ENM, which typically feature among the best performing models for this application (also known as habitat suitability models). They ran replicate sets of the analysis for each of their model targets (wild/domestic x pathogen variant), which can help produce stable predictions. Their code and data is provided, though I did not verify that the work was reproducible.

      The paper can be read as a partial update to the first global model of H5Nx transmission by Dhingra and others published in 2016 and explicitly follows many methodological elements. Because they use the same covariate sets as used by Dhingra et al 2016 (including the comparisons of the performance of the sets in spatial cross-validation) and for both time periods of interest in the current work, comparison of model outputs is possible. The authors further facilitate those comparisons with clear graphics and supplementary analyses and presentation. The models can also be explored interactively at a weblink provided in text, though it would be good to see the model training data there too.

      The authors' comparison of ENM model outputs generated from the distinct HPAI case datasets is interesting and worthwhile, though for me, only as a response to differently framed research questions.

      Weaknesses:

      This well-presented and technically well-executed paper has one major weakness to my mind. I don't believe that ENM models were an appropriate tool to address their stated goal, which was to identify the factors that "explain" changing HPAI epidemiology.

      Here is how I understand and unpack that weakness:

      (1) Because of their fundamentally correlative nature, ENMs are not a strong candidate for exploring or inferring causal relationships.

      (2) Generating ENMs for a species whose distribution is undergoing broad scale range change is complicated and requires particular caution and nuance in interpretation (e.g., Elith et al, 2010, an important general assumption of environmental niche models is that the target species is at some kind of distributional equilibrium (at time scales relevant to the model application). In practice that means the species has had an opportunity to reach all suitable habitats and therefore its absence from some can be interpreted as either unfavourable environment or interactions with other species). Here data sets for the response (N5H1 or N5Hx case data in domestic or wild birds ) were divided into two periods; 2015--2020, and 2020--2023 based on the rationale that the geographic locations and host-species profile of cases detected in the latter period was suggestive of changed epidemiology. In comparing outputs from multiple ENMs for the same target from distinct time periods the authors are expertly working in, or even dancing around, what is a known grey area, and they need to make the necessary assumptions and caveats obvious to readers.

      We thank the Reviewer for this observation. First, we constrained pseudo-absence sampling to countries and regions where outbreaks had been reported, reducing the risk of interpreting non-affected areas as environmentally unsuitable. Second, we deliberately split the outbreak data into two periods (2015-2020 and 2020-2023) because we do not assume a single stable equilibrium across the full study timeframe. This division reflects known epidemiological changes around 2020 and allows each period to be modeled independently. Within each period, ENM outputs are interpreted as associations between outbreaks and covariates, not as equilibrium distributions. Finally, by testing prediction across periods, we assessed both niche stability and potential niche shifts. These clarifications will be added to the manuscript to make our assumptions and limitations explicit.

      Line 66, we will add: “Ecological niche model outputs for range-shifting pathogens must therefore be interpreted with caution (Elith et al., 2010). Despite this limitation, correlative ecological niche models  remain useful for identifying broad-scale associations and potential shifts in distribution. To account for this, we analysed two distinct time periods (2015-2020 and 2020-2023).”

      Line 123, we will revise “These findings underscore the ability of pre-2020 models in forecasting the recent geographic distribution of ecological suitability for H5Nx and H5N1 occurrences” to “These results suggest that pre-2020 models captured broad patterns of suitability for H5Nx and H5N1 outbreaks, while post-2020 models provided a closer fit to the more recent epidemiological situation”.

      (3) To generate global prediction maps via ENM, only variables that exist at appropriate resolution over the desired area can be supplied as covariates. What processes could influence changing epidemiology of a pathogen and are their covariates that represent them? Introduction to a new geographic area (continent) with naive population, immunity in previously exposed populations, control measures to limit spread such as vaccination or destruction of vulnerable populations or flocks? Might those control measures be more or less likely depending on the country as a function of its resources and governance? There aren't globally available datasets that speak to those factors, so the question is not why were they omitted but rather was the authors decision to choose ENMs given their question justified? How valuable are insights based on patterns of correlation change when considering different temporal sets of HPAI cases in relation to a common and somewhat anachronistic set of covariates?

      We agree that the ecological niche models trained in our study are limited to environmental and host factors, as described in the Methods section with the selection of predictors. While such models cannot capture causality or represent processes such as immunity, control measures, or governance, they remain a useful tool for identifying broad associations between outbreak occurrence and environmental context. Our study cannot infer the full mechanisms driving changes in HPAI epidemiology, but it does provide a globally consistent framework to examine how associations with available covariates vary across time periods.

      (4) In general the study is somewhat incoherent with respect to time. Though the case data come from different time periods, each response dataset was modelled separately using exactly the same covariate dataset that predated both sets. That decision should be understood as a strong assumption on the part of the authors that conditions the interpretation: the world (as represented by the covariate set) is immutable, so the model has to return different correlative associations between the case data and the covariates to explain the new data. While the world represented by the selected covariates *may* be relatively stable (could be statistically confirmed), what about the world not represented by the covariates (see point 3)?

      We used the same covariate layers for both periods, which indeed assumes that these environmental and host factors are relatively stable at the global scale over the short timeframe considered. We believe this assumption is reasonable, as poultry density, land cover, and climate baselines do not change drastically between 2015 and 2023 at the resolution of our analysis. We agree, however, that unmeasured processes such as control measures, immunity, or governance may have changed during this time and are not captured by our covariates.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      - Line 400-401: "over the 2003-2016 periods" has an extra "s"; "two host species" (with reference to wild and domestic birds) would be more precise as "two host groups".

      - Remove comma line 404

      Many thanks for these comments, we have modified the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      Most of my work this round is encapsulated in the public part of the review.

      The authors responded positively to the review efforts from the previous round, but I was underwhelmed with the changes to the text that resulted. Particularly in regard to limiting assumptions - the way that they augmented the text to refer to limitations raised in review downplayed the importance of the assumptions they've made. So they acknowledge the significance of the limitation in their rejoinder, but in the amended text merely note the limitation without giving any sense of what it means for their interpretation of the findings of this study.

      The abstract and findings are essentially unchanged from the previous draft.

      I still feel the near causal statements of interpretation about the covariates are concerning. These models really are not a good candidate for supporting the inference that they are making and there seem to be very strong arguments in favour of adding covariates that are not globally available.

      We never claimed causal interpretation, and we have consistently framed our analyses in terms of associations rather than mechanisms. We acknowledge that one phrasing in the research questions (“Which factors can explain…”) could be misinterpreted, and we are correcting this in the revised version to read “Which factors are associated with…”. Our approach follows standard ecological niche modelling practice, which identifies statistical associations between occurrence data and covariates. As noted in the Discussion section, these associations should not be interpreted as direct causal mechanisms. Finally, all interpretive points in the manuscript are supported by published literature, and we consider this framing both appropriate and consistent with best practice in ecological niche modelling (ENM) studies.

      We assessed predictor contributions using the “relative influence” metric, the terminology reported by the R package “gbm” (Ridgeway, 2020). This metric quantifies the contribution of each variable to model fit across all trees, rescaled to sum to 100%, and should be interpreted as an association rather than a causal effect.

      L65-66 The general difficulty of interpreting ENM output with range-shifting species should be cited here to alert readers that they should not blithely attempt what follows at home.

      I believe that their analysis is interesting and technically very well executed, so it has been a disappointment and hard work to write this assessment. My rough-cut last paragraph of a reframed intro would go something like - there are many reasons in the literature not to do what we are about to do, but here's why we think it can be instructive and informative, within certain guardrails.

      To acknowledge this comment and the previous one, we revised lines 65-66 to: “However, recent outbreaks raise questions about whether earlier ecological niche models still accurately predict the current distribution of areas ecologically suitable for the local circulation of HPAI H5 viruses. Ecological niche model outputs for range-shifting pathogens must therefore be interpreted with caution (Elith et al., 2010). Despite this limitation, correlative ecological niche models  remain useful for identifying broad-scale associations and potential shifts in distribution.”

      We respectfully disagree with the Reviewer’s statement that “_there are many reasons in the literature not to do what we are about to do”._ All modeling approaches, including mechanistic ones, have limitations, and the literature is clear on both the strengths and constraints of ecological niche models. Our manuscript openly acknowledges these limits and frames our findings accordingly. We therefore believe that our use of an ENM approach is justified and contributes valuable insights within these well-defined boundaries.

      Reference: Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. Update, 1(1), 2007.


      The following is the authors’ response to the original reviews.

      Reviewer #1(Public review):

      I am concerned by the authors' conceptualisation of "niche" within the manuscript. Is the "niche" we are modelling the niche of the pathogen itself? The niche of the (wild) bird host species as a group? The niche of HPAI transmission within (wild) bird host species (i.e., an intersection of pathogen and bird niches)? Or the niche of HPAI transmission in poultry? The precise niche being modelled should be clarified in the Introduction or early in the Methods of the manuscript. The first two definitions of niche listed above are relevant, but separate from the niche modelled in the manuscript - this should be acknowledged.

      We acknowledge that these concepts were probably not enough clearly defined in the previous version of our manuscript, and we have now included an explicit definition in the fourth paragraph of the Introduction section: “We developed separate ecological niche models for wild and domestic bird HPAI occurrences, these models thus predicting the ecological suitability for the risk of local viral circulation leading to the detection of HPAI occurrences within each host group (rather than the niche of the virus or the host species alone).”

      The authors should consider the precise transmission cycle involved in each HPAI case: "index cases" in farmed poultry, caused by "spillover" from wild birds, are relevant to the wildlife transmission cycle, while the ecological conditions coinciding with subsequent transmission in farmed poultry are likely to be fundamentally different. (For example, subsequent transmission is not conditional on the presence of wild birds.) Modelling these two separate, but linked, transmission cycles together may omit important nuances from the modelling framework.

      We thank the Reviewer for highlighting the distinction between primary (wild-todomestic) and secondary (farm-to-farm) transmission cycles. Our modelling framework was designed to assess the ecological suitability of HPAI occurrences in wild and domestic birds separately. In the domestic poultry models, the response variables are the confirmed outbreaks data and do not distinguish between index cases resulting from primary or secondary infections.

      One of the aims of the study is to evaluate the spatial distribution of areas ecologically suitable for local H5N1/x circulation either leading to domestic or wild bird cases, i.e. to identify environmental conditions where the virus may have persisted or spread, whether as a result of introduction by wild birds or farm-to-farm transmission. Introducing mechanistic distinctions in the response variable would not necessarily improve or affect the ecological suitability maps, since each type of transmission is likely to be associated with different covariates that are included in the models.

      Also, the EMPRES-i database does not indicate whether each record corresponds to an index case or a secondary transmission event, so in practice it would not be possible to produce two different models. However, we agree that distinguishing between types of transmission is an interesting perspective for future research. This could be explored, for example, by mapping interfaces between wild and domestic bird populations or by inferring outbreak transmission trees using genomic data when available.

      To avoid confusion, we now explicitly clarify this aspect in the Materials and Methods section: “It is important to note that the EMPRES-i database does not distinguish between index cases (e.g., primary spillover from wild birds) and secondary farm-to-farm transmissions. As such, our ecological niche models are trained on confirmed HPAI outbreaks in poultry that may result from different transmission dynamics — including both initial introduction events influenced by environmental factors and subsequent spread within poultry systems.”

      We now also address this limitation in the Discussion section: “Finally, our models for domestic poultry do not distinguish between primary introduction events (e.g., spillover from wild birds) and secondary transmission between farms due to limitations in the available surveillance data. While environmental factors likely influence the risk of initial spillover events, secondary spread is more often driven by anthropogenic factors such as biosecurity practices and poultry trade, which are not included in our current modelling framework.”

      The authors should clarify the meaning of "spillover" within the HPAI transmission cycle: if spillover transmission is from wild birds to farmed poultry, then subsequent transmission in poultry is separate from the wildlife transmission cycle. This is particularly relevant to the Discussion paragraph beginning at line 244: does "farm to farm transmission" have a distinct ecological niche to transmission between wild birds, and transmission between wild birds and farmed birds? And while there has been a spillover of HPAI to mammals, could the authors clarify that these detections are dead-end? And not represented in the dataset? Dhingra et al., 2016 comment on the contrast between models of "directly transmitted" pathogens, such as HPAI, and vector-borne diseases: for vector-borne diseases, "clear eco-climatic boundaries of vectors can be mapped", whereas "HPAI is probably not as strongly environmentally constrained". This is an important piece of nuance in their Discussion and a comment to a similar effect may be of use in this manuscript.

      Following the Reviewer’s previous comment, we have now added clarifications in the Methods and Discussion sections defining spillover as the transmission of HPAI viruses from wild birds to domestic poultry (index cases), and secondary transmission as onward spread between farms. As mentioned in our answer above, we now emphasise that our models do not distinguish these dynamics, which are likely to be influenced by different drivers — ecological in the case of spillover, and often anthropogenic (e.g., poultry trade movement, biosecurity) in the case of farm-to-farm transmission.

      The discussion regarding farm-to-farm transmission and spillovers is indeed an interpretation derived from the covariates analysis (see the second paragraph in the Discussion section). Specifically, we observed a stronger association between HPAI occurrences and domestic bird density after 2020, which may suggest that secondary infections (e.g., farm-to-farm transmission) became more prominent or more frequently reported. We however acknowledge that our data do not allow us to distinguish primary introductions from secondary transmission events, and we have added a sentence to explicitly clarify this: “However, this remains an interpretation, as the available data do not allow us to distinguish between index cases and secondary transmission events.”

      We thank the Reviewer for raising the point of mammalian infections. While spillover events of HPAI into mammals have been documented, these detections are generally considered dead-end infections and do not currently represent sustained transmission chains. As such, they fall outside the scope of our study, which focuses on avian hosts and models ecological suitability for outbreaks in wild and domestic birds. However, we agree that future work could explore the spatial overlap between mammalian outbreak detections and ecological suitability maps for wild birds to assess whether such spillovers may be linked to localised avian transmission dynamics.

      Finally, we have added a comment about the differences between pathogens strongly constrained by the environments and HPAI: “This suggests that HPAI H5Nx is not as strongly environmentally constrained as vector-borne pathogens, for which clear eco-climatic boundaries (e.g., vector borne diseases) can be mapped (Dhingra et al., 2016).” This aligns with the interpretation provided by Dhingra and colleagues (2016) and helps contextualise the predictive limitations of ecological niche models for directly transmitted pathogens like HPAI.

      There are several places where some simple clarification of language could answer my questions related to ecological niches. For example, on line 74, "the ecological niche" should be followed by "of the pathogen", or "of HPAI transmission in wild birds", or some other qualifier that is most appropriate to the Authors' conceptualisation of the niche modelled in the manuscript. Similarly, in the following sentence, "areas at risk" could be followed by "of transmission in wild birds", to make the transmission cycle that is the subject of modelling clear to the reader. On line 83, it is not clear who or what is the owner of "their ecological niches": is this "poultry and wild birds", or the pathogen?

      We agree with that suggestion and have now modified the related part of the text  accordingly (e.g., “areas at risk for local HPAI circulation” and “of HPAI in wild or domestic birds”).

      I am concerned by the authors' treatment of sampling bias in their BRT modelling framework. If we are modelling the niche of HPAI transmission, we would expect places that are more likely to be subject to disease surveillance to be represented in the set of locations where the disease has been detected. I do not agree that pseudo-absence points are sampled "to account for the lack of virus detection in some areas" - this description is misleading and does not match the following sentence ("pseudo-absence points sampled ... to reflect the greater surveillance efforts ..."). The distribution of pseudo-absences should aim to capture the distribution of probable disease surveillance, as these data act as a stand-in for missing negative surveillance records. It is sensible that pseudo-absences for disease detection in wild birds are sampled proportionately to human population density, as the disease is detected in dead wild birds, which are more likely to be identified close to areas of human occupation (as stated on line 163). However, I do not agree that the same applies to poultry - the density of farmed poultry is likely to be a better proxy for surveillance intensity in farmed birds. Human population density and farmed poultry density may be somewhat correlated (i.e., both are low in remote areas), but poultry density is likely to be higher in rural areas, which are assumed to have relatively lower surveillance intensity under the current approach. The authors allude to this in the Discussion: "monitoring areas with high intensive chicken densities ... remains crucial for the early detection and management of HPAI outbreaks".

      We agree with the Reviewer's comment that poultry density could have potentially been considered to guide the sampling effort of the pseudo-absences to consider when training domestic bird models. We however prefer to keep using a human population density layer as a proxy for surveillance bias to define the relative probability to sample pseudoabsence points in the different pixels of the background area considered when training our ecological niche models. Indeed, given that poultry density is precisely one of the predictors that we aim to test, considering this environmental layer for defining the relative probability to sample pseudo-absences would introduce a certain level of circularity in our analytical procedure, e.g. by artificially increasing to influence of that particular variable in our models.

      Furthermore, it is also worth noting that, to better account for variations in surveillance intensity, we also adjusted the sampling effort by allocating pseudo-absences in proportion to the number of confirmed outbreaks per administrative unit (country or sub-national regions for Russia and China). This approach aimed to reduce bias caused by uneven reporting and surveillance efforts between regions. Additionally, we restricted model training to countries or regions with a minimum surveillance threshold (at least five confirmed outbreaks per administrative unit). Therefore, both presence and pseudo-absence points originated from areas with more consistent surveillance data.

      We acknowledge in the Materials and Methods section that the approach proposed by the Reviewer could have been used: “Another approach to sampling pseudo-absences would have been to distribute them according to the density of domestic poultry.” Finally, our approach is also justified in our response to the next comment of the Reviewer.

      Having written my review, including the paragraph above, I briefly scanned Dhingra et al., and found that they provide justification for the use of human population density to sample pseudoabsences in farmed birds: "the Empres-i database compiles outbreak locations data from very heterogeneous sources and in the absence of explicit GPS location data, the geo-referencing of individual cases is often through the use of place name gazetteers that will tend to force the outbreak location populated place, rather in the exact location of the farm where the disease was found, which would introduce a bias correlated with human population density." This context is entirely missing from the manuscript under review, however, I maintain the comment in the paragraph above - have the Authors trialled sampling pseudo-absences from poultry density layers?

      We agree with the Reviewer’s comment and have now added this precision in the Materials and Methods section (in the third paragraph dedicated to ecological niche modelling): “However, as pointed out by Dhingra and colleagues (2016), the locations of outbreaks in the EMPRES-i database are often georeferenced using place name nomenclatures due to a lack of accurate GPS data, which could introduce a spatial bias towards populated areas.”

      The authors indirectly acknowledge the role of sampling bias in model predictions at line 163, however, this point could be clearer: there is sampling bias in the set of locations where HPAI has been observed and failure to adequately replicate this sampling bias in pseudo-absence data could lead covariates that are correlated with the observation distribution to appear to be correlated with the target distribution. This point is alluded to but should be clearly acknowledged to allow the reader to appropriately interpret your results. I understand the point being made on line 163 is that surveillance of HPAI in wild birds has become more structured and less opportunistic over time - if this is the case, a statement to this effect could replace "which could influence earlier data sets", which is a little ambiguous. The Authors acknowledge the role of sampling bias in lines 241-242 - this may be a good place to remind the reader that they have attempted to incorporate sampling bias through the selection of their pseudoabsence dataset, particularly for wild bird models.

      We thank the Reviewer for this comment. We have now clarified in the text that observed data on HPAI occurrence are inherently influenced by heterogeneous surveillance efforts and that failure to replicate this bias in pseudo-absence sampling could effectively lead to misleading correlations with covariates associated with surveillance effort rather than true ecological suitability. We have now rephrased the related sentence as follows: “This decline may indicate a reduced bias in observation data: typically, dead wild birds are more frequently found near human-populated areas due to opportunistic detections, whereas more recent surveillance efforts have become increasingly proactive (Giacinti et al., 2024).”

      Dhingra et al. aimed to account for the effect of mass vaccination of birds in China. This does not appear to be included in the updated models - is this a relevant covariate to consider in updated models? Are the models trained on pre-2020 data predicting to post-2020 given the same presence dataset as previous models? It may be helpful to provide a comment on this if we consider the pre-2020 models in this work to be representative of pre-2020 models as a cohort. Given the framing of the manuscript as an update to Dhingra et al., it may be useful for the authors to briefly summarise any differences between the existing models and updated models. Dhingra et al., also examine spatial extrapolation, which is not addressed here. Environmental extrapolation may be a useful metric to consider: are there areas where models are extrapolating that are predicted to be at high risk of HPAI transmission? Finally, they also provide some inset panels on global maps of model predictions - something similar here may also be useful.

      We thank the Reviewer for these comments. Vaccination coverage is indeed a relevant covariate for HPAI suitability in domestic birds. However, we did not include this variable in our updated models for two reasons. First, comprehensive vaccination data were only available for China, so it is not possible to include this variable in a global model. Second, available data were outdated and vaccination strategies can vary substantially over time.

      We however agree with the Reviewer that the Materials and Methods section did not clarify clearly the differences with Dhingra et al. (2016), and we now detail these differences at the beginning of the Materials and Methods section: “Our approach is similar to the one implemented by Dhingra and colleagues (2016). While Dhingra et al. (2016) developed their models only for domestic birds over the 2003-2016 periods, our models were developed for two host species separately (wild and domestic birds) and for two time periods (2016-2020 and 2020-2023).”

      We also detail the main difference concerning the pseudo-absences sampling:  Dhingra and colleagues (2016) used human population density to sample pseudo-absences to reflect potential surveillance bias and also account for spatial filtering (min/max distances from presence). We adopted a similar strategy but also incorporated outbreak count per country or province (in the case of China and Russia) into the pseudo-absence sampling process to further account for within-country surveillance heterogeneity. We have now added these specifications in the Materials and Methods section: “To account for heterogeneity in AIV surveillance and minimise the risk of sampling pseudo-absences in poorly monitored regions, we restricted our analysis to countries (or administrative level 1 units in China and Russia) with at least five confirmed outbreaks. Unlike Dhingra et al. (2016), who sampled pseudoabsences across a broader global extent, our sampling was limited to regions with demonstrated surveillance activity. In addition, we adjusted the density of pseudo-absence points according to the number of reported outbreaks in each country or admin-1 unit, as a proxy for surveillance effort — an approach not implemented in this previous study.”

      We have now also provided a comparison between the different outputs, particularly in the Results section: “Our findings were overall consistent with those previously reported by Dhingra and colleagues (Dhingra et al., 2016), who used data from January 2004 to March 2015 for domestic poultry. However, some differences were noted: their maps identified higher ecological suitability for H5 occurrences before 2016 in North America, West Africa, eastern Europe, and Bangladesh, while our maps mainly highlight ecologically suitable regions in China, South-East Asia, and Europe (Fig. S5). In India, analyses consistently identified high ecologically suitable areas for the risk of local H5Nx and H5N1 circulation for the three time periods (pre-2016, 2016-2020, and post-2020). Similar to the results reported by Dhingra and colleagues, we observed an increase in the ecological suitability estimated for H5N1 occurrence in South America's domestic bird populations post-2020. Finally, Dhingra and colleagues identified high suitability areas for H5Nx occurrence in North America, which are predicted to be associated with a low ecological suitability in the 2016-2020 models.”

      We acknowledge that some regions predicted as highly suitable correspond to areas where extrapolation likely occurs due to limited or no recorded outbreaks. We have now added these specifications when discussing the resulting suitability maps obtained for domestic birds: “For H5Nx post-2020, areas of high predicted ecological suitability, such as Brazil, Bolivia, the Caribbean islands, and Jilin province in China, likely result from extrapolations, as these regions reported few or no outbreaks in the training data”, and, for wild birds: “Some of the areas with high predicted ecological suitability reflect the result of extrapolations. This is particularly the case in coastal regions of West and North Africa, the Nile Basin, Central Asia (Kyrgyzstan, Tajikistan, Uzbekistan), Brazil (including the Amazon and coastal areas), southern Australia, and the Caribbean, where ecological conditions are similar to those in areas where outbreaks are known to occur but where records of outbreaks are still rare.”

      For wild birds (H5Nx, post-2020), high ecological suitability was predicted along the West and North African coasts, the Nile basin, Central Asia (e.g., Kyrgyzstan, Tajikistan, Uzbekistan), the Brazilian coast and Amazon region, Caribbean islands, southern Australia, and parts of Southeast Asia. Ecological suitability estimated in these regions may directly result from extrapolations and should therefore be interpreted cautiously.

      We also added a discussion of the extrapolation for wild birds (in the Discussion section): “Interestingly, our models extrapolate environmental suitability for H5Nx in wild birds in areas where few or no outbreaks have been reported. This discrepancy may be explained by limited surveillance or underreporting in those regions. For instance, there is significant evidence that Kazakhstan and Central Asia play a role as a centre for the transmission of avian influenza viruses through migratory birds (Amirgazin et al., 2022; FAO, 2005; Sultankulova et al., 2024). However, very few wild bird cases are reported in EMPRES-i. In contrast, Australia appears environmentally suitable in our models, yet no incursion of HPAI H5N1 2.3.4.4b has occurred despite the arrival of millions of migratory shorebirds and seabirds from Asia and North America. Extensive surveillance in 2022 and 2023 found no active infections nor evidence of prior exposure to the 2.3.4.4b lineage (Wille et al., 2024; Wille and Klaassen, 2023).”

      We agree that inset panels can be helpful for visualising global patterns. However, all resulting maps are available on the MOOD platform (https://app.mood-h2020.eu/core), which provides an interactive interface allowing users to zoom in and out, identify specific locations using a background map, and explore the results in greater detail. This resource is referenced in the manuscript to guide readers to the platform.

      Related to my review of the manuscript's conceptualisation above, there are several inconsistencies in terminology in the manuscript - clearing these up may help to make the methods and their justification clearer to the reader. The "signal" that the models are estimating is variously described as "susceptibility" and "risk" (lines 179-180), "HPAI H5 ecological suitability" (line 78), "likelihood of HPAI occurrences" (line 139), "risk of HPAI circulation" (line 187), "distribution of occurrence data" (line 428). Each of these quantities has slightly different meanings and it is confusing to the reader that all of these descriptors are used for model output. "Likelihood of HPAI occurrences" is particularly misleading: ecological niche models predict high suitability for a species in areas that are similar to environments where it has previously been identified, without imposing constraints on species movement. It is intuitively far more likely that there will be HPAI occurrences in areas where the disease is already established than in areas where an introduction event is required, however, the niche models in this work do not include spatial relationships in their predictions.

      We agree with the Reviewer’s comments. We have now modified the text so that in the Results section we refer to ecological suitability when referring to the outputs of the models. In the context of our Discussion section, we then interpret this ecological suitability in terms of risk, as areas with high ecological suitability being more likely to support local HPAI outbreaks.

      I also caution the authors in their interpretation of the results of BRTs, which are correlative models, so therefore do not tell us what causes a response variable, but rather what is correlated with it. On Line 31, "correlated with" may be more appropriate than "influenced by". On Line 82, "correlated with" is more appropriate than "driving". This is particularly true given the authors' treatment of sampling bias.

      We agree with the Reviewer’s comment and have now rephrased these sentences as follows: “The spatial distribution of HPAI H5 occurrences in wild birds appears to be primarily correlated with urban areas and open water regions” and “Our results provide a better understanding of HPAI dynamics by identifying key environmental factors correlated with the increase in H5Nx and H5N1 cases in poultry and wild birds, investigating potential shifts in their ecological niches, and improving the prediction of at-risk areas.”

      The following sentences in line 201 are ambiguous: "For both H5Nx and H5N1, however, isolated areas on the risk map should be interpreted with caution. These isolated areas may result from sparse data, model limitations, or local environmental conditions that may not accurately reflect true ecological suitability." By "isolated", do the authors mean remote? Or ecologically dissimilar from the set of locations where HPAI has been detected? Or ecologically dissimilar from the set of locations in the joint set of HPAI detection locations and pseudo-absences? Or ecologically similar to the set of locations where HPAI has been detected but spatially isolated? These four descriptors are each slightly different and change the meaning of the sentences. "Model limitations" are also ambiguous - could the authors clarify which specific model limitations they are referring to here? Ultimately, the point being made is probably that a model may predict high ecological suitability for HPAI transmission in areas where the disease has not yet been identified, or where a model is extrapolating in environmental space, however, uncertainty in these predictions may be greater than uncertainty in predictions in areas that are represented in surveillance data. A clear comment on model uncertainty and how it is related to the surveillance dataset and the covariate dataset is currently missing from the manuscript and would be appropriate in this paragraph.

      We understand the Reviewer’s concerns regarding these potential ambiguities, and have now rephrased these sentences as follows: “For both H5Nx and H5N1, certain areas of predicted high ecological suitability appear spatially isolated, i.e. surrounded by regions of low predicted ecological suitability. These areas likely meet the environmental conditions associated with past HPAI occurrences, but their spatial isolation may imply a lower risk of actual occurrences, particularly in the absence of nearby outbreaks or relevant wild bird movements.”

      I am concerned by the wording of the following sentence: "The risk maps reveal that high-risk areas have expanded after 2020" (line 203). This statement could be supported by an acknowledgement of the assumptions the models make of the HPAI niche: are we saying that the niche is unchanged in environmental space and that there are now more geographic areas accessible to the pathogen, or that the niche has shifted or expanded, and that there are now more geographic areas accessible to the pathogen? The authors should review the sentence beginning on line 117: if models trained on data from the old timepoint predicting to the new timepoint are almost as good as models trained on data from the new timepoint predicting to the new timepoint, doesn't this indicate that the niche, as the models are able to capture it, has not changed too much?

      We thank the Reviewer for this comment. The statement that "high-risk areas have expanded after 2020" indeed refers to an increase in the geographic extent of areas predicted to have high ecological suitability in models trained on post-2020 data. This expansion likely reflects new outbreak data from regions that had not previously reported cases, which in turn influenced model training.

      However, models trained on pre-2020 data retain reasonable predictive performance when applied to post-2020 data (see the AUC results reported in Table S1), suggesting that the models suggest an expansion in the ecological suitability, but do not provide definitive evidence of a shift in the ecological niche. We have now added a statement at the end of this paragraph to clarify this point: “However, models trained on pre-2020 data maintained reasonable predictive performance when tested on post-2020 data, suggesting that the overall ecological niche of HPAI did not drastically shift over time.”

      The final two paragraphs of the Results might be more helpful to include at the beginning of the Results, as the data discussed there are inputs to the models. Is it possible that the "rise in Shannon index for sea birds" that "suggests a broadening of species diversity within this category from 2020 onwards" is caused by the increasingly structured surveillance of HPAI in wild birds alluded to earlier in the Results? Is the "prevalence" discussed in line 226 the frequency of the families Laridae and Sulidae being represented in HPAI detection data? Or the abundance of the bird species themselves? The language here is a little ambiguous. Discussion of particular values of Shannon/Simpson indices is slightly out of context as the meanings of the indices are in the Methods - perhaps a brief explanation of the uses of Shannon/Simpson indices may be helpful to the reader here. It may also be helpful to readers who are not acquainted with avian taxonomy to provide common names next to formal names (for example, in brackets) in the body of the text, as this manuscript is published in an interdisciplinary journal.

      We thank the Reviewer for these comments. First, we acknowledge that the paragraphs on species diversity and Shannon/Simpson indices describe important data, but we have chosen to present them after the main modelling results in order to maintain a logical narrative flow. Our manuscript first presents the ecological niche models and their predictive performance, followed by interpretations of the observed patterns, including changes in avian host diversity. Diversity indices were used primarily to support and contextualise the patterns observed in the modelling results.

      For clarity, we have revised the relevant paragraphs in the Results (i) to briefly remind readers of the interpretation of the Shannon and Simpson indices (“Note that these indices reflect the diversity of bird species detected in outbreak records, not necessarily their abundance in the wild”) and (ii) to clarify that “prevalence” refers to the frequency of HPAI detection in wild bird species of the Laridae (gulls) and Sulidae (boobies and gannets) families, and not their total abundance. Family of birds includes several species, so the “common name” of a family can sometimes refer to species from other families. We have now added the common names for each family in the manuscript (even if we indeed acknowledge that “penguins” can be ambiguous).

      In the Methods, it is stated: "To address the heterogeneity of AIV surveillance efforts and to avoid misclassifying low-surveillance areas as unsuitable for virus circulation, we trained the ecological niche models only considering countries in which five or more cases have been confirmed." However, it is not clear how this processing step prevents low-surveillance areas from being misclassified. If pseudo-absences are appropriately sampled, low-surveillance areas should be less represented in the pseudo-absence dataset, which should lead the models to be uncertain in their predictions of these areas. Perhaps "To address the heterogeneity of AIV surveillance efforts and to avoid sampling pseudo-absence data in realistically low-surveillance areas" is a more accurate introduction to the paragraph. I am not entirely convinced that it is appropriate to remove detection data where the national number of cases is low. This may introduce further sampling bias into the dataset.

      We take the opportunity of the Reviewer’s comment to further clarify this important step aiming to mitigate bias associated with countries with substantial uncertainty in reporting and/or potentially insufficient HPAI surveillance data. While we indeed acknowledge that this procedure may exclude countries that had effective surveillance but low virus detection, we argue that it constitutes a relevant conservative approach to minimising the risk of sampling a significant number of pseudo-absence points in areas associated with relatively high yet undetected local HPAI circulation due to insufficient surveillance. Furthermore, given that five cases over two decades is a relatively low threshold — particularly for a highly transmissible virus such as AIV — non-detection or non-reporting remains a more plausible explanation than true absence.

      To improve clarity, we have now revised the related sentence as follows: “To account for heterogeneity in AIV surveillance and minimise the risk of sampling pseudo-absences in poorly monitored regions, we restricted our analysis to countries (or administrative level 1 units in China and Russia) with at least five confirmed outbreaks.”

      The reporting of spatial and temporal resolution of data in the manuscript could be significantly clearer. Is there a reason why human population density is downscaled to 5 arcminutes (~10km at the equator) while environmental covariate data has a resolution of 1km? The projection used is not reported. The authors should clarify the time period/resolution of the covariate data assigned to the occurrence dataset, for example, does "day LST annual mean" represent a particular year pre- or post-2020? Or an average over a number of years? Given that disease detections are associated with observation and reporting dates, and that there may be seasonal patterns in HPAI occurrence, it would be helpful to the reader to include this information when the eco-climatic indices are described. It would also be helpful to the reader to summarise the source, spatial and temporal resolution of all covariates in a table, as in Dhingra et al. Could the Authors clarify whether the duck density layer is farmed ducks or wild ducks?

      The projection is WGS 84 (EPSG:4326) and the resolution of the output maps is around 0.0833 x 0.0833 decimal degrees (i.e. 5 arcmin, or approximately 10 km at the equator). We have now added these specifications in the text: “All maps are in a WGS84 projection with a spatial resolution of 0.0833 decimal degrees (i.e. 5 arcmin, or approximately 10 km at the equator).” In addition, we have now specified in the text that duck refers to domestic duck for clarity. 

      Environmental variables retrieved for our analyses were here available as values averaged over distinct periods of time (for further detail see Supplementary Information Resources S1 — description and source of each environmental variable included in the original sets of variables — available at https://github.com/sdellicour/h5nx_risk_mapping). In future works, this would indeed be interesting to associate the occurrences to a specific season with the variables accordingly, specially for viruses such as HPAI which have been found correlated with seasons. However, we did not conduct this type of analysis in the present study, occurrences being here associated with averaged values of environmental data only.

      In line 407, the authors state a number of pseudo-absence points used in modelling, relative to the number of presence points, without clear justification. Note that relative weights can be assigned to occurrence data in most ECN software (e.g., R package gbm), to allow many pseudo-absence points to be sampled to represent the full extent of probable surveillance effort and subsequently down-weighted.

      We thank the Reviewer for this suggestion. We acknowledge that alternative approaches such as down-weighting pseudo-absence points could offer a certain degree of flexibility in representing surveillance effort. However, we opted for a fixed 1:3 ratio of pseudoabsences to presence points within each administrative unit to ensure a consistent and conservative sampling distribution. This approach aimed to limit overrepresentation of pseudoabsences in areas with sparse presence data, while still reflecting areas of likely surveillance.

      There are a number of typographical errors and phrasing issues in the manuscript. A nonexhaustive list is provided below.

      - Line 21: "its" should be "their" - Line 25: "HPAI cases"

      Modifications have been done.

      - Line 63: sentence beginning "However" is somewhat out of context - what is it (briefly) about recent outbreaks that challenge existing models?

      We have now edited that sentence as follows: “However, recent outbreaks raise questions about whether earlier ecological niche models still accurately predict the current distribution of areas ecologically suitable for the local circulation of HPAI H5 viruses.”

      - Lines 71 and 390: "AIV" is not defined in the text - Line 73: "do" ("are" and "what" are not capitalised)

      Modifications have been done.

      - Line 115: "predictability" should be "predictive capacity"

      We have now replaced “predictability” by “predictive performance”.

      - Line 180: omit "pinpointing"

      - Line 192 sentence beginning "In India," should be re-worded: is the point that there are detections of HPAI here and the model predicts high ecological suitability?

      - Line 195 sentence beginning "Finally," phrasing could be clearer: Dhingra et al. find high suitability areas for H5Nx in North America which are predicted to be low suitability in the new model.

      - Line 237: omit "the" in "with the those"

      - Line 374: missing "."

      - Line 375: "and" should be "to" (the same goes for line 421)

      - Line 448: Rephrase "Simpson index goes" to "The Simpson index ranges"

      Modifications have been done.

      Reviewer #2 (Public Review):

      What is the justification for separating the dataset at 2020? Is it just the gap in-between the avian influenza outbreaks?

      We chose 2020 as a cut-off based on a well-documented shift in HPAI epidemiology, notably the emergence and global spread of clade 2.3.4.4b, which may affect host dynamics and geographic patterns. We have now added this precision in the Materials and Methods section: “We selected 2020 as a cut-off point to reflect a well-documented shift in HPAI epidemiology, notably the emergence and global spread of clade 2.3.4.4b. This event marked a turning point in viral dynamics, influencing both the range of susceptible hosts and the geographical distribution of outbreaks.”

      If the analysis aims to look at changing case numbers and distribution over time, surely the covariate datasets should be contemporaneous with the response?

      Thank you for raising this important point. While we acknowledge that, ideally, covariates should match the response temporally, such high-resolution spatiotemporal environmental data were not available for most environmental factors considered in our ecological niche modelling analyses. While we used predictors (e.g., land-use variables, poultry density) that reflect long-term ecological suitability, we acknowledge that rather considering short-term seasonal variation could be an interesting perspective in future works, which is now explicitly stated in the Discussion section: “In addition, aligning outbreak occurrences with seasonally matched environmental variables could further refine predictions of HPAI risk linked to migratory dynamics.”

      I would expect quite different immunity dynamics between domestic and wild birds as a function of lifespan and birth rates - though no obvious sign of that in the raw data. A statement on assumptions in that respect would be good.

      Thank you for the comment. We agree that domestic and wild birds likely exhibit different immunity dynamics due to differences in lifespan, turnover rates, and exposure. However, our analyses did not explicitly model immunity processes, and the data did not show a clear signal of these differences.

      Decisions and analytical tactics from Dhingra et al are adopted here in a way that doesn't quite convey the rationale, or justify its use here.

      We thank the Reviewer for this observation. However, we do not agree with the notion that the rationale for using Dhingra et al.’s analytical framework is insufficiently conveyed. We adapted key components of their ecological niche modelling approach — such as the use of a boosted regression tree methodology and pseudo-absences sampling procedure — to ensure comparability with their previous findings, while also extending the analysis to additional time periods and host categories (wild vs. domestic birds). This framework aligns with the main objective of our study, which is to assess shifts in ecological suitability for HPAI over time and across host species, in light of changing viral dynamics.  

      Please go over the manuscript and harmonise the language about the model target - it is usually referred to as cases, but sometimes the pathogen, and others the wild and domestic birds where the cases were discovered.

      We agree and we have now modified the text to only use the “cases” or “occurrences” terminology when referring to the model inputs.

      Is the reporting of your BRT implementation correct? The text suggests that only 10 trees were run per replicate (of which there were 10 per response (domestic/wild x H5N1 / H5Nx) x distinct covariate set), but this would suggest that the authors were scarcely benefiting from the 'boosting' part of the BRTs that allow them to accurately estimate curvilinear functions. As additional trees are added, they should still be improving the loss function, and dramatically so in the early stages. The authors seem heavily guided by Elith et al's excellent paper[1] explaining BRTs and the companion tutorial piece, but in that work, the recommended approach is to run an initial model with a relatively quick learning rate that achieves the best fit to the held-out data at somewhere over 1000 trees, and then to refine the model to that number of trees with a slower learning rate. If the authors did indeed run only 10 trees I think that should be explained.

      For each model, we used the “gbm.step” function to fit boosted regression trees, initiating the process with 10 trees and allowing up to 10,000 trees in steps of 5. The optimal number of trees was automatically determined by minimising the cross-validated deviance, following the recommended approach of Elith and colleagues (2008, J. Anim. Ecol.). This setup allows the boosting algorithm to iteratively improve model performance while avoiding overfitting. These aspects are now further clarified in the Materials and Methods section: “All BRT analyses were run and averaged over 10 cross-validated replicates, with a tree complexity of 4, a learning rate of 0.01, a tolerance parameter of 0.001, and while considering 5 spatial folds. Each model was initiated with 10 trees, and additional trees were incrementally added (in steps of 5) up to a maximum of 10,000, with the optimal number selected based on cross-validation tests.”

      I'm uncomfortable with the strong interpretation of changes in indices such as those for diversity in the case of bird species with detected cases of avian influenza, and the relative influence of covariates in the environmental niche models. In the former case, if surveillance effort is increasing it might be expected that more species will be found to be infected. In the latter, I'm just not convinced that these fundamentally correlative models can support the interpretation of changing epidemiology as asserted by authors. This strikes me as particularly problematic in light of static and in some cases anachronistic predictor sets.

      We thank the Reviewer for drawing attention to how changes in surveillance intensity might influence our diversity estimates. We have now integrated a new analysis to evaluate the increase in the number of wild birds tested and discussed the potential impact of this increase on the comparison of the bird species diversity metrics presented in our study, which is now interpreted with more caution: “To evaluate whether the post-2020 increase in species diversity estimated for infected wild birds could result from an increase in the number of tests performed on wild birds, we compared European annual surveillance test counts (EFSA et al., 2025, 2019) before and after 2020 using a Wilcoxon rank-sum test. We relied on European data because it was readily accessible and offered standardised and systematically collected metrics across multiple years, making it suitable for a comparative analysis. Although borderline significant (p-value = 0.063), the Wilcoxon rank-sum test indeed highlighted a recent increase in the number of wild bird tests (on average >11,000/year pre-2020 and >22,000 post-2020), which indicates that the comparison of bird species diversity metrics should be interpreted with caution. However, such an increase in the number of tests conducted in the context of a passive surveillance framework would thus also be in line with an increase in the number of wild birds found dead and thus tested. Therefore, while the increase in the number of tests could indeed impact species diversity metrics such as the Shannon index, it can also reflect an absolute higher wild bird mortality in line with a broadened range of infected bird species.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The authors devote significant effort to characterizing the physical interaction between Bicc1 and Pkd2. However, the study does not examine or discuss how this interaction relates to Bicc1's well-established role in posttranscriptional regulation of Pkd2 mRNA stability and translation efficiency.

      The reviewer is correct that the present study has not addressed the downstream consequences of uthis interaction considering that Bicc1 is a posttranscriptional regulator of Pkd2 (and potentially Pkd1). We think that the complex of Bicc1/Pkd1/Pkd2 retains Bicc1 in the cytoplasm and thus restrict its activity in participating in posttranscriptional regulation (see Author response image 1). We, however, do not yet have data to support this and thus have not included this model in the manuscript. Yet, we have updated the discussion of the manuscript to further elaborate on the potential mechanism of the Bicc1/Pkd1/Pkd2 complex.

      We have updated the discussion to include a discussion on the potential consequences on posttranscriptional regulation by Bicc1.

      Author response image 1.

      Model of BICC1, PC1 and PC2 self-regulation. In this model Bicc1 acts as a positive regulator of PKD gene expression. In the presence of ‘sufficient’ amounts of PC1/PC2 complex, it is tethered to the complex and remains biologically inactive (Fig. 1A). However, once the levels of the PC1/PC2 complex are reduced, Bicc1 is now present in the cytoplasm to promote expression of the PKD proteins, thereby raising their levels (Fig. 4B), which then in turn will ‘shutdown’ Bicc1 activity by again tethering it to the plasma membrane.

      (2) Bicc1 inactivation appears to downregulate Pkd1 expression, yet it remains unclear whether Bicc1 regulates Pkd1 through direct interaction or by antagonizing miR-17, as observed in Pkd2 regulation. This should be further examined or discussed.

      This is a very interesting comment. Vishal Patel published that PKD1 is regulated by a mir-17 binding site in its 3’UTR (PMID: 35965273). We, however, have not evaluated whether BICC1 participates in this regulation. A definitive answer would require utilization of the mice described in above reference, which is beyond the scope of this manuscript. We, however, have revised the discussion to elaborate on this potential mechanism. 

      We have updated the discussion to include a statement on the potential direct regulation of Pkd1 mRNA by Bicc1.

      (3) The evidence supporting Bicc1 and ADPKD gene cooperativity, particularly with Pkd1, in mouse models is not entirely convincing, likely due to substantial variability and the aggressive nature of Bpk/Bpk mice. Increasing the number of animals or using a milder Bicc1 strain, such as jcpk heterozygotes, could help substantiate the genetic interaction.

      We have initially performed the analysis using our Bicc1 complete knockout, we previously reported on (PMID 20215348) focusing on compound heterozygotes. Yet, similar to the Pkd1/Pkd2 compound heterozygotes (PMID 12140187) no cyst development was observed when we sacrificed the mice as late as P21. Our strain is similar to the above mentioned jcpk, which is characterized by a short, abnormal transcript thought to result in a null allele (PMID: 12682776). We thank the reviewer for pointing us to the reference showing the heterozygous mice exhibit glomerular cysts in the adults (PMID: 7723240). This suggestion is an interesting idea we will investigate. In general, we agree with the reviewer that a better understanding of the contribution of Bicc1 to the adult PKD phenotype will be critical. To this end, we are currently generating a floxed allele of Bicc1 that will allow us to address the cooperativity in the adult kidney, when e.g. crossed to the Pkd1<sup>RC/RC</sup> mice. Yet, these experiments are beyond the timeframe for this revision. 

      No changes were made in the revised manuscript. 

      Reviewer #2 (Public review):

      (1) These results are potentially interesting, despite the limitation, also recognized by the authors, that BICC1 mutations seem exceedingly rare in PKD patients and may not "significantly contribute to the mutational load in ADPKD or ARPKD". The manuscript has several intrinsic limitations that must be addressed. 

      As mentioned above, the study was designed to explore whether there is an interaction between BICC1 and the PKD1/PKD2 and whether this interaction is functionally important. How this translates into the clinical relevance will require additional studies (and we have addressed this in the discussion of the manuscript).

      (2) The manuscript contains factual errors, imprecisions, and language ambiguities. This has the effect of making this reviewer wonder how thorough the research reported and analyses have been. 

      We respectfully disagree with the reviewer on the latter interpretation. The study was performed with rigor. We have carefully assessed the critiques raised by the reviewer. As presented below, most of the criticisms raised by the reviewer have been easily addressed in the revised version of the manuscript. Yet, none of the critiques seems to directly impact the overall interpretation of the data. 

      Reviewer #1 (Recommendations for the authors):

      (1) The manuscript requires further editing. For example, figure panels and legends are mismatched in Figure 1

      We have corrected the labeling of Figure 1. 

      (2) Y-axis units and values are inconsistent in Figures 4b-4g, Supplementary Figures S2e and S2f are not referenced in the text, genotypes are missing in Supplementary Figure S3f, and numerous typographical errors are present.

      In respect to the y-axis in Figure 4b-g, the scale is different for each of them, but that is intentional as one would lose the differences if they were all scaled identically. But we have now mentioned this in the figure legend to make the reader aware of it. In respect to the Supplemental Figure S2e,f, we included the panels in the description of the mutant BICC1 lines, but unfortunately forgot to reference them. This has now been done.

      We have updated the labeling of the Y-axis for the cystic indices adding “[%]” as the unit and updated the figure legend of Figure 4. We have included the genotypes in Supplementary Figure S3f. The Supplementary Figure S2e,f is now mentioned in the supplemental material (page 9, 2<sup>nd</sup> paragraph). 

      Reviewer #2 (Recommendations for the authors):

      (1) Previous data from mouse, Xenopus, and zebrafish suggest a crucial role for the RNAbinding protein Bicc1 in the pathogenesis of PKD, although BICC1 mutations in human PKD have not been previously reported." The cited sources (and others that were not cited) link Bicc1 mutations to renal cysts, similar to a report by Kraus (PMID: 21922595) that the authors cite later. However, a more direct link to PKD was reported by Lian and colleagues using whole Pkd1 mice (PMID: 20219263) and by Gamberi and colleagues using Pkd1 kidneys and human microarrays (PMID: 28406902). Although relevant, neither is cited here, and only the former is cited later in the manuscript.

      Thanks for pointing this out. We have added these three citations.

      We have added these three citations (PMID: 21922595, PMID: 20219263 and PMID: 28406902) in the indicated sentence.

      (2) In Figure 1B, the lanes do not seem to correspond among panels, particularly evident in the panel with myc-mBicc1. Hence, it is difficult to agree with the presented conclusions.

      We have corrected the labeling of the lanes in Figure 1b.

      (3) In the Figure 1 legend: "(g) Western blot analysis following co-IP experiments, using an anti-mouse Bicc1 or anti-goat PC2 antibody as bait, identified protein interactions between endogenous PC2 and BICC1 in UCL93 cells. Non-immune goat and mouse IgG were included as a negative control." There is no mention of panel H, although this reviewer can imagine what the authors meant. The capitalization differs in the figure and legend. More troublingly, in panel G, a non-defined star indicates a strong band present in both immune and non-immune control.

      We have corrected the figure legend of Figure 1 and clarified the non-specific band in the figure legend.

      (4) In Figure 4, the authors do not show the matched control for the Bicc1 Pkd1 interaction in panel d, nor do they show a scale bar in either a) or d). Thus, the phenotypic severity cannot be properly assessed.

      Thanks for pointing out the missing scale bars, which have now been added. In respect to the two kidneys shown in Figure 4d, the two kidneys shown are from littermates to illustrate the kidney size in agreement with the cumulative data shown in Figure 4e. Unfortunately, this litter did not have a wildtype control. As the data analysis in Figure 4e is based on littermates, mixing and matching kidneys of different litters does not seem appropriate. Thus, we have omitted showing a wildtype control in this panel. However, the size of the wildtype kidney can be seen in Figure 4a.

      We have added the scale bar to both panels and have updated the figure legend to emphasize that the kidneys shown are from littermates and that no wildtype littermate was present in this litter.

      (5) "Surprisingly, an 8-fold stronger interaction was observed between full-length PC1 and myc-mBicc1-ΔKH compared to mycmBicc1 or myc-mBicc1-ΔSAM." Assuming all the controls for protein folding and expression levels have been carried out and not shown/mentioned, this sentence seems to contradict the previous statement that Bicc1deltaSAM reduced the interaction with PC1 by 55%. Because the full length and SAM deletion have different interaction strengths, the latter sentence makes no sense.

      The reduction in the levels of myc-mBicc1-ΔSAM compared to wildtype mycmBicc1 in respect to PC1 binding was not significant. We have clarified this in the text.

      We have corrected the sentence and modified the Figure accordingly. 

      (6) Imprecise statements make a reader wonder how to interpret the data: "More than three independent experiments were analyzed." Stating the sample size or including it in the figure would save space and improve confidence in the data presented.

      We have stated the exact number of animals per conditions above each of the bars.

      (7) "Next, we performed a similar mouse study for Pkd1 by reducing the gene dose of Pkd1 postnatally in the collecting ducts using a Pkhd1-Cre as previously described40" What did the authors mean?

      The reference was included to cite the mouse strain, but realized that it can be mis-interpreted that the exact experiments has been performed previously. We have clarified this in the text.

      We have reworded the sentence to avoid misinterpretation. 

      (8) The authors examined the additive effects of knocking down Bicc1, Pkd1, and Pkd2 with morpholinos in Xenopus and, genetically, in mice. While the Bicc1[+/-] Pkd1 or 2[+/-] double heterozygote mice did not show phenotypes, the authors report that the Bicc1[-/-] Pkd1 or 2 [+/-] did instead show enlarged kidneys. What is the phenotype of a Bicc1[+/-] Pkd1 or 2 [-/-]? What we learn from the author's findings among the PKD population suggests that the latter situation would be potentially translationally relevant.

      The mouse experiments were designed to address a cooperativity between Bicc1 and either Pkd1 or Pkd2 and whether removal of one copy of Pkd1 or Pkd2 would further worsen the Bicc1 cystic kidney phenotype. Thus, the parental crosses were chosen to maximize the number of animals obtained for these genotypes. Unfortunately, these crosses did not yield the genotypes requested by the reviewer. To address the contribution of Bicc1 towards the PKD population, we will need to perform a different cross, where we eliminate Pkd1 or Pkd2 in a floxed background of Bicc1 postnatally in adult mice. While we are gearing up to perform such an experiment, this is timewise beyond the scope of the manuscript. In addition, please note that we have addressed the question about the translation towards the PKD population already in the discussion of the original submission (page 13/14, last/first paragraph).

      No changes have been made to the revised version of the manuscript.

      (9) How do the authors interpret the milder effects of the Bicc1[-/-] Pkd1[+/-] compared to Bicc1[-/-] Pkd2[+/-] relative to the respective protein-protein interactions?

      The milder effects are due to the nature of the crosses. While the Pkd2 mutant is a germline mutation, the Pkd1 mutant is a conditional allele eliminating Pkd1 only in the collecting ducts of the kidney. As such, we spare other nephron segments such as the proximal tubules, which also significantly contribute to the cyst load. As such these mouse data support the interaction between Pkd1 and Pkd2 with Bicc1, but do not allow us to directly compare the outcomes. While this was mentioned in the previous version of the manuscript, we have expanded on this in the revised version of the manuscript.

      We have expanded the results section in the revised version of the manuscript highlighting that the two different approaches cannot be directly compared.

      (10) How do the authors interpret that the strong Bicc1[Bpk] Pkd1 or Pkd2 double heterozygote mice did not have defects and "kidneys from Bicc1+/-:Pkd2+/- did not exhibit cysts (data not shown)", when the VEO PKD patients and - although not a genetic reduction - also the morpholino-treated Xenopus did?

      VEO PKD patients are characterized by a loss of function of PKD1 or PKD2 and – as we propose in this manuscript - that BICC1 further aggravates the phenotype. Yet, we do not address either in the mouse or Xenopus experiments whether BICC1 is a genetic modifier. We are simply addressing whether the two genes show a genetic interaction. In the mouse studies, we eliminate one copy of Pkd1 or Pkd2 in the background of a hypomorphic allele of Bicc1. Similarly, in the Xenopus experiments, we employ suboptimal doses of the morpholino oligomers, i.e., concentrations that did not yield a phenotypic change and then asked whether removing both together show cooperativity. It is important to state that this is based on a biological readout and not defined based on the amount of protein. While we have described this already in the original manuscript (page 7, first paragraph), we have amended our description of the Xenopus experiment to make this even clearer. 

      Finally, we agree with the reviewer that if we were to address whether Bicc1 is a modifier of the PKD phenotype in mouse, we would need to reduce Bicc1 function in a Pkd1 or Pkd2 mutants. Yet, we have recognized this already in the initial version of the manuscript in the discussion (page 14, first paragraph).

      We have expanded the results section when discussing the suboptimal amounts of the morpholino oligos (Page 6, 1<sup>st</sup> paragraph).

      (11) Unclear: "While variants in BICC1 are very rare, we could identify two patients with BICC1 variants harboring an additional PKD2 or PKD1 variant in trans, respectively." Shortly after, the authors state in apparent contradiction that "the patients had no other variants in any of other PKD genes or genes which phenocopy PKD including PKD1, PKD2, PKHD1, HNF1s, GANAB, IFT140, DZIP1L, CYS1, DNAJB11, ALG5, ALG8, ALG9, LRP5, NEK8, OFD1, or PMM2."

      The reviewer is correct. This should have been phrased differently. We have now added “Besides the variants reported below” to clarify this more adequately.

      The sentence was changed to start with “Besides the variants reported below, […].”

      (12) "The demonstrated interaction of BICC1, PC1, and PC2 now provides a molecular mechanism that can explain some of the phenotypic variability in these families." How do the authors reconcile this statement with their reported ultra-rare occurrence of the BICC1 mutations?

      As mentioned in the manuscript and also in response to the other two reviewers, Bicc1 has been shown to regulate Pkd2 gene expression in mice and frogs via an interaction with the miR-17 family of microRNAs. Moreover, the miR-17 family has been demonstrated to be critical in PKD (PMID: 30760828, PMID: 35965273, PMID: 31515477, PMID: 30760828). In fact, both other reviewers have pointed out that we should stress this more since Bicc1 is part of this regulatory pathway. Future experiments are needed to address whether Bicc1 contributes to the variability in ADPKD onset/severity. Yet, this is beyond the scope of this study. 

      Based on the comments of the two other reviewers we have further addressed the Bicc1/miR-17 interaction.

      (13) The manuscript should use correct genetic conventions of italicization and capitalization. This is an issue affecting the entire manuscript. Some exemplary instances are listed below.

      (a) "We also demonstrate that Pkd1 and Pkd2 modifies the cystic phenotype in Bicc1 mice in a dose-dependent manner and that Bicc1 functionally interacts with Pkd1, Pkd2 and Pkhd1 in the pronephros of Xenopus embryos." Genes? Proteins?

      The data presented in this section show that a hypomorphic allele of Bicc1 in mouse and a knockdown in Xenopus yields this. As both affect the proteins, the spelling should reflect the proteins.

      No changes have been made in the revised manuscript.

      (b) The sentence seems to use both the human and mouse genetic capitalization, although it refers to experiments in the mouse system “to define the Bicc1 interacting domains for PC2 (Fig. 2d,e). Full-length PC2 (PC2-HA) interacted with full-length myc-mBICC1.”

      We agree with the review that stating the species of the molecules used is critical, we have adapted a spelling of Bicc1, where BICC1 is the human homologue, mBicc1 is the mouse homologue and xBicc1 the Xenopus one.

      We have highlighted the species spelling in the methods section and labeled the species accordingly throughout the manuscript and figures. 

      (14) “Together these data supported our biochemical interaction data and demonstrated that BICC1 cooperated with PKD1 and PKD2.” Are the authors implying that these results in mice will translate to the human protein?

      We agree that we have not formally shown that the same applies to the human proteins. Thus, we have changed the spelling accordingly.

      We have revised the capitalization of the proteins. 

      (15) The text is often unclear, terse, or inconsistent.

      (a) “These results suggested that the interaction between PC1 and Bicc1 involves the SAM but not the KH/KHL domains (or the first 132 amino acids of Bicc1). It also suggests that the N-terminus could have an inhibitory effect on PC1-BICC1 association.” How do the authors define the N-terminus? The first 132 aa? KH/KHL domains?

      This was illustrated in the original Figure 2A. The DKH constructs lack the first 351 amino acids. 

      To make this more evident, we have specified this in the text as well.

      (b) Similarly, the authors state below, "Unlike PC1, PC2 interacted with mycmBICC1ΔSAM, but not myc-mBICC1-ΔKH suggesting that PC2 binding is dependent on the N-terminal domains but not the SAM domain." It is unclear if the authors refer to the KH/KHL domains or others. Whatever the reference to the N-terminal region, it should also be consistent with the section above.

      This is now specified in the text.

      (c) Unclear: "We have previously demonstrated that Pkd2 levels are reduced in a complete Bicc1 null mice,22 performing qRT-PCR of P4 kidneys (i.e. before the onset of a strong cystic phenotype), revealed that Bicc1, Pkd1 and Pkd2 were statistically significantly down9 regulated (Fig. 4h-j)".

      We have changed the text to clarify this. 

      (d) “Utilizing recombinant GST domains of PC1 and PC2, we demonstrated that BICC1 binds to both proteins in GST-pulldown assays (Fig. 1a, b)." GST-tagged domains? Fusions?

      We have changed the text to clarify this. 

      (e) "To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells" > genetically engineered.

      We have changed the text to clarify this.

      (f) Capitalization (e.g., see Figure S3, ref. the Bpk allele) and annotation (e.g., Gly821Glu and G821E) are inconsistent.

      We have homogenized the labeling of the capitalization and annotations throughout the manuscript. 

      (g) What do the authors mean by "homozygous evolutionarily well-conserved missense variant"?

      We have changed this is the revised version of the manuscript. 

      Reviewer #3 (Public review/Recommendations to the authors):

      (1) A further study in HUREC cells investigating the critical regulatory role of BICC1 and potential interaction with mir-17 may yet lead to a modifiable therapeutic target.

      (2) This study should ideally include experiments in HUREC material obtained from patients/families with BICC1 mutations and studying its effects on the PKD1/2 complex in primary cell lines.

      This is an excellent suggestion. We agree with the reviewer that it would have been interesting to analyze HUREC material from the affected patients. Unfortunately, besides DNA and the phenotypic analysis described in the manuscript neither human tissue nor primary patient-derived cells collected once the two patients with the BICC1 p.Ser240Pro variant passed away.

      No changes to the revised manuscript have been made to address this point.

      (3) Please remove repeated words in the following sentence in paragraph 2 of the introduction: "BICC1 encodes an evolutionarily conserved protein that is characterized by 3 K-homology (KH) and 2 KH-like (KHL) RNA-binding domains at the N-terminus and a SAM domain at the C-terminus, which are separated by a by a disordered intervening sequence (IVS).23-28".

      This has been changed.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Li and coworkers addresses the important and fundamental question of replication initiation in Escherichia coli, which remains open, despite many classic and recent works. It leverages single-cell mRNA-FISH experiments in strains with titratable DnaA and novel DnaA activity reporters to monitor DNA activity peaks versus size. The authors find oscillations in DnaA activity and show that their peaks correlate well with the estimated population-average replication initiation volume across conditions and imposed dnaA transcription levels. The study also proposes a novel extrusion model where DNA-binding proteins regulate free DnaA availability in response to biomass-DNA imbalance. Experimental perturbations of H-NS support the model validity, addressing key gaps in current replication control frameworks.

      Strengths:

      I find the study interesting and well conducted, and I think its main strong points are:

      (1) the novel reporters obtained with systematic synthetic biology methods, and combined with a titratable dnaA strain.

      (2) the interesting perturbations (titration, production arrest, and H-NS).

      (3) the use of single-cell mRNA FISH to monitor transcripts directly.

      The proposed extrusion model is also interesting, though not fully validated, and I think it will contribute positively to the future debate.

      We thank the reviewer for acknowledging the strengths of our study.

      Weaknesses and Limitations:

      (1) A relevant limitation in novelty is that DnaA activity and concentration oscillations have been reported by the cited Iuliani and coworkers previously by dynamic microscopy, and to a smaller extent by the other cited study by Pountain and coworkers using mRNA FISH.

      (2) An important limitation is that the study is not dynamic. While monitoring mRNA is interesting and relevant, the current study is based on concentrations and not time variations (or nascent mRNA). Conversely, the study by Iuliani and coworkers, while having the drawback of monitoring proteins, can directly assess production rates. It would be interesting for future studies or revisions to monitor the strains and reporters dynamically, as well as using (as a control) the technique of this study on the chromosomal reporters used by Iuliani et al.

      We acknowledge the value of dynamic measurements and clarify our methodological rationale.

      While luliani et al. provided valuable temporal resolution through protein dynamics, our mRNA FISH approach achieves direct decoupling of transcriptional vs. post-translational regulation (Fig 4F-H), and condition flexibility across 7 growth rates (30-66 min doubling times). This trade-off sacrifices temporal resolution for enhanced population-scale resolution and perturbation flexibility. To directly address temporal coupling, future work will implement dual-color live imaging of DnaA activity concurrent with replication initiation events.

      (3) Regarding the mathematical models, a lot of details are missing regarding the definitions and the use of such models, which are only presented briefly in the Methods section. The reader is not given any tools to understand the predictions of different models, and no analytical estimates are used. The falsification procedures are not clear. More transparency and depth in the analysis are needed, unless the models are just used as a heuristic tool for qualitative arguments (but this would weaken the claims). The Berger model, for example, has many parameters and many regimes and behaviors. When models are compared to data (e.g., in Figure 2G), it is not clear which parameters were used, how they were fixed, and whether and how the model prediction depends on parameters.

      We agree that model transparency is essential for quantitative validation. To address this, all model parameters (DnaA synthesis rate, activation/deactivation rates etc.) are explicitly tabulated in Supplementary Information Table S6. For the titration (Hansen et al. 1991) and extrusion models, we derive analytical expressions for initiation mass (IM) sensitivity to DnaA expression in Supplementary Note 1. For Figure 2G/S6, we used published parameters (Berger & Wolde 2022 SI Table 2) with experiment growth conditions (μ = 1.54 h<sup>-1</sup>).

      The extrusion model's validation relies primarily on its ability to resolve paradoxical initiation events under dnaA shutdown (Fig 6C), a test where other models fail categorically. While the Berger titration-switch hybrid can fit steady-state IM trends (Fig S6A), it cannot reproduce post-shutdown dynamics without ad hoc modifications (Fig S6B). We acknowledge that comprehensive analysis of all model regimes exceeds this study's scope but provide full simulation code for independent verification: https://github.com/BaiYangBqdq/dynamics_of_biomass_DNA_coordination

      (4) Importantly, the main statement about tight correlations of peak volumes and average estimated initiation volume does not establish coincidence, and some of the claims by the authors are unclear in these respects (e.g., when they say "we resolve a 1:1 coupling between DnaA activity thresholds and replication initiation", the statement could be correct but is ambiguous). Crucially, the data rely on average initiation volumes (on which there seems to be an eternally open debate, also involving the authors), and the estimate procedure relies on assumptions that could lead to biases and uncertainties added to the population variability (in any case, error bars are not provided).

      We acknowledge the limitations of population-level inference and have refined our claims: "Replication initiation volume scales proportionally with peak DnaA activity volume with a slope of 1.0 (R<sub>2</sub>=0.98, Fig 7G), indicating predictive correspondence rather than absolute coincidence. While population-level  𝑉<sub>𝑖</sub> estimation cannot resolve single-cell stochasticity, the consistent 𝑉*: 𝑉<sub>𝑖</sub> relationship across 20 conditions suggest DnaA activity thresholds predict initiation timing within physiological error margins”. Future work will implement simultaneously DnaA activity and replication forks by using microfluidic single-cell tracking.

      (5) The delays observed by the authors (in both directions) between the peaks of DnaAactivity conditional averages with respect to volume and the average estimated initiation volumes are not incompatible with those observed dynamically by Iuliani and coworkers. The direct experiment to prove the authors' point would be to use a direct proxy of replication initiation, such as SeqA or DnaN, and monitor initiations and quantify DnaA activity peaks jointly, with dynamic measurements.

      We acknowledge the observed temporal deviations between DnaA activity peaks (𝑉*) and population-derived volumes at initiation ( 𝑉<sub>𝑖</sub>) in certain conditions, in line with the findings of Iuliani et al. This might be mechanistically consistent with the time required for orisome assembly or oriC sequestration. They do not contradict our core finding that initiation occurs at a defined DnaA activity threshold (slope=1.0, R<sub>2</sub>=0.98 in 𝑉*: 𝑉<sub>𝑖</sub> correlation).

      (6) While not being an expert, I had some doubt that the fact that the reporters are on plasmid (despite a normalization control that seems very sensible) might affect the measurements. Also, I did not understand how the authors validated the assumptions that the reporters are sensitive to DnaA-ATP specifically. It seems this assumption is validated by previous studies only.

      We employed a plasmid-based reporter system to circumvent the significant confounding effects of chromosomal position on promoter activity, as extensively documented by Pountain et al., where local genomic context (e.g., nucleoid occlusion, supercoiling gradients, and neighboring operons) introduces uncontrolled variability. By housing the P<sub>syn66</sub> test promoter and P<sub>con</sub> normalization control in identical low-copy pSC101 vectors (<8 copies/ cell, Peterson & Phillips, Plasmid 2008), we ensured they experience equivalent physical and biochemical environments. This ratiometric design, where DnaA activity is calculated, actively corrects for global fluctuations in RNA polymerase availability, nucleotide pools, and plasmid copy number. Critically, P<sub>syn66</sub>’s architecture emulates natural DnaA-responsive elements: its strong DnaAboxes report free DnaA concentration, while its weak box is preferentially bound by DnaA-ATP (Speck et al., EMBO journal 1999), mirroring the nucleotide-state sensitivity of oriC and the native dnaA promoter. This system was indispensable for our central finding, as it uniquely enabled the decoupling of DnaA activity oscillations from transcriptional feedback (Fig. 4F-H), an experiment fundamentally impossible with chromosomally integrated reporters due to autoregulatory interference.

      Overall Appraisal:

      In summary, this appears as a very interesting study, providing valuable data and a novel hypothesis, the extrusion model, open to future explorations. However, given several limitations, some of the claims appear overstated. Finally, the text contains some selfevaluations, such as "our findings redefine the paradigm for replication control", etc., that appear exaggerated.

      We thank the reviewer for highlighting the need for precise language in framing our conclusions. We have implemented the following substantive revisions throughout the manuscript to ensure claims align strictly with empirical evidence:

      (1) Changed "redefine the paradigm for replication control" into "advance the paradigm for replication control" (Introduction)

      (2) Changed "redefine bacterial cell cycle control" into "refine bacterial cell cycle control as a dynamic interplay..." (Discussion)

      (3) Removed the term "spatial" from the Discussion's description of DnaA-chromosome interactions (Discussion, first paragraph).

      (4) Changed "provides a blueprint" into "provides a valuable tool for dissecting spatial regulation..." (Discussion, final paragraph)

      (5) Scrutinized all superlatives (e.g., "critical feat" into "important capability"; "fundamental principle of cellular organization" into "potential organizational strategy")

      (6) Replaced the instances of "robust" with evidence-backed descriptors (e.g., "sensitive," "consistent")

      (7) We agree that the extrusion model requires further validation and have emphasized this in Discussion: "While H-NS perturbation supports extrusion mechanism, future work should identify the full extruder interactome and elucidate how metabolic signals modulate their activity" (final paragraph)

      This calibrated language more accurately represents our study as a conceptual advance with testable mechanisms, not a complete paradigm shift.

      Reviewer #2 (Public review):

      Summary:

      The authors show that in E. coli, the initiator protein DnaA oscillates post-translationally: its activity rises and peaks exactly when DNA replication begins, even if dnaA transcription is held constant. To explain this, they propose an "extrusion" mechanism in which nucleoidassociated proteins such as H-NS, whose amount grows with cell volume, dislodge DnaA from chromosomal binding sites; modelling and H-NS perturbations reproduce the observed drop in initiation mass and extra initiations seen after dnaA shut-down. Together, the data and model link biomass growth to replication timing through chromosome-driven, posttranslational control of DnaA, filling gaps left by classic titration and ATP/ADP-switch models.

      Strengths:

      (1) Introduces an "extrusion" model that adds a new post-translational layer to replication control and explains data unexplained by classic titration or ATP/ADP-switch frameworks.

      (2) A major asset of the study is that it bridges the longstanding gap between DnaA oscillations and DNA-replication initiation, providing direct single-cell evidence that pulses of DnaA activity peak exactly at the moment of initiation across multiple growth conditions and genetic perturbations.

      (3) A tunable dnaA strain and targeted H-NS manipulations shift initiation mass exactly as the model predicts, giving model-driven validation across growth conditions.

      (4) A purpose-built Psyn66 reporter combined with mRNA-FISH captures DnaA-activity pulses with cell-cycle resolution, providing direct, compelling data.

      We thank the reviewer for acknowledging the strengths of our study.

      Weaknesses:

      (1) What happens to the (C+D) period and initiation time as the dnaA mRNA level changes? This is not discussed in the text or figure and should be addressed.

      We thank the reviewer for this important observation. Our data demonstrate that increased dnaA mRNA levels induce two compensatory changes in cell cycle progression:

      (1) Earlier replication initiation, manifested as a reduced initiation mass: the initiation mass decreased from 5.6 to 2.6 (OD<sub>600</sub>·ml per 10<sup>10</sup> cells) as the relative dnaA mRNA level increased from 0.2 to 7.2 (normalized to the wild-type level) (Fig. 2F, red).

      (2) Prolonged C+D period: Increased by approximately 60% (from 1.05 to 1.66 hours, Fig. 2F blue).

      The complete quantitative relationship is now explicitly described in the Results section: “Concurrently, the initiation mass was reduced by 50%, and the period from initiation to division (C+D) was increased by ~60% (Fig. 2F)”

      (2) It is unclear what is meant by "relative dnaA mRNA level." Relative to what? Wild-type expression? Maximum expression? This should be explicitly defined.

      The relative dnaA mRNA level was obtained by normalizing to that in wild-type MG1655 cells grown in the same medium. To clarify this point, we have now marked the wild-type level in Fig. 1B, and a clear description of this has also been included in the figure caption.

      (3) It would be helpful to provide some intuition for why an increase in dnaA mRNA level leads to a decrease in initiation mass per ori and an increase in oriC copy number.

      Thank you for your valuable suggestion. Increased dnaA mRNA accelerates DnaA accumulation, causing cells to reach the initiation threshold at a smaller cell size (reducing initiation mass, Fig. 2F red). This earlier initiation increases oriC copies per cell at populational level (Fig. 2E). This mechanistic interpretation now appears in the Results: “As the DnaA expression level increases, DnaA activity reaches the initiation threshold earlier. Given that cell mass remained nearly unchanged, this earlier initiation led to an increase in population-averaged cellular oriC numbers (Fig. 2E).”

      (4) The titration and switch models do not explicitly include dnaA mRNA in the dynamics of DnaA protein. Yet, in Figure 2G, initiation mass is shown to decrease linearly with dnaA mRNA level in these models. How was dnaA mRNA level represented or approximated in these simulations?

      All models presented in this article omit explicit modeling of dnaA mRNA dynamics for simplicity. However, at steady state, the relative level of dnaA mRNA can be approximated by the relative expression rate of DnaA protein, as both reflect the expression level of DnaA. This detail is now clarified in the caption of Figure 2G.

      (5) Is Schaechter's law (i.e., exponential scaling of average cell size with growth rate) still valid under the different dnaA mRNA expression conditions tested?

      Schaechter's law describes the exponential scaling of average cell size with growth rate in bacteria. In our prior work (Zheng et al., Nature Microbiology 2020), where we demonstrated that Schaechter's law fails in slow-growth regimes. However, in current study, growth rate remained constant across different dnaA expression levels (Fig. 2C), and cell mass showed no significant change (Fig. 2D). Since Schaechter's law specifically addresses how cell size scales with growth rate, it does not apply here, as growth rate was invariant in our perturbations, which selectively alter replication initiation dynamics, not growth rate or size scaling.

      (6) The manuscript should explain more explicitly how the extrusion model implements posttranslational control of DnaA and, in particular, how this yields the nonlinear drop in relative initiation mass versus dnaA mRNA seen in Figure 6E. Please provide the governing equation that links total DnaA, the volume-dependent "extruder" pool, and the threshold of free DnaA at initiation, and show - briefly but quantitatively - how this equation produces the observed concave curve.

      The governing equations linking initiation mass and DnaA expression level is now provided in Supplementary Note S1 for both the titration and the extrusion model. In general, the dependence of initiation mass (𝑉<sub>𝐼</sub>) on dnaA expression level (𝛼<sub>𝐴</sub>) dependency takes an inverse 1 proportionality form: . In the extrusion model, the incorporated extruder protein is assumed to have similar synthesis dynamics as DnaA and can release DnaA from DnaA-box. After denoting the synthesis rate of the extruder as 𝛼<sub>𝐻</sub>, the combined effect of DnaA and the extruder on replication initiation can be briefly described as: . Then the additive contribution of 𝛼<sub>𝐻</sub> dampens the sensitivity of initiation mass to changes in 𝛼<sub>𝐴</sub>, resulting in a significantly flattened curve. As a result, the predicted 𝑉<sub>𝐼</sub> − 𝛼<sub>𝐴</sub> relationship has a concave shape in the semi-log plots.

      (7) Does this Extrusion model give well well-known adder per origin, i.e., initiation to initiation is an adder.

      Yes, the extrusion model can provide the initiation-to-initiation adder phenomenon, this information was provided in fig. S3C.

      (8) DnaA protein or activity is never measured; mRNA is treated as a linear proxy. Yet the authors' own narrative stresses post-translational (not transcriptional) control of DnaA. Without parallel immunoblots or activity readouts, it is impossible to know whether a sixfold mRNA increase truly yields a proportional rise in active DnaA.

      We acknowledge the reviewer's valid concern regarding the indirect nature of our DnaA activity measurements. While mRNA levels alone cannot resolve active DnaA dynamics, our approach integrates functional replication outcomes with a validated synthetic reporter to infer activity. Crucially, elevated dnaA mRNA causes demonstrable biological effects: earlier replication initiation (Fig. 2F) and increased oriC copies (Fig. 2E), directly confirming enhanced functional DnaA activity at the oriC locus. The P<sub>syn66</sub> reporter, engineered with DnaA-boxes mirroring oriC's architecture, provides orthogonal validation, showing progressive repression to dnaA induction (Fig. 3C). Our operational metric , bases on P<sub>syn66</sub> responds sensitively to DnaA-chromosome interactions within its characterized 8-fold dynamic range (Fig. 3C). Immunoblots would be inadequate here, as they cannot distinguish functionally critical pools: free versus chromosome-bound DnaA, or DnaA-ATP versus DnaAADP, precisely the post-translational states our study implicates in regulation. We therefore prioritize functional readouts (initiation timing) and the P<sub>syn66</sub> reporter, which probes the biologically active fraction relevant to replication control.

      (9) Figure 2 infers both initiation mass and oriC copy number from bulk measurements (OD<sub>600</sub> per cell and rifampicin-cephalexin run-out) instead of measuring them directly in single cells. Any DnaA-dependent changes in cell size, shape, or antibiotic permeability could skew these bulk proxies, so the plotted relationships may not accurately reflect true initiation events.

      We acknowledge the reviewer's valid methodological concern and clarify that while bulk measurements carry inherent limitations, our approach is grounded in established techniques with demonstrated reliability. Cell mass was inferred from OD600/cell, which correlates strongly with direct dry weight measurements and microscopic cell volumes across diverse growth conditions, as validated in our prior work (Zheng et al., Nature Microbiology 2020). Crucially, cell mass remained invariant across dnaA expression levels (Fig. 2D).

      Regarding oriC quantification, the rifampicin-cephalexin run-out assay is a wildly applied for replication initiation studies. Our data shows expected 2<sup>n</sup> oriC distributions without abnormal ploidy (as shown below). While single-cell methods offer superior resolution, our bulk approach provides accurate population-level trends.

      Author response image 1.

      Recommendations for the authors:

      Reviewing Editor Comments:

      The reviewers felt that the mathematical modeling was not adequately explained in the paper, and that this affected the readability of the manuscript. The authors are encouraged to elaborate on this aspect of the paper (in addition to strengthening other claims, if possible, per the reviewers' comments).

      We thank the editor and reviewers for their constructive feedback. We have comprehensively strengthened the mathematical modeling framework to enhance clarity and rigor.

      Reviewer #1 (Recommendations for the authors):

      The only revision I would do is a recalibration of the claims and a major effort to clarify the modeling part (including a detailed SI appendix), without necessarily performing additional work.

      To enhance mathematical modeling transparency, we have completed model description in the method section and a parameter table with literature-sourced values in Supplementary Information Table S6. Moreover, analytical derivations of initiation mass dependencies are performed and presented in the Supplementary Information Note S1.

      Of course, there are extra experiments (mentioned in the public review) that would help support some of the big claims, but that can be considered a different project.

      Thank you for your suggestion. This will be addressed in our future work.

      Minor suggestion: please put signposts or plot jointly to compare the maxima/minima in Figures 4D, E, G, and H.

      We added dashed lines in Figures 4D, and E, to synchronize visualization of DnaA activity peaks and transcriptional minima across panels, facilitating direct biological comparisons.

      Reviewer #2 (Recommendations for the authors):

      (1) Should define what DNA activity is.

      We have explicitly defined DnaA activity in the Introduction as “the capacity to initiate replication…” and noted that it is “governed by free DnaA concentration, DnaA-ATP/-ADP ratio, and orisome assembly competence”.

      (2) Word repetition - “...grown in in Luria-Bertani (LB) medium...”.

      Corrected.

      (3) Typographical error - “FISH ... was preformed" should be "performed”.

      Corrected.

      (4) The manuscript alternates between “ng ml<sup>-1</sup>” and “ng·ml<sup>-1</sup>”; choose one style and apply it uniformly.

      Standardized the units to ng·ml<sup>-1</sup> throughout.

      (5) Reference duplicates - Some citations appear twice in the bibliography (e.g., "Bintu et al., 2005a/b" and "Bintu et al., 2005b" listed again later).

      The studies by Bintu et al. (2005a, 2005b) represent separate works: 2005a details applications, and 2005b develops models.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.


      Reply to the Reviewers

      We thank the reviewers for their positive assessments overall and for many helpful suggestions for clarification to make the manuscript more accessible to a broader audience. We made minor text changes and added more labels to the figures to address these comments.

      • *

      __Referee #1

      __

      Summary: In this study, the authors show a genetic interaction of the lipid receptors Lpr-1, Lpr-3 and Scav-2 in C. elegans. They show that Lpr-1 loss-of-function specifically affects aECM localization of Lpr-3 and attribute the lethality of Lpr-1 mutants to this phenotype. The authors performed a mutagenesis screen and identified a third lipid receptor, Scav-2, as a modulating factor: loss of scav-2 partially rescues the Lpr-1 phenotype. The authors created a variety of tools for this study, notably Crispr-Cas9-mediated knock-ins for endogenous tagging of the receptors.

      Major comments:

      1. while the authors provide a nice diagram showing the potential roles and interplay of lpr-1, lpr-3 and scav-2, it remains unclear what their respective cargo is. The nature of interaction between the proteins remains unclear from the data.

      Response

      • We agree that identifying the relevant cargo(s) will be key to understanding the detailed mechanisms involved and that the lack of such information is a limitation of our study. However, the impact of our study is to show that these lipid transporters functionally interact to affect aECM organization, a role that could be relevant to many systems, including humans.

      As an optional (since time-consuming) experiment I would suggest trying more tissue-specific lipidomics.

      Response

      • This would be an interesting future experiment but is outside our current technical capabilities.

      The lipidomics data should be presented in the figures, even if there were no significant changes. Importantly, show the lipid abundance at least of total lipids, better of individual classes, normalized to the material input (e.g. number of embryos, protein).

      Response

      • The reviewer is right to point out that lipid variations could occur at different levels, and that we should exercise caution. However, the unsupervised lipidomics analysis would have detected not only individual lipid variations, but also variations in the total or subgroup lipid content. Indeed, the eggs were weighed prior to extraction and each sample was extracted with the same precise volume of solvent before analysis. Furthermore, the LC-MS/MS injection sequence included blanks and quality control (QC) samples. The blanks were the extraction solvent, which allowed us to control for features unrelated to the biological samples. The QC sample was a mixture of all the samples included in the injection sequence, reflecting the central values of the model. If a subclass of samples, such as the lpr-1 mutant, had been characterized by a decrease in one lipid, a subgroup of lipids, or all lipids, it would have clustered separately. Instead, our PCA showed that the variation between samples of the same genotype (wild type, lpr-1 mutant, or lpr-1; scav-2) was similar to the variation between samples from two different genotypes. This means that we did not detect modifications to lipid quantity specifically or in total. A figure illustrating the lipid contents would show no difference between groups.

      Figure 1g: I do not understand what the lpr3:gfp signal is: the punctae in the overview image? and where are they in the zoom image showing anulli and alae? Also, how where the anulli and alae structures labeled? please provide more information

      Response

      • All of the fluorescent signal shown in this figure panel corresponds to the indicated LPR fusion - no other labelling method was used. SfGFP::LPR-3 labels the matrix structures (alae and annuli) as well as some puncta – the ratio of matrix to puncta changes over developmental stages. We edited the figure legend to make this more clear.

      One point that is not sufficiently adressed is that the authors deduce from the inability of the scav-2 gfp knock in to suppress lpr1 lethality that scav2 function is not impaired. This is quite indirect. Can the authors provide more convincing evidence that scav-2 ki has normal function?

      Response

      • Suppression of lpr-1 (or other aECM mutant) lethality is the only known phenotype caused by loss of scav-2 Therefore, this is the only phenotype for which we can do a rescue experiment to test functionality of the knock-in. The data presented do indicate that the knock-in fusion retains significant function.

      In general, the data is clearly presented and the statistical analyses look sound.

      Response

      • Thank you

      __Minor comments: __

      Please provide page and line numbers!

      Response:

      • done

      Avoid contractions like "don't" in both text and figure legends

      Response:

      • changed one instance of “don’t” to “do not”

      Page 12: I do not understand the meaning of the sentence "This transgene also caused more modest lethality in a wild-type background"

      Response:

      • Wording changed to “This transgene caused very little lethality in a wild-type background (Fig. 6C), indicating it is not generally toxic.”

      Figure 7: what is meant with "Dodt"?

      Response:

      • Dodt gradient contrast imaging is a method for transmitted light imaging similar to DIC and is used on some confocal microscopes. It is now explained in the Methods section. We removed the Dodt label from Figure 7 since it seems to be confusing and it is not really important whether the brightfield image is DIC or Dodt.

        Reviewer #1 (Significance (Required)):

        The study is experimentally sound and uses numerous novel tools, such as endogenously tagged lipid receptors. It is an interesting study for researchers in basic research studying lipid receptors and ECM biology. It provides insights on the genetic interaction of lipid receptors. My expertise is in lipid biochemistry, inter-organ lipid trafficking and imaging. I am not very familiar with C. elegans genetics.

      __Referee #2 __ 1. The manuscript is very well written; the documentation is fine, but some more details are needed for better following the subject for readers not familiar with nematode anatomy.

      For instance, while alae are somehow explained, annuli are not - structures that look abnormal in lpr1 and lpr1-scav2 mutants (Fig. 5B).

      Response

      • Apologies for this oversight. We added annuli labels to Figure 1 and Figure 5 panels and added descriptions of annuli to the Figure 1 legend and the Results text.

      Moreover, the authors show in Fig. 1 the punctae etc in the epidermis, whereas in Fig. 2 the show Lpr3 accumulation or not in the duct and the pore (lpr1). How do they localize in the cells of these structures at high magnification? It is also important to see the Lpr3 localisation in lpr1 mutants shown in Fig. 2A with the quality of the images shown in Fig. 1F. This applies also to Figs. 4 and 5.

      Responses:

      • The embryonic duct and pore cells are very small and we have not reliably seen puncta within them. In Figs 2 and 5, we supplemented the duct and pore images with those from the epidermis, which is a much larger tissue, allowing us to resolve puncta and matrix structures with better resolution.
      • The laser settings in Figs 2,4,5 (as opposed to Fig. 1) were chosen to avoid saturation of the matrix signal so that we could do accurate quantifications as shown. The images are unmodified with respect to brightness and therefore appear relatively dim – but we think they convey the observations very accurately.

      I would like to see punctae in lpr1-scav2 doubles.

      Response:

      • Puncta in this genotype are shown for the epidermis in Figure 5. It has not been possible to see puncta specifically within the embryonic duct and pore.

      Regarding the central mechanism, one possibility is - what the authors describe - that Lpr1 is needed for Lpr3 accumulation in ducts and tubes. Alternatively, Lpr1 is needed for duct and tube expansion, in lack of which Lpr3 is unable to reach its destination that is the lumina. Scav2, in this scenario, might be antagonist of tube and duct expansion, and thereby rescue the Lpr1 mutant phenotype independently. Admittedly, the non-accumulation of Lpr3 in scav2 mutants argues against a lpr1-independent function of scav2.

      Responses:

      • LPR-1 is indeed needed to maintain duct and pore tube integrity as the tubes grow, but in mutants the tubes appear to collapse at a later stage than we imaged here (Stone et al 2009). The ~normal accumulation of LET-4 and LET-653 further argues that the duct and pore tubes are still intact at the 1.5-to-2-fold stages. Therefore, we conclude that the defect in LPR-3 accumulation precedes duct and pore collapse.
      • The changes we document in the epidermis also show that the lpr-1 mutant affects LPR-3 accumulation in another (non-tube) tissue.

      In any case, to underline the aspect of Lpr1-Scav2 dosage relationship, the authors may also have a look at Lpr3 distribution in lpr1 heterozygous, and lpr1-scav2 double heterozygous worms. In this spirit, it would be interesting to see the semi-dominant effects of scav2 on Lpr3 localisation in lpr1 mutants by microscopy.

      Response:

      • Because of the hermaphroditism of C. elegans, it would be technically challenging to confidently identify heterozygous (vs. homozygous) embryos for confocal imaging. We do not think that the results would be informative enough to warrant the effort, given that we’ve already shown that scav-2 heterozygosity can partly suppress lpr-1 The expectation is that LPR-3 levels would be partially restored in the scav-2 het, but it might take a very large sample size to confidently assess that partial effect.

      One word to the overexpression studies: it is surprising that the amounts of Scav2 delivered by the expression through the grl-2 promoter in the lpr1, scav2 background are almost matching those by the opposite effect of scav2 mutations on lpr1 dysfunction.

      Response:

      • The reviewer refers to the transgenic rescue experiment with the grl-2pro::SCAV-2 transgene. Because the scav-2 mutant phenotype being tested is suppression of lpr-1 lethality, the expected result from scav-2 rescue is to restore the lpr-1 lethal phenotype to the strain. This is exactly the result we see. We have revised the text to more clearly explain the logic.

      One issue concerns the localization of scav2-gfp "rarely" in vesicles: what are these vesicles?

      Response

      • Only a handful of vesicles were seen across all the images we collected, and we have not yet identified them. They could be associated with either SCAV-2 delivery or removal from the plasma membrane, as now stated in the text. SCAV-2 trafficking would be an interesting area for further study but is beyond the scope of this paper.

      One comment to the Let653 transgenes/knock-ins: the localization of transgenic Let653-gfp may be normal in lpr1 mutants because there are wild-type copies in the background.

      Response

      • There are wild type copies of LET-653 in the background, but no wild type copies of LPR-1. Even if the untagged LET-653 would be recruiting the tagged LET-653 as the reviewer suggests, we can still conclude that lpr-1 loss does not prevent the untagged LET-653 (and thus also the tagged LET-653) from accumulating in the duct lumen matrix.

      One thought to the model: if Scav2 has a function in a lpr1 background, this means that yet another transporter X delivers the substrate for Scav2, isn't it?

      Response

      • Yes, we completely agree with this interpretation and have revised the discussion and Figure 8 legend to more explicitly make this point.

      A word to the term haploinsifficient that is used in this study: scav2 mutants would be haploinsifficient if the heterozygous worms died in an otherwise wild-type background.

      Response

      • We disagree with this comment. The term “haploinsufficient” simply means that heterozygosity for a deletion or other loss of function allele can cause a mutant phenotype – the term is not restricted to lethal phenotypes.

        Reviewer #2 (Significance (Required)):

        Alexandra C.Belfi and colleagues wrote the manuscript entitled "Opposing roles for lipocalins and a CD36 family scavenger receptor in apical extracellular matrix-dependent protection of narrow tube integrity" in which they report on their findings on the genetic and cell-biological interaction between the lipid transporters Lpr1 and scav2 in the nematode C. elegans. In principle, these two proteins are involved in shaping the apical extracellular matrix (aECM) of ducts by regulating the amounts of Lpr3 in the extracellular space. While seems to act cell autonomously, Lpr1 has a non-cell autonomous effect on Lpr3.


      __Referee #3 __ Summary: Using a powerful combination of genetic and quantitative imaging approaches, Belfi et al., describe novel findings on the roles of several lipocalins-secreted lipid carrier proteins-in the production and organization of the apical extracellular matrix (aECM) required for small diameter tube formation in C. elegans. The work comprises a substantial extension of previous studies carried out by the Sundaram lab, which has pioneered studies into the roles of aECM and accessory proteins in creating the duct-pore excretion tube and which also plays a role in patterning of the epidermal cuticle. One core finding is that the lipocalin LPR-1 does not stably associate with the aECM but is instead required for the incorporation of another lipocalin, LPR-3. A second major finding is that reduction of function in SCAV-2, a SCARB family membrane lipid transporter, suppresses lpr-1 mutant lethality along with associated duct-pore defects and mislocalization of LPR-3. Likewise loss of scav-2 partially suppresses defects in two other aECM proteins and restores defects in LPR-3 localization in one of them (let-653). Additional genetic and protein localization studies lead to the model that LPR-1 and SCAV-2 may antagonistically regulate one or more lipid or lipoprotein factors necessary for LPR-3 localization and duct-pore formation. A role for LPR-1 and LPR-3 at lysosomes is clearly implicated based on co-localization studies, although a specific role for lysosomes (or related organelles) is not defined. Finally, MS data suggests that neither LPR-1 or SCAV-2 grossly affect lipid composition in embryos, consistent with dietary interventions failing to affect mutant phenotypes. Ultimately, a plausible schematic model is presented to explain for much of the data.

      __*Major comments:

      *__

      1. The studies are very thorough, convincing, and generally well described. Conclusions are logical and well grounded. Additional experiments are not required to support the authors major conclusions, and the data and methods are described in a sufficient detail to allow replication. As such my comments are minor and should be addressable at the author's discretion in writing.

      Response

      • Thank you for these positive comments

        __Minor comments: __2) In the abstract, "tissue-specific suppression" made me think that there was going to be a tissue-specific knockdown experiment, which was not the case. Rather scav-2 suppression is specific to the duct-pore, which corresponds to where scav-2 is expressed. Consider rewording this.

      Response

      • Wording was changed to “duct/pore-specific suppression”

        3) Page 5. Suggest wording change to, "Whereas LPR-3 incorporates stably into the precuticle, suggesting a structural role in matrix organization, LPR-1..."

      Response

      • Done

        4) LIMP-2 versus LIMP2. Both are used. Uniprot lists LIMP2, but some papers use LIMP-2. Choose one and be consistent.

      Response

      • Everything changed to LIMP2.

        5) Some of the data for S6 Fig wasn't referred to directly in the text. Namely results regarding pcyt-1 and pld-1. I'd suggest incorporating this into the results section possibly using, "As a control for our lipid supplementation experiments..."

      Response

      • These experiments are now described on page 11.

        6) Page 12 bottom. I understand the use of "oppose", but another way to put it is that SCAV-2 and LPR-1 (antagonistically or collectively) modulate aECM composition. Other terms that might confuse some readers is the use of upstream and downstream, although I OK with its use in the context of this work.

      Response

      • The genetics indicate that lpr-1 and scav-2 have opposite effects on tube shaping and LPR-3 localization, so they do function antagonistically rather than collectively/cooperatively; we decided to keep this terminology.

        7) Page 16. I understand the logic that SCAV-2 is unlikely to directly modulate LPR-3 given its presumed molecular function. But is it possible that LPR-3 levels are already maxed out in the aECM so that loss of SCAV-2 doesn't lead to any increase? Conversely, one could argue that even if acting indirectly, SCAV-2 could have led to increased LPR-3 levels, unless they were already maxed.

      Response

      • This is a good point and the possibility is now mentioned in the Results page 9. We also changed our wording in the Abstract and Discussion to acknowledge the possibility that LPR-3 could be the SCAV-2 cargo, though we still don’t favor this model.

        8) Figure legend 1. I did not see an asterisk in figure 1B.

      Response

      • thanks for catching this error, text removed

        9) Figure 1C. Might want to define the "degree" term in the legend for people outside the field.

      Response

      • We added an explanation to the figure legend.

        10) Fig 1 G. I was just wondering if cuticle autofluorescence was an issue for taking these images.

      Response

      • Cuticle auto fluorescence is generally quite dim in L4s with our settings, and it was not an issue at this mid/late L4 stage, which corresponds to when both LPR fusions are at their brightest. Note that both large panels are MAX projections and yet you can’t see any cuticle auto-fluorescence in the LPR-1 panel.

        11) Fig 2 and others. Please define error bars.

      Response

      • These correspond to the standard deviation; this information is now added to the Methods.

        12) Fig 5. From the images, it looks like lpr-1; scav-2 doubles might have a worse (pre)cuticle defect in LPR-3 localization than lpr-1 singles. If so that would be interesting and would suggest that their relationship with respect to the modulation of LPR-3 is context dependent. Admittedly, the lack of obvious scav-2 expression in the epidermis would not be consistent with an effect (positive or negative).

      Response

      • The lpr-1 scav-2 strain is certainly not improved over lpr-1 but we have not noted any consistent worsening of the phenotype either.

        13) Consider defining Dodt in the first figure legend where it appears.

      Response

      • Dodt gradient contrast imaging is a method of transmitted light imaging similar to DIC and is used on some confocal microscopes. It is now explained in the Methods section. We removed the term from Figure 7 since it seems to be confusing.

        14) For Mander's, is there a reason to report just one of the two findings (M1 or M2) versus both?

      Response

      • We now include the 2nd Manders value in the figure legend and note that value is much lower (0.25) because much of the red signal is lysosomes (where green would be quenched by acidity).

        15) Consider referring to specific panels (A, B...) within references to the supplemental files.

      Response

      • done

        16) Fig S6E. Neither "increasing nor increasing" to "increasing nor decreasing".

      Response

      • fixed

        **Referees cross-commenting**

        I thought that Reviewers 1 and 2 brought up some good points. My sense is that Belfi and colleagues can address most of these in writing, but are of course welcome to add new data as they see fit. I get that it's not a "perfect" paper where everything is explained fully or comes together, but I don't see that as a flaw that needs to be fixed. I think that the manuscript represents a good deal of work (as it is) and provides a sufficient advance while also suggesting an interesting link to disease. It will be up to individual journals to decide if the findings meets their criteria.

        Reviewer #3 (Significance (Required)):

        Significance: The work carried out in this paper, and more generally by the Sundaram lab, always has a ground-breaking element because very few labs in the field have studied in detail the developmental roles and regulation of the aECM, in large part because it can be challenging to dissect. The core findings in this study are rather novel and unexpected, namely the opposing roles of the paralogous LPR-1 and LPR-3 lipocalins and their functional interactions with SCAV-2. The study does stop short of finding specific molecules (lipid or lipoprotein) that would mediate the effects they report, and it wasn't yet clear how the lysosomal co-loc plays a role, but this is not a criticism of the work presented or the forward progress. I was particularly intrigued by the idea, presented in the discussion, that disruption of vascular aECM could potentially account for some of the (complex) observations regarding the role of lipocalins and SCARB proteins in human disease. This would represent a new avenue for researchers to consider and underscores the power of using non-biased approaches in model systems.

        As for all my reviews, this is signed by David Fay.

      • *

    1. Overall thoughts: This is an interesting history piece regarding peer review and the development of review over time. Given the author’s conflict of interest and association with the Centre developing MetaROR, I think that this paper might be a better fit for an information page or introduction to the journal and rationale for the creation of MetaROR, rather than being billed as an independent article. Alternatively, more thorough information about advantages to pre-publication review or more downsides/challenges to post-publication review might make the article seem less affiliated. I appreciate seeing the history and current efforts to change peer review, though I am not comfortable broadly encouraging use of these new approaches based on this article alone.

      Page 3: It’s hard to get a feel for the timeline given the dates that are described. We have peer review becoming standard after WWII (after 1945), definitively established by the second half of the century, an example of obligatory peer review starting in 1976, and in crisis by the end of the 20th century. I would consider adding examples that better support this timeline – did it become more common in specific journals before 1976? Was the crisis by the end of the 20th century something that happened over time or something that was already intrinsic to the institution? It doesn’t seem like enough time to get established and then enter crisis, but more details/examples could help make the timeline clear. 

      Consider discussing the benefits of the traditional model of peer review.

      Table 1 – Most of these are self-explanatory to me as a reader, but not all. I don’t know what a registered report refers to, and it stands to reason that not all of these innovations are familiar to all readers. You do go through each of these sections, but that’s not clear when I initially look at the table. Consider having a more informative caption. Additionally, the left column is “Course of changes” here but “Directions” in text. I’d pick one and go with it for consistency.

      3.2: Considering mentioning your conflict of interest here where MetaROR is mentioned.

      With some of these methods, there’s the ability to also submit to a regular journal. Going to a regular journal presumably would instigate a whole new round of review, which may or may not contradict the previous round of post-publication review and would increase the length of time to publication by going through both types. If someone has a goal to publish in a journal, what benefit would they get by going through the post-publication review first, given this extra time?

      There’s a section talking about institutional change (page 14). It mentions that openness requires three conditions – people taking responsibility for scientific communication, authors and reviewers, and infrastructure. I would consider adding some discussion of readers and evaluators. Readers have to be willing to accept these papers as reliable, trustworthy, and respectable to read and use the information in them. Evaluators such as tenure committees and potential employers would need to consider papers submitted through these approaches as evidence of scientific scholarship for the effort to be worthwhile for scientists.

      Based on this overview, which seems somewhat skewed towards the merits of these methods (conflict of interest, limited perspective on downsides to new methods/upsides to old methods), I am not quite ready to accept this effort as equivalent of a regular journal and pre-publication peer review process. I look forward to learning more about the approach and seeing this review method in action and as it develops.

    2. Response to the Editors and the Reviewers

      I am sincerely grateful to the editors and peer reviewers at MetaROR for their detailed feedback and valuable comments and suggestions. I have addressed each point below.

      Handling editor

      1. “However, the article’s progression and arguments, along with what it seeks to contribute to the literature need refinement and clarification. The argument for PRC is under-developed due to a lack of clarity about what the article means by scientific communication. Clarity here might make the endorsement of PRC seem like less of a foregone conclusion.”

      The structure of the paper (and discussion) has changed significantly to address the feedback.

      2. “I strongly endorse the main theme of most of the reviews, which is that the progression and underlying justifications for this article’s arguments needs a great deal of work. In my view, this article’s main contribution seems to be the evaluation of the three peer review models against the functions of scientific communication. I say ‘seems to be’ because the article is not very clear on that and I hope you will consider clarifying what your manuscript seeks to add to the existing work in this field. In any case, if that assessment of the three models is your main contribution, that part is somewhat underdeveloped. Moreover, I never got the sense that there is clear agreement in the literature about what the tenets of scientific communication are. Note that scientific communication is a field in its own right.”

      I have implemented a more rigorous approach to argumentation in response. “Scientific communication” was replaced by “scholarly communication.”

      3. “I also agree that paper is too strongly worded at times, with limitations and assumptions in the analysis minimised or not stated. For example, all of the typologies and categories drawn could easily be reorganised and there is a high degree of subjectivity in this entire exercise. Subjective choices should be highlighted and made salient for the reader. Note that greater clarity, rigour, and humility may also help with any alleged or actual bias.”

      I have incorporated the conceptual framework and description of the research methodology. However, the Discussion section reflects my personal perspective in some points, which I have explicitly highlighted to ensure clarity.

      4. “I agree with Reviewer 3 that the ‘we’ perspective is distracting.”

      This has been fixed.

      5. “The paragraph starting with ‘Nevertheless’ on page 2 is very long.”

      The text was restructured.

      6. “There are many points where language could be shortened for readability, for example:

      Page 3: ‘decision on publication’ could be ‘publication decision’.

      Page 5: ‘efficiency of its utilization’ could be ‘its efficiency’.

      Page 7: ‘It should be noted…’ could be ‘Note that…’.”

      I have proofread the text.

      7. “Page 7: ‘It should be noted that..’ – this needs a reference.”

      This statement has been moved to the Discussion section, paraphrased, and reference added

      “It should be also noted that peer review innovations pull in opposing directions, with some aiming to increase efficiency and reduce costs, while others aim to promote rigor and increase costs (Kaltenbrunner et al., 2022).”

      8. “I’m not sure that registered reports reflect a hypothetico-deductive approach (page 6). For instance, systematic reviews (even non-quantitative ones) are often published as registered reports and Cochrane has required this even before the move towards registered reports in quantitative psychology.”

      I have added this clarification.

      9. “I agree that modular publishing sits uneasily as its own chapter.”

      Modular publishing has been combined with registered reports into the deconstructed publication group of models, now Section 5.1.

      10. “Page 14: ‘The "Publish-Review-Curate" model is universal that we expect to be the future of scientific publishing. The transition will not happen today or tomorrow, but in the next 5-10 years, the number of projects such as eLife, F1000Research, Peer Community in, or MetaROR will rapidly increase’. This seems overly strong (an example of my larger critique and that of the reviewers).”

      This part of the text has been rewritten.

      Reviewer 1

      11. “For example, although Model 3 is less chance to insert bias to the readers, it also weakens the filtering function of the review system. Let’s just think about the dangers of machine-generated articles, paper-mills, p-hacked research reports and so on. Although the editors do some pre-screening for the submissions, in a world with only Model 3 peer review the literature could easily get loaded with even more ‘garbage’ than in a model where additional peers help the screening.”

      I think that generated text is better detected by software tools. At the same time, I tried and described the pros and cons of different models in a more balanced way in the concluding section.

      12. “Compared to registered reports other aspects can come to focus that Model 3 cannot cover. It’s the efficiency of researchers’ work. In the care of registered reports, Stage 1 review can still help researchers to modify or improve their research design or data collection method. Empirical work can be costly and time-consuming and post-publication review can only say that ‘you should have done it differently then it would make sense’.”

      Thank you very much for this valuable contribution, I have added this statement at P. 11.

      13. “Finally, the author puts openness as a strength of Model 3. In my eyes, openness is a separate question. All models can work very openly and transparently in the right circumstances. This dimension is not an inherent part of the models.”

      I think that the model, providing peer reviews to all the submissions, ensures maximum transparency. However, I have made effort to make the wording more balanced and distinguish my personal perspective from the literature.

      14. “In conclusion, I would not make verdict over the models, instead emphasize the different functions they can play in scientific communication.”

      This idea has been reflected now in the concluding section.

      15. “A minor comment: I found that a number of statements lack references in the Introduction. I would have found them useful for statements such as ‘There is a point of view that peer review is included in the implicit contract of the researcher.’”

      Thank you for your feedback. I have implemented a more rigorous approach to argumentation in response.

      Reviewer 2

      16. “The primary weakness of this article is that it presents itself as an 'analysis' from which they 'conclude' certain results such as their typology, when this appears clearly to be an opinion piece. In my view, this results in a false claim of objectivity which detracts from what would

      otherwise be an interesting and informative, albeit subjective, discussion, and thus fails to discuss the limitations of this approach.”

      I have incorporated the conceptual framework and description of the research methodology. However, the Discussion section reflects my personal perspective in some points, which I have explicitly highlighted to ensure clarity.

      17. “A secondary weakness is that the discussion is not well structured and there are some imprecisions of expression that have the potential to confuse, at least at first.”

      The structure of the paper (and discussion) has changed significantly.

      18. “The evidence and reasoning for claims made is patchy or absent. One instance of the former is the discussion of bias in peer review. There are a multitude of studies of such bias and indeed quite a few meta-analyses of these studies. A systematic search could have been done here but there is no attempt to discuss the totality of this literature. Instead, only a few specific studies are cited. Why are these ones chosen? We have no idea. To this extent I am not convinced that the references used here are the most appropriate.”

      I have reviewed the existing references and incorporated additional sources. However, the study does not claim to conduct a systematic literature review; rather, it adopts an interpretative approach to literature analysis.

      19. “Instances of the latter are the claim that ‘The most well-known initiatives at the moment are ResearchEquals and Octopus’ for which no evidence is provided, the claim that ‘we believe that journal-independent peer review is a special case of Model 3’ for which no further argument is provided, and the claim that ‘the function of being the "supreme judge" in deciding what is "good" and "bad" science is taken on by peer review’ for which neither is provided.

      Thank you for your feedback. I have implemented a more rigorous approach to argumentation in response.

      20. “A particular example of this weakness, which is perhaps of marginal importance to the overall paper but of strong interest to this reviewer is the rather odd engagement with history within the paper. It is titled "Evolution of Peer Review" but is really focussed on the contemporary state-of-play. Section 2 starts with a short history of peer review in scientific publishing, but that seems intended only to establish what is described as the 'traditional' model of peer review. Given that that short history had just shown how peer review had been continually changing in character over centuries - and indeed Kochetkov goes on to describe further changes - it is a little difficult to work out what 'traditional' might mean here; what was 'traditional' in 2010 was not the same as what was 'traditional' in 1970. It is not clear how seriously this history is being taken. Kochetkov has earlier written that "as early as the beginning of the 21st century, it was argued that the system of peer review is 'broken'" but of course criticisms - including fundamental criticisms - of peer review are much older than this. Overall, this use of history seems designed to privilege the experience of a particular moment in time, that coincides with the start of the metascience reform movement.”

      While the paper addresses some aspects of peer review history, it does not provide a comprehensive examination of this topic. A clarifying statement to this effect has been included in the methodology section.

      “… this section incorporates elements of historical analysis, it does not fully qualify as such because primary sources were not directly utilized. Instead, it functions as an interpretative literature review, and one that is intentionally concise, as a comprehensive history of peer review falls outside the scope of this research”.

      21. “Section 2 also demonstrates some of the second weakness described, a rather loose structure. Having moved from a discussion of the history of peer review to detail the first model, 'traditional' peer review, it then also goes on to describe the problems of this model. This part of the paper is one of the best - and best - evidenced. Given the importance of it to the main thrust of the discussion it should probably have been given more space as a Section all on its own.”

      This section (now Section 4) has been extended, see also previous comment.

      22. “Another example is Section 4 on Modular Publishing, in which Kochetkov notes "Strictly speaking, modular publishing is primarily an innovative approach for the publishing workflow in general rather than specifically for peer review." Kochetkov says "This is why we have placed this innovation in a separate category" but if it is not an innovation in peer review, the bigger question is 'Why was it included in this article at all?'.”

      Modular publishing has been combined with registered reports into the deconstructed publication group of models, now Section 5.1.

      23. “One example of the imprecisions of language is as follows. The author also shifts between the terms 'scientific communication' and 'science communication' but, at least in many contexts familiar to this reviewer, these are not the same things, the former denoting science-internal dissemination of results through publication (which the author considers), conferences and the like (which the author specifically excludes) while the latter denotes the science-external public dissemination of scientific findings to non-technical audiences, which is entirely out of scope for this article.”

      Thank you for your remark. As a non- native speaker, I initially did not grasp the distinction between the terms. However, I believe the phrase ‘scholarly communication’ is the most universally applicable term. This adjustment has now been incorporated into the text.

      24. “A final note is that Section 3, while an interesting discussion, seems largely derivative from a typology of Waltman, with the addition of a consideration of whether a reform is 'radical' or 'incremental', based on how 'disruptive' the reform is. Given that this is inherently a subjective decision, I wonder if it might not have been more informative to consider 'disruptiveness' on a scale and plot it accordingly. This would allow for some range to be imagined for each reform as well; surely reforms might be more or less disruptive depending on how they are implemented. Given that each reform is considered against each model, it is somewhat surprising that this is not presented in a tabular or graphical form.”

      Ultimately, I excluded this metric due to its current reliance on purely subjective judgment. Measuring 'disruptiveness', e.g., through surveys or interviews remains a task for future research.

      25. “Reconceptualize this as an opinion piece. Where systematic evidence can be drawn upon to make points, use that, but don't be afraid to just present a discussion from what is clearly a well-informed author.”

      I cannot definitively classify this work as an opinion piece. In fact, this manuscript synthesizes elements of a literature review, research article, and opinion essay. My idea was to integrate the strengths of all three genres.

      26. “Reconsider the focus on history and 'evolution' if the point is about the current state of play and evaluation of reforms (much as I would always want to see more studies on the history and evolution of peer review).”

      I have revised the title to better reflect the study’s scope and explicitly emphasize its focus on contemporary developments in the field.

      “Peer Review at the Crossroads”

      27. “Consider ways in which the typology might be expanded, even if at subordinate level.”

      I have updated the typology and introduced the third tier, where it is applicable (see Fig.2).

      Reviewer 3

      28. “In my view, the biggest issue with the current peer review system is the low quality of reviews, but the manuscript only mentions this fleetingly. The current system facilitates publication bias, confirmation bias, and is generally very inconsistent. I think this is partly due to reviewers’ lack of accountability in such a closed peer review system, but I would be curious to hear the author’s ideas about this, more elaborately than they provide them as part of issue 2.

      I have elaborated on this issue in the footnote.

      29. “I’m missing a section in the introduction on what the goals of peer review are or should be. You mention issues with peer review, and these are mostly fair, but their importance is only made salient if you link them to the goals of peer review. The author does mention some functions of peer review later in the paper, but I think it would be good to expand that discussion and move it to a place earlier in the manuscript.”

      The functions of peer review are summarized in the first paragraph of Introduction.

      30. “Table 1 is intuitive but some background on how the author arrived at these categorizations would be welcome. When is something incremental and when is something radical? Why are some innovations included but not others (e.g., collaborative peer review, see https://content.prereview.org/how-collaborative-peer-review-can-transform-scientific-research/)?”

      Collaborative peer review, namely, Prereview was mentioned in the context of Model 3 (Publish-Review-Curate). However, I have extended this part of the paper.

      31“‘Training of reviewers through seminars and online courses is part of the strategies of many publishers. At the same time, we have not been able to find statistical data or research to assess the effectiveness of such training.’ (p. 5)  There is some literature on this, although not recent. See work by Sara Schroter for example, Schroter et al., 2004; Schroter et al., 2008)”

      Thank you very much, I have added these studies and a few more recent ones.

      32. “‘It should be noted that most initiatives aimed at improving the quality of peer review simultaneously increase the costs.’ (p. 7) This claim needs some support. Please explicate why this typically is the case and how it should impact our evaluations of these initiatives.”

      I have moved this part to the Discussion section.

      33. “I would rephrase “Idea of the study” in Figure 2 since the other models start with a tangible output (the manuscript). This is the same for registered reports where they submit a tangible report including hypotheses, study design, and analysis plan. In the same vein, I think study design in the rest of the figure might also not be the best phrasing. Maybe the author could use the terminology used by COS (Stage 1 manuscript, and Stage 2 manuscript, see Details & Workflow tab of https://www.cos.io/initiatives/registered-reports). Relatedly, “Author submits the first version of the manuscript” in the first box after the ‘Manuscript (report)’ node maybe a confusing phrase because I think many researchers see the first version of the manuscript as the stage 1 report sent out for stage 1 review.”

      Thank you very much. Stage 1 and Stage 2 manuscripts look like suitable labelling solution.

      34. “One pathway that is not included in Figure 2 is that authors can decide to not conduct the study when improvements are required. Relatedly, in the publish-review-curate model, is revising the manuscripts based on the reviews not optional as well? Especially in the case of

      3a, authors can hardly be forced to make changes even though the reviews are posted on the platform.”

      All the four models imply a certain level of generalization; thus, I tried to avoid redundant details. However, I have added this choice to the PRC model (now, Model 4).

      35. “I think the author should discuss the importance of ‘open identities’ more. This factor is now not explicitly included in any of the models, while it has been found to be one of the main characteristics of peer review systems (Ross-Hellauer, 2017).”

      This part has been extended.

      36. “More generally, I was wondering why the author chose these three models and not others. What were the inclusion criteria for inclusion in the manuscript? Some information on the underlying process would be welcome, especially when claims like ‘However, we believe that journal-independent peer review is a special case of Model 3 (‘Publish-Review-Curate’).’ are made without substantiation.”

      The study included four generalized models of peer review that involved some level of abstraction.

      37. “Maybe it helps to outline the goals of the paper a bit more clearly in the introduction. This helps the reader to know what to expect.”

      The Introduction has been revised including the goal and objectives.

      38. “The Modular Publishing section is not inherently related to peer review models, as you mention in the first sentence of that paragraph. As such, I think it would be best to omit this section entirely to maintain the flow of the paper. Alternatively, you could shortly discuss it in the discussion section but a separate paragraph seems too much from my point of view.”

      Modular publishing has been combined with registered reports into the fragmented publishing group of models, now in Section 5.

      39. “Labeling model 3 as post-publication review might be confusing to some readers. I believe many researchers see post-publication review as researchers making comments on preprints, or submitting commentaries to journals. Those activities are substantially different from the publish-review-curate model so I think it is important to distinguish between these types.”

      The label was changed into Publish- Review-Curate model.

      40. “I do not think the conclusions drawn below Table 3 logically follow from the earlier text. For example, why are “all functions of scientific communication implemented most quickly and transparently in Model 3”? It could be that the entire process takes longer in Model 3 (e.g. because reviewers need more time), so that Model 1 and Model 2 lead to outputs quicker. The same holds for the following claim: ‘The additional costs arising from the independent assessment of information based on open reviews are more than compensated by the emerging opportunities for scientific pluralism.’ What is the empirical evidence for this? While I personally do think that Model 3 improves on Model 1, emphatic statements like this require empirical evidence. Maybe the author could provide some suggestions on how we can attain this evidence. Model 2 does have some empirical evidence underpinning its validity (see Scheel, Schijen, Lakens, 2021; Soderberg et al., 2021; Sarafoglou et al. 2022) but more meta-research inquiries into the effectiveness and cost-benefits ratio of registered reports would still be welcome in general.”

      The Discussion section has been substantially revised to address this point. While I acknowledge the current scarcity of empirical studies on innovative peer review models, I have incorporated a critical discussion of this methodological gap. I am grateful for the suggested literature on RRs, which I have now integrated into the relevant subsection.

      41. “What is the underlaying source for the claim that openness requires three conditions?”

      I have made effort to clarify within the text that this reflects my personal stance.

      42. “‘If we do not change our approach, science will either stagnate or transition into other forms of communication.’ (p. 2) I don’t think this claim is supported sufficiently strongly. While I agree there are important problems in peer review, I think would need to be a more in-depth and evidence-based analysis before claims like this can be made.”

      The sentence has been rephrased.

      43. “On some occasions, the author uses ‘we’ while the study is single authored.”

      This has been fixed.

      44. “Figure 1: The top-left arrow from revision to (re-)submission is hidden”

      I have updated Figure 1.

      45. “‘The low level of peer review also contributes to the crisis of reproducibility in scientific research (Stoddart, 2016).’ (p. 4) I assume the author means the low quality of peer review.”

      This has been fixed.

      46. “‘Although this crisis is due to a multitude of factors, the peer review system bears a significant responsibility for it.’ (p. 4) This is also a big claim that is not substantiated”

      I have paraphrased this sentence as “While multiple factors drive this crisis, deficiencies in the peer review process remain a significant contributor.” and added a footnote.

      47. “‘Software for automatic evaluation of scientific papers based on artificial intelligence (AI) has emerged relatively recently” (p. 5) The author could add RegCheck (https://regcheck.app/) here, even though it is still in development. This tool is especially salient in light of the finding that preregistration-paper checks are rarely done as part of reviews (see Syed, 2023)”

      Thank you very much, I have added this information.

      48. “There is a typo in last box of Figure 1 (‘decicion’ instead of ‘decision’). I also found typos in the second box of Figure 2, where ‘screns’ should be ‘screens’, and the author decision box where ‘desicion’ should be ‘decision’”

      This has been fixed.

      49. “Maybe it would be good to mention results blinded review in the first paragraph of 3.2. This is a form of peer review where the study is already carried out but reviewers are blinded to the results. See work by Locascio (2017), Grand et al. (2018), and Woznyj et al. (2018).”

      Thanks, I have added this (now section 5.2)

      50. “Is ‘Not considered for peer review’ in figure 3b not the same as rejected? I feel that it is rejected in the sense that neither the manuscript not the reviews will be posted on the platform.”

      Changed into “Rejected”

      51. “‘In addition to the projects mentioned, there are other platforms, for example, PREreview12, which departs even more radically from the traditional review format due to the decentralized structure of work.’ (p. 11) For completeness, I think it would be helpful to add some more information here, for example why exactly decentralization is a radical departure from the traditional model.”

      I have extended this passage.

      52. “‘However, anonymity is very conditional - there are still many “keys” left in the manuscript, by which one can determine, if not the identity of the author, then his country, research group, or affiliated organization.’ (p.11) I would opt for the neutral ‘their’ here instead of ‘his’, especially given that this is a paragraph about equity and inclusion.”

      This has been fixed.

      53. “‘Thus, “closeness” is not a good way to address biases.’ (p. 11) This might be a straw man argument because I don’t believe researchers have argued that it is a good method to combat biases. If they did, it would be good to cite them here. Alternatively, the sentence could be

      omitted entirely.

      I have omitted the sentence.

      54. “I would start the Modular Publishing section with the definition as that allows readers to interpret the other statements better.”

      Modular publishing has been combined with registered reports into the deconstructed publication group of models, now in Section 5, general definition added.

      55. “It would be helpful if the Models were labeled (instead of using Model 1, Model 2, and Model 3) so that readers don’t have to think back what each model involved.”

      All the models represent a kind of generalization, which is why non-detailed labels are used. The text labels may vary depending on the context.

      56. “Table 2: ‘Decision making’ for the editor’s role is quite broad, I recommend to specify and include what kind of decisions need to be made.”

      Changed into “Making accept/reject decisions”

      57. “Table 2: ‘Aim of review’ – I believe the aim of peer review differs also within these models (see the ‘schools of thought’ the author mentions earlier), so maybe a statement on what the review entails would be a better way to phrase this.”

      Changed into “What does peer review entail?”

      58. “Table 2: One could argue that the object of the review’ in Registered Reports is also the manuscript as a whole, just in different stages. As such, I would phrase this differently.

      Current wording fits your remark: “Manuscript in terms of study design and execution”

      Reviewer 4

      59. “Page 3: It’s hard to get a feel for the timeline given the dates that are described. We have peer review becoming standard after WWII (after 1945), definitively established by the second half of the century, an example of obligatory peer review starting in 1976, and in crisis by the end of the 20th century. I would consider adding examples that better support this timeline – did it become more common in specific journals before 1976? Was the crisis by the end of the 20th century something that happened over time or something that was already intrinsic to the institution? It doesn’t seem like enough time to get established and then enter crisis, but more details/examples could help make the timeline clear. Consider discussing the benefits of the traditional model of peer review.”

      This section has been extended.

      60. “Table 1 – Most of these are self-explanatory to me as a reader, but not all. I don’t know what a registered report refers to, and it stands to reason that not all of these innovations are familiar to all readers. You do go through each of these sections, but that’s not clear when I initially look at the table. Consider having a more informative caption. Additionally, the left column is “Course of changes” here but “Directions” in text. I’d pick one and go with it for consistency.”

      Table 1 has been replaced by Figure 2. I have also extended text descriptions, added definitions.

      61. “With some of these methods, there’s the ability to also submit to a regular journal. Going to a regular journal presumably would instigate a whole new round of review, which may or may not contradict the previous round of post-publication review and would increase the length of time to publication by going through both types. If someone has a goal to publish in a journal, what benefit would they get by going through the post-publication review first, given this extra time?”

      Some of these platforms, e.g., F1000, Lifecycle Journal, replace conventional journal publishing. Modular publishing allows for step-by-step feedback from peers. An important advantage of RRs over other peer review models lies in their capacity to enhance research efficiency. By conducting peer review at Stage 1, researchers gain the opportunity to refine their study design or data collection protocols before empirical work begins. Other models of review can offer critiques such as "the study should have been conducted differently" without actionable opportunity for improvement. The key motivation for having my paper reviewed in MetaROR is the quality of peer review – I have never received so many comments, frankly! Moreover, platforms such as MetaROR usually have partnering journals.

      62. “There’s a section talking about institutional change (page 14). It mentions that openness requires three conditions – people taking responsibility for scientific communication, authors and reviewers, and infrastructure. I would consider adding some discussion of readers and evaluators. Readers have to be willing to accept these papers as reliable, trustworthy, and respectable to read and use the information in them. Evaluators such as tenure committees and potential employers would need to consider papers submitted through these approaches as evidence of scientific scholarship for the effort to be worthwhile for scientists.”

      I have omitted these conditions and employed the Moore’s Technology Adoption Life Cycle. Thank you very much for your comment!

      63. Based on this overview, which seems somewhat skewed towards the merits of these methods (conflict of interest, limited perspective on downsides to new methods/upsides to old methods), I am not quite ready to accept this effort as equivalent of a regular journal and pre-publication peer review process. I look forward to learning more about the approach and seeing this review method in action and as it develops.

      The Discussion section has been substantially revised to address this point. While I acknowledge the current scarcity of empirical studies on innovative peer review models, I have incorporated a critical discussion of this methodological gap.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Zhu and colleagues used high-density Neuropixel probes to perform laminar recordings in V1 while presenting either small stimuli that stimulated the classical receptive field (CRF) or large stimuli whose border straddled the RF to provide nonclassical RF (nCRF) stimulation. Their main question was to understand the relative contribution of feedforward (FF), feedback (FB), and horizontal circuits to border ownership (Bown), which they addressed by measuring crosscorrelation across layers. They found differences in cross-correlation between feedback/horizontal (FH) and input layers during CRF and nCRF stimulation. 

      Although the data looks high quality and analyses look mostly fine, I had a lot of difficulty understanding the logic in many places. Examples of my concerns are written below. 

      (1) What is the main question? The authors refer to nCRF stimulation emerging from either feedback from higher areas or horizontal connections from within the same area (e.g. lines 136 to 138 and again lines 223-232). I initially thought that the study would aim to distinguish between the two. However, the way the authors have clubbed the layers in 3D, the main question seems to be whether Bown is FF or FH (i.e., feedback and horizontal are clubbed). Is this correct? If so, I don't see the logic, since I can't imagine Bown to be purely FF. Thus, just showing differences between CRF stimulation (which is mainly expected to be FF) and nCRF stimulation is not surprising to me. 

      We thank the reviewer for their thoughtful comments. As explained in the discussion, we grouped cortical layers to reduce uncertainty in precisely assigning laminar boundaries and to increase statistical power. Consequently, this limits our ability to distinguish the relative contributions of feedback inputs, primarily targeting layers 1 and 6, and horizontal connections, mainly within layers 2/3 and 5. Nevertheless, previous findings, especially regarding the rapid emergence of B<sub>own</sub> signals, suggest that feedback is more biologically plausible than horizontal-based mechanisms.

      Importantly, the emergence of B<sub>own</sub> signals in the primate brain should not be taken for granted. Direct physiological evidence that distinguishes feedforward from feedback/horizontal mechanisms has been lacking. While we agree it is unlikely that B<sub>own</sub> is mediated solely by feedforward processing, we felt it was necessary to test this empirically, particularly using highresolution laminar recordings.

      As discussed, feedforward models of B<sub>own</sub> have been proposed (e.g., Super, Romeo, and Keil, 2010; Saki and Nishimura, 2006). These could, in theory, be supported by more general nCRF modulations arising through early feedforward inhibitions, such as those observed in the retinogeniculate pathway (e.g., Webb, Tinsley, Vincent and Derrington, 2005; Blitz and Regehr, 2005; Alitto and Usrey, 2008). However, most B<sub>own</sub> models rely heavily on response latency, yet very few studies have recorded across layers or areas simultaneously to address this directly. Notably, recent findings in area V4 show that B<sub>own</sub> signals emerge earlier in deep layers than in granular (input) layers, suggesting a non-feedforward origin (Franken and Reynolds, 2021).

      Furthermore, although previous studies have shown that the nCRF can modulate firing rates and the timing of neuronal firing across layers, our findings go beyond these effects. We provide clear evidence that nCRF modulation also alters precise spike timing relationships and interlaminar coordination, and that the magnitude of nCRF modulation depends on these interlaminar interactions. This supports the idea that B<sub>own</sub> , or more general nCRF modulation, involves more than local rate changes, reflecting layer-specific network dynamics consistent with feedback or lateral integration.

      (2) Choice of layers for cross-correlation analysis: In the Introduction, and also in Figure 3C, it is mentioned that FF inputs arrive in 4C and 6, while FB/Horizontal inputs arrive at "superficial" and "deep", which I take as layer 2/3 and 5. So it is not clear to me why (i) layer 4A/B is chosen for analysis for Figure 3D (I would have thought layer 6 should have been chosen instead) and (ii) why Layers 5 and 6 are clubbed. 

      We thank the reviewer for raising this important point. The confusion likely stems from our use of the terms “superficial” and “deep” layers when describing the targets of feedback/horizontal inputs. To clarify, by “superficial” and “deep,” we specifically refer to layers 1–3 and layers 5–6, respectively, as illustrated in Figure 3C. Feedback and horizontal inputs relatively avoid entire layer 4, including both 4C and 4A/B.

      We also emphasize that the classification of layers as feedforward or feedback/horizontal recipients is relative rather than absolute. For example, although layer 6 receives both feedforward and feedback/horizontal inputs, it contains a higher proportion of feedback/horizontal inputs compared to layers 4C and 4A/B. 

      We had addressed this rationale in the Discussion, but recognize it may not have been sufficiently emphasized. We have revised the main text accordingly to clarify this point for readers in the final manuscript version.

      (3) Addressing the main question using cross-correlation analysis: I think the nice peaks observed in Figure 3B for some pairs show how spiking in one neuron affects the spiking in another one, with the delay in cross-correlation function arising from the conduction delay. This is shown nicely during CRF stimulation in Figure 3D between 4C -> 2/3, for example. However, the delay (positive or negative) is constrained by anatomical connectivity. For example, unless there are projections from 2/3 back to 4C which causes firing in a 2/3 layer neuron to cause a spike in a layer 4 neuron, we cannot expect to get a negative delay no matter what kind of stimulation (CRF versus nCRF) is used. 

      We thank the reviewer for the insightful comment. The observation that neurons within FH<sub>i</sub> laminar compartments (layers 2/3, 5/6) can lead those in layer 4 (4C, 4A/B) during nCRF stimulation may indeed seem unexpected. However, several anatomical pathways could mediate the propagation of B<sub>own</sub> signals from FH<sub>i</sub> compartments to layer 4. We have revised the Discussion section in the final version of the manuscript to address this point explicitly.

      In Macaque V1, projections from layers 2/3 to 4A/B have been documented (Blasdel et al., 1985; Callaway and Wiser, 1996), and neurons in 4A/B often extend apical dendrites into layers 2/3 (Lund, 1988; Yoshioka et al., 1994). Although direct projections from layers 2/3 to 4C are generally sparse (Callaway, 1998), a subset of neurons in the lower part of layer 3 can give off collateral axons to 4C (Lund and Yoshioka, 1991). Additionally, some 4C neurons extend dendrites into 4B, enabling potential dendritic integration of inputs from more superficial layers (Somogyi and Cowey, 1981; Mates and Lund, 1983; Yabuta and Callaway, 1998). Sparse connections from 2/3 to layer 4 have also been reported in cat V1 (Binzegger, Douglas and Martin, 2004). Moreover, layers 2/3 may influence 4C neurons disynaptically, without requiring dense monosynaptic connections. 

      Importantly, while CCGs can suggest possible circuit arrangements, functional connectivity may arise through mechanisms not fully captured by traditional anatomical tracing. Indeed, the apparent discrepancy between anatomical and functional data is not uncommon. For example, although 4B is known to receive anatomical input primarily from 4Cα, but not 4Cβ, photostimulation experiments have shown that 4B neurons can also be functionally driven by 4Cβ (Sawatari and Callaway, 1996). Our observation of functional inputs from layers 2/3 to layer 4 is also consistent with prior findings in rodent V1, where CCG analysis (e.g., Figure 7 in Senzai, Fernandez-Ruiz and Buzsaki, 2019) or photostimulation (Xu et al., 2016) revealed similar pathways. 

      Layers 5/6 provide dense projections to layers 4A/B (Lund, 1988; Callaway, 1998). In particular, layer 6 pyramidal neurons, especially the subset classified as Type 1 cells, project substantially to layer 4C (Wiser and Callaway, 1996; Fitzpatrick et al., 1985). 

      Reviewer #2 (Public review): 

      Summary: 

      The authors present a study of how modulatory activity from outside the classical receptive field (cRF) differs from cRF stimulation. They study neural activity across the different layers of V1 in two anesthetized monkeys using Neuropixels probes. The monkeys are presented with drifting gratings and border-ownership tuning stimuli. They find that border-ownership tuning is organized into columns within V1, which is unexpected and exciting, and that the flow of activity from cellto-cell (as judged by cross-correlograms between single units) is influenced by the type of visual stimulus: border-ownership tuning stimuli vs. drifting-grating stimuli. 

      Strengths: 

      The questions addressed by the study are of high interest, and the use of Neuropixels probes yields extremely high numbers of single-units and cross-correlation histograms (CCHs) which makes the results robust. The study is well-described. 

      Weaknesses: 

      The weaknesses of the study are (a) the use of anesthetized animals, which raises questions about the nature of the modulatory signal being measured and the underlying logic of why a change in visual stimulus would produce a reversal in information flow through the cortical microcircuit and (b) the choice of visual stimuli, which do not uniquely isolate feedforward from feedback influences. 

      (1) The modulation latency seems quite short in Figure 2C. Have the authors measured the latency of the effect in the manuscript and how it compares to the onset of the visually driven response? It would be surprising if the latency was much shorter than 70ms given previous measurements of BO and figure-ground modulation latency in V2 and V1. On the same note, it might be revealing to make laminar profiles of the modulation (i.e. preferred - non-preferred border orientation) as it develops over time. Does the modulation start in feedback recipient layers? 

      (2) Can the authors show the average time course of the response elicited by preferred and nonpreferred border ownership stimuli across all significant neurons? 

      We thank the reviewer for the insightful comment—this is indeed an important and often overlooked point. As noted in the Discussion, B<sub>own</sub> modulation differs from other forms of figure-ground modulation (e.g., Lamme et al., 1998) in that it can emerge very rapidly in early visual cortex—within ~10–35 ms after response onset (Zhou et al., 2000; Sugihara et al., 2011). This rapid emergence has been interpreted as evidence for the involvement of fast feedback inputs, which can propagate up to ten times faster than horizontal connections (Girard et al., 2001). Moreover, interlaminar interactions via monosynaptic or disynaptic connections can occur on very short timescales (a few milliseconds), further complicating efforts to disentangle feedback influences based solely on latency.

      Thus, while the early onset of modulation in our data may appear surprising, it is consistent with prior B<sub>own</sub> findings, and likely reflects a combination of fast feedback and rapid interlaminar processing. This makes it challenging to use conventional latency measurements to resolve laminar differences in B<sub>own</sub> modulation. Latency comparisons are well known to be susceptible to confounds such as variability in response onset, luminance, contrast, stimulus size, and other sensory parameters. 

      Although we did not explicitly quantify the latency of B<sub>own</sub> modulation in this manuscript, our cross-correlation analysis provides a more sensitive and temporally resolved measure of interlaminar information flow. We therefore focused on this approach rather than laminar modulation profiles, as it more directly addresses our primary research question.

      (3) The logic of assuming that cRF stimulation should produce the opposite signal flow to borderownership tuning stimuli is worth discussing. I suspect the key difference between stimuli is that they used drifting gratings as the cRF stimulus, the movement of the stimulus continually refreshes the retinal image, leading to continuous feedforward dominance of the signals in V1. Had they used a static grating, the spiking during the sustained portion of the response might also show more influence of feedback/horizontal connections. Do the initial spikes fired in response to the borderownership tuning stimuli show the feedforward pattern of responses? The authors state that they did not look at cross-correlations during the initial response, but if they do, do they see the feedforward-dominated pattern? The jitter CCH analysis might suffice in correcting for the response transient. 

      We thank the reviewer for the insightful comment. As noted in the final Results section, our CRF and nCRF stimulation paradigms differ in respects beyond the presence or absence of nonclassical modulation, including stimulus properties within the CRF.

      We agree with the reviewer’s speculation that drifting gratings may continually refresh the retinal image, promoting sustained feedforward dominance in V1, whereas static gratings might allow greater influence from feedback/horizontal inputs during the sustained response. Likewise, the initial response to the B<sub>own</sub> stimulus could be dominated by feedforward activity before feedback/horizontal influences arrive. 

      This contrast was a central motivation for our experimental design: we deliberately used two stimulus conditions — drifting gratings to emphasize feedforward processing, and B<sub>own</sub> stimuli, which are known to engage feedback modulation — to test whether these two conditions yield different patterns of interlaminar information flow. Our results confirm that they do. While we did not separately analyze the very initial spike period, our focus is on interlaminar information flow during the sustained response, which serves as the primary measure of feedback/horizontal engagement in this study.

      Finally, beyond this direct comparison, we show in Figure 5 that under nCRF stimulation alone, the direction and strength of interlaminar information flow correlate with the magnitude of B<sub>own</sub> modulation, further supporting the idea that our cross-correlation approach reveals functionally meaningful differences in cortical processing.

      (4) The term "nCRF stimulation" is not appropriate because the CRF is stimulated by the light/dark edge. 

      We thank the reviewer for the comment. As noted in the Introduction, nCRF effects described in the literature invariably involve stimulation both inside and outside the CRF. Our use of the term “nCRF stimulation” refers to this experimental paradigm, rather than suggesting that the CRF itself is unstimulated. We hope this clarifies our use of the term.

      Reviewer #3 (Public review): 

      Summary: 

      The paper by Zhu et al is on an important topic in visual neuroscience, the emergence in the visual cortex of signals about figures and ground. This topic also goes by the name border ownership. The paper utilizes modern recording techniques very skillfully to extend what is known about border ownership. It offers new evidence about the prevalence of border ownership signals across different cortical layers in V1 cortex. Also, it uses pairwise cross-correlation to study signal flow under different conditions of visual stimulation that include the border ownership paradigm. 

      Strengths: 

      The paper's strengths are its use of multi-electrode probes to study border ownership in many neurons simultaneously across the cortical layers in V1, and its innovation of using crosscorrelation between cortical neurons -- when they are viewing border-ownership patterns or instead are viewing grating patterns restricted to the classical receptive field (CRF). 

      Weaknesses: 

      The paper's weaknesses are its largely incremental approach to the study of border ownership and the lack of a critical analysis of the cross-correlation data. The paper as it is now does not advance our understanding of border ownership; it mainly confirms prior work, and it does not challenge or revise consensus beliefs about mechanisms. However, it is possible that, in the rich dataset the authors have obtained, they do possess data that could be added to the paper to make it much stronger. 

      Critique: 

      The border ownership data on V1 offered in the paper replicates experimental results obtained by Zhou and von der Heydt (2000) and confirms the earlier results using the same analysis methods as Zhou. The incremental addition is that the authors found border ownership in all cortical layers extending Zhou's results that were only about layer 2/3. 

      The cross-correlation results show that the pattern of the cross-correlogram (CCG) is influenced by the visual pattern being presented. However, the results are not analyzed mechanistically, and the interpretation is unclear. For instance, the authors show in Figure 3 (and in Figure S2) that the peak of the CCG can indicate layer 2/3 excites layer 4C when the visual stimulus is the border ownership test pattern, a large square 8 deg on a side. But how can layer 2/3 excite layer 4C? The authors do not raise or offer an answer to this question. Similar questions arise when considering the CCG of layer 4A/B with layer 2/3. What is the proposed pathway for layer 2/3 to excite 4A/B? Other similar questions arise for all the interlaminar CCG data that are presented. What known functional connections would account for the measured CCGs? 

      We thank the reviewer for raising this important point. As noted in our response to a previous comment, several anatomical pathways could mediate apparent functional inputs from layers 2/3 to 4C and 4A/B. In macaque V1, projections from layers 2/3 to 4A/B have been documented (Blasdel et al., 1985; Callaway and Wiser, 1996), and neurons in 4A/B often extend apical dendrites into layers 2/3 (Lund, 1988; Yoshioka et al., 1994). Although direct projections from layers 2/3 to 4C are generally sparse (Callaway, 1998), a subset of lower layer 3 neurons can give off collateral axons to 4C (Lund and Yoshioka, 1991). Some 4C neurons also extend dendrites into 4B, potentially allowing dendritic integration of inputs from more superficial layers (Somogyi and Cowey, 1981; Mates and Lund, 1983; Yabuta and Callaway, 1998). Sparse connections from 2/3 to layer 4 have also been reported in cat V1 (Binzegger et al., 2004).

      Moreover, layers 2/3 may influence 4C neurons disynaptically, without requiring dense monosynaptic connections. While CCGs suggest possible circuit arrangements, functional connectivity may arise through mechanisms not fully captured by anatomical tracing, and apparent discrepancies between anatomical and functional data are not uncommon. For example, although 4B is known to receive anatomical input primarily from 4Cα, 4B neurons can also be functionally driven by 4Cβ using photostimulation (Sawatari and Callaway, 1996). Our observation of functional inputs from layers 2/3 to layer 4 is also consistent with prior findings in rodent V1, where CCG analysis (e.g., Figure 7 in Senzai, Fernandez-Ruiz and Buzsaki, 2019) or photostimulation (Xu et al., 2016) revealed similar pathways. 

      Layers 5/6 also provide dense projections to layers 4A/B (Lund, 1988; Callaway, 1998). In particular, layer 6 pyramidal neurons, especially the subset classified as Type 1 cells, project substantially to layer 4C (Wiser and Callaway, 1996; Fitzpatrick et al., 1985). 

      We have revised the Discussion section to explicitly address these points and clarify the potential anatomical and functional pathways underlying the measured interlaminar CCGs, highlighting how inputs from layers 2/3 and 5/6 to layer 4 can be mediated via both direct and indirect connections.

      The problems in understanding the CCG data are indirectly caused by the lack of a critical analysis of what is happening in the responses that reveal the border ownership signals, as in Figure 2. Let's put it bluntly - are border ownership signals excitatory or inhibitory? The reason I raise this question is that the present authors insightfully place border ownership as examples of the action of the non-classical receptive field (nCRF) of cortical cells. Most previous work on the nCRF (many papers cited by the authors) reveal the nCRF to be inhibitory or suppressive. In order to know whether nCRF signals are excitatory or inhibitory, one needs a baseline response from the CRF, so that when you introduce nCRF signals you can tell whether the change with respect to the CRF is up or down. As far as I know, prior work on border ownership has not addressed this question, and the present paper doesn't either. This is where the rich dataset that the present authors possess might be used to establish a fundamental property of border ownership. 

      Then we must go back to consider what the consequences of knowing the sign of the border ownership signal would mean for interpreting the CCG data. If the border ownership signals from extrastriate feedback or, alternatively, from horizontal intrinsic connections, are excitatory, they might provide a shared excitatory input to pairs of cells that would show up in the CCG as a peak at 0 delay. However, if the border ownership manuscript signals are inhibitory, they might work by exciting only inhibitory neurons in V1. This could have complicated consequences for the CCG.The interpretation of the CCG data in the present version of the m is unclear (see above). Perhaps a clearer interpretation could be developed once the authors know better what the border ownership signals are. 

      We thank the reviewer for raising this fundamental and thought-provoking question. As noted, B<sub>own</sub> signals arise from nCRF, which has often been associated with suppressive effects. However, Zhang and von der Heydt (2010) provided important insight into this issue by systematically varying the placement of figure fragments outside the CRF while keeping an edge centered within the CRF. They found that contextual fragments on the preferred side of B<sub>own</sub> produce facilitation, while those on the non-preferred side produce suppression. Thus, the nCRF contribution to B<sub>own</sub> reflects both excitatory and inhibitory modulation, depending on the spatial configuration of the figure.

      These effects were well explained by their model in which feedback from grouping cells in higher areas selectively enhances or suppresses V1/V2 neuron responses, depending on their B<sub>own</sub> preference. In this framework, the B<sub>own</sub> signal itself is not inherently excitatory or inhibitory; rather, it results from the net effect of feedback, which can be either facilitative or suppressive. Importantly, it is the input that is modulated — not that the receiving neurons are necessarily inhibitory themselves.

      In the current study, our analysis focused on CCGs showing excessive coincident spiking, i.e., positive peaks, which are typically interpreted as evidence for shared excitatory input or excitatory connections. Due to the limited number of connections, we did not analyze inhibitory interactions, such as anti-correlations or delayed suppression in the CCGs, which would be expected if the reference neuron were inhibitory. Therefore, the CCGs we report here likely reflect the excitatory component of the B<sub>own</sub> signal, and possibly its upstream drive via feedback. While a full separation of excitatory and inhibitory components remains an important goal for future work, our data suggest that B<sub>own</sub> modulation is at least partially mediated through excitatory feedback input.

      My critique of the CCG analysis applies to Figure 5 also. I cannot comprehend the point of showing a very weak correlation of CCG asymmetry with Border Ownership Index, especially when what CCG asymmetry means is unclear mechanistically. Figure 5 does not make the paper stronger in my opinion. 

      We thank the reviewer for this comment. As described in the Results section for Figure 5, the observation that interlaminar information flow correlates with B<sub>own</sub> modulation is important because it demonstrates that these flow patterns are specifically related to the magnitude of B<sub>own</sub> signals, independent of the comparisons between CRF and nCRF stimulation. 

      In Figure 3, the authors show two CCGs that involve 4C--4C pairs. It would be nice to know more about such pairs. If there are any 6--6 pairs, what they look like also would be interesting. The authors also in Figure 3 show CCG's of two 4C--4A/B pairs and it would be quite interesting to know how such CCGs behave when CRF and nCRF stimuli are compared. In other words, the authors have shown us they have many data but have chosen not to analyze them further or to explain why they chose not to analyze them. It might help the paper if the authors would present all the CCG types they have. This suggestion would be helpful when the authors know more about the sign of border ownership signals, as discussed at length above. 

      We thank the reviewer for the insightful comment. The rationale for selecting specific laminar pairs is described in the Results section after Figure 3C and further discussed in the Discussion. In brief, we focused on CCGs computed from pairs in which one neuron resided in laminar compartments receiving feedback/horizontal inputs (layers 2/3 and 5/6) and the other within compartments relatively devoid of these inputs (layers 4C and 4A/B).

      To mitigate uncertainty in defining exact laminar boundaries and to maximize statistical power, we combined some anatomical layers into distinct laminar compartments. This approach allowed us to compare the relative spike timing between neuronal pairs during CRF and nCRF stimulation. If feedback/horizontal inputs contribute more during nCRF than CRF stimulation, we expect this to be reflected in the lead-lag relationships of the CCGs. While other pairs (e.g., 5/6–5/6 or 4C– 4A/B) could in principle be analyzed, the hypothesized patterns for these pairs are less clear, and thus they were not the focus of our study. Nonetheless, these additional pairs represent interesting directions for future work.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank all the reviewers for their constructive comments. We have carefully considered your feedback and revised the manuscript accordingly. The major concern raised was the applicability of SegPore to the RNA004 dataset. To address this, we compared SegPore with f5c and Uncalled4 on RNA004, and found that SegPore demonstrated improved performance, as shown in Table 2 of the revised manuscript.

      Following the reviewers’ recommendations, we updated Figures 3 and 4. Additionally, we added one table and three supplementary figures to the revised manuscript:

      · Table 2: Segmentation benchmark on RNA004 data

      · Supplementary Figure S4: RNA translocation hypothesis illustrated on RNA004 data

      · Supplementary Figure S5: Illustration of Nanopolish raw signal segmentation with eventalign results

      · Supplementary Figure S6: Running time of SegPore on datasets of varying sizes

      Below, we provide a point-by-point response to your comments.

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors describe a new computational method (SegPore), which segments the raw signal from nanopore-direct RNA-Seq data to improve the identification of RNA modifications. In addition to signal segmentation, SegPore includes a Gaussian Mixture Model approach to differentiate modified and unmodified bases. SegPore uses Nanopolish to define a first segmentation, which is then refined into base and transition blocks. SegPore also includes a modification prediction model that is included in the output. The authors evaluate the segmentation in comparison to Nanopolish and Tombo, and they evaluate the impact on m6A RNA modification detection using data with known m6A sites. In comparison to existing methods, SegPore appears to improve the ability to detect m6A, suggesting that this approach could be used to improve the analysis of direct RNA-Seq data.

      Strengths:

      SegPore addresses an important problem (signal data segmentation). By refining the signal into transition and base blocks, noise appears to be reduced, leading to improved m6A identification at the site level as well as for single-read predictions. The authors provide a fully documented implementation, including a GPU version that reduces run time. The authors provide a detailed methods description, and the approach to refine segments appears to be new.

      Weaknesses:

      In addition to Nanopolish and Tombo, f5c and Uncalled4 can also be used for segmentation, however, the comparison to these methods is not shown.

      The method was only applied to data from the RNA002 direct RNA-Sequencing version, which is not available anymore, currently, it remains unclear if the methods still work on RNA004.

      Thank you for your comments.

      To clarify the background, there are two kits for Nanopore direct RNA sequencing: RNA002 (the older version) and RNA004 (the newer version). Oxford Nanopore Technologies (ONT) introduced the RNA004 kit in early 2024 and has since discontinued RNA002. Consequently, most public datasets are based on RNA002, with relatively few available for RNA004 (as of 30 June 2025).

      Nanopolish and Tombo were developed for raw signal segmentation and alignment using RNA002 data, whereas f5c and Uncalled4are the only two software supporting RNA004 data.  Since the development of SegPore began in January 2022, we initially focused on RNA002 due to its data availability. Accordingly, our original comparisons were made against Nanopolish and Tombo using RNA002 data.

      We have now updated SegPore to support RNA004 and compared its performance against f5c and Uncalled4 on three public RNA004 datasets.

      As shown in Table 2 of the revised manuscript, SegPore outperforms both f5c and Uncalled4 in raw signal segmentation. Moreover, the jiggling translocation hypothesis underlying SegPore is further supported, as shown in Supplementary Figure S4.

      The overall improvement in accuracy appears to be relatively small.

      Thank you for the comment.

      We understand that the improvements shown in Tables 1 and 2 may appear modest at first glance due to the small differences in the reported standard deviation (std) values. However, even small absolute changes in std can correspond to substantial relative reductions in noise, especially when the total variance is low.

      To better quantify the improvement, we assume that approximately 20% of the std for Nanopolish, Tombo, f5c, and Uncalled4 arises from noise. Using this assumption, we calculate the relative noise reduction rate of SegPore as follows:

      Noise reduction rate = (baseline std − SegPore std) / (0.2 × baseline std) ​​

      Based on this formula, the average noise reduction rates across all datasets are:

      - SegPore vs Nanopolish: 49.52%

      - SegPore vs Tombo: 167.80%

      - SegPore vs f5c: 9.44%

      - SegPore vs Uncalled4: 136.70%

      These results demonstrate that SegPore can reduce the noise level by at least 9% given a noise level of 20%, which we consider a meaningful improvement for downstream tasks, such as base modification detection and signal interpretation. The high noise reduction rates observed in Tombo and Uncalled4 (over 100%) suggest that their actual noise proportion may be higher than our 20% assumption.

      We acknowledge that this 20% noise level assumption is an approximation. Our intention is to illustrate that SegPore provides measurable improvements in relative terms, even when absolute differences appear small.

      The run time and resources that are required to run SegPore are not shown, however, it appears that the GPU version is essential, which could limit the application of this method in practice.

      Thank you for your comment.

      Detailed instructions for running SegPore are provided in github (https://github.com/guangzhaocs/SegPore). Regarding computational resources, SegPore currently requires one CPU core and one Nvidia GPU to perform the segmentation task efficiently.

      We present SegPore’s runtime for typical datasets in Supplementary Figure S6 in the revised manuscript.  For a typical 1 GB fast5 file, the segmentation takes approximately 9.4 hours using a single NVIDIA DGX‑1 V100 GPU and one CPU core.

      Currently, GPU acceleration is essential to achieve practical runtimes with SegPore. We acknowledge that this requirement may limit accessibility in some environments. To address this, we are actively working on a full C++ implementation of SegPore that will support CPU-only execution. While development is ongoing, we aim to release this version in a future update.

      Reviewer #2 (Public review):

      Summary:

      The work seeks to improve the detection of RNA m6A modifications using Nanopore sequencing through improvements in raw data analysis. These improvements are said to be in the segmentation of the raw data, although the work appears to position the alignment of raw data to the reference sequence and some further processing as part of the segmentation, and result statistics are mostly shown on the 'data-assigned-to-kmer' level.

      As such, the title, abstract, and introduction stating the improvement of just the 'segmentation' does not seem to match the work the manuscript actually presents, as the wording seems a bit too limited for the work involved.

      The work itself shows minor improvements in m6Anet when replacing Nanopolish eventalign with this new approach, but clear improvements in the distributions of data assigned per kmer. However, these assignments were improved well enough to enable m6A calling from them directly, both at site-level and at read-level.

      Strengths:

      A large part of the improvements shown appear to stem from the addition of extra, non-base/kmer specific, states in the segmentation/assignment of the raw data, removing a significant portion of what can be considered technical noise for further analysis. Previous methods enforced the assignment of all raw data, forcing a technically optimal alignment that may lead to suboptimal results in downstream processing as data points could be assigned to neighbouring kmers instead, while random noise that is assigned to the correct kmer may also lead to errors in modification detection.

      For an optimal alignment between the raw signal and the reference sequence, this approach may yield improvements for downstream processing using other tools.<br /> Additionally, the GMM used for calling the m6A modifications provides a useful, simple, and understandable logic to explain the reason a modification was called, as opposed to the black models that are nowadays often employed for these types of tasks.

      Weaknesses:

      The work seems limited in applicability largely due to the focus on the R9's 5mer models. The R9 flow cells are phased out and not available to buy anymore. Instead, the R10 flow cells with larger kmer models are the new standard, and the applicability of this tool on such data is not shown. We may expect similar behaviour from the raw sequencing data where the noise and transition states are still helpful, but the increased kmer size introduces a large amount of extra computing required to process data and without knowledge of how SegPore scales, it is difficult to tell how useful it will really be. The discussion suggests possible accuracy improvements moving to 7mers or 9mers, but no reason why this was not attempted.

      Thank you for pointing out this important limitation. Please refer to our response to Point 1 of Reviewer 1 for SegPore’s performance on RNA004 data. Notably, the jiggling behavior is also observed in RNA004 data, and SegPore achieves better performance than both f5c and Uncalled4.

      The increased k-mer size in RNA004 affects only the training phase of SegPore (refer to Supplementary Note 1, Figure 5 for details on the training and testing phases). Once the baseline means and standard deviations for each k-mer are established, applying SegPore to RNA004 data proceeds similarly to RNA002. This is because each k-mer in the reference sequence has, at most, two states (modified and unmodified). While the larger k-mer size increases the size of the parameter table, it does not increase the computational complexity during segmentation. Although estimating the initial k-mer parameter table requires significant time and effort on our part, it does not affect the runtime for end users applying SegPore to RNA004 data.

      Extending SegPore from 5-mers to 7-mers or 9-mers for RNA002 data would require substantial effort to retrain the model and generate sufficient training data. Additionally, such an extension would make SegPore’s output incompatible with widely used upstream and downstream tools such as Nanopolish and m6Anet, complicating integration and comparison. For these reasons, we leave this extension for future work.

      The manuscript suggests the eventalign results are improved compared to Nanopolish. While this is believably shown to be true (Table 1), the effect on the use case presented, downstream differentiation between modified and unmodified status on a base/kmer, is likely limited as during actual modification calling the noisy distributions are usually 'good enough', and not skewed significantly in one direction to really affect the results too terribly.

      Thank you for your comment. While current state-of-the-art (SOTA) methods perform well on benchmark datasets, there remains significant room for improvement. Most SOTA evaluations are based on limited datasets, primarily covering DRACH motifs in human and mouse transcriptomes. However, m6A modifications can also occur in non-DRACH motifs, where current models may underperform. Additionally, other RNA modifications—such as pseudouridine, inosine, and m5C—are less studied, and their detection may benefit from improved signal modeling.

      We would also like to emphasize that raw signal segmentation and RNA modification detection are distinct tasks. SegPore focuses on the former, providing a cleaner, more interpretable signal that can serve as a foundation for downstream tasks. Improved segmentation may facilitate the development of more accurate RNA modification detection algorithms by the community.

      Scientific progress often builds incrementally through targeted improvements to foundational components. We believe that enhancing signal segmentation, as SegPore does, contributes meaningfully to the broader field—the full impact will become clearer as the tool is adopted into more complex workflows.

      Furthermore, looking at alternative approaches where this kind of segmentation could be applied, Nanopolish uses the main segmentation+alignment for a first alignment and follows up with a form of targeted local realignment/HMM test for modification calling (and for training too), decreasing the need for the near-perfect segmentation+alignment this work attempts to provide. Any tool applying a similar strategy probably largely negates the problems this manuscript aims to improve upon.

      We thank the reviewer for this insightful comment.

      To clarify, Nanopolish provides three independent commands: polya, eventalign, and call-methylation.

      - The polya command identifies the adapter, poly(A) tail, and transcript region in the raw signal.

      - The eventalign command aligns the raw signal to a reference sequence, assigning a signal segment to individual k-mers in the reference.

      - The call-methylation command detects methylated bases from DNA sequencing data.

      The eventalign command corresponds to “the main segmentation+alignment for a first alignment,” while call-methylation corresponds to “a form of targeted local realignment/HMM test for modification calling,” as mentioned in the reviewer’s comment. SegPore’s segmentation is similar in purpose to Nanopolish’s eventalign, while its RNA modification estimation component is similar in concept to Nanopolish’s call-methylation.

      We agree the general idea may appear similar, but the implementations are entirely different. Importantly, Nanopolish’s call-methylation is designed for DNA sequencing data, and its models are not trained to recognize RNA modifications. This means they address distinct research questions and cannot be directly compared on the same RNA modification estimation task. However, it is valid to compare them on the segmentation task, where SegPore exhibits better performance (Table 1).

      We infer the reviewer may suggest that because m6Anet is a deep neural network capable of learning from noisy input, the benefit of more accurate segmentation (such as that provided by SegPore) might be limited. This concern may arise from the limited improvement of SegPore+m6Anet over Nanopolish+m6Anet in bulk analysis (Figure 3). Several factors may contribute to this observation:

      (i) For reads aligned to the same gene in the in vivo data, alignment may be inaccurate due to pseudogenes or transcript isoforms.

      (ii) The in vivo benchmark data are inherently more complex than in vitro datasets and may contain additional modifications (e.g., m5C, m7G), which can confound m6A calling by altering the signal baselines of k-mers.

      (iii) m6Anet is trained on events produced by Nanopolish and may not be optimal for SegPore-derived events.

      (iv) The benchmark dataset lacks a modification-free (IVT) control sample, making it difficult to establish a true baseline for each k-mer.

      In the IVT data (Figure 4), SegPore shows a clear improvement in single-molecule m6A identification, with a 3~4% gain in both ROC-AUC and PR-AUC. This demonstrates SegPore’s practical benefit for applications requiring higher sensitivity at the molecule level.

      As noted earlier, SegPore’s contribution lies in denoising and improving the accuracy of raw signal segmentation, which is a foundational step in many downstream analyses. While it may not yet lead to a dramatic improvement in all applications, it already provides valuable insights into the sequencing process (e.g., cleaner signal profiles in Figure 4) and enables measurable gains in modification detection at the single-read level. We believe SegPore lays the groundwork for developing more accurate and generalizable RNA modification detection tools beyond m6A.

      We have also added the following sentence in the discussion to highlight SegPore’s limited performance in bulk analysis:

      “The limited improvement of SegPore combined with m6Anet over Nanopolish+m6Anet in bulk in vivo analysis (Figure 3) may be explained by several factors: potential alignment inaccuracies due to pseudogenes or transcript isoforms, the complexity of in vivo datasets containing additional RNA modifications (e.g., m5C, m7G) affecting signal baselines, and the fact that m6Anet is specifically trained on events produced by Nanopolish rather than SegPore. Additionally, the lack of a modification-free control (in vitro transcribed) sample in the benchmark dataset makes it difficult to establish true baselines for each k-mer. Despite these limitations, SegPore demonstrates clear improvement in single-molecule m6A identification in IVT data (Figure 4), suggesting it is particularly well suited for in vitro transcription data analysis.”

      Finally, in the segmentation/alignment comparison to Nanopolish, the latter was not fitted(/trained) on the same data but appears to use the pre-trained model it comes with. For the sake of comparing segmentation/alignment quality directly, fitting Nanopolish on the same data used for SegPore could remove the influences of using different training datasets and focus on differences stemming from the algorithm itself.

      In the segmentation benchmark (Table 1), SegPore uses the fixed 5-mer parameter table provided by ONT. The hyperparameters of the HHMM are also fixed and not estimated from the raw signal data being segmented. Only in the m6A modification task,  SegPore does perform re-estimation of the baselines for the modified and unmodified states of k-mers. Therefore, the comparison with Nanopolish is fair, as both tools rely on pre-defined models during segmentation.

      Appraisal:

      The authors have shown their method's ability to identify noise in the raw signal and remove their values from the segmentation and alignment, reducing its influences for further analyses. Figures directly comparing the values per kmer do show a visibly improved assignment of raw data per kmer. As a replacement for Nanopolish eventalign it seems to have a rather limited, but improved effect, on m6Anet results. At the single read level modification modification calling this work does appear to improve upon CHEUI.

      Impact:

      With the current developments for Nanopore-based modification largely focusing on Artificial Intelligence, Neural Networks, and the like, improvements made in interpretable approaches provide an important alternative that enables a deeper understanding of the data rather than providing a tool that plainly answers the question of whether a base is modified or not, without further explanation. The work presented is best viewed in the context of a workflow where one aims to get an optimal alignment between raw signal data and the reference base sequence for further processing. For example, as presented, as a possible replacement for Nanopolish eventalign. Here it might enable data exploration and downstream modification calling without the need for local realignments or other approaches that re-consider the distribution of raw data around the target motif, such as a 'local' Hidden Markov Model or Neural Networks. These possibilities are useful for a deeper understanding of the data and further tool development for modification detection works beyond m6A calling.

      Reviewer #3 (Public review):

      Summary:

      Nucleotide modifications are important regulators of biological function, however, until recently, their study has been limited by the availability of appropriate analytical methods. Oxford Nanopore direct RNA sequencing preserves nucleotide modifications, permitting their study, however, many different nucleotide modifications lack an available base-caller to accurately identify them. Furthermore, existing tools are computationally intensive, and their results can be difficult to interpret.

      Cheng et al. present SegPore, a method designed to improve the segmentation of direct RNA sequencing data and boost the accuracy of modified base detection.

      Strengths:

      This method is well-described and has been benchmarked against a range of publicly available base callers that have been designed to detect modified nucleotides.

      Weaknesses:

      However, the manuscript has a significant drawback in its current version. The most recent nanopore RNA base callers can distinguish between different ribonucleotide modifications, however, SegPore has not been benchmarked against these models.

      I recommend that re-submission of the manuscript that includes benchmarking against the rna004_130bps_hac@v5.1.0 and rna004_130bps_sup@v5.1.0 dorado models, which are reported to detect m5C, m6A_DRACH, inosine_m6A and PseU.<br /> A clear demonstration that SegPore also outperforms the newer RNA base caller models will confirm the utility of this method.

      Thank you for highlighting this important limitation. While Dorado, the new ONT basecaller, is publicly available and supports modification-aware basecalling, suitable public datasets for benchmarking m5C, inosine, m6A, and PseU detection on RNA004 are currently lacking. Dorado’s modification-aware models are trained on ONT’s internal data, which is not publicly released. Therefore, it is not currently feasible to evaluate or directly compare SegPore’s performance against Dorado for m5C, inosine, m6A, and PseU detection.

      We would also like to emphasize that SegPore’s main contribution lies in raw signal segmentation, which is an upstream task in the RNA modification detection pipeline. To assess its performance in this context, we benchmarked SegPore against f5c and Uncalled4 on public RNA004 datasets for segmentation quality. Please refer to our response to Point 1 of Reviewer 1 for details.

      Our results show that the characteristic “jiggling” behavior is also observed in RNA004 data (Supplementary Figure S4), and SegPore achieves better segmentation performance than both f5c and Uncalled4 (Table 2).

      Recommendations for the authors:

      Reviewing Editor:

      Please note that we also received the following comments on the submission, which we encourage you to take into account:

      took a look at the work and for what I saw it only mentions/uses RNA002 chemistry, which is deprecated, effectively making this software unusable by anyone any more, as RNA002 is not commercially available. While the results seem promising, the authors need to show that it would work for RNA004. Notably, there is an alternative software for resquiggling for RNA004 (not Tombo or Nanopolish, but the GPU-accelerated version of Nanopolish (f5C), which does support RNA004. Therefore, they need to show that SegPore works for RNA004, because otherwise it is pointless to see that this method works better than others if it does not support current sequencing chemistries and only works for deprecated chemistries, and people will keep using f5C because its the only one that currently works for RNA004. Alternatively, if there would be biological insights won from the method, one could justify not implementing it in RNA004, but in this case, RNA002 is deprecated since March 2024, and the paper is purely methodological.

      Thank you for the comment. We agree that support for current sequencing chemistries is essential for practical utility. While SegPore was initially developed and benchmarked on RNA002 due to the availability of public data, we have now extended SegPore to support RNA004 chemistry.

      To address this concern, we performed a benchmark comparison using public RNA004 datasets against tools specifically designed for RNA004, including f5c and Uncalled4. Please refer to our response to Point 1 of Reviewer 1 for details. The results show that SegPore consistently outperforms f5c and Uncalled4 in segmentation accuracy on RNA004 data.

      Reviewer #2 (Recommendations for the authors):

      Various statements are made throughout the text that require further explanation, which might actually be defined in more detail elsewhere sometimes but are simply hard to find in the current form.

      (1) Page 2, “In this technique, five nucleotides (5mers) reside in the nanopore at a time, and each 5mer generates a characteristic current signal based on its unique sequence and chemical properties (16).”

      5mer? Still on R9 or just ignoring longer range influences, relevant? It is indeed a R9.4 model from ONT.

      Thank you for the observation. We apologize for the confusion and have clarified the relevant paragraph to indicate that the method is developed for RNA002 data by default. Specifically, we have added the following sentence:

      “Two versions of the direct RNA sequencing (DRS) kits are available: RNA002 and RNA004. Unless otherwise specified, this study focuses on RNA002 data.”

      (2) Page 3, “Employ models like Hidden Markov Models (HMM) to segment the signal, but they are prone to noise and inaccuracies.”

      That's the alignment/calling part, not the segmentation?

      Thank you for the comment. We apologize for the confusion. To clarify the distinction between segmentation and alignment, we added a new paragraph before the one in question to explain the general workflow of Nanopore DRS data analysis and to clearly define the task of segmentation. The added text reads:

      “The general workflow of Nanopore direct RNA sequencing (DRS) data analysis is as follows. First, the raw electrical signal from a read is basecalled using tools such as Guppy or Dorado, which produce the nucleotide sequence of the RNA molecule. However, these basecalled sequences do not include the precise start and end positions of each ribonucleotide (or k-mer) in the signal. Because basecalling errors are common, the sequences are typically mapped to a reference genome or transcriptome using minimap2 to recover the correct reference sequence. Next, tools such as Nanopolish and Tombo align the raw signal to the reference sequence to determine which portion of the signal corresponds to each k-mer. We define this process as the segmentation task, referred to as "eventalign" in Nanopolish. Based on this alignment, Nanopolish extracts various features—such as the start and end positions, mean, and standard deviation of the signal segment corresponding to a k-mer. This signal segment or its derived features is referred to as an "event" in Nanopolish.”

      We also revised the following paragraph describing SegPore to more clearly contrast its approach:

      “In SegPore, we first segment the raw signal into small fragments using a Hierarchical Hidden Markov Model (HHMM), where each fragment corresponds to a sub-state of a k-mer. Unlike Nanopolish and Tombo, which directly align the raw signal to the reference sequence, SegPore aligns the mean values of these small fragments to the reference. After alignment, we concatenate all fragments that map to the same k-mer into a larger segment, analogous to the "eventalign" output in Nanopolish. For RNA modification estimation, we use only the mean signal value of each reconstructed event.”

      We hope this revision clarifies the difference between segmentation and alignment in the context of our method and resolves the reviewer’s concern.

      (3) Page 4, Figure 1, “These segments are then aligned with the 5mer list of the reference sequence fragment using a full/partial alignment algorithm, based on a 5mer parameter table. For example, 𝐴𝑗 denotes the base "A" at the j-th position on the reference.”

      I think I do understand the meaning, but I do not understand the relevance of the Aj bit in the last sentence. What is it used for?

      When aligning the segments (output from Step 2) to the reference sequence in Step 3, it is possible for multiple segments to align to the same k-mer. This can occur particularly when the reference contains consecutive identical bases, such as multiple adenines (A). For example, as shown in Fig. 1A, Step 3, the first two segments (μ₁ and μ₂) are aligned to the first 'A' in the reference sequence, while the third segment is aligned to the second 'A'. In this case, the reference sequence AACTGGTTTC...GTC, which contains exactly two consecutive 'A's at the start. This notation helps to disambiguate segment alignment in regions with repeated bases.

      Additionally, this figure and its subscript include mapping with Guppy and Minimap2 but do not mention Nanopolish at all, while that seems an equally important step in the preprocessing (pg5). As such it is difficult to understand the role Nanopolish exactly plays. It's also not mentioned explicitly in the SegPore Workflow on pg15, perhaps it's part of step 1 there?

      We thank the reviewer for pointing this out. We apologize for the confusion. As mentioned in the public response to point 3 of Reviewer 2, SegPore uses Nanopolish to identify the poly(A) tail and transcript regions from the raw signal. SegPore then performs segmentation and alignment on the transcript portion only. This step is indeed part of Step 1 in the preprocessing workflow, as described in Supplementary Note 1, Section 3.

      To clarify this in the main text, we have updated the preprocessing paragraph on page 6 to explicitly describe the role of Nanopolish:

      “We begin by performing basecalling on the input fast5 file using Guppy, which converts the raw signal data into ribonucleotide sequences. Next, we align the basecalled sequences to the reference genome using Minimap2, generating a mapping between the reads and the reference sequences. Nanopolish provides two independent commands: "polya" and "eventalign".
The "polya" command identifies the adapter, poly(A) tail, and transcript region in the raw signal, which we refer to as the poly(A) detection results. The raw signal segment corresponding to the poly(A) tail is used to standardize the raw signal for each read. The "eventalign" command aligns the raw signal to a reference sequence, assigning a signal segment to individual k-mers in the reference. It also computes summary statistics (e.g., mean, standard deviation) from the signal segment for each k-mer. Each k-mer together with its corresponding signal features is termed an event. These event features are then passed into downstream tools such as m6Anet and CHEUI for RNA modification detection. For full transcriptome analysis (Figure 3), we extract the aligned raw signal segment and reference sequence segment from Nanopolish's events for each read by using the first and last events as start and end points. For in vitro transcription (IVT) data with a known reference sequence (Figure 4), we extract the raw signal segment corresponding to the transcript region for each input read based on Nanopolish’s poly(A) detection results.”

      Additionally, we revised the legend of Figure 1A to explicitly include Nanopolish in step 1 as follows:

      “The raw current signal fragments are paired with the corresponding reference RNA sequence fragments using Nanopolish.”

      (4) Page 5, “The output of Step 3 is the "eventalign," which is analogous to the output generated by the Nanopolish "eventalign" command.”

      Naming the function of Nanopolish, the output file, and later on (pg9) the alignment of the newly introduced methods the exact same "eventalign" is very confusing.

      Thank you for the helpful comment. We acknowledge the potential confusion caused by using the term “eventalign” in multiple contexts. To improve clarity, we now consistently use the term “events” to refer to the output of both Nanopolish and SegPore, rather than using "eventalign" as a noun. We also added the following sentence to Step 3 (page 6) to clearly define what an “event” refers to in our manuscript:

      “An "event" refers to a segment of the raw signal that is aligned to a specific k-mer on a read, along with its associated features such as start and end positions, mean current, standard deviation, and other relevant statistics.”

      We have revised the text throughout the manuscript accordingly to reduce ambiguity and ensure consistent terminology.

      (5) Page 5, “Once aligned, we use Nanopolish's eventalign to obtain paired raw current signal segments and the corresponding fragments of the reference sequence, providing a precise association between the raw signals and the nucleotide sequence.”

      I thought the new method's HHMM was supposed to output an 'eventalign' formatted file. As this is not clearly mentioned elsewhere, is this a mistake in writing? Is this workflow dependent on Nanopolish 'eventalign' function and output or not?

      We apologize for the confusion. To clarify, SegPore is not dependent on Nanopolish’s eventalign function for generating the final segmentation results. As described in our response to your comment point 2 and elaborated in the revised text on page 4, SegPore uses its own HHMM-based segmentation model to divide the raw signal into small fragments, each corresponding to a sub-state of a k-mer. These fragments are then aligned to the reference sequence based on their mean current values.

      As explained in the revised manuscript:

      “In SegPore, we first segment the raw signal into small fragments using a Hierarchical Hidden Markov Model (HHMM), where each fragment corresponds to a sub-state of a k-mer. Unlike Nanopolish and Tombo, which directly align the raw signal to the reference sequence, SegPore aligns the mean values of these small fragments to the reference. After alignment, we concatenate all fragments that map to the same k-mer into a larger segment, analogous to the "eventalign" output in Nanopolish. For RNA modification estimation, we use only the mean signal value of each reconstructed event.”

      To avoid ambiguity, we have also revised the sentence on page 5 to more clearly distinguish the roles of Nanopolish and SegPore in the workflow. The updated sentence now reads:

      “Nanopolish provides two independent commands: "polya" and "eventalign".
The "polya" command identifies the adapter, poly(A) tail, and transcript region in the raw signal, which we refer to as the poly(A) detection results. The raw signal segment corresponding to the poly(A) tail is used to standardize the raw signal for each read. The "eventalign" command aligns the raw signal to a reference sequence, assigning a signal segment to individual k-mers in the reference. It also computes summary statistics (e.g., mean, standard deviation) from the signal segment for each k-mer. Each k-mer together with its corresponding signal features is termed an event. These event features are then passed into downstream tools such as m6Anet and CHEUI for RNA modification detection. For full transcriptome analysis (Figure 3), we extract the aligned raw signal segment and reference sequence segment from Nanopolish's events for each read by using the first and last events as start and end points. For in vitro transcription (IVT) data with a known reference sequence (Figure 4), we extract the raw signal segment corresponding to the transcript region for each input read based on Nanopolish’s poly(A) detection results.”

      (6) Page 5, “Since the polyA tail provides a stable reference, we normalize the raw current signals across reads, ensuring that the mean and standard deviation of the polyA tail are consistent across all reads.”

      Perhaps I misread this statement: I interpret it as using the PolyA tail to do the normalization, rather than using the rest of the signal to do the normalization, and that results in consistent PolyA tails across all reads.

      If it's the latter, this should be clarified, and a little detail on how the normalization is done should be added, but if my first interpretation is correct:

      I'm not sure if its standard deviation is consistent across reads. The (true) value spread in this section of a read should be fairly limited compared to the rest of the signal in the read, so the noise would influence the scale quite quickly, and such noise might be introduced to pores wearing down and other technical influences. Is this really better than using the non-PolyA tail part of the reads signal, using Median Absolute Deviation to scale for a first alignment round, then re-fitting the signal scaling using Theil Sen on the resulting alignments (assigned read signal vs reference expected signal), as Tombo/Nanopolish (can) do?

      Additionally, this kind of normalization should have been part of the Nanopolish eventalign already, can this not be re-used? If it's done differently it may result in different distributions than the ONT kmer table obtained for the next step.

      Thank you for this detailed and thoughtful comment. We apologize for the confusion. The poly(A) tail–based normalization is indeed explained in Supplementary Note 1, Section 3, but we agree that the motivation needed to be clarified in the main text.

      We have now added the following sentence in the revised manuscript (before the original statement on page 5 to provide clearer context:

      “Due to inherent variability between nanopores in the sequencing device, the baseline levels and standard deviations of k-mer signals can differ across reads, even for the same transcript. To standardize the signal for downstream analyses, we extract the raw current signal segments corresponding to the poly(A) tail of each read. Since the poly(A) tail provides a stable reference, we normalize the raw current signals across reads, ensuring that the mean and standard deviation of the poly(A) tail are consistent across all reads. This step is crucial for reducing…..”

      We chose to use the poly(A) tail for normalization because it is sequence-invariant—i.e., all poly(A) tails consist of identical k-mers, unlike transcript sequences which vary in composition. In contrast, using the transcript region for normalization can introduce biases: for instance, reads with more diverse k-mers (having inherently broader signal distributions) would be forced to match the variance of reads with more uniform k-mers, potentially distorting the baseline across k-mers.

      In our newly added RNA004 benchmark experiment, we used the default normalization provided by f5c, which does not include poly(A) tail normalization. Despite this, SegPore was still able to mask out noise and outperform both f5c and Uncalled4, demonstrating that our segmentation method is robust to different normalization strategies.

      (7) Page 7, “The initialization of the 5mer parameter table is a critical step in SegPore's workflow. By leveraging ONT's established kmer models, we ensure that the initial estimates for unmodified 5mers are grounded in empirical data.”

      It looks like the method uses Nanopolish for a first alignment, then improves the segmentation matching the reference sequence/expected 5mer values. I thought the Nanopolish model/tables are based on the same data, or similarly obtained. If they are different, then why the switch of kmer model? Now the original alignment may have been based on other values, and thus the alignment may seem off with the expected kmer values of this table.

      Thank you for this insightful question. To clarify, SegPore uses Nanopolish only to identify the poly(A) tail and transcript regions from the raw signal. In the bulk in vivo data analysis, we use Nanopolish’s first event as the start and the last event as the end to extract the aligned raw signal chunk and its corresponding reference sequence. Since SegPore relies on Nanopolish solely to delineate the transcript region for each read, it independently aligns the raw signals to the reference sequence without refining or adjusting Nanopolish’s segmentation results.

      While SegPore's 5-mer parameter table is initially seeded using ONT’s published unmodified k-mer models, we acknowledge that empirical signal values may deviate from these reference models due to run-specific technical variation and the presence of RNA modifications. For this reason, SegPore includes a parameter re-estimation step to refine the mean and standard deviation values of each k-mer based on the current dataset.

      The re-estimation process consists of two layers. In the outer layer, we select a set of 5mers that exhibit both modified and unmodified states based on the GMM results (Section 6 of Supplementary Note 1), while the remaining 5mers are assumed to have only unmodified states. In the inner layer, we align the raw signals to the reference sequences using the 5mer parameter table estimated in the outer layer (Section 5 of Supplementary Note 1). Based on the alignment results, we update the 5mer parameter table in the outer layer. This two-layer process is generally repeated for 3~5 iterations until the 5mer parameter table converges.This re-estimation ensures that:

      (1) The adjusted 5mer signal baselines remain close to the ONT reference (for consistency);

      (2) The alignment score between the observed signal and the reference sequence is optimized (as detailed in Equation 11, Section 5 of Supplementary Note 1);

      (3) Only 5mers that show a clear difference between the modified and unmodified components in the GMM are considered subject to modification.

      By doing so, SegPore achieves more accurate signal alignment independent of Nanopolish’s models, and the alignment is directly tuned to the data under analysis.

      (8) Page 9, “The output of the alignment algorithm is an eventalign, which pairs the base blocks with the 5mers from the reference sequence for each read (Fig. 1C).”

      “Modification prediction

      After obtaining the eventalign results, we estimate the modification state of each motif using the 5mer parameter table.”

      This wording seems to have been introduced on page 5 but (also there) reads a bit confusingly as the name of the output format, file, and function are now named the exact same "eventalign". I assume the obtained eventalign results now refer to the output of your HHMM, and not the original Nanopolish eventalign results, based on context only, but I'd rather have a clear naming that enables more differentiation.

      We apologize for the confusion. We have revised the sentence as follows for clarity:

      “A detailed description of both alignment algorithms is provided in Supplementary Note 1. The output of the alignment algorithm is an alignment that pairs the base blocks with the 5mers from the reference sequence for each read (Fig. 1C). Base blocks aligned to the same 5-mer are concatenated into a single raw signal segment (referred to as an “event”), from which various features—such as start and end positions, mean current, and standard deviation—are extracted. Detailed derivation of the mean and standard deviation is provided in Section 5.3 in Supplementary Note 1. In the remainder of this paper, we refer to these resulting events as the output of eventalign analysis or the segmentation task. ”

      (9) Page 9, “Since a single 5mer can be aligned with multiple base blocks, we merge all aligned base blocks by calculating a weighted mean. This weighted mean represents the single base block mean aligned with the given 5mer, allowing us to estimate the modification state for each site of a read.”

      I assume the weights depend on the length of the segment but I don't think it is explicitly stated while it should be.

      Thank you for the helpful observation. To improve clarity, we have moved this explanation to the last paragraph of the previous section (see response to point 8), where we describe the segmentation process in more detail.

      Additionally, a complete explanation of how the weighted mean is computed is provided in Section 5.3 of Supplementary Note 1. It is derived from signal points that are assigned to a given 5mer.

      (10) Page 10, “Afterward, we manually adjust the 5mer parameter table using heuristics to ensure that the modified 5mer distribution is significantly distinct from the unmodified distribution.”

      Using what heuristics? If this is explained in the supplementary notes then please refer to the exact section.

      Thank you for pointing this out. The heuristics used to manually adjust the 5mer parameter table are indeed explained in detail in Section 7 of Supplementary Note 1.

      To clarify this in the manuscript, we have revised the sentence as follows:

      “Afterward, we manually adjust the 5mer parameter table using heuristics to ensure that the modified 5mer distribution is significantly distinct from the unmodified distribution (see details in Section 7 of Supplementary Note 1).”

      (11) Page 10, “Once the table is fixed, it is used for RNA modification estimation in the test data without further updates.”

      By what tool/algorithm? Perhaps it is your own implementation, but with the next section going into segmentation benchmarking and using Nanopolish before this seems undefined.

      Thank you for pointing this out. We use our own implementation. See Algorithm 3 in Section 6 of Supplementary Note 1.

      We have revised the sentence for clarity:

      “Once a stabilized 5mer parameter table is estimated from the training data, it is used for RNA modification estimation in the test data without further updates. A more detailed description of the GMM re-estimation process is provided in Section 6 of Supplementary Note 1.”

      (12) Page 11, “A 5mer was considered significantly modified if its read coverage exceeded 1,500 and the distance between the means of the two Gaussian components in the GMM was greater than 5.”

      Considering the scaling done before also not being very detailed in what range to expect, this cutoff doesn't provide any useful information. Is this a pA value?

      Thank you for the observation. Yes, the value refers to the current difference measured in picoamperes (pA). To clarify this, we have revised the sentence in the manuscript to include the unit explicitly:

      “A 5mer was considered significantly modified if its read coverage exceeded 1,500 and the distance between the means of the two Gaussian components in the GMM was greater than 5 picoamperes (pA).”

      (13) Page 13, “The raw current signals, as shown in Figure 1B.”

      Wrong figure? Figure 2B seems logical.

      Thank you for catching this. You are correct—the reference should be to Figure 2B, not Figure 1B. We have corrected this in the revised manuscript.

      (14) Page 14, Figure 2A, these figures supposedly support the jiggle hypothesis but the examples seem to match only half the explanation. Any of these jiggles seem to be followed shortly by another in the opposite direction, and the amplitude seems to match better within each such pair than the next or previous segments. Perhaps there is a better explanation still, and this behaviour can be modelled as such instead.

      Thank you for your comment. We acknowledge that the observed signal patterns may appear ambiguous and could potentially suggest alternative explanations. However, as shown in Figure 2A, the red dots tend to align closely with the baseline of the previous state, while the blue dots align more closely with the baseline of the next state. We interpret this as evidence for the "jiggling" hypothesis, where k-mer temporarily oscillates between adjacent states during translocation.

      That said, we agree that more sophisticated models could be explored to better capture this behavior, and we welcome suggestions or references to alternative models. We will consider this direction in future work.

      (15) Page 15, “This occurs because subtle transitions within a base block may be mistaken for transitions between blocks, leading to inflated transition counts.”

      Is it really a "subtle transition" if it happens within a base block? It seems this is not a transition and thus shouldn't be named as such.

      Thank you for pointing this out. We agree that the term “subtle transition” may be misleading in this context. We revised the sentence to clarify the potential underlying cause of the inflated transition counts:

      “This may be due to a base block actually corresponding to a sub-state of a single 5mer, rather than each base block corresponding to a full 5mer, leading to inflated transition counts. To address this issue, SegPore’s alignment algorithm was refined to merge multiple base blocks (which may represent sub-states of the same 5mer) into a single 5mer, thereby facilitating further analysis.”

      (16) Page 15, “The SegPore "eventalign" output is similar to Nanopolish's "eventalign" command.”

      To the output of that command, I presume, not to the command itself.

      Thank you for pointing out the ambiguity. We have revised the sentence for clarity:

      “The final outputs of SegPore are the events and modification state predictions. SegPore’s events are similar to the outputs of Nanopolish’s "eventalign" command, in that they pair raw current signal segments with the corresponding RNA reference 5-mers. Each 5-mer is associated with various features — such as start and end positions, mean current, and standard deviation — derived from the paired signal segment.”

      (17) Page 15, “For selected 5mers, SegPore also provides the modification rate for each site and the modification state of that site on individual reads.”

      What selection? Just all kmers with a possible modified base or a more specific subset?

      We revised the sentence to clarify the selection criteria:

      “For selected 5mers that exhibit both a clearly unmodified and a clearly modified signal component, SegPore reports the modification rate at each site, as well as the modification state of that site on individual reads.”

      (18) Page 16, “A key component of SegPore is the 5mer parameter table, which specifies the mean and standard deviation for each 5mer in both modified and unmodified states (Figure 2A).”

      Wrong figure?

      Thank you for pointing this out. You are correct—it should be Figure 1A, not Figure 2A. We intended to visually illustrate the structure of the 5mer parameter table in Figure 1A, and we have corrected this reference in the revised manuscript.

      (19) Page 16, Table 1, I can't quite tell but I assume this is based on all kmers in the table, not just a m6A modified subset. A short added statement to make this clearer would help.

      Yes, you are right—it is averaged over all 5mers. We have revised the sentence for clarity as follows:

      " As shown in Table 1, SegPore consistently achieved the best performance averaged on all 5mers across all datasets..…."

      (20) Page 16, “Since the peaks (representing modified and unmodified states) are separable for only a subset of 5mers, SegPore can provide modification parameters for these specific 5mers. For other 5mers, modification state predictions are unavailable.”

      Can this be improved using some heuristics rather than the 'distance of 5' cutoff as described before? How small or big is this subset, compared to how many there should be to cover all cases?

      We agree that more sophisticated strategies could potentially improve performance. In this study, we adopted a relatively conservative approach to minimize false positives by using a heuristic cutoff of 5 picoamperes. This value was selected empirically and we did not explore alternative cutoffs. Future work could investigate more refined or data-driven thresholding strategies.

      (21) Page 16, “Tombo used the "resquiggle" method to segment the raw signals, and we standardized the segments using the polyA tail to ensure a fair comparison.”

      I don't know what or how something is "standardized" here.

      Standardized’ refers to the poly(A) tail–based signal normalization described in our response to point 6. We applied this normalization to Tombo’s output to ensure a fair comparison across methods. Without this standardization, Tombo’s performance was notably worse. We revised the sentence as follows:

      “Tombo used the "resquiggle" method to segment the raw signals, and we standardized the segments using the poly(A) tail to ensure a fair comparison (See preprocessing section in Materials and Methods).”

      (22) Page 16, “To benchmark segmentation performance, we used two key metrics: (1) the log-likelihood of the segment mean, which measures how closely the segment matches ONT's 5mer parameter table (used as ground truth), and (2) the standard deviation (std) of the segment, where a lower std indicates reduced noise and better segmentation quality. If the raw signal segment aligns correctly with the corresponding 5mer, its mean should closely match ONT's reference, yielding a high log-likelihood. A lower std of the segment reflects less noise and better performance overall.”

      Here the segmentation part becomes a bit odd:

      A: Low std can be/is achieved by dropping any noisy bits, making segments really small (partly what happens here with the transition segments). This may be 'true' here, in the sense that the transition is not really part of the segment, but the comparison table is a bit meaningless as the other tools forcibly assign all data to kmers, instead of ignoring parts as transition states. In other words, it is a benchmark that is easy to cheat by assigning more data to noise/transition states.

      B: The values shown are influenced by the alignment made between the read and expected reference signal. Especially Tombo tends to forcibly assign data to whatever looks the most similar nearby rather than providing the correct alignment. So the "benchmark of the segmentation performance" is more of an "overall benchmark of the raw signal alignment". Which is still a good, useful thing, but the text seems to suggest something else.

      Thank you for raising these important concerns regarding the segmentation benchmarking.

      Regarding point A, the base blocks aligned to the same 5mer are concatenated into a single segment, including the short transition blocks between them. These transition blocks are typically very short (4~10 signal points, average 6 points), while a typical 5mer segment contains around 20~60 signal points. To assess whether SegPore’s performance is inflated by excluding transition segments, we conducted an additional comparison: we removed 6 boundary signal points (3 from the start and 3 from the end) from each 5mer segment in Nanopolish and Tombo’s results to reduce potential noise. The new comparison table is shown in the following:

      SegPore consistently demonstrates superior performance. Its key contribution lies in its ability to recognize structured noise in the raw signal and to derive more accurate mean and standard deviation values that more faithfully represent the true state of the k-mer in the pore. The improved mean estimates are evidenced by the clearly separated peaks of modified and unmodified 5mers in Figures 3A and 4B, while the improved standard deviation is reflected in the segmentation benchmark experiments.

      Regarding point B, we apologize for the confusion. We have added a new paragraph to the introduction to clarify that the segmentation task indeed includes the alignment step.

      “The general workflow of Nanopore direct RNA sequencing (DRS) data analysis is as follows. First, the raw electrical signal from a read is basecalled using tools such as Guppy or Dorado, which produce the nucleotide sequence of the RNA molecule. However, these basecalled sequences do not include the precise start and end positions of each ribonucleotide (or k-mer) in the signal. Because basecalling errors are common, the sequences are typically mapped to a reference genome or transcriptome using minimap2 to recover the correct reference sequence. Next, tools such as Nanopolish and Tombo align the raw signal to the reference sequence to determine which portion of the signal corresponds to each k-mer. We define this process as the segmentation task, referred to as "eventalign" in Nanopolish. Based on this alignment, Nanopolish extracts various features—such as the start and end positions, mean, and standard deviation of the signal segment corresponding to a k-mer. This signal segment or its derived features is referred to as an "event" in Nanopolish. The resulting events serve as input for downstream RNA modification detection tools such as m6Anet and CHEUI.”

      (23) Page 17 “Given the comparable methods and input data requirements, we benchmarked SegPore against several baseline tools, including Tombo, MINES (26), Nanom6A (27), m6Anet, Epinano (28), and CHEUI (29).”

      It seems m6Anet is actually Nanopolish+m6Anet in Figure 3C, this needs a minor clarification here.

      m6Anet uses Nanopolish’s estimated events as input by default.

      (24) Page 18, Figure 3, A and B are figures without any indication of what is on the axis and from the text I believe the position next to each other on the x-axis rather than overlapping is meaningless, while their spread is relevant, as we're looking at the distribution of raw values for this 5mer. The figure as is is rather confusing.

      Thanks for pointing out the confusion. We have added concrete values to the axes in Figures 3A and 3B and revised the figure legend as follows in the manuscript:

      “(A) Histogram of the estimated mean from current signals mapped to an example m6A-modified genomic location (chr10:128548315, GGACT) across all reads in the training data, comparing Nanopolish (left) and SegPore (right). The x-axis represents current in picoamperes (pA).

      (B) Histogram of the estimated mean from current signals mapped to the GGACT motif at all annotated m6A-modified genomic locations in the training data, again comparing Nanopolish (left) and SegPore (right). The x-axis represents current in picoamperes (pA).”

      (25) Page 18 “SegPore's results show a more pronounced bimodal distribution in the raw signal segment mean, indicating clearer separation of modified and unmodified signals.”

      Without knowing the correct values around the target kmer (like Figure 4B), just the more defined bimodal distribution could also indicate the (wrongful) assignment of neighbouring kmer values to this kmer instead, hence this statement lacks some needed support, this is just one interpretation of the possible reasons.

      Thank you for the comment. We have added concrete values to Figures 3A and 3B to support this point. Both peaks fall within a reasonable range: the unmodified peak (125 pA) is approximately 1.17 pA away from its reference value of 123.83 pA, and the modified peak (118 pA) is around 7 pA away from the unmodified peak. This shift is consistent with expected signal changes due to RNA modifications (usually less than 10 pA), and the magnitude of the difference suggests that the observed bimodality is more likely caused by true modification events rather than misalignment.

      (26) Page 18 “Furthermore, when pooling all reads mapped to m6A-modified locations at the GGACT motif, SegPore showed prominent peaks (Fig. 3B), suggesting reduced noise and improved modification detection.”

      I don't think the prominent peaks directly suggest improved detection, this statement is a tad overreaching.

      We revised the sentense to the following:

      “SegPore exhibited more distinct peaks (Fig. 3B), indicating reduced noise and potentially enabling more reliable modification detection”.

      (27) Page18 “(2) direct m6A predictions from SegPore's Gaussian Mixture Model (GMM), which is limited to the six selected 5mers.”

      The 'six selected' refers to what exactly? Also, 'why' this is limited to them is also unclear as it is, and it probably would become clearer if it is clearly defined what this refers to.

      It is explained the page 16 in the SegPore’s workflow in the original manuscript as follows:

      “A key component of SegPore is the 5mer parameter table, which specifies the mean and standard deviation for each 5mer in both modified and unmodified states (Fig. 2A1A). Since the peaks (representing modified and unmodified states) are separable for only a subset of 5mers, SegPore can provide modification parameters for these specific 5mers. For other 5mers, modification state predictions are unavailable.”

      e select a small set of 5mers that show clear peaks (modified and unmodified 5mers) in GMM in the m6A site-level data analysis. These 5mers are provided in Supplementary Fig. S2C, as explained in the section “m6A site level benchmark” in the Material and Methods (page 12 in the original manuscript).

      “…transcript locations into genomic coordinates. It is important to note that the 5mer parameter table was not re-estimated for the test data. Instead, modification states for each read were directly estimated using the fixed 5mer parameter table. Due to the differences between human (Supplementary Fig. S2A) and mouse (Supplementary Fig. S2B), only six 5mers were found to have m6A annotations in the test data’s ground truth (Supplementary Fig. S2C). For a genomic location to be identified as a true m6A modification site, it had to correspond to one of these six common 5mers and have a read coverage of greater than 20. SegPore derived the ROC and PR curves for benchmarking based on the modification rate at each genomic location….”

      We have updated the sentence as follows to increase clarity:

      “which is limited to the six selected 5mers that exhibit clearly separable modified and unmodified components in the GMM (see Materials and Methods for details).”

      (28) Page 19, Figure 4C, the blue 'Unmapped' needs further explanation. If this means the segmentation+alignment resulted in simply not assigning any segment to a kmer, this would indicate issues in the resulting mapping between raw data and kmers as the data that probably belonged to this kmer is likely mapped to a neighbouring kmer, possibly introducing a bimodal distribution there.

      This is due to deletion event in the full alignment algorithm. See Page 8 of SupplementaryNote1:

      During the traceback step of the dynamic programming matrix, not every 5mer in the reference sequence is assigned a corresponding raw signal fragment—particularly when the signal’s mean deviates substantially from the expected mean of that 5mer. In such cases, the algorithm considers the segment to be generated by an unknown 5mer, and the corresponding reference 5mer is marked as unmapped.

      (29) Page 19, “For six selected m6A motifs, SegPore achieved an ROC AUC of 82.7% and a PR AUC of 38.7%, earning the third-best performance compared with deep leaning methods m6Anet and CHEUI (Fig. 3D).”

      How was this selection of motifs made, are these related to the six 5mers in the middle of Supplementary Figure S2? Are these the same six as on page 18? This is not clear to me.

      It is the same, see the response to point 27.

      (30) Page 21 “Biclustering reveals that modifications at the 6th, 7th, and 8th genomic locations are specific to certain clusters of reads (clusters 4, 5, and 6), while the first five genomic locations show similar modification patterns across all reads.”

      This reads rather confusingly. Both the '6th, 7th, and 8th genomic locations' and 'clusters 4,5,6' should be referred to in clearer terms. Either mark them in the figure as such or name them in the text by something that directly matches the text in the figure.

      We have added labels to the clusters and genomic locations Figure 4C, and revised the sentence as follows:

      “Biclustering reveals that modifications at g6 are specific to cluster C4, g7 to cluster C5, and g8 to cluster C6, while the first five genomic locations (g1 to g5) show similar modification patterns across all reads.”

      (31) Page 21, “We developed a segmentation algorithm that leverages the jiggling property in the physical process of DRS, resulting in cleaner current signals for m6A identification at both the site and single-molecule levels.”

      Leverages, or just 'takes into account'?

      We designed our HHMM specifically based on the jiggling hypothesis, so we believe that using the term “leverage” is appropriate.

      (32) Page 21, “Our results show that m6Anet achieves superior performance, driven by SegPore's enhanced segmentation.”

      Superior in what way? It barely improves over Nanopolish in Figure 3C and is outperformed by other methods in Figure 3D. The segmentation may have improved but this statement says something is 'superior' driven by that 'enhanced segmentation', so that cannot refer to the segmentation itself.

      We revise it as follows in the revised manuscript:

      ”Our results demonstrate that SegPore’s segmentation enables clear differentiation between m6A-modified and unmodified adenosines.”

      (33) Page 21, “In SegPore, we assume a drastic change between two consecutive 5mers, which may hold for 5mers with large difference in their current baselines but may not hold for those with small difference.”

      The implications of this assumption don't seem highlighted enough in the work itself and may be cause for falsely discovering bi-modal distributions. What happens if such a 5mer isn't properly split, is there no recovery algorithm later on to resolve these cases?

      We agree that there is a risk of misalignment, which can result in a falsely observed bimodal distribution. This is a known and largely unavoidable issue across all methods, including deep neural network–based methods. For example, many of these models rely on a CTC (Connectionist Temporal Classification) layer, which implicitly performs alignment and may also suffer from similar issues.

      Misalignment is more likely when the current baselines of neighboring k-mers are close. In such cases, the model may struggle to confidently distinguish between adjacent k-mers, increasing the chance that signals from neighboring k-mers are incorrectly assigned. Accurate baseline estimation for each k-mer is therefore critical—when baselines are accurate, the correct alignment typically corresponds to the maximum likelihood.

      We have added the following sentence to the discussion to acknowledge this limitation:

      “As with other RNA modification estimation methods, SegPore can be affected by misalignment errors, particularly when the baseline signals of adjacent k-mers are similar. These cases may lead to spurious bimodal signal distributions and require careful interpretation.”

      (34) Page 21, “Currently, SegPore models only the modification state of the central nucleotide within the 5mer. However, modifications at other positions may also affect the signal, as shown in Figure 4B. Therefore, introducing multiple states to the 5mer could help to improve the performance of the model.”

      The meaning of this statement is unclear to me. Is SegPore unable to combine the information of overlapping kmers around a possibly modified base (central nucleotide), or is this referring to having multiple possible modifications in a single kmer (multiple states)?

      We mean there can be modifications at multiple positions of a single 5mer, e.g. C m5C m6A m7G T. We have revised the sentence to:

      “Therefore, introducing multiple states for a 5mer to accout for modifications at mutliple positions within the same 5mer could help to improve the performance of the model.”

      (35) Page 22, “This causes a problem when apply DNN-based methods to new dataset without short read sequencing-based ground truth. Human could not confidently judge if a predicted m6A modification is a real m6A modification.”

      Grammatical errors in both these sentences. For the 'Human could not' part, is this referring to a single person's attempt or more extensively tested?

      Thanks for the comment. We have revised the sentence as follows:

      “This poses a challenge when applying DNN-based methods to new datasets without short-read sequencing-based ground truth. In such cases, it is difficult for researchers to confidently determine whether a predicted m6A modification is genuine (see Supplmentary Figure S5).”

      (36) Page 22, “…which is easier for human to interpret if a predicted m6A site is real.”

      "a" human, but also this probably meant to say 'whether' instead of 'if', or 'makes it easier'.

      Thanks for the advice. We have revise the sentence as follows:

      “One can generally observe a clear difference in the intensity levels between 5mers with an m6A and those with a normal adenosine, which makes it easier for a researcher to interpret whether a predicted m6A site is genuine.”

      (37) Page 22, “…and noise reduction through its GMM-based approach…”

      Is the GMM providing noise reduction or segmentation?

      Yes, we agree that it is not relevant. We have removed the sentence in the revised manuscript as follows:

      “Although SegPore provides clear interpretability and noise reduction through its GMM-based approach, there is potential to explore DNN-based models that can directly leverage SegPore's segmentation results.”

      (38) Page 23, “SegPore effectively reduces noise in the raw signal, leading to improved m6A identification at both site and single-molecule levels…”

      Without further explanation in what sense this is meant, 'reduces noise' seems to overreach the abilities, and looks more like 'masking out'.

      Following the reviewer’s suggestion, we change it to ‘mask out'’ in the revised manuscript.

      “SegPore effectively masks out noise in the raw signal, leading to improved m6A identification at both site and single-molecule levels.”

      Reviewer #3 (Recommendations for the authors):

      I recommend the publication of this manuscript, provided that the following comments (and the comments above) are addressed.

      In general, the authors state that SegPore represents an improvement on existing software. These statements are largely unquantified, which erodes their credibility. I have specified several of these in the Minor comments section.

      Page 5, Preprocessing: The authors comment that the poly(A) tail provides a stable reference that is crucial for the normalisation of all reads. How would this step handle reads that have variable poly(A) tail lengths? Or have interrupted poly(A) tails (e.g. in the case of mRNA vaccines that employ a linker sequence)?

      We apologize for the confusion. The poly(A) tail–based normalization is explained in Supplementary Note 1, Section 3.

      As shown in Author response image 1 below, the poly(A) tail produces a characteristic signal pattern—a relatively flat, squiggly horizontal line. Due to variability between nanopores, raw current signals often exhibit baseline shifts and scaling of standard deviations. This means that the signal may be shifted up or down along the y-axis and stretched or compressed in scale.

      Author response image 1.

      The normalization remains robust with variable poly(A) tail lengths, as long as the poly(A) region is sufficiently long. The linker sequence will be assigned to the adapter part rather than the poly(A) part.

      To improve clarity in the revised manuscript, we have added the following explanation:

      “Due to inherent variability between nanopores in the sequencing device, the baseline levels and standard deviations of k-mer signals can differ across reads, even for the same transcript. To standardize the signal for downstream analyses, we extract the raw current signal segments corresponding to the poly(A) tail of each read. Since the poly(A) tail provides a stable reference, we normalize the raw current signals across reads, ensuring that the mean and standard deviation of the poly(A) tail are consistent across all reads. This step is crucial for reducing…..”

      We chose to use the poly(A) tail for normalization because it is sequence-invariant—i.e., all poly(A) tails consist of identical k-mers, unlike transcript sequences which vary in composition. In contrast, using the transcript region for normalization can introduce biases: for instance, reads with more diverse k-mers (having inherently broader signal distributions) would be forced to match the variance of reads with more uniform k-mers, potentially distorting the baseline across k-mers.

      Page 7, 5mer parameter table: r9.4_180mv_70bps_5mer_RNA is an older kmer model (>2 years). How does your method perform with the newer RNA kmer models that do permit the detection of multiple ribonucleotide modifications? Addressing this comment is crucial because it is feasible that SegPore will underperform in comparison to the newer RNA base caller models (requiring the use of RNA004 datasets).

      Thank you for highlighting this important point. For RNA004, we have updated SegPore to ensure compatibility with the latest kit. In our revised manuscript, we demonstrate that the translocation-based segmentation hypothesis remains valid for RNA004, as supported by new analyses presented in the supplementary Figure S4.

      Additionally, we performed a new benchmark with f5c and Uncalled4 in RNA004 data in the revised manuscript (Table 2), where SegPore exhibit a better performance than f5c and Uncalled4.

      We agree that benchmarking against the latest Dorado models—specifically rna004_130bps_hac@v5.1.0 and rna004_130bps_sup@v5.1.0, which include built-in modification detection capabilities—would provide valuable context for evaluating the utility of SegPore. However, generating a comprehensive k-mer parameter table for RNA004 requires a large, well-characterized dataset. At present, such data are limited in the public domain. Additionally, Dorado is developed by ONT and its internal training data have not been released, making direct comparisons difficult.

      Our current focus is on improving raw signal segmentation quality, which are upstream tasks critical to many downstream analyses, including RNA modification detection. Future work may include benchmarking SegPore against models like Dorado once appropriate data become available.

      The Methods and Results sections contain redundant information - please streamline the information in these sections and reduce the redundancy. For example, the benchmarking section may be better situated in the Results section.

      Following your advice, we have removed redundant texts about the Segmentation benchmark from Materials and Methods in the revised manuscript.

      Minor comments

      (1) Introduction

      Page 3: "By incorporating these dynamics into its segmentation algorithm...". Please provide an example of how motor protein dynamics can impact RNA translocation. In particular, please elaborate on why motor protein dynamics would impact the translocation of modified ribonucleotides differently to canonical ribonucleotides. This is provided in the results, but please also include details in the Introduction.

      Following your advice, we added one sentence to explain how the motor protein affect the translocation of the DNA/RNA molecule in the revised manuscript.

      “This observation is also supported by previous reports, in which the helicase (the motor protein) translocates the DNA strand through the nanopore in a back-and-forth manner. Depending on ATP or ADP binding, the motor protein may translocate the DNA/RNA forward or backward by 0.5-1 nucleotides.”

      As far as we understand, this translocation mechanism is not specific to modified or unmodified nucleotides. For further details, we refer the reviewer to the original studies cited.

      Page 3: "This lack of interpretability can be problematic when applying these methods to new datasets, as researchers may struggle to trust the predictions without a clear understanding of how the results were generated." Please provide details and citations as to why researchers would struggle to trust the predictions of m6Anet. Is it due to a lack of understanding of how the method works, or an empirically demonstrated lack of reliability?

      Thank you for pointing this out. The lack of interpretability in deep learning models such as m6Anet stems primarily from their “black-box” nature—they provide binary predictions (modified or unmodified) without offering clear reasoning or evidence for each call.

      When we examined the corresponding raw signals, we found it difficult to visually distinguish whether a signal segment originated from a modified or unmodified ribonucleotide. The difference is often too subtle to be judged reliably by a human observer. This is illustrated in the newly added Supplementary Figure S5, which shows Nanopolish-aligned raw signals for the central 5mer GGACT in Figure 4B, displayed both uncolored and colored by modification state (according to the ground truth).

      Although deep neural networks can learn subtle, high-dimensional patterns in the signal that may not be readily interpretable, this opacity makes it difficult for researchers to trust the predictions—especially in new datasets where no ground truth is available. The issue is not necessarily an empirically demonstrated lack of reliability, but rather a lack of transparency and interpretability.

      We have updated the manuscript accordingly and included Supplementary Figure S5 to illustrate the difficulty in interpreting signal differences between modified and unmodified states.

      Page 3: "Instead of relying on complex, opaque features...". Please provide evidence that the research community finds the figures generated by m6Anet to be difficult to interpret, or delete the sections relating to its perceived lack of usability.

      See the figure provided in the response to the previous point. We added a reference to this figure in the revised manuscript.

      “Instead of relying on complex, opaque features (see Supplementary Figure S5), SegPore leverages baseline current levels to distinguish between…..”

      (2) Materials and Methods

      Page 5, Preprocessing: "We begin by performing basecalling on the input fast5 file using Guppy, which converts the raw signal data into base sequences.". Please change "base" to ribonucleotide.

      Revised as requested.

      Page 5 and throughout, please refer to poly(A) tail, rather than polyA tail throughout.

      Revised as requested.

      Page 5, Signal segmentation via hierarchical Hidden Markov model: "...providing more precise estimates of the mean and variance for each base block, which are crucial for downstream analyses such as RNA modification prediction." Please specify which method your HHMM method improves upon.

      Thank you for the suggestion. Since this section does not include a direct comparison, we revised the sentence to avoid unsupported claims. The updated sentence now reads:

      "...providing more precise estimates of the mean and variance for each base block, which are crucial for downstream analyses such as RNA modification prediction."

      Page 10, GMM for 5mer parameter table re-estimation: "Typically, the process is repeated three to five times until the 5mer parameter table stabilizes." How is the stabilisation of the 5mer parameter table quantified? What is a reasonable cut-off that would demonstrate adequate stabilisation of the 5mer parameter table?

      Thank you for the comment. We assess the stabilization of the 5mer parameter table by monitoring the change in baseline values across iterations. If the absolute change in baseline values for all 5mers is less than 1e-5 between two consecutive iterations, we consider the estimation to have stabilized.

      Page 11, M6A site level benchmark: why were these datasets selected? Specifically, why compare human and mouse ribonuclotide modification profiles? Please provide a justification and a brief description of the experiments that these data were derived from, and why they are appropriate for benchmarking SegPore.

      Thank you for the comment. These data are taken from a previous benchmark studie about m6A estimation from RNA002 data in the literature (https://doi.org/10.1038/s41467-023-37596-5). We think the data are appropreciate here.

      Thank you for the comment. The datasets used were taken from a previous benchmark study on m6A estimation using RNA002 data (https://doi.org/10.1038/s41467-023-37596-5). These datasets include human and mouse transcriptomes and have been widely used to evaluate the performance of RNA modification detection tools. We selected them because (i) they are based on RNA002 chemistry, which matches the primary focus of our study, and (ii) they provide a well-characterized and consistent benchmark for assessing m6A detection performance. Therefore, we believe they are appropriate for validating SegPore.

      (3) Results

      Page 13, RNA translocation hypothesis: "The raw current signals, as shown in Fig. 1B...". Please check/correct figure reference - Figure 1B does not show raw current signals.

      Thank you for pointing this out. The correct reference should be Figure 2B. We have updated the figure citation accordingly in the revised manuscript.

      Page 19, m6A identification at the site level: "For six selected m6A motifs, SegPore achieved an ROC AUC of 82.7% and a PR AUC of 38.7%, earning the third best performance compared with deep leaning methods m6Anet and CHEUI (Fig. 3D)." SegPore performs third best of all deep learning methods. Do the authors recommend its use in conjunction with m6Anet for m6A detection? Please clarify in the text.

      This sentence aims to convey that SegPore alone can already achieve good performance. If interpretability is the primary goal, we recommend using SegPore on its own. However, if the objective is to identify more potential m6A sites, we suggest using the combined approach of SegPore and m6Anet. That said, we have chosen not to make explicit recommendations in the main text to avoid oversimplifying the decision or potentially misleading readers.

      Page 19, m6A identification at the single molecule level: "one transcribed with m6A and the other with normal adenosine". I assume that this should be adenine? Please replace adenosine with adenine throughout.

      Thank you for pointing this out. We have revised the sentence to use "adenine" where appropriate. In other instances, we retain "adenosine" when referring specifically to adenine bound to a ribose sugar, which we believe is suitable in those contexts.

      Page 19, m6A identification at the single molecule level: "We used 60% of the data for training and 40% for testing". How many reads were used for training and how many for testing? Please comment on why these are appropriate sizes for training and testing datasets.

      In total, there are 1.9 million reads, with 1.14 million used for training and 0.76 million  for testing (60% and 40%, respectively). We chose this split to ensure that the training set is sufficiently large to reliably estimate model parameters, while the test set remains substantial enough to robustly evaluate model performance. Although the ratio was selected somewhat arbitrarily, it balances the need for effective training with rigorous validation.

      (4) Discussion

      Page 21: "We believe that the de-noised current signals will be beneficial for other downstream tasks." Which tasks? Please list an example.

      We have revised the text for clarity as follows:

      “We believe that the de-noised current signals will be beneficial for other downstream tasks, such as the estimation of m5C, pseudouridine, and other RNA modifications.”

      Page 22: "One can generally observe a clear difference in the intensity levels between 5mers with a m6A and normal adenosine, which is easier for human to interpret if a predicted m6A site is real." This statement is vague and requires qualification. Please reference a study that demonstrates the human ability to interpret two similar graphs, and demonstrate how it relates to the differences observed in your data.

      We apologize for the confusion. We have revised the sentence as follows:

      “One can generally observe a clear difference in the intensity levels between 5mers with an m6A and those with a normal adenosine, which makes it easier for a researcher to interpret whether a predicted m6A site is genuine.”

      We believe that Figures 3A, 3B, and 4B effectively illustrate this concept.

      Page 23: How long does SegPore take for its analyses compared to other similar tools? How long would it take to analyse a typical dataset?

      We have added run-time statistics for datasets of varying sizes in the revised manuscript (see Supplementary Figure S6). This figure illustrates SegPore’s performance across different data volumes to help estimate typical processing times.

      (5) Figures

      Figure 4C. Please number the hierachical clusters and genomic locations in this figure. They are referenced in the text.

      Following your suggestion, we have labeled the hierarchical clusters and genomic locations in Figure 4C in the revised manuscript.

      In addition, we revised the corresponding sentence in the main text as follows: “Biclustering reveals that modifications at g6 are specific to cluster C4, g7 to cluster C5, and g8 to cluster C6, while the first five genomic locations (g1 to g5) show similar modification patterns across all reads.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Recommendations for the Authors:

      Reviewer #1:

      We think that this manuscript brings an important contribution that will be of interest in the areas of statistical physicists, (microbiota) ecology, and (biological) data science. The evidence of their results is solid and the work improves the state-of-the-art in terms of methods. We have a few concerns that, in our opinion, the authors should address.

      Major concerns:

      (1) While the paper could be of interest for the broad audience of e-Life, the way it is written is accessible mainly to physicists. We encourage the authors to take the broad audience into account by i) explaining better the essence of what is being done at each step, ii) highlighting the relevance of the method compared to other methods, iii) discussing the ecological implications of the results.

      Examples on how to approach i) include: Modify or expand Figure 1 so that non-familiar readers can understand the summary of the work (e.g. with cartoons representing communities, diseased states and bacterial interactions and their relationship with the inference method); in each section, summarize at the beginning the purpose of what is going to be addressed in this section, and summarize at the end what the section has achieved; in Figure 2, replace symbols by their meaning as much as possible-the same for Figure 1, at the very least in the figure caption.

      Example on how to approach ii): Since the authors aim to establish a bridge between disordered systems and microbiome ecology, it could be useful to expand a bit the introduction on disordered systems for biologists/biophysicists. This could be done with an additional text box, which could also highlight the advantages of this approach in comparison to other techniques (e.g. model-free approaches can also classify healthy and diseased states).

      Example on how to approach iii): The authors could discuss with more depth the ecological implications of their results. For example, do they have a hypothesis on why demographic and neutral effects could dominate in healthy patients?

      We thank the reviewer for the observations. Following the suggestion in the revised version, each section outlines the goal of what will be addressed in that section, and summarizes what we have achieved at the end; We also updated Figure 1 and Figure 2.

      (i) For figure 1, we expanded and hopefully made more clear how we conceptualize the problem, use the data, andestablish our method. In Figure 2, we enriched the y labels of each panel with the name associated with the order parameter.

      (ii) We thank the reviewer for helping us improve the readability of the introductory part, thus providing moreinsights into disordered systems techniques for a broader audience. We have added a few explanations at the end of page 2 – to explain the advantages of such methodology compared to other strategies and models.

      (iii) We thank the reviewer for raising the need for a more in-depth ecological discussion of our results. A simple wayto understand why neutral effects may dominate in healthy patients is the following. Neutrality implies that species differences are mainly shaped by stochastic processes such as demographic noise, with species treated as different realizations of the same underlying stochastic ecological dynamics. In our analysis, we observe that healthy individuals tend to exhibit highly similar microbial communities, suggesting that the compositional variability among their microbiomes is compatible—at least in part—with the fluctuations expected from demographic stochasticity alone. In contrast, patients with the disease display significantly more heterogeneous microbial compositions. The diversity and structure of their gut communities cannot be satisfactorily explained by neutral demographic fluctuations alone.

      This discrepancy implies that additional deterministic forces—such as altered ecological interactions—are driving the divergence observed in dysbiotic states. In diseased individuals, the breakdown of such interactions leads to a structurally distinct regime that may correspond to a phase of marginal stability, as indicated by our theoretical modeling. This shift marks a transition from a community governed by neutrality and demographic noise to one dominated by non-neutral ecological forces (as depicted in Figure 4). We added these comments in the discussion section of the revised manuscript.

      (2) Taking into account the broader audience, we invite the authors to edit the abstract, as it seems to jump from one ecological concept to another without explicitly communicating what is the link between these concepts. From the first two sentences, the motivation seems to be species diversity, but no mention of diversity comes after the second sentence. There is no proper introduction/definition of what macroecological states are. After that, the authors switch to healthy and unhealthy states, without previously introducing any link between gut microbiota states and the host’s health (which perhaps could be good in the first or second sentence, although other framings can be as valid). After that, interactions appear in the text and are related to instability, but the reader might not know whether this is surprising or if healthy/unhealthy states are generally related to stability.

      We pointed out a few examples, but the authors could extend their revision on i), ii) and iii) beyond such specific comments. In our opinion, this would really benefit the paper.

      In response to the reviewer’s concern about conceptual clarity and structure, we substantially revised the abstract to improve its accessibility and logical flow. In the revised abstract, we now clearly link species diversity to microbiome structure and function from the outset, addressing initial confusion. We provide a concise definition of ”macroecological states,” framing them as reproducible statistical patterns reflecting community-level properties. Additionally, the revised version explicitly connects gut microbiome states to host health earlier, resolving the previous abrupt shift in focus. Finally, we conclude by highlighting how disordered systems theory advances our understanding of microbiome stability and functioning, reinforcing the novelty and broader significance of our approach. Overall, the revised abstract better serves a broad interdisciplinary audience, including readers unfamiliar with the technicalities of disordered systems or microbial ecology, while preserving the scientific depth and accuracy of our work

      (3) The connection with consumer-resource (CR) models is quite unusual. In Equation (12), why do the authors assume that the consumption term does not depend on R? This should be addressed, since this term is usually dependent on R in microbial ecology models.

      In case this is helpful, it is known that the symmetric Lotka-Volterra model emerges from time-scale separation in the MacArthur model, where resources reproduce logistically and are consumed by other species (e.g., plants eaten by herbivores). Consumer-resource models form a broad category, while the MacArthur model is a specific case featuring logistic resource growth. For microbes, a more meaningful justification of the generalized Lotka-Volterra (GLV) model from a consumer-resource perspective involves the consumer-resource dynamics in a chemostat, where time-scale separation is assumed and higher-order interactions are neglected. See, for example: a) The classic paper by MacArthur: R. MacArthur. Species packing and competitive equilibrium for many species. Theoretical Population Biology, 1(1):1-11, 1970. b) Recent works on time-scale separation in chemostat consumer-resource models: Anna Posfai et al., PRL, 2017 Sireci et al., PNAS, 2023 Akshit Goyal et al., PRX-Life, 2025

      We thank the reviewer for the observation. We apologize for the typo that appeared in the main text and that we promptly corrected. The Consumers-Resources model we had in mind is the classical case proposed by MacArthur, where resources are self-regulated according to a logistic growth mechanism, which leads to the generalized LotkaVolterra model we employ in our work.

      Minor concerns:

      (1) The title has a nice pun for statistical physicists, but we wonder if it can be a bit confusing for the broader audience of e-Life. Although we leave this to the author’s decision, we’d recommend considering changing the title, making it more explicit in communicating the main contribution/result of the work.

      Following the reviewer’s suggestion, we have introduced an explanatory subtitle: “Linking Species Interactions to Dysbiosis through a Disordered Lotka-Volterra Framework”.

      (2) Review the references - some preprints might have already been published: Pasqualini J. 2023, Sireci 2022, Wu 2021.

      We thank the reviewer for pointing our attention to this inaccuracy. We updated the references to Pasqualini and Sireci papers. To our knowledge, Wu’s paper has appeared as an arXiv preprint only.

      (3) Species do not generally exhibit identical carrying capacities (see Grilli, Nat. Commun., 2020; some taxa are generally more abundant than others. The authors could discuss whether the model, with the inferred parameters, can accurately reproduce the distribution of species’ mean abundances.

      We thank the reviewer for this insightful comment. As discussed in the revised manuscript (lines 294–299), our current model does not accurately reproduce the empirical species abundance distribution (SAD). This limitation stems from the assumption of constant carrying capacities across species. While empirical observations (e.g., Grilli et al., Nat. Commun., 2020 [1]) show heterogeneous mean abundances often following power-law or log-normal distributions. However, our model assumes constant carrying capacity, resulting in SADs devoid of fat tails, which diverge from empirical data.

      This simplification is implemented to maintain the analytical tractability of the disordered generalized Lotka-Volterra (dGLV) framework, a common approach also found in prior works such as Bunin (2017) and Barbier et al. (2018) [2, 3]. Introducing heterogeneity in carrying capacities, such as drawing them from a log-normal distribution, or switching to multiplicative (rather than demographic) noise, could indeed produce SADs that better align with empirical data. Nevertheless, implementing changes would significantly complicate the analytical treatment.

      We acknowledge these directions as promising avenues for future research. They could help enhance the empirical realism of the model and its capacity to capture observed macroecological patterns while posing new theoretical challenges for disordered systems analysis

      (4) A substantial number of cited works (Grilli, Nat. Commun., 2020; Zaoli & Grilli, Science Advances, 2021; Sireci et al., PNAS, 2023; Po-Yi Ho et al., eLife, 2022) suggest that environmental fluctuations play a crucial role in shaping microbiome composition and dynamics. Is the authors’ analysis consistent with this perspective? Do they expect their conclusions to remain robust if environmental fluctuations are introduced?

      We thank the reviewer for stressing this point. The introduction of environmental fluctuations in the model formally violates detailed balance, thereby preventing the definition of an energy function. To date, no study has integrated random interactions together with both demographic and environmental noise within a unified analytical framework. This is certainly a highly promising direction that some of the authors are already exploring. However, given the inherently out-of-equilibrium nature of the system and the absence of a free energy, we would need to adopt a Dynamical Mean-Field Theory formalism and eventually analyze the corresponding stationary equations to be solved self-consistently. We added, however, a brief note in the Discussion section.

      (5) The term “order parameters“ may not be intuitive for a biological audience. In any case, the authors should explicitly define each order parameter when first introduced.

      We thank the reviewer for the comment. We introduced the names of the order parameters as soon as they are introduced, along with a brief explanation of their meaning that may be accessible to an audience with biological background.

      (6) Line 242: Should ψU be ψD?

      We thank the reviewer for the observation. We corrected the typo.

      (7) Given that the authors are discussing healthy and diseased states and to avoid confusion, the authors could perhaps use another word for ’pathological’ when they refer to dynamical regimes (e.g., in Appendix 2: ’letting the system enter the pathological regime of unbounded growth’).

      We thank the reviewer for the helpful comment. As suggested, we used the term “unphysical” instead of “pathological” where needed.

      Reviewer #2:

      (1) A technical point that I could not understand is how the authors deal with compositional data. One reason for my confusion is that the order parameters h and q0 are fixed n data to 1/S and 1/S2, and thus I do not see how they can be informative. Same for carrying capacity, why is it not 1 if considering relative abundance?

      We thank the reviewer for raising this point. We acknowledge that the treatment of compositional data and the interpretation of order parameters h and q0 were not sufficiently clarified in the manuscript. Additionally, there was an imprecision in the text regarding the interpretation of these parameters.

      As defined in revised Eq. (4) of the manuscript, h and q0 are to be averaged over the entire dataset, summing across samples α. Specifically, and , where S<sub>α</sub> is the number of species present in sample α and is the average over samples. These parameters are therefore informative, as they encapsulate sample-level ecological diversity, and their variation reflects biological differences between healthy and diseased states. For instance, Pasqualini et al., 2024 [4] reported significant differences in these metrics between health conditions, thereby supporting their ecological relevance.

      Regarding carrying capacities, we clarify that although we work with relative abundance data (i.e., compositional data), we do not fix the carrying capacity K to 1. Instead, we set K to the maximum value of xi (relative abundance) within each sample, to preserve compatibility with empirical data and allow for coexistence. While this remains a modeling assumption, it ensures better ecological realism within the constraints of the disordered GLV framework.

      (2) Obviously I’m missing something, so it would be nice to clarify in simple terms the logic of the argument. I understand that Lagrange multipliers are going to be used in the model analysis, and there are a lot of technical arguments presented in the paper, but I would like a much more intuitive explanation about the way the data can be used to infer order parameters if those are fixed by definition in compositional data.

      We thank the reviewer for the observation. The order parameters can be measured directly from the data, even in the presence of compositionality, as explained above. We can connect those parameters with the theory even for compositional data, because the only effect of adding the compositionality constraint is to shift the linear coefficient in the Hamiltonian, which corresponds to shifting the average interaction µ. However, the resulting phase diagram is mostly affected by the variance of the interactions σ2 (as µ is such that we are in the bounded phase).

      (3) Another point that I did not understand comes from the fact that the authors claim that interaction variance is smaller in unhealthy microbiomes. Yet they also find that those are closer to instability, and are more driven by niche processes. I would have expected the opposite to be true, more variance in the interactions leading to instability (as in May’s original paper for instance). Is this apparent paradox explained by covariations in demographic stochasticity (T) and immigration rate (lambda)? If so, I think it would be very useful to comment on that.

      As Altieri and coworkers showed in their PRL (2021) [5], the phase diagram of our model differs fundamentally from that of Biroli et al. (2018) [6]. In the latter, the intuitive rule – greater interaction variance yields greater instability – indeed holds. For the sake of clarity, we have attached below the resulting phase diagram obtained by Altieri et al.

      The apparent paradox arises because the two phase diagrams are tuned by different parameters. Consequently, even at low temperature and with weak interaction variance, our system may sit nearer to the replica-symmetrybreaking (RSB) line.

      Fig. 3 in the main text it is not a (σ,T) phase diagram where all other parameters are kept constant. Rather, it is a plot of the inferred σ and T parameters from the data (without showing the corresponding µ).

      To capture the full, non-trivial influence of all parameters on stability, we studied the so-called “replicon eigenvalue” in the RS (i.e. single equilibrium) approximation. This leading eigenvalue measures how close a given set of inferred parameters – and hence a microbiome – is to the RSB threshold. For a visual representation of these findings, refer to Figure 4.

      Author response image 1.

      (4) What do the empirical SAD look like? It would be nice to see the actual data and how the theoretical SADs compare.

      The empirical species abundance distributions (SADs) analyzed in our study are presented and discussed in detail in Pasqualini et al., 2024 [4]. Given the overlap in content, we chose not to reproduce these figures in the current manuscript to avoid redundancy.

      As we also clarify in the revised text, the theoretical SAD is derived from the disordered generalized Lotka-Volterra (dGLV) model in the unique fixed point phase typically exhibit exponential tails. These distributions do not match the heavier-tailed patterns (e.g., log-normal or power-law-like) observed in empirical microbiome data. This discrepancy stems from the simplifying assumptions of the dGLV framework, including the use of constant carrying capacities and demographic noise.

      In the revised manuscript, we have added a brief discussion in the revised manuscript to explicitly acknowledge this limitation and emphasize it as a direction for future refinement of the model, such as incorporating heterogeneous carrying capacities or exploring alternative noise structures.

      (5) Some typos: often “niche” is written “nice”.

      We thank the reviewer for this suggestion. After inspecting the text, we corrected the reported typos.

      Reviewer #3:

      Major comments:

      (1) In the S3 text, the authors say that filtered metagenomic reads were processed using the software Kaiju. The description of the pipeline does not mention how core genes were selected, which is often a crucial step in determining the abundance of a species in a metagenomic sample. In addition, the senior author of this manuscript has published a version of Kaiju that leverages marker genes classification methods (deemed Core-Kaiju), but it was not used for either this manuscript or Pasqualini et al. (2014; Tovo et al., 2020). I am not suggesting that the data necessarily needs to be reprocessed, but it would be useful to know how core genes were chosen in Pasqualini et al. and why Core-Kaiju was not used (2014).

      Prior to the current manuscript and the PLOS Computational Biology paper by Pasqualini et al. [4], we applied the core-Kaiju protocol to the same dataset used in both studies. However, this tool was originally developed and validated using general catalogs of culturable organisms, not specifically tuned for gut microbiomes. As a result, we have realized that in many samples Core Kajiu would filter only very few species (in some samples, the number of identified species was as low as 5–10), undermining the reliability of the analysis. Due to these limitations, we opted to use the standard Kaiju version in our work. We are actively developing an improved version of the core-Kaiju protocol that will overcome the discussed limitations and preliminary results (not shown here) indicate the robustness of the obtained patterns also in this case.

      (2) My understanding of Pasqualini et al. was that diseased patients experienced larger fluctuations in abundance, while in this study, they had smaller fluctuations (Figure 3a; 2024). Is this a discrepancy between the two models or is there a more nuanced interpretation?

      We thank the reviewer for the observation. This is only an apparent discrepancy, as the term fluctuation has different meanings in the two contexts. The fluctuations referred to by the reviewer correspond to a parameter of our theory—namely, noise in the interactions. Conversely, in Pasqualini et al. σ indicates environmental fluctuations. Nevertheless, there is no conceptual discrepancy in our results: in both studies, unhealthy microbiomes were found to be less stable. In fact, also in this study, notably Fig. 4, shows that unhealthy microbiomes lie closer to the RSB line, a phenomenon that is also associated with enhanced fluctuations.

      (3) Line 38-41: It would be helpful to explicitly state what “interaction patterns” are being referenced here. The final sentence could also be clarified. Do microbiomes “host“ interactions or are they better described as a property (“have”, “harbor”). The word “host” may confuse some readers since it is often used to refer to the human host. I am also not sure what point is being made by “expected to govern natural ones”. There are interactions between members of a microbiome; experimental studies have characterized some of these interactions, which we expect to relate in some way to interactions in nature. Is this what the authors are saying?

      Thanks. We agree that this sentence was not clear. Indeed, we are referring to pairwise species interactions and not to host-microbiome interactions. We have rewritten this part in the following way: In fact, recent work shows that the network-level properties of species-species interactions —for example, the sign balance, average strength, and connectivity of the inferred interaction matrix— shift systematically between healthy and dysbiotic gut communities (see for instance, [7, 8]). Pairwise species interactions have been quantified in simplified in-vitro consortia [9, 10]; we assume that the same classes of interactions also operate—albeit in a more complex form—in the native gut microbiome.

      (4) Line 43: I appreciate that the authors separated neutral vs. logistic models here.

      (5) Lines 51-75: The framing here is well-written and convincing. Network inference is an ongoing, active subject in ecology, and there is an unfortunate focus on inferring every individual interaction because ecologists with biology backgrounds are not trained to think about the problem in the language of statistical physics.

      We thank the reviewer for these positive comments.

      (6) Line 87: Perhaps I’m missing something obvious, but I don’t see how ρi sets the intrinsic timescale of the dynamics when its units are 1/(time*individuals), assuming the dimensions of ri are inverse time.

      We thank the reviewer for the observation. We corrected this phrase in the main text.

      (7) Lines 189-190: “as close as possible to the data” it would aid the reader if you specified the criteria meant by this statement.

      We thank the reviewer for the observation. We removed the sentence, as it introduced some redundancy in our argument. In the subsequent text, the proposed method is exposed in details.

      (8) Line 198: It would aid the reader if you provided some context for what the T - σ plane represents.

      We thank the referee for the helpful indication. Indeed, we have better clarified the mutual role of the demographic noise amplitude and strength of the random interaction matrix, as theoretically predicted in the PRL (2021) by Altieri and coworkers [5]. Please, find an additional paragraph on page 6 of the resubmitted version.

      (9) Line 217: Specifying what is meant by “internal modes“ would aid the typical life science reader.

      We thank the reviewer for the suggestion. Recognizing that referring to “internal modes” to describe the SAD shape in that context might cause confusion, we replaced “internal modes“ with “peaks”.

      (10) Line 219: Some additional justification and clarification are needed here, as some may think of “m“ as being biomass.

      We added a sentence to better explain this concept. “In classical and quantum field theory, the particle-particle interaction embedded in the quadratic term is typically referred to as a mass source. In the context of this study, captures quadratic fluctuations of species abundances, as also appearing in the expression of the leading eigenvalue of the stability matrix.”

      Minor comments:

      (1) I commend the authors for removing metagenomic reads that mapped to the human genome in the preprocessing stage of their pipeline. This may seem like an obvious pre-processing step, but it is unfortunately not always implemented.

      We thank the referee for pointing this potential issue. The data used in this work, as well as the bioinformatic workflow used to generate them has been described in detail in Pasqualini et al., 2024 [4]. As one of the main steps for preprocessing, we remove reads mapping to the human genome.

      (2) Line 13: “Bacterial“ excludes archaea, and while you may not have many high-abundance archaea in your human gut data, this sentence does not specify the human gut. Usually, this exclusion is averted via the term “microbial“, though sometimes researchers raise objections to the term when the data does not include fungal members (e.g., all 16S studies).

      We thank the reviewer for this suggestion. As to include archaeal organisms, we adopt the term “microbial“ instead of “bacterial“.

      (3) Line 18: This manuscript is being submitted under the “Physics of Living Systems“ tract, but it may be useful to explicitly state in the Abstract that disordered systems are a useful approach for understanding large, complex communities for the benefit of life science researchers coming from a biology background.

      Thank. We have modified the abstract following this suggestion.

      (4) Line 68: Consider using “adapted“ or something similar instead of “mutated“ if there is no specific reason for that word choice.

      We thank the reviewer for this suggestion, which was implemented in the text.

      (5) Line 111: It would be useful to define annealed and quenched for a general life science audience.

      We thank the reviewer for this suggestion. In the “Results” section, we have opted for “time-dependent disordered interactions” to reach a broader audience and avoid any jargon. Moreover, in the Discussion we added a detailed footnote: “In contrast to the quenched approximation, the annealed version assumes that the random couplings are not fixed but instead fluctuate over time, with their covariance governed by independent Ornstein–Uhlenbeck processes.”

      (6) Line 124: Likewise for the replicon sector.

      We thank the reviewer for the suggestion. We added a footnote on page 4, after the formula, to highlight the physical intuition behind the introduction of the replicon mode.

      “The replicon eigenvalue refers to a particular type of fluctuation around the saddle-point (mean-field) solution within the replica framework. When the Hessian matrix of the replicated free energy is diagonalized, fluctuations are divided into three sectors: longitudinal, anomalous, and replicon. The replicon mode is the most sensitive to criticality signaling – by its vanishing trend – the emergence of many nearly-degenerate states. It essentially describes how ‘soft’ the system is to microscopic rearrangements in configuration space.”

      (7) Figure 2: It would be helpful to include y-axis labels for each order parameter alongside the mathematical notation.

      We thank the reviewer for this suggestion. Now the y-axis of Figure 2 includes, along the mathmetical symbol, the label of the represented quantities.

      (8) Line 242: Subscript “U” is used to denote “Unhealthy” microbiomes, but “D” is used to denote “Diseased” in Figs. 2 and 3 (perhaps elsewhere as well).

      We thank the reviewer for this observation. After checking the various subscripts in the text, coherently with figure 2 and 3, we homogenized our notation, adopting the subscript “D“ for symbols related to the diseased/unhealthy condition.

      (9) Line 283: “not to“ should be “not due to“

      We thank the reviewer for this suggestion. After inspecting the text, we corrected the reported error.

      (10) Equations 23, 34: Extra “=“ on the RHS of the first line.

      We consistently follow the same formatting across all the line breaks in the equations throughout the text.

      We are thus resubmitting our paper, hoping to have satisfactorily addressed all referees’ concerns.

      References

      (1) Jacopo Grilli. Macroecological laws describe variation and diversity in microbial communities. Nature communications, 11(1):4743, 2020.

      (2) Guy Bunin. Ecological communities with lotka-volterra dynamics. Physical Review E, 95(4):042414, 2017.

      (3) Matthieu Barbier, Jean-Franc¸ois Arnoldi, Guy Bunin, and Michel Loreau. Generic assembly patterns in complex ecological communities. Proceedings of the National Academy of Sciences, 115(9):2156–2161, 2018.

      (4) Jacopo Pasqualini, Sonia Facchin, Andrea Rinaldo, Amos Maritan, Edoardo Savarino, and Samir Suweis. Emergent ecological patterns and modelling of gut microbiomes in health and in disease. PLOS Computational Biology, 20(9):e1012482, 2024.

      (5) Ada Altieri, Felix Roy, Chiara Cammarota, and Giulio Biroli. Properties of equilibria and glassy phases of the random lotka-volterra model with demographic noise. Physical Review Letters, 126(25):258301, 2021.

      (6) Giulio Biroli, Guy Bunin, and Chiara Cammarota. Marginally stable equilibria in critical ecosystems. New Journal of Physics, 20(8):083051, 2018.

      (7) Amir Bashan, Travis E Gibson, Jonathan Friedman, Vincent J Carey, Scott T Weiss, Elizabeth L Hohmann, and Yang-Yu Liu. Universality of human microbial dynamics. Nature, 534(7606):259–262, 2016.

      (8) Marcello Seppi, Jacopo Pasqualini, Sonia Facchin, Edoardo Vincenzo Savarino, and Samir Suweis. Emergent functional organization of gut microbiomes in health and diseases. Biomolecules, 14(1):5, 2023.

      (9) Jared Kehe, Anthony Ortiz, Anthony Kulesa, Jeff Gore, Paul C Blainey, and Jonathan Friedman. Positive interactions are common among culturable bacteria. Science advances, 7(45):eabi7159, 2021.

      (10) Ophelia S Venturelli, Alex V Carr, Garth Fisher, Ryan H Hsu, Rebecca Lau, Benjamin P Bowen, Susan Hromada, Trent Northen, and Adam P Arkin. Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular systems biology, 14(6):e8157, 2018.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors develop a novel method to infer ecologically-informative parameters across healthy and diseased states of the gut microbiota, although the method is generalizable to other datasets for species abundances. The authors leverage techniques from theoretical physics of disordered systems to infer different parameters-mean and standard deviation for the strength of bacterial interspecies interactions, a bacterial immigration rate, and the strength of demographic noise-that describe the statistics of microbiota samples from two groups-one for healthy subjects and another one for subjects with chronic inflammation syndromes. To do this, the authors simulate communities with a modified version of the Generalized Lotka-Volterra model and randomly-generated interactions, and then use a moment-matching algorithm to find sets of parameters that better reproduce the data for species abundances. They find that these parameters are different for the healthy and diseased microbiota groups. The results suggest, for example, that bacterial interaction strengths, relative to noise and immigration, are more dominant of microbiota dynamics in diseased states than in healthy states.

      We think that this manuscript brings an important contribution that will be of interest in the areas of statistical physics, (microbiota) ecology and (biological) data science. The evidence of their results is solid and the work improves the state-of-the-art in terms of methods.

      Strengths:

      • Using a fairly generic ecological model, the method can identify the change in the relative importance of different ecological forces (distribution of interspecies interactions, demographic noise and immigration) in different sample groups. The authors focus on the case of the human gut microbiota, showing that the data is consistent with a higher influence of species interactions (relative to demographic noise and immigration) in a disease microbiota state than in healthy ones.

      • The method is novel, original and it improves the state-of-the-art methodology for the inference of ecologically-relevant parameters. The analysis provides solid evidence on the conclusions.

      Weaknesses:

      • As a proof of concept for a new inference method, this text maintains a technical focus, which may require some familiarity with statistical physics. Nevertheless, the authors' clear introduction of key mathematical terms and their interpretations, along with a clear discussion of the ecological implications, make the results accessible and easy to follow.
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The study explored the biomechanics of kangaroo hopping across both speed and animal size to try and explain the unique and remarkable energetics of kangaroo locomotion.

      Strengths:

      The study brings kangaroo locomotion biomechanics into the 21st century. It is a remarkably difficult project to accomplish. There is excellent attention to detail, supported by clear writing and figures.

      Weaknesses:

      The authors oversell their findings, but the mystery still persists. 

      The manuscript lacks a big-picture summary with pointers to how one might resolve the big question.

      General Comments

      This is a very impressive tour de force by an all-star collaborative team of researchers. The study represents a tremendous leap forward (pun intended) in terms of our understanding of kangaroo locomotion. Some might wonder why such an unusual species is of much interest. But, in my opinion, the classic study by Dawson and Taylor in 1973 of kangaroos launched the modern era of running biomechanics/energetics and applies to varying degrees to all animals that use bouncing gaits (running, trotting, galloping and of course hopping). The puzzling metabolic energetics findings of Dawson & Taylor (little if any increase in metabolic power despite increasing forward speed) remain a giant unsolved problem in comparative locomotor biomechanics and energetics. It is our "dark matter problem".

      Thank you for the kind words.

      This study is certainly a hop towards solving the problem. But, the title of the paper overpromises and the authors present little attempt to provide an overview of the remaining big issues. 

      We have modified the title to reflect this comment.  “Postural adaptations may contribute to the unique locomotor energetics seen in hopping kangaroos”

      The study clearly shows that the ankle and to a lesser extent the mtp joint are where the action is. They clearly show in great detail by how much and by what means the ankle joint tendons experience increased stress at faster forward speeds.

      Since these were zoo animals, direct measures were not feasible, but the conclusion that the tendons are storing and returning more elastic energy per hop at faster speeds is solid. The conclusion that net muscle work per hop changes little from slow to fast forward speeds is also solid. 

      Doing less muscle work can only be good if one is trying to minimize metabolic energy consumption. However, to achieve greater tendon stresses, there must be greater muscle forces. Unless one is willing to reject the premise of the cost of generating force hypothesis, that is an important issue to confront. Further, the present data support the Kram & Dawson finding of decreased contact times at faster forward speeds. Kram & Taylor and subsequent applications of (and challenges to) their approach supports the idea that shorter contact times (tc) require recruiting more expensive muscle fibers and hence greater metabolic costs. Therefore, I think that it is incumbent on the present authors to clarify that this study has still not tied up the metabolic energetics across speed problems and placed a bow atop the package. 

      Fortunately, I am confident that the impressive collective brain power that comprises this author list can craft a paragraph or two that summarizes these ideas and points out how the group is now uniquely and enviably poised to explore the problem more using a dynamic SIMM model that incorporates muscle energetics (perhaps ala' Umberger et al.). Or perhaps they have other ideas about how they can really solve the problem.

      You have raised important points, thank you for this feedback. We have added a limitations and considerations section to the discussion which highlights that there are still unanswered questions. Line 311-328

      Considerations and limitations

      “First, we believe it is more likely that the changes in moment arms and EMA can be attributed to speed rather than body mass, given the marked changes in joint angles and ankle height observed at faster hopping speeds. However, our sample included a relatively narrow range of body masses (13.7 to 26.6 kg) compared to the potential range (up to 80 kg), limiting our ability to entirely isolate the effects of speed from those of mass. Future work should examine a broader range of body sizes. Second, kangaroos studied here only hopped at relatively slow speeds, which bounds our estimates of EMA and tendon stress to a less critical region. As such, we were unable to assess tendon stress at fast speeds, where increased forces would reduce tendon safety factors closer to failure. A different experimental or modelling approach may be needed, as kangaroos in enclosures seem unwilling to hop faster over force plates. Finally, we did not determine whether the EMA of proximal hindlimb joints (which are more difficult to track via surface motion capture markers) remained constant with speed. Although the hip and knee contribute substantially less work than the ankle joint (Fig. 4), the majority of kangaroo skeletal muscle is located around these proximal joints. A change in EMA at the hip or knee could influence a larger muscle mass than at the ankle, potentially counteracting or enhancing energy savings in the ankle extensor muscle-tendon units. Further research is needed to understand how posture and muscles throughout the whole body contribute to kangaroo energetics.”

      Additionally, we added a line “Peak GRF also naturally increased with speed together with shorter ground contact durations (Fig. 2b, Suppl. Fig 1b)” (line 238) to highlight that we are not proposing that changes in EMA alone explain the full increase in tendon stress. Both GRF and EMA contribute substantially (almost equally) to stress, and we now give more equal discussion to both. For instance, we now also evaluate how much each contributes: “If peak GRF were constant but EMA changed from the average value of a slow hop to a fast hop, then stress would increase 18%, whereas if EMA remained constant and GRF varied by the same principles, then stress would only increase by 12%. Thus, changing posture and decreasing ground contact duration both appear to influence tendon stress for kangaroos, at least for the range of speeds we examined” (Line 245-249)

      We have added a paragraph in the discussion acknowledging that the cost of generating force problem is not resolved by our work, concluding that “This mechanism may help explain why hopping macropods do not follow the energetic trends observed in other species (Dawson and Taylor 1973, Baudinette et al. 1992, Kram and Dawson 1998), but it does not fully resolve the cost of generating force conundrum” Line 274-276.

      I have a few issues with the other half of this study (i.e. animal size effects). I would enjoy reading a new paragraph by these authors in the Discussion that considers the evolutionary origins and implications of such small safety factors. Surely, it would need to be speculative, but that's OK.

      We appreciate this comment from the reviewer, however could not extend the study to discuss animal size effects because, as we now note in the results: “The range of body masses may not be sufficient to detect an effect of mass on ankle moment in addition to the effect of speed.” Line 193

      Reviewer #2 (Public Review):

      Summary

      This is a fascinating topic that has intrigued scientists for decades. I applaud the authors for trying to tackle this enigma. In this manuscript, the authors primarily measured hopping biomechanics data from kangaroos and performed inverse dynamics. 

      While these biomechanical analyses were thorough and impressively incorporated collected anatomical data and an Opensim model, I'm afraid that they did not satisfactorily address how kangaroos can hop faster and not consume more metabolic energy, unique from other animals.  Noticeably, the authors did not collect metabolic data nor did they model metabolic rates using their modelling framework. Instead, they performed a somewhat traditional inverse dynamics analysis from multiple animals hopping at a self-selected speed.

      In the current study, we aimed to provide a joint-level explanation for the increases of tendon stress that are likely linked to metabolic energy consumption.

      We have now included a limitations section in the manuscript (See response to Rev 1). We plan to expand upon muscle level energetics in the future with a more detailed musculoskeletal model.

      Within these analyses, the authors largely focused on ankle EMA, discussing its potential importance (because it affects tendon stress, which affects tendon strain energy, which affects muscle mechanics) on the metabolic cost of hopping. However, EMA was roughly estimated (CoP was fixed to the foot, not measured) and did not detectibly associate with hopping speed (see results Yet, the authors interpret their EMA findings as though it systematically related with speed to explain their theory on how metabolic cost is unique in kangaroos vs. other animals

      As noted in our methods, EMA was not calculated from a fixed centre of pressure (CoP). We did fix the medial-lateral position, owing to the fact that both feet contacted the force plate together, but the anteroposterior movement of the CoP was recorded by the force plate and thus allowed to move. We report the movement (or lack of movement) in our results. The anterior-posterior axis is the most relevant to lengthening or shortening the distance of the ‘out-lever’ R, and thereby EMA. It is necessary to assume fixed medial-lateral position because a single force trace and CoP is recorded when two feet land on the force plate. The mediallateral forces on each foot cancel out so there is no overall medial-lateral movement if the forces are symmetrical (e.g. if the kangaroo is hopping in a straight path and one foot is not in front of the other). We only used symmetrical trials so that the anterior-posterior movement of the CoP would be reliable. We have now added additional details into the text to clarify this

      Indeed, the relationship between R and speed (and therefore EMA and speed) was not significant. However, the significant change in ankle height with speed, combined with no systematic change in COP at midstance, demonstrates that R would be greater at faster speeds. If we consider the nonsignificant relationship between R and speed to indicate that there is no change in R, then these two results conflict. We could not find a flaw in our methods, so instead concluded that the nonsignificant relationship between R and speed may be due to a small change in R being undetectable in our data. Taking both results into account, we believe it is more likely that there is a non-detectable change in R, rather than no change in R with speed, but we presented both results for transparency. We have added an additional section into the results to make this clearer (Line 177-185) “If we consider the nonsignificant relationship between R (and EMA) and speed to indicate that there is no change in R, then it conflicts with the ankle height and CoP result. Taking both into account, we think it is more likely that there is a small, but important, change in R, rather than no change in R with speed. It may be undetectable because we expect small effect sizes compared to the measurement range and measurement error (Suppl. Fig. 3h), or be obscured by a similar change in R with body mass. R is highly dependent on the length of the metatarsal segment, which is longer in larger kangaroos (1 kg BM corresponded to ~1% longer segment, P<0.001, R<sup>2</sup>=0.449). If R does indeed increase with speed, both R and r will tend to decrease EMA at faster speeds.”

      These speed vs. biomechanics relationships were limited by comparisons across different animals hopping at different speeds and could have been strengthened using repeated measures design

      There is significant variation in speed within individuals, not just between individuals. The preferred speed of kangaroos is 2-4.5 m/s, but most individuals showed a wide speed range within this. Eight of our 16 kangaroos had a maximum speed that was 1-2m/s faster than their slowest trial. Repeated measures of these eight individuals comprises 78 out of the 100 trials.   It would be ideal to collect data across the full range of speeds for all individuals, but it is not feasible in this type of experimental setting. Interference with animals such as chasing is dangerous to kangaroos as they are prone to adverse reactions to stress. We have now added additional information about the chosen hopping speeds into the results and methods sections to clarify this “The kangaroos elected to hop between 1.99 and 4.48 m s<sup>-1</sup>, with a range of speeds and number of trials for each individual (Suppl. Fig. 9).”  (Line 381-382)

      There are also multiple inconsistencies between the authors' theory on how mechanics affect energetics and the cited literature, which leaves me somewhat confused and wanting more clarification and information on how mechanics and energetics relate

      We thank the reviewer for this comment. Upon rereading we now understand the reviewers position, and have made substantial revisions to the introduction and discussion (See comments below) 

      My apologies for the less-than-favorable review, I think that this is a neat biomechanics study - but am unsure if it adds much to the literature on the topic of kangaroo hopping energetics in its current form.

      Again we thank the reviewer for their time and appreciate their efforts to strengthen our manuscript.

      Reviewer #3 (Public Review):

      Summary:

      The goal of this study is to understand how, unlike other mammals, kangaroos are able to increase hopping speed without a concomitant increase in metabolic cost. They use a biomechanical analysis of kangaroo hopping data across a range of speeds to investigate how posture, effective mechanical advantage, and tendon stress vary with speed and mass. The main finding is that a change in posture leads to increasing effective mechanical advantage with speed, which ultimately increases tendon elastic energy storage and returns via greater tendon strain. Thus kangaroos may be able to conserve energy with increasing speed by flexing more, which increases tendon strain.

      Strengths:

      The approach and effort invested into collecting this valuable dataset of kangaroo locomotion is impressive. The dataset alone is a valuable contribution.

      Thank you!

      Weaknesses:

      Despite these strengths, I have concerns regarding the strength of the results and the overall clarity of the paper and methods used (which likely influences how convincingly the main results come across).

      (1) The paper seems to hinge on the finding that EMA decreases with increasing speed and that this contributes significantly to greater tendon strain estimated with increasing speed. It is very difficult to be convinced by this result for a number of reasons:

      It appears that kangaroos hopped at their preferred speed. Thus the variability observed is across individuals not within. Is this large enough of a range (either within or across subjects) to make conclusions about the effect of speed, without results being susceptible to differences between subjects? 

      Apologies, this was not clear in the manuscript. Kangaroos hopping at their preferred speed means we did not chase or startle them into high speeds to comply with ethics and enclosure limitations. Thus we did not record a wide range of speeds within the bounds of what kangaroos are capable of in the wild (up to 12 m/s), but for the range we did measure (~2-4.5 m/s), there is a large amount of variation in hopping speed within each individual kangaroo. Out of 16 individuals, eight individuals had a difference of 1-2m/s between their slowest and fastest trials, and these kangaroos accounted for 78 out of 100 trials. Of the remainder, six individuals had three for fewer trials each, and two individuals had highly repeatable speeds (3 out of 4, and 6 out of 7 trials were within 0.5 m/s). We have now removed the terminology “preferred speed” e.g line 115. We have added additional information about the chosen hopping speeds into the results and methods, including an appendix figure “The kangaroos elected to hop between 1.99 and 4.48 m s<sup>-1</sup>, with a range of speeds and number of trials for each individual (Suppl. Fig. 9).” (Line 381-382)

      In the literature cited, what was the range of speeds measured, and was it within or between subjects?

      For other literature, to our knowledge the highest speed measured is ~9.5m/s (see supplementary Fig1b) and there were multiple measures for several individuals (see methods Kram & Dawson 1998). 

      Assuming that there is a compelling relationship between EMA and velocity, how reasonable is it to extrapolate to the conclusion that this increases tendon strain and ultimately saves metabolic cost?  They correlate EMA with tendon strain, but this would still not suggest a causal relationship (incidentally the p-value for the correlation is not reported). 

      The functions that underpin these results (e.g. moment = GRF*R) come from physical mechanics and geometry, rather than statistical correlations. Additionally, a p-value is not appropriate in the relationship between EMA and stress (rather than strain) because the relationship does not appear to be linear. We have made it clearer in the discussion that we are not proposing that entire change in stress is caused by changes in EMA, but that the increase in GRF that naturally occurs with speed will also explain some of the increase in stress, along with other potential mechanisms. The discussion has been extensively revised to reflect this. 

      Tendon strain could be increasing with ground reaction force, independent of EMA. Even if there is a correlation between strain and EMA, is it not a mathematical necessity in their model that all else being equal, tendon stress will increase as ema decreases? I may be missing something, but nonetheless, it would be helpful for the authors to clarify the strength of the evidence supporting their conclusions.

      Yes, GRF also contributes to the increase in tendon stress in the mechanism we propose (Suppl. Fig. 8), see the formulas in Fig 6, and we have made this clearer in the revised discussion (see above comment).  You are correct that mathematically stress is inversely proportional to EMA, which can be observed in Fig. 7a, and we did find that EMA decreases. 

      The statistical approach is not well-described. It is not clear what the form of the statistical model used was and whether the analysis treated each trial individually or grouped trials by the kangaroo. There is also no mention of how many trials per kangaroo, or the range of speeds (or masses) tested. 

      The methods include the statistical model with the variables that we used, as well as the kangaroo masses (13.7 to 26.6 kg, mean: 20.9 ± 3.4 kg). We did not have sufficient within individual sample size to use a linear mixed effect model including subject as a random factor, thus all trials were treated individually. We have included this information in the results section. 

      We have now moved the range of speeds from the supplementary material to the results and figure captions. We have added information on the number of trials per kangaroo to the methods, and added Suppl. Fig. 9 showing the distribution of speeds per kangaroo.

      We did not group the data e.g. by using an average speed per individual for all their trials, or by comparing fast to slow groups for statistical analysis (the latter was only for display purposes in our figures, which we have now made clearer in the methods statistics section). 

      Related to this, there is no mention of how different speeds were obtained. It seems that kangaroos hopped at a self-selected pace, thus it appears that not much variation was observed. I appreciate the difficulty of conducting these experiments in a controlled manner, but this doesn’t exempt the authors from providing the details of their approach.

      Apologies, this was not clear in the manuscript. Kangaroos hopping at their preferred speed means we did not chase or startle them into high speeds to comply with ethics and enclosure limitations. Thus we did not record a wide range of speeds within the bounds of what kangaroos are capable of in the wild (up to 12 m/s). We have now removed the terminology “preferred speed” e.g. line 115. We have added additional information about the chosen hopping speeds into the results and methods, including an appendix figure (see above comment). (Line 381-382)

      Some figures (Figure 2 for example) present means for one of three speeds, yet the speeds are not reported (except in the legend) nor how these bins were determined, nor how many trials or kangaroos fit in each bin. A similar comment applies to the mass categories. It would be more convincing if the authors plotted the main metrics vs. speed to illustrate the significant trends they are reporting.

      Thank you for this comment. The bins are used only for display purposes and not within the statistical analysis. We have clarified this in the revised manuscript: “The data was grouped into body mass (small 17.6±2.96 kg, medium 21.5±0.74 kg, large 24.0±1.46 kg) and speed (slow 2.52±0.25 m s<sup>-1</sup>, medium 3.11±0.16 m s<sup>-1</sup>, fast 3.79±0.27 m s<sup>-1</sup>) subsets for display purposes only”. (Line 495-497)

      (2) The significance of the effects of mass is not clear. The introduction and abstract suggest that the paper is focused on the effect of speed, yet the effects of mass are reported throughout as well, without a clear understanding of the significance. This weakness is further exaggerated by the fact that the details of the subject masses are not reported.

      Indeed, the primary aim of our study was to explore the influence of speed, given the uncoupling of energy from hopping speed in kangaroos. We included mass to ensure that the effects of speed were not driven by body mass (i.e.: that larger kangaroos hopped faster). Subject masses were reported in the first paragraph of the methods, albeit some were estimated as outlined in the same paragraph.

      (3) The paper needs to be significantly re-written to better incorporate the methods into the results section. Since the results come before the methods, some of the methods must necessarily be described such that the study can be understood at some level without turning to the dedicated methods section. As written, it is very difficult to understand the basis of the approach, analysis, and metrics without turning to the methods.

      The methods after the discussion is a requirement of the journal. We have incorporated some methods in the results where necessary but not too repetitive or disruptive, e.g. Fig. 1 caption, and specifying we are only analysing EMA for the ankle joint

      Reviewing Editor (Recommendations For The Authors):

      Below is a list of specific recommendations that the authors could address to improve the eLife assessment:

      (1) Based on the data presented and the fact that metabolic energy was not measured, the authors should temper their conclusions and statements throughout the manuscript regarding the link between speed and metabolic energy savings. We recommend adding text to the discussion summarizing the strengths and limitations of the evidence provided and suggesting future steps to more conclusively answer this mystery.

      There is a significant body of work linking metabolic energy savings to measured increases in tendon stress in macropods. However, the purpose of this paper was to address the unanswered questions about why tendon stress increases. We found that stress did not only increase due to GRF increasing with speed as expected, but also due to novel postural changes which decreased EMA. In the revised manuscript, we have tempered our conclusions to make it clearer that it is not just EMA affecting stress, and added limitations throughout the manuscript (see response to Rev 1). 

      (2) To provide stronger evidence of a link between speed, mechanics, and metabolic savings the authors can consider estimating metabolic energy expenditure from their OpenSIM model. This is one suggestion, but the authors likely have other, possibly better ideas. Such a model should also be able to explain why the metabolic rate increases with speed during uphill hopping.

      Extending the model to provide direct metabolic cost estimates will be the goal of a future paper, however the models does not have detailed muscle characteristics to do this in the formulation presented here. It would be a very large undertaking which is beyond the scope of the current manuscript. As per the comment above, the results of this paper are not reliant on metabolic performance. 

      (3) The authors attempt to relate the newly quantified hopping biomechanics to previously published metabolic data. However, all reviewers agree that the logic in many instances is not clear or contradictory. Could one potential explanation be that at slow speeds, forces and tendon strain are small, and thus muscle fascicle work is high? Then, with faster speeds, even though the cost of generating isometric force increases, this is offset by the reduction in the metabolic cost of muscular work. The paper could provide stronger support for their hypotheses with a much clearer explanation of how the kinematics relate to the mechanics and ultimately energy savings.

      In response to the reviewers comments, we have substantially modified the discussion to provide clearer rationale.

      (4) The methods and the effort expended to collect these data are impressive, but there are a number of underlying assumptions made that undermine the conclusions. This is due partly to the methods used, but also the paper's incomplete description of their methods. We provide a few examples below:

      It would be helpful if the authors could speak to the effect of the limited speeds tested and between-animal comparisons on the ability to draw strong conclusions from the present dataset. ·

      Throughout the discussion, the authors highlight the relationship between EMA and speed. However, this is misleading since there was no significant effect of speed on EMA. Speed only affected the muscle moment arm, r. At minimum, this should be clarified and the effect on EMA not be overstated. Additionally, the resulting implications on their ability to confidently say something about the effect of speed on muscle stress should be discussed. 

      We have now provided additional details, (see responses above) to these concerns. For instance, we added a supplementary figure showing the speed distribution per individual. The primary reviewer concern (that each kangaroo travelled at a single speed) was due to a miscommunication around the terminology “preferred” which has now been corrected. 

      We now elaborate in the results why we are not very concerned that EMA is insignificant. The statistical insignificance of EMA is ultimately due to the insignificance of the direct measurement of R, however, we now better explain in the results why we believe that this statistical insignificance is due to error/noise of the measurement which is relatively large compared to the effect size. Indirect indications of how R may increase with speed (via ankle height from the ground) are statistically significant. Lines 177-185. 

      We consider this worth reporting because, for instance, an 18% change in EMA will be undetectable by measurement, but corresponds to an 18% change in tendon stress which is measurable and physiologically significant (safety factor would decrease from 2 to 1.67).  We presented both significant and insignificant results for transparency. 

      We have also discussed this within a revised limitations section of the manuscript (Line 311328). 

      Reviewer #1 (Recommendations For The Authors):

      Title: I would cut the first half of the title. At least hedge it a bit. "Clues" instead of "Unlocking the secrets".

      We have revised the title to: “Postural adaptations may contribute to the unique locomotor energetics seen in hopping kangaroos”

      In my comments, ... typically indicates a stylistic change suggested to the text.

      Overall, the paper covers speed and size. Unfortunately, the authors were not 100% consistent in the order of presenting size then speed, or speed then size. Just choose one and stick with it.

      We have attempted to keep the order of presenting size and speed consistent, however there are several cases where this would reduce the readability of the manuscript and so in some cases this may vary. 

      One must admit that there is a lot of vertical scatter in almost all of the plots. I understand that these animals were not in a lab on a treadmill at a controlled speed and the animals wear fur coats so marker placements vary/move etc. But the spread is quite striking, e.g. Figure 5a the span at one speed is almost 10x. Can the authors address this somewhere? Limitations section?

      The variation seen likely results from attempting to display data in a 2D format, when it is in fact the result of multiple variables, including speed, mass, stride frequency and subject specific lengths. Slight variations in these would be expected to produce some noise around the mean, and I think it’s important to consider this while showing the more dominant effects. 

      In many locations in the manuscript, the term "work" is used, but rarely if ever specified that this is the work "per hop". The big question revolves around the rate of metabolic energy consumption (i.e. energy per time or average metabolic power), one must not forget that hop frequency changes somewhat across speed, so work per hop is not the final calculation.

      Thank you for this comment. We have now explicitly stated work per hop in figure captions and in the results (line 208). The change in stride frequency at this range of speeds is very small, particularly compared to the variance in stride frequency (Suppl. Fig. 1d), which is consistent with other researchers who found that stride frequency was constant or near constant in macropods at analogous speeds (e.g. Dawson and Taylor 1973, Baudinette et al. 1987). 

      Line 61 ....is likely related.

      Added “likely” (line 59)

      Line 86 I think the Allen reference is incomplete. Wasn't it in J Exp Biology?

      Thank you. Changed. 

      Line 122 ... at faster speeds and in larger individuals.

      Changed: “We hypothesised that (i) the hindlimb would be more crouched at faster speeds, primarily due to the distal hindlimb joints (ankle and metatarsophalangeal), independent of changes with body mass” (Line 121-122).

      Line 124 I found this confusing. Try to re-word so that you explain you mean more work done by the tendons and less by the ankle musculature.

      Amended: “changes in moment arms resulting from the change in posture would contribute to the increase in tendon stress with speed, and may thereby contribute to energetic savings by increasing the amount of positive and negative work done by the ankle without requiring additional muscle work” (Line 123)

      Line 129 hopefully "braking" not "breaking"!

      Thank you. Fixed. (Line 130)

      Line 129 specify fore-aft horizontal force.

      Added "fore-aft" to "negative fore-aft horizontal component" (Line 130-131)

      Line 130 add something like "of course" or "naturally" since if there is zero fore-aft force, the GRF vector of course must be vertical. 

      Added "naturally" (Line 132)

      Line 138 clarify that this section is all stance phase. I don't recall reading any swing phase data.

      Changed to: "Kangaroo hindlimb stance phase kinematics varied…" (Line 141)

      Line 143 and elsewhere. I found the use of dorsiflexion and plantarflexion confusing. In Figure 3, I see the ankle never flexing more than 90 degrees. So, the ankle joint is always in something of a flexed position, though of course it flexes and extends during contact. I urge the authors to simplify to flextion/extension and drop the plantar/dorsi.

      We have edited this section to describe both movements as greater extension (plantarflexion). (Line 147). We have further clarified this in the figure caption for figure 3.  

      Line 147 ...changes were…

      Fixed, line 150

      Line 155 I'm a bit confused here. Are the authors calculating some sort of overall EMA or are they saying all of the individual joint EMAs all decreased?

      Thank you, we clarified that it is at the ankle. Line 158

      Line 158 since kangaroos hop and are thus positioned high and low throughout the stance phase, try to avoid using "high" and "low" for describing variables, e.g. GRF or other variables. Just use "greater/greatest" etc.

      Thanks for this suggestion. We have changed "higher" into "greater" where appropriate throughout the manuscript e.g. line 161

      Lines 162 and 168 same comment here about "r" and "R". Do you mean ankle or all joints?

      Clarified that it is the gastrocnemius and plantaris r, and the R to the ankle. (Lines 164-165)

      Line 173 really, ankle height?

      Added: ankle height is "vertical distance from the ground". Line 177

      Line 177 is this just the ankle r?

      Added "of the ankle" line 158 and “Achilles” line 187 

      Line 183 same idea, which tendon/tendons are you talking about here?

      Added "Achilles" to be more clear (Line 187)

      Line 195 substitute "converted" for "transferred".

      Done (Line 210)

      Line 223 why so vague? i.e. why use "may"? Believe in your data. ...stress was also modulated by changes....

      Changed "may" to "is"

      Line 229 smaller ankle EMA (especially since you earlier talked about ankle "height").

      Changed “lower” to “smaller” Line 254

      Line 2236 ...and return elastic energy…

      Added "elastic" line 262

      Line 244 IMPORTANT: Need to explain this better! I think you are saying that the net work at the ankle is staying the same across speed, BUT it is the tendons that are storing and returning that work, it's not that the muscles are doing a lot of negative/positive work.

      Changed: “The consistent net work observed among all speeds suggests the ankle extensor muscle-tendon units are performing similar amounts of ankle work independent of speed, which would predominantly be done by the tendon.” Line 270-272)

      Line 258-261 I think here is where you are over-selling the data/story. Although you do say "a" mechanism (and not "the" mechanism, you still need to deal with the cost of generating more force and generating that force faster.

      We removed this sentence and replaced it with a discussion of the cost of generating force hypothesis, and alternative scenarios for the how force and metabolics could be uncoupled. 

      Line 278 "the" tendon? Which tendon?

      Added "Achilles"

      Line 289. I don't think one can project into the past.

      Changed “projected” to "estimated"

      Line 303 no problem, but I've never seen a paper in biology where the authors admit they don't know what species they were studying!

      Can’t be helped unfortunately. It is an old dataset and there aren’t photos of every kangaroo. Fortunately, from the grey and red kangaroos we can distinguish between, we know there are no discernible species effects on the data. 

      Lines 304-306 I'm not clear here. Did you use vertical impulse (and aerial time) to calculate body weight? Or did you somehow use the braking/propulsive impulse to calculate mass? I would have just put some apples on the force plate and waited for them to stop for a snack.

      Stationary weights were recorded for some kangaroos which did stand on the force plate long enough, but unfortunately not all of them were willing to do so. In those cases, yes, we used impulse from steady-speed trials to estimate mass. We cross-checked by estimated mass from segment lengths (as size and mass are correlated). This is outlined in the first paragraph of the methods.

      Lines 367 & 401 When you use the word "scaled" do you mean you assumed geometric similarity?

      No, rather than geometric scaling, we allowed scaling to individual dimensions by using the markers at midstance for measurements. We have amended the paragraph to clarify that the shape of the kangaroo changes and that mass distribution was preserved during the shape change (line 441-446) 

      Lines 381-82 specify "joint work"

      Added "joint work"  (Line 457)

      Figure 1 is gorgeous. Why not add the CF equation to the left panel of the caption?

      We decided to keep the information in the figure caption. “Total leg length was calculated as the sum of the segment lengths (solid black lines) in the hindlimb and compared to the pelvisto-toe distance (dashed line) to calculate the crouch factor”

      Figure 2 specify Horizontal fore-aft.

      Done

      Figure 3g I'd prefer the same Min. Max Flexion vertical axis labels as you use for hip & knee.

      While we appreciate the reviewer trying to increase the clarity of this figure, we have left it as plantar/dorsi flexion since these are recognised biomechanical terms. To avoid confusion, we have further defined these in the figure caption “For (f-g), increased plantarflexion represents a decrease in joint flexion, while increased dorsiflexion represents increased flexion of the joint.”

      Figure 4. I like it and I think that you scaled all panels the same, i.e. 400 W is represented by the same vertical distance in all panels. But if that's true, please state so in the Caption. It's remarkable how little work occurs at the hip and knee despite the relatively huge muscles there.

      Is it true that the y axes are all at the same scale. We have added this to the caption. 

      Figure 5 Caption should specify "work per hop".

      Added

      Figure 7 is another beauty.

      Thank you!

      Supplementary Figure 3 is this all ANKLE? Please specify.

      Clarified that it is the gastrocnemius and plantaris r, and the R to the ankle.

      Reviewer #2 (Recommendations For The Authors):

      To 'unlock the secrets of kangaroo locomotor energetics' I expected the authors to measure the secretive outcome variable, metabolic rate using laboratory measures. Rather, the authors relied on reviewing historic metabolic data and collecting biomechanics data across different animals, which limits the conclusions of this manuscript.

      We have revised to the title to make it clearer that we are investigating a subset of the energetics problem, specifically posture. “Postural adaptations may contribute to the unique locomotor energetics seen in hopping kangaroos.” We have also substantially modified the discussion to temper the conclusions from the paper. 

      After reading the hypothesis, why do the authors hypothesize about joint flexion and not EMA? Because the following hypothesis discusses the implications of moment arms on tendon stress, EMA predictions are more relevant (and much more discussed throughout the manuscript).

      Ankle and MTP angles are the primary drivers of changes in r, R & thus, EMA. We used a two part hypothesis to capture this. We have rephased the hypotheses: “We hypothesised that (i) the hindlimb would be more crouched at faster speeds, primarily due to the distal hindlimb joints (ankle and metatarsophalangeal), independent of changes with body mass, and (ii) changes in moment arms resulting from the change in posture would contribute to the increase in tendon stress with speed, and may thereby contribute to energetic savings by increasing the amount of positive and negative work done by the ankle without requiring additional muscle work.”

      If there were no detectable effects of speed on EMA, are kangaroos mechanically like other animals (Biewener Science 89 & JAP 04) who don't vary EMA across speeds? Despite no detectible effects, the authors state [lines 228-229] "we found larger and faster kangaroos were more crouched, leading to lower ankle EMA". Can the authors explain this inconsistency? Lines 236 "Kangaroos appear to use changes in posture and EMA". I interpret the paper as EMA does not change across speed.

      Apologies, we did not sufficiently explain this originally. We now explain in the results our reasoning behind our belief that EMA and R may change with speed. “If we consider the nonsignificant relationship between R (and EMA) and speed to indicate that there is no change in R, then it conflicts with the ankle height and CoP result. Taking both into account, we think it is more likely that there is a small, but important, change in R, rather than no change in R with speed. It may be undetectable because we expect small effect sizes compared to the measurement range and measurement error (Suppl. Fig. 3h), or be obscured by a similar change in R with body mass. R is highly dependent on the length of the metatarsal segment, which is longer in larger kangaroos (1 kg BM corresponded to ~1% longer segment, P<0.001, R<sup>2</sup>=0.449). If R does indeed increase with speed, both R and r will tend to decrease EMA at faster speeds.” (Line 177-185)

      Lines 335-339: "We assumed the force was applied along phalanx IV and that there was no medial or lateral movement of the centre of pressure (CoP)". I'm confused, did the authors not measure CoP location with respect to the kangaroo limb? If not, this simple estimation undermines primary results (EMA analyses).

      We have changed "The anterior or posterior movement of the CoP was recorded by the force plate" to read: "The fore-aft movement of the CoP was recorded by the force plate within the motion capture coordinate system" (Line 406-407) and added more justification for fixing the CoP movement in the other axis: “It was necessary to assume the CoP was fixed in the mediallateral axis because when two feet land on the force plate, the lateral forces on each foot are not recorded, and indeed cancel if the forces are symmetrical (i.e. if the kangaroo is hopping in a straight path and one foot is not in front of the other). We only used symmetrical trials to ensure reliable measures of the anterior-posterior movement of the CoP.” (Line 408-413)

      The introduction makes many assertions about the generalities of locomotion and the relationship between mechanics and energetics. I'm afraid that the authors are selectively choosing references without thoroughly evaluating alternative theories. For example, Taylor, Kram, & others have multiple papers suggesting that decreasing EMA and increasing muscle force (and active muscle volume) increase metabolic costs during terrestrial locomotion. Rather, the authors suggest that decreasing EMA and increasingly high muscle force at faster speeds don't affect energetics unless muscle work increases substantially (paragraph 2)? If I am following correctly, does this theory conflict with active muscle volume ideas that are peppered throughout this manuscript?

      Yes, as you point out, the same mechanism does lead to different results in kangaroos vs humans, for instance, but this is not a contradiction. In all species, decreasing EMA will result in an increase in muscle force due to less efficient leverage (i.e. lower EMA) of the muscles, and the muscle-tendon unit will be required to produce more force to balance the joint moment. As a consequence, human muscles activate a greater volume in order for the muscle-tendon unit to increase muscle work and produce enough force. We are proposing that in kangaroos, the increase in work is done by the achilles tendon rather than the muscles. Previous research suggests that macropod ankle muscles contract isometrically or that the fibres do not shorten more at faster speeds i.e. muscle work does not increase with speed. Instead, the additional force seems to come from the tendon storing and subsequently returning more strain energy (indicated by higher stress). We found that the increase in tendon stress comes from higher ground force at faster speeds, and from it adopting a more crouched posture which increases the tendons’ stresses compared to an upright posture for a given speed (think of this as increasing the tendon’s stress capacity). We have substantially revised the discussion to highlight this.

      Similarly, does increased gross or net tendon mechanical energy storage & return improve hopping energetics? Would more tendon stress and strain energy storage with a given hysteresis value also dissipate more mechanical energy, requiring leg muscles to produce more net work? Does net or gross muscle work drive metabolic energy consumption?

      Based on the cost of generating force hypothesis, we think that gross muscle work would be linked to driving metabolic energy consumption. Our idea here is that the total body work is a product of the work done by the tendon and the muscle combined. If the tendon has the potential to do more work, then the total work can increase without muscle work needing to increase.

      The results interpret speed effects on biomechanics, but each kangaroo was only collected at 1 speed. Are inter-animal comparisons enough to satisfy this investigation?

      We have added a figure (Suppl Fig 9) to demonstrate the distribution of speed and number of trials per kangaroo. We have also removed "preferred" from the manuscript as this seems to cause confusion. Most kangaroos travelled at a range of “casual” speeds.

      Abstract: Can the authors more fully connect the concept of tendon stress and low metabolic rates during hopping across speeds? Surely, tendon mechanics don't directly drive the metabolic cost of hopping, but they affect muscle mechanics to affect energetics.

      Amended to: " This phenomenon may be related to greater elastic energy savings due to increasing tendon stress; however, the mechanisms which enable the rise in stress, without additional muscle work remain poorly understood." (Lines 25-27).

      The topic sentence in lines 61-63 may be misleading. The ensuing paragraph does not substantiate the topic sentence stating that ankle MTUs decouple speeds and energetics.

      We added "likely" to soften the statement. (Line 59)

      Lines 84-86: In humans, does more limb flexion and worse EMA necessitate greater active muscle volume? What about muscle contractile dynamics - See recent papers by Sawicki & colleagues that include Hill-type muscle mechanics in active muscle volume estimates.

      Added: “Smaller EMA requires greater muscle force to produce a given force on the ground, thereby demanding a greater volume of active muscle, and presumably greater metabolic rates than larger EMA for the same physiology”. (Line 80-82)

      Lines 106: can you give the context of what normal tendon safety factors are?

      Good idea. Added: "far lower than the typical safety factor of four to eight for mammalian tendons (Ker et al. 1988)." Line 106-107

      I thought EMA was relatively stable across speeds as per Biewener [Science & JAP '04]. However the authors gave an example of an elephant to suggest that it is typically inversely related to speed. Can the authors please explain the disconnect and the most appropriate explanation in this paragraph?

      Knee EMA in particular changed with speed in Biewener 2004. What is “typical” probably depends on the group of animals studied; e.g., cursorial quadrupedal mammals generally seem to maintain constant EMA, but other groups do not.

      These cases are presented to show a range of consequences for changing EMA (usually with mass, but sometimes with speed). We have made several adjustments to the paragraph to make this clearer. Lines 85-93.

      The results depend on the modeled internal moment arm (r). How confident are the authors in their little r prediction? Considering complications of joint mechanics in vivo including muscle bulging. Holzer et al. '20 Sci Rep demonstrated that different models of the human Achilles tendon moment arm predict vastly different relationships between the moment arm and joint angle.

      Our values for r and EMA closely align with previous papers which measured/calculate these values in kangaroos, such as Kram 1998, and thus we are confident in our interpretation.  

      This is a misleading results sentence: Small decreases in EMA correspond to a nontrivial increase in tendon stress, for instance, reducing EMA from 0.242 (mean minimum EMA of the slow group) to 0.206 (mean minimum EMA of the fast group) was associated with an ~18% increase in tendon stress. The authors could alternatively say that a ~15% decrease in EMA was associated with an ~18% increase in tendon stress, which seems pretty comparable.

      Thank you for pointing this out, it is important that it is made clearer. Although the change in relative magnitude is approximately the same (as it should be), this does not detract from the importance. The "small decrease in EMA" is referring to the absolute values, particularly in respect to the measurement error/noise. The difference is small enough to have been undetectable with other methods used in previous studies. We have amended the sentence to clarify this.

      It now reads: “Subtle decreases in EMA which may have been undetected in previous studies correspond to discernible increases in tendon stress. For instance, reducing EMA from 0.242 (mean minimum EMA of the slow group) to 0.206 (mean minimum EMA of the fast group) was associated with an increase in tendon stress from ~50 MPa to ~60 MPa, decreasing safety factor from 2 to 1.67 (where 1 indicates failure), which is both measurable and physiologically significant.” (Line 195-200)

      Lines 243-245: "The consistent net work observed among all speeds suggests the ankle extensors are performing similar amounts of ankle work independent of speed." If this is true, and presumably there is greater limb work performed on the center of mass at faster speeds (Donelan, Kram, Kuo), do more proximal leg joints increase work and energy consumption at faster speeds?

      The skin over the proximal leg joints (knee and hip) moves too much to get reliable measures of EMA from the ratio of moment arms. This will be pursued in future work when all muscles are incorporated in the model so knee and hip EMA can be determined from muscle force.

      We have added limitations and considerations paragraph to the manuscript: “Finally, we did not determine whether the EMA of proximal hindlimb joints (which are more difficult to track via surface motion capture markers) remained constant with speed. Although the hip and knee contribute substantially less work than the ankle joint (Fig. 4), the majority of kangaroo skeletal muscle is located around these proximal joints. A change in EMA at the hip or knee could influence a larger muscle mass than at the ankle, potentially counteracting or enhancing energy savings in the ankle extensor muscle-tendon units. Further research is needed to understand how posture and muscles throughout the whole body contribute to kangaroo energetics.” (Line 321-328)

      Lines 245-246: "Previous studies using sonomicrometry have shown that the muscles of tammar wallabies do not shorten considerably during hops, but rather act near-isometrically as a strut" Which muscles? All muscles? Extensors at a single joint?

      Added "gastrocnemius and plantaris" Line 164-165

      Lines 249-254: "The cost of generating force hypothesis suggests that faster movement speeds require greater rates of muscle force development, and in turn greater cross-bridge cycling rates, driving up metabolic costs (Taylor et al. 1980, Kram and Taylor 1990). The ability for the ankle extensor muscle fibres to remain isometric and produce similar amounts of work at all speeds may help explain why hopping macropods do not follow the energetic trends observed in quadrupedal species." These sentences confuse me. Kram & Taylor's cost of force-generating hypothesis assumes that producing the same average force over shorter contact times increases metabolic rate. How does 'similar muscle work' across all speeds explain the ability of macropods to use unique energetic trends in the cost of force-generating hypothesis context?

      Thank you for highlighting this confusion. We have substantially revised the discussion clarify where the mechanisms presented deviate from the cost of generating force hypothesis. Lines 270-309

      Reviewer #3 (Recommendations For The Authors):

      In addition to the points described in the public review, I have additional, related, specific comments:

      (1) Results: Please refer to the hypotheses in the results, and relate the the findings back to the hypotheses.

      We now relate the findings back to the hypotheses 

      Line 142 “In partial support of hypothesis (i), greater masses and faster speeds were associated with more crouched hindlimb postures (Fig. 3a,c).”.

      Lines 205-206: “The increase in tendon stress with speed, facilitated in part by the change in moment arms by the shift in posture, may explain changes in ankle work (c.f. Hypothesis (ii)).” 

      (2) Results: please provide the main statistical results either in-line or in a table in the main text.

      We (the co-authors) have discussed this at length, and have agreed that the manuscript is far more readable in the format whereby most statistics lie within the supplementary tables, otherwise a reader is met with a wall of statistics. We only include values in the main text when the magnitude is relevant to the arguments presented in the results and discussion.

      (3) Line 140: Describe how 'crouched' was defined.

      We have now added a brief definition of ‘Crouch factor’ after the figure caption. (Line 143) (Fig. 3a,c; where crouch factor is the ratio of total limb length to pelvis to toe distance).

      (4) Line 162: This seems to be a main finding and should be a figure in the main text not supplemental. Additionally, Supplementary Figures 3a and b do not show this finding convincingly There should be a figure plotting r vs speed and r vs mass.

      The combination of r and R are represented in the EMA plot in the main text. The r and R plots are relegated to the supplementary because the main text is already very crowded.  Thank you for the suggestion for the figure plotting r and R versus speed, this is now included as Suppl. Fig. 3h

      (5) Line 166: Supplementary Figure 3g does not show the range of dorsiflexion angles as a function of speed. It shows r vs dorsiflexion angle. Please correct.

      Thanks for noticing this, it was supposed to reference Fig 3g rather than Suppl Fig 3g in the sentence regarding speed. We have fixed this, Line 170. 

      We had added a reference to Suppl Fig 3 on Line 169 as this shows where the peak in r with ankle angle occurs (114.4 degrees).

      (6) Line 184: Where are the statistical results for this statement?

      The relationship between stress and EMA does not appear to be linear, thus we only present R<sup>^</sup>2 for the power relationship rather than a p-value. 

      (7) Line 192: The authors should explain how joint work and power relate/support the overall hypotheses. This section also refers to Figures 4 and 5 even though Figures 6 and 7 have already been described. Please reorganize.

      We have added a sentence at the end of the work and power section to mention hypothesis (ii) and lead into the discussion where it is elaborated upon. 

      “The increase in positive and negative ankle work may be due to the increase in tendon stress rather than additional muscle work.” Line 219-220 We have rearranged the figure order.

      (8) The statistics are not reported in the main text, but in the supplementary tables. If a result is reported in the main text, please report either in-line or with a table in the main text.

      We leave most statistics in the supplementary tables to preserve the readability of the manuscript. We only include values in the main text when the magnitude is relevant to the arguments raised in the results and discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This paper presents results from four independent experiments, each of which tests for rhythmicity in auditory perception. The authors report rhythmic fluctuations in discrimination performance at frequencies between 2 and 6 Hz. The exact frequency depends on the ear and experimental paradigm, although some frequencies seem to be more common than others.

      Strengths:

      The first sentence in the abstract describes the state of the art perfectly: "Numerous studies advocate for a rhythmic mode of perception; however, the evidence in the context of auditory perception remains inconsistent". This is precisely why the data from the present study is so valuable. This is probably the study with the highest sample size (total of > 100 in 4 experiments) in the field. The analysis is very thorough and transparent, due to the comparison of several statistical approaches and simulations of their sensitivity. Each of the experiments differs from the others in a clearly defined experimental parameter, and the authors test how this impacts auditory rhythmicity, measured in pitch discrimination performance (accuracy, sensitivity, bias) of a target presented at various delays after noise onset.

      Weaknesses:

      (1) The authors find that the frequency of auditory perception changes between experiments. I think they could exploit differences between experiments better to interpret and understand the obtained results. These differences are very well described in the Introduction, but don't seem to be used for the interpretation of results. For instance, what does it mean if perceptual frequency changes from between- to within-trial pitch discrimination? Why did the authors choose this experimental manipulation? Based on differences between experiments, is there any systematic pattern in the results that allows conclusions about the roles of different frequencies? I think the Discussion would benefit from an extension to cover this aspect.

      We believe that interpreting these differences remains difficult and a precise, detailed (and possibly mechanistic) interpretation is beyond the goal of the present study. The main goal of this study was to explore the consistency and variability of effects across variations of the experimental design and samples of participants. Interpreting specific effects, e.g. at particular frequencies, would make sense mostly if differences between experiments have been confirmed in a separate reproduction. Still, we do provide specific arguments for why differences in the outcome between different experiments, e.g. with and without explicit trial initialization by the participants, could be expected. See lines 91ff in the introduction and 786ff in the discussion.

      (2) The Results give the impression of clear-cut differences in relevant frequencies between experiments (e.g., 2 Hz in Experiment 1, 6 Hz in Exp 2, etc), but they might not be so different. For instance, a 6 Hz effect is also visible in Experiment 1, but it just does not reach conventional significance. The average across the three experiments is therefore very useful, and also seems to suggest that differences between experiments are not very pronounced (otherwise the average would not produce clear peaks in the spectrum). I suggest making this point clearer in the text.

      We have revised the conclusions to note that the present data do not support clear cut differences between experiments. For this reason we also refrain from detailed interpretations of specific effects, as suggested by this reviewer in point 1 above.

      (3) I struggle to understand the hypothesis that rhythmic sampling differs between ears. In most everyday scenarios, the same sounds arrive at both ears, and the time difference between the two is too small to play a role for the frequencies tested. If both ears operate at different frequencies, the effects of the rhythm on overall perception would then often cancel out. But if this is the case, why would the two ears have different rhythms to begin with? This could be described in more detail.

      This hypothesis was not invented by us, but in essence put forward in previous work. The study by Ho et al. CurrBiol 2017 has reported rhythmic effects at different frequencies in the left and right ears, and we here tried to reproduce these effects. One could speculate about an ear-difference based on studies reporting a right-ear advantage in specific listening tasks, and the idea that different time scales of rhythmic brain activity may be specifically prevail in the left and right cortical hemispheres; hence it does not seem improbable that there could be rhythmic effects in both ears at different frequencies. We note this in the introduction, l. 65ff.

      Reviewer #2 (Public review):

      Summary:

      The current study aims to shed light on why previous work on perceptual rhythmicity has led to inconsistent results. They propose that the differences may stem from conceptual and methodological issues. In a series of experiments, the current study reports perceptual rhythmicity in different frequency bands that differ between different ear stimulations and behavioral measures.

      The study suggests challenges regarding the idea of universal perceptual rhythmicity in hearing.

      Strengths:

      The study aims to address differences observed in previous studies about perceptual rhythmicity. This is important and timely because the existing literature provides quite inconsistent findings. Several experiments were conducted to assess perceptual rhythmicity in hearing from different angles. The authors use sophisticated approaches to address the research questions.

      Weaknesses:

      (1) Conceptional concerns:

      The authors place their research in the context of a rhythmic mode of perception. They also discuss continuous vs rhythmic mode processing. Their study further follows a design that seems to be based on paradigms that assume a recent phase in neural oscillations that subsequently influence perception (e.g., Fiebelkorn et al.; Landau & Fries). In my view, these are different facets in the neural oscillation research space that require a bit more nuanced separation. Continuous mode processing is associated with vigilance tasks (work by Schroeder and Lakatos; reduction of low frequency oscillations and sustained gamma activity), whereas the authors of this study seem to link it to hearing tasks specifically (e.g., line 694). Rhythmic mode processing is associated with rhythmic stimulation by which neural oscillations entrain and influence perception (also, Schroeder and Lakatos; greater low-frequency fluctuations and more rhythmic gamma activity). The current study mirrors the continuous rather than the rhythmic mode (i.e., there was no rhythmic stimulation), but even the former seems not fully fitting, because trials are 1.8 s short and do not really reflect a vigilance task. Finally, previous paradigms on phase-resetting reflect more closely the design of the current study (i.e., different times of a target stimulus relative to the reset of an oscillation). This is the work by Fiebelkorn et al., Landau & Fries, and others, which do not seem to be cited here, which I find surprising. Moreover, the authors would want to discuss the role of the background noise in resetting the phase of an oscillation, and the role of the fixation cross also possibly resetting the phase of an oscillation. Regardless, the conceptional mixture of all these facets makes interpretations really challenging. The phase-reset nature of the paradigm is not (or not well) explained, and the discussion mixes the different concepts and approaches. I recommend that the authors frame their work more clearly in the context of these different concepts (affecting large portions of the manuscript).

      Indeed, the paradigms used here and in many similar previous studies incorporate an aspect of phase-resetting, as the presentation of a background noisy may effectively reset ongoing auditory cortical processes. Studies trying to probe for rhythmicity in auditory perception in the absence any background noise have not shown any effect (Zoefel and Heil, 2013), perhaps because the necessary rhythmic processes along auditory pathways are only engaged when some sound is present. We now discuss these points, and also acknowledge the mentioned studies in the visual system; l. 57.

      (2) Methodological concerns:

      The authors use a relatively unorthodox approach to statistical testing. I understand that they try to capture and characterize the sensitivity of the different analysis approaches to rhythmic behavioral effects. However, it is a bit unclear what meaningful effects are in the study. For example, the bootstrapping approach that identifies the percentage of significant variations of sample selections is rather descriptive (Figures 5-7). The authors seem to suggest that 50% of the samples are meaningful (given the dashed line in the figure), even though this is rarely reached in any of the analyses. Perhaps >80% of samples should show a significant effect to be meaningful (at least to my subjective mind). To me, the low percentage rather suggests that there is not too much meaningful rhythmicity present. 

      We note that there is no clear consensus on what fraction of experiments should be expected or how this way of quantifying effects should be precisely valued (l. 441ff). However, we now also clearly acknowledge in the discussion that the effective prevalence is not very high (l. 663).

      I suggest that the authors also present more traditional, perhaps multi-level, analyses: Calculation of spectra, binning, or single-trial analysis for each participant and condition, and the respective calculation of the surrogate data analysis, and then comparison of the surrogate data to the original data on the second (participant) level using t-tests. I also thought the statistical approach undertaken here could have been a bit more clearly/didactically described as well.

      We here realize that our description of the methods was possibly not fully clear. We do follow the strategy as suggested by this reviewer, but rather than comparing actual and surrogate data based on a parametric t-test, we compare these based on a non-parametric percentile-based approach. This has the advantage of not making specific (and possibly not-warranted) assumptions about the distribution of the data. We have revised the methods to clarify this, l. 332ff. 

      The authors used an adaptive procedure during the experimental blocks such that the stimulus intensity was adjusted throughout. In practice, this can be a disadvantage relative to keeping the intensity constant throughout, because, on average, correct trials will be associated with a higher intensity than incorrect trials, potentially making observations of perceptual rhythmicity more challenging. The authors would want to discuss this potential issue. Intensity adjustments could perhaps contribute to the observed rhythmicity effects. Perhaps the rhythmicity of the stimulus intensity could be analyzed as well. In any case, the adaptive procedure may add variance to the data.

      We have added an analysis of task difficulty to the results (new section “Effects of adaptive task difficulty“) to address this. Overall we do not find systematic changes in task difficulty across participants for most of the experiments, but for sure one cannot rule out that this aspect of the design also affects the outcomes.  Importantly, we relied on an adaptive task difficulty to actually (or hopefully) reduce variance in the data, by keeping the task-difficulty around a certain level. Give the large number of trials collected, not using such an adaptive produce may result in performance levels around chance or near ceiling, which would make impossible to detect rhythmic variations in behavior. 

      Additional methodological concerns relate to Figure 8. Figures 8A and C seem to indicate that a baseline correction for a very short time window was calculated (I could not find anything about this in the methods section). The data seem very variable and artificially constrained in the baseline time window. It was unclear what the reader might take from Figure 8.

      This figure was intended mostly for illustration of the eye tracking data, but we agree that there is no specific key insight to be taken from this. We removed this. 

      Motivation and discussion of eye-movement/pupillometry and motor activity: The dual task paradigm of Experiment 4 and the reasons for assessing eye metrics in the current study could have been better motivated. The experiment somehow does not fit in very well. There is recent evidence that eye movements decrease during effortful tasks (e.g., Contadini-Wright et al. 2023 J Neurosci; Herrmann & Ryan 2024 J Cog Neurosci), which appears to contradict the results presented in the current study. Moreover, by appealing to active sensing frameworks, the authors suggest that active movements can facilitate listening outcomes (line 677; they should provide a reference for this claim), but it is unclear how this would relate to eye movements. Certainly, a person may move their head closer to a sound source in the presence of competing sound to increase the signal-to-noise ratio, but this is not really the active movements that are measured here. A more detailed discussion may be important. The authors further frame the difference between Experiments 1 and 2 as being related to participants' motor activity. However, there are other factors that could explain differences between experiments. Self-paced trials give participants the opportunity to rest more (inter-trial durations were likely longer in Experiment 2), perhaps affecting attentional engagement. I think a more nuanced discussion may be warranted.

      We expanded the motivation of why self-pacing trials may effectively alter how rhythmic processes affect perception, and now also allude to attention and expectation related effects (l. 786ff). Regarding eye movements we now discuss the results in the light of the previously mentioned studies, but again refrain from a very detailed and mechanistic interpretation (l. 782).

      Discussion:

      The main data in Figure 3 showed little rhythmicity. The authors seem to glance over this fact by simply stating that the same phase is not necessary for their statistical analysis. Previous work, however, showed rhythmicity in the across-participant average (e.g., Fiebelkorn's and similar work). Moreover, one would expect that some of the effects in the low-frequency band (e.g., 2-4 Hz) are somewhat similar across participants. Conduction delays in the auditory system are much smaller than the 0.25-0.5 s associated with 2-4 Hz. The authors would want to discuss why different participants would express so vastly different phases that the across-participant average does not show any rhythmicity, and what this would mean neurophysiologically.

      We now discussion the assumptions and implications of similar or distinct phases of rhythmic processes within and between participants (l. 695ff). In particular we note that different origins of the underlying neurophysiological processes eventually may suggest that such assumptions are or a not warranted.  

      An additional point that may require more nuanced discussion is related to the rhythmicity of response bias versus sensitivity. The authors could discuss what the rhythmicity of these different measures in different frequency bands means, with respect to underlying neural oscillations.

      We expanded discussion to interpret what rhythmic changes in each of the behavioral metric could imply (l. 706ff).

      Figures:

      Much of the text in the figures seems really small. Perhaps the authors would want to ensure it is readable even for those with low vision abilities. Moreover, Figure 1A is not as intuitive as it could be and may perhaps be made clearer. I also suggest the authors discuss a bit more the potential monoaural vs binaural issues, because the perceptual rhythmicity is much slower than any conduction delays in the auditory system that could lead to interference.

      We tried to improve the font sizes where possible, and discuss the potential monaural origins as suggested by other reviewers. 

      Reviewer #3 (Public review):

      Summary:

      The finding of rhythmic activity in the brain has, for a long time, engendered the theory of rhythmic modes of perception, that humans might oscillate between improved and worse perception depending on states of our internal systems. However, experiments looking for such modes have resulted in conflicting findings, particularly in those where the stimulus itself is not rhythmic. This paper seeks to take a comprehensive look at the effect and various experimental parameters which might generate these competing findings: in particular, the presentation of the stimulus to one ear or the other, the relevance of motor involvement, attentional demands, and memory: each of which are revealed to effect the consistency of this rhythmicity.

      The need the paper attempts to resolve is a critical one for the field. However, as presented, I remain unconvinced that the data would not be better interpreted as showing no consistent rhythmic mode effect. It lacks a conceptual framework to understand why effects might be consistent in each ear but at different frequencies and only for some tasks with slight variants, some affecting sensitivity and some affecting bias.

      Strengths:

      The paper is strong in its experimental protocol and its comprehensive analysis, which seeks to compare effects across several analysis types and slight experiment changes to investigate which parameters could affect the presence or absence of an effect of rhythmicity. The prescribed nature of its hypotheses and its manner of setting out to test them is very clear, which allows for a straightforward assessment of its results

      Weaknesses:

      There is a weakness throughout the paper in terms of establishing a conceptual framework both for the source of "rhythmic modes" and for the interpretation of the results. Before understanding the data on this matter, it would be useful to discuss why one would posit such a theory to begin with. From a perceptual side, rhythmic modes of processing in the absence of rhythmic stimuli would not appear to provide any benefit to processing. From a biological or homeostatic argument, it's unclear why we would expect such fluctuations to occur in such a narrow-band way when neither the stimulus nor the neurobiological circuits require it.

      We believe that the framework for why there may be rhythmic activity along auditory pathways that shapes behavioral outcomes has been laid out in many previous studies, prominently here (Schroeder et al., 2008; Schroeder and Lakatos, 2009; Obleser and Kayser, 2019). Many of the relevant studies are cited in the introduction, which is already rather long given the many points covered in this study. 

      Secondly, for the analysis to detect a "rhythmic mode", it must assume that the phase of fluctuations across an experiment (i.e., whether fluctuations are in an up-state or down-state at onset) is constant at stimulus onset, whereas most oscillations do not have such a total phase-reset as a result of input. Therefore, some theoretical positing of what kind of mechanism could generate this fluctuation is critical toward understanding whether the analysis is well-suited to the studied mechanism.

      In line with this and previous comments (by reviewer 2) we have expanded the discussion to consider the issue of phase alignment (l. 695ff). 

      Thirdly, an interpretation of why we should expect left and right ears to have distinct frequency ranges of fluctuations is required. There are a large number of statistical tests in this paper, and it's not clear how multiple comparisons are controlled for, apart from experiment 4 (which specifies B&H false discovery rate). As such, one critical method to identify whether the results are not the result of noise or sample-specific biases is the plausibility of the finding. On its face, maintaining distinct frequencies of perception in each ear does not fit an obvious conceptual framework.

      Again this point was also noted by another reviewer and we expanded the introduction and discussion in this regard (l. 65ff).

      Reviewer #1 (Recommendations for the authors):

      (1) An update of the AR-surrogate method has recently been published (https://doi.org/10.1101/2024.08.22.609278). I appreciate that this is a lot of work, and it is of coursee up to the authors, but given the higher sensitivity of this method, it might be worth applying it to the four datasets described here.

      Reading this article we note that our implementation of the AR-surrogate method was essentially as suggested here, and not as implemented by Brookshire. In fact we had not realized that Brookshire had apparently computed the spectrum based on the group-average data. As explained in the Methods section, as now clarified even better, we compute for each participant the actual spectrum of this participant’s data, and a set of surrogate spectra. We then perform a group-average of both to compute the p-value of the actual group-average based on the percentile of the distribution of surrogate averages. This send step differs from Harris & Beale, which used a one-sided t-test. The latter is most likely not appropriate in a strict statistical sense, but possibly more powerful for detecting true results compared to the percentile-based approach that we used (see l. 332ff).

      (2) When results for the four experiments are reported, a reminder for the reader of how these experiments differ from each other would be useful.

      We have added this in the Results section.

      "considerable prevalence of differences around 4Hz, with dual‐task requirements leading to stronger rhythmicity in perceptual sensitivity". There is a striking similarity to recently published data (https://doi.org/10.1101/2024.08.10.607439 ) demonstrating a 4-Hz rhythm in auditory divided attention (rather than between modalities as in the present case). This could be a useful addition to the paragraph.

      We have added a reference to this preprint, and additional previous work pointing in the same direction mentioned in there.  

      (3) There are two typos in the Introduction: "related by different from the question", and below, there is one "presented" too much.

      These have been fixed.

      Reviewer #3 (Recommendations for the authors):

      My major suggestion is that these results must be replicated in a new sample. I understand this is not simple to do and not always possible, but at this point, no effect is replicated from one experiment to the next, despite very small changes in protocol (especially experiment 1 vs 2). It's therefore very difficult to justify explaining the different effects as real as opposed to random effects of this particular sample. While the bootstrapping effects show the level of consistency of the effect within the sample studied, it can not be a substitute for a true replication of the results in a new sample.

      We agree that only an independent replication can demonstrate the robustness of the results. We do consider experiment 1 a replication test of Ho et al. CurrBiol 2017, which results in different results than reported there. But more importantly, we consider the analysis of ‘reproducibility’ by simulating participant samples a key novelty of the present work, and want to emphasize this over the within-study replication of the same experiment.  In fact, in light of the present interpretation of the data, even a within-study replication would most likely not offer a clear-cut answer. 

      As I said in the public review, the interpretation of the results, and of why perceptual cycles in arhythmic stimuli could be a plausible theory to begin with, is lacking. A conceptual framework would vastly improve the impact and understanding of the results.

      We tried to strengthen the conceptual framework in the introduction. We believe that this is in large provided by previous work, and the aim of the present study was to explore the robustness of effects and not to suggest and discover novel effects. 

      Minor comments:

      (1) The authors adapt the difficulty as a function of performance, which seems to me a strange choice for an experiment that is analyzing the differences in performance across the experiment. Could you add a sentence to discuss the motivation for this choice?

      We now mention the rationale in the Methods section and in a new section of the Results. There we also provide additional analyses on this parameter.

      (2) The choice to plot the p-values as opposed to the values of the actual analysis feels ill-advised to me. It invites comparison across analyses that isn't necessarily fair. It would be more informative to plot the respective analysis outputs (spectral power, regression, or delta R2) and highlight the windows of significance and their overlap across analyses. In my opinion, this would be more fair and accurate depiction of the analyses as they are meant to be used.

      We do disagree. As explained in the Methods (l. 374ff): “(Showing p-values) … allows presenting the results on a scale that can be directly compared between analysis approaches, metrics, frequencies and analyses focusing on individual ears or the combined data. Each approach has a different statistical sensitivity, and the underlying effect sizes (e.g. spectral power) vary with frequency for both the actual data and null distribution. As a result, the effect size reaching statistical significance varies with frequency, metrics and analyses.” 

      The fact that the level of power (or R2 or whatever metric we consider) required to reach significance differs between analyses (one ear, both ears), metrics (d-prime, bias, RT) and between analyses approaches makes showing the results difficult, as we would need a separate panel for each of those. This would multiply the number of panels required e.g. for Figure 4 by 3, making it a figure with 81 axes. Also neither the original quantities of each analysis (e.g. spectral power) nor the p-values that we show constitute a proper measure of effect size in a statistical sense. In that sense, neither of these is truly ideal for comparing between analyses, metrics etc. 

      We do agree thought that many readers may want to see the original quantification and thresholds for statistical significance. We now show these in an exemplary manner for the Binned analysis of Experiment 1, which provides a positive result and also is an attempt to replicate the findings by  Ho et al 2017. This is shown in new Figure 5. 

      (3) Typo in line 555 (+ should be plus minus).

      (4) Typo in line 572: "Comparison of 572 blocks with minus dual task those without"

      (5) Typo in line 616: remove "one".

      (6) Line 666 refers to effects in alpha band activity, but it's unclear what the relationship is to the authors' findings, which peak around 6 Hz, lower than alpha (~10 Hz).

      (7) Line 688 typo, remove "amount of".

      These points have been addressed.  

      (8) Oculomotor effect that drives greater rhythmicity at 3-4 Hz. Did the authors analyze the eye movements to see if saccades were also occurring at this rate? It would be useful to know if the 3-4 Hz effect is driven by "internal circuitry" in the auditory system or by the typical rate of eye movement.

      A preliminary analysis of eye movement data was in previous Figure 8, which was removed on the recommendation of another review.  This showed that the average saccade rate is about 0.01 saccade /per trial per time bin, amounting to on average less than one detected saccade per trial. Hence rhythmicity in saccades is unlikely to explain rhythmicity in behavioral data at the scale of 34Hz. We now note this in the Results.

      Obleser J, Kayser C (2019) Neural Entrainment and Attentional Selection in the Listening Brain. Trends Cogn Sci 23:913-926.

      Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32:9-18.

      Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A (2008) Neuronal oscillations and visual amplification of speech. Trends Cogn Sci 12:106-113.

      Zoefel B, Heil P (2013) Detection of Near-Threshold Sounds is Independent of EEG Phase in Common Frequency Bands. Front Psychol 4:262.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This is an interesting study characterizing and engineering so-called bathy phytochromes, i.e., those that respond to near infrared (NIR) light in the ground state, for optogenetic control of bacterial gene expression. Previously, the authors have developed a structure-guided approach to functionally link several light-responsive protein domains to the signaling domain of the histidine kinase FixL, which ultimately controls gene expression. Here, the authors use the same strategy to link bathy phytochrome light-responsive domains to FixL, resulting in sensors of NIR light. Interestingly, they also link these bathy phytochrome light-sensing domains to signaling domains from the tetrathionate-sensing SHK TtrS and the toluene-sensing SHK TodS, demonstrating the generality of their protein engineering approach more broadly across bacterial two-component systems.

      This is an exciting result that should inspire future bacterial sensor design. They go on to leverage this result to develop what is, to my knowledge, the first system for orthogonally controlling the expression of two separate genes in the same cell with NIR and Red light, a valuable contribution to the field.

      Finally, the authors reveal new details of the pH-dependent photocycle of bathy phytochromes and demonstrate that their sensors work in the gut - and plant-relevant strains E. coli Nissle 1917 and A. tumefaciens.

      Strengths:

      (1) The experiments are well-founded, well-executed, and rigorous.

      (2) The manuscript is clearly written.

      (3) The sensors developed exhibit large responses to light, making them valuable tools for ontogenetic applications.

      (4) This study is a valuable contribution to photobiology and optogenetics.

      We thank the reviewer for the positive verdict on our manuscript.

      Weaknesses:

      (1) As the authors note, the sensors are relatively insensitive to NIR light due to the rapid dark reversion process in bathy phytochromes. Though NIR light is generally non-phototoxic, one would expect this characteristic to be a limitation in some downstream applications where light intensities are not high (e.g., in vivo).

      We principally concur with this reviewer’s assessment that delivery of light (of any color) into living tissue can be severely limited by absorption, reflection, and scattering. That notwithstanding, at least two considerations suggest that in-vivo deployment of the pNIRusk setups we presently advance may be feasible.

      First, while the pNIRusk setups are indeed less light-sensitive compared to, e.g., our earlier redlight-responsive pREDusk and pDERusk setups (see Meier et al. Nat Commun 2024), we note that the overall light fluences required for triggering them are in the range of tens of µW per cm<sub>2</sub>. By contrast, optogenetic experiments in vivo, in particular in the neurosciences, often employ light area intensities on the order of mW per cm<sub>2</sub> and above. Put another way, compared to the optogenetic tools used in these experiments, the pNIRusk setups are actually quite sensitive to light.

      Second, sensitivity to NIR light brings the advantage of superior tissue penetration, see data reported by Weissleder Nat Biotech 2001 and Ash et al. Lasers Med Sci 2017 (both papers are cited in our manuscript). Based on these data, the intensity of blue light (450 nm) therefore falls off 5-10 times more strongly with penetration depth than that of NIR light (800 nm).

      We have added a brief treatment of these aspects in the Discussion section.

      (2) Though they can be multiplexed with Red light sensors, these bathy phytochrome NIR sensors are more difficult to multiplex with other commonly used light sensors (e.g., blue) due to the broad light responsivity of the Pfr state. This challenge may be overcome by careful dosing of blue light, as the authors discuss, but other bacterial NIR sensing systems with less cross-talk may be preferred in some applications.

      The reviewer is correct in noting that, at least to a certain extent, the pNIRusk systems also respond to blue light owing to their Soret absorbance bands (see Fig. 1). That said, we note two points:

      First, a given photoreceptor that preferentially responds to certain wavelengths, e.g., 700 nm in the case of conventional bacterial phytochromes (BphP), generally absorbs shorter wavelengths to some degree as well. Absorption of these shorter wavelengths suffices for driving electronic and/or vibronic transitions of the chromophore to higher energy levels which often give rise to productive photochemistry and downstream signal transduction. Put another way, a certain response of sensory photoreceptors to shorter wavelengths is hence fully expected and indeed experimentally borne out, as for instance shown by Ochoa-Fernandez et al. in the so-called PULSE setup (Nat Meth 2020, doi: 10.1038/s41592-020-0868-y).

      Second, known BphPs share similar Pr and Pfr absorbance spectra. We therefore expect other BphP-based optogenetic setups to also respond to blue light to some degree. Currently, there are insufficient data to gauge whether individual BphPs systematically differ in their relative sensitivity to blue compared to red or NIR light. Arguably, pertinent experiments may be an interesting subject for future study.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Meier et al. engineer a new class of light-regulated two-component systems. These systems are built using bathy-bacteriophytochromes that respond to near-infrared (NIR) light. Through a combination of genetic engineering and systematic linker optimization, the authors generate bacterial strains capable of selective and tunable gene expression in response to NIR stimulation. Overall, these results are an interesting expansion of the optogenetic toolkit into the NIR range. The cross-species functionality of the system, modularity, and orthogonality have the potential to make these tools useful for a range of applications.

      Strengths:

      (1) The authors introduce a novel class of near-infrared light-responsive two-component systems in bacteria, expanding the optogenetic toolbox into this spectral range.

      (2) Through engineering and linker optimization, the authors achieve specific and tunable gene expression, with minimal cross-activation from red light in some cases.

      (3) The authors show that the engineered systems function robustly in multiple bacterial strains, including laboratory E. coli, the probiotic E. coli Nissle 1917, and Agrobacterium tumefaciens.

      (4) The combination of orthogonal two-component systems can allow for simultaneous and independent control of multiple gene expression pathways using different wavelengths of light.

      (5) The authors explore the photophysical properties of the photosensors, investigating how environmental factors such as pH influence light sensitivity.

      Weaknesses:

      (1) The expression of multi-gene operons and fluorescent reporters could impose a metabolic burden. The authors should present data comparing optical density for growth curves of engineered strains versus the corresponding empty-vector control to provide insight into the burden and overall impact of the system on host viability and growth.

      In response to this comment, we have recorded growth kinetics of bacteria harboring the pNIRusk-DsRed plasmids or empty vectors under both inducing (i.e., under NIR light) and noninducing conditions (i.e., darkness). We did not observe systematic differences in the growth kinetics between the different cultures, thus suggesting that under the conditions tested there is no adverse effect on cell viability.

      We include the new data in Suppl. Fig. 5c-d and refer to them in the main text.

      (2) The manuscript consistently presents normalized fluorescence values, but the method of normalization is not clear (Figure 2 caption describes normalizing to the maximal fluorescence, but the maximum fluorescence of what?). The authors should provide a more detailed explanation of how the raw fluorescence data were processed. In addition, or potentially in exchange for the current presentation, the authors should include the raw fluorescence values in supplementary materials to help readers assess the actual magnitude of the reported responses.

      We appreciate this valid comment and have altered the representation of the fluorescence data. All values for a given fluorescent protein (i.e., either DsRed or YPet) across all systems are now normalized to a single reference value, thus enabling direct comparison between experiments.

      (3) Related to the prior point, it would be useful to have a positive control for fluorescence that could be used to compare results across different figure panels.

      As all data are now normalized to the same reference value, direct comparison across all figures is enabled.

      (4) Real-time gene expression data are not presented in the current manuscript, but it would be helpful to include a time-course for some of the key designs to help readers assess the speed of response to NIR light.

      In response to this comment, we include in the revised manuscript induction kinetics of bacterial cultures bearing pNIRusk upon transfer to inducing NIR-light conditions. To this end, aliquots were taken at discrete timepoints, transcriptionally and translationally arrested, and analyzed for optical density and DsRed reporter fluorescence after allowing for chromophore maturation.

      We include the new data in Suppl. Fig. 5e and refer to them in the manuscript.

      Moreover, we note that the experiments in Agrobacterium tumefaciens used a luciferase reporter thus enabling the continuous monitoring of the light-induced expression kinetics. These data (unchanged in revision) are to be found in Suppl. Fig. 9.

      Reviewer #3 (Public review):

      Summary:

      This paper by Meier et al introduces a new optogenetic module for the regulation of bacterial gene expression based on "bathy-BphP" proteins. Their paper begins with a careful characterization of kinetics and pH dependence of a few family members, followed by extensive engineering to produce infrared-regulated transcriptional systems based on the authors' previous design of the pDusk and pDERusk systems, and closing with characterization of the systems in bacterial species relevant for biotechnology.

      Strengths:

      The paper is important from the perspective of fundamental protein characterization, since bathyBphPs are relatively poorly characterized compared to their phytochrome and cyanobacteriochrome cousins. It is also important from a technology development perspective: the optogenetic toolbox currently lacks infrared-stimulated transcriptional systems. Infrared light offers two major advantages: it can be multiplexed with additional tools, and it can penetrate into deep tissues with ease relative to the more widely used blue light-activated systems. The experiments are performed carefully, and the manuscript is well written.

      Weaknesses:

      My major criticism is that some information is difficult to obtain, and some data is presented with limited interpretation, making it difficult to obtain intuition for why certain responses are observed. For example, the changes in red/infrared responses across different figures and cellular contexts are reported but not rationalized. Extensive experiments with variable linker sequences were performed, but the rationale for linker choices was not clearly explained. These are minor weaknesses in an overall very strong paper.

      We are grateful for the positive take on our manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) As eLife is a broad audience journal, please define the Soret and Q-bands (line 125).

      We concur and have added labels in fig. 1a that designate the Soret and Q bands.

      (2) The initial (0) Ac design in Figure 2b is activated by NIR and Red light, albeit modestly. The authors state that this construct shows "constant reporter fluorescence, largely independent of illumination" (line 167). This language should be changed to reflect the fact that this Ac construct responds to both of these wavelengths.

      Agreed. We have amended the text accordingly.

      (3) pNIRusk Ac 0 appears to show a greater light response than pNIRusk Av -5. However, the authors claim that the former is not light-responsive and the latter is. This conclusion should be explained or changed.

      The assignment of pNIRusk Av-5 as light-responsive is based on the relative difference in reporter fluorescence between darkness and illumination with either red or NIR light. Although the overall fluorescence is much lower in Av-5 than for Av-0, the relative change upon illumination is much more pronounced. We add a statement to this effect to the text.

      (4) The authors state that "when combining DmDERusk-Str-YPet with AvTod+21-DsRed expression rose under red and NIR light, respectively, whereas the joint application of both light colors induced both reporter genes" (lines 258-261). In contrast, Figure 3c shows that application of both wavelengths of light results in exclusive activation of YPet expression. It appears the description of the data is wrong and must be corrected. That said, this error does not impact their conclusion that two separate target genes can be independently activated by NIR and red light.

      We thank the reviewer for catching this error which we have corrected in the revised manuscript.

      (5) Line 278: I don't agree with the authors' blanket statement that the use of upconversion nanoparticles is a "grave" limitation for NIR-light mediated activation of bacterial gene expression in vivo. The authors should either expound on the severity of the limitation or use more moderate language.

      We have replaced the word ‘grave’ by ‘potential’ and thereby toned down our wording.

      Reviewer #2 (Recommendations for the authors):

      (1) Please include a discussion on the expected depth penetration of different light wavelengths. This is most relevant in the context of the discussion about how these NIR systems could be used with living therapeutics.

      Given the heterogeneity of biological tissue, it is challenging to state precise penetration depths for different wavelengths of light. That said, blue light for instance is typically attenuated by biological tissue around 5 to 10 times as strongly as near-infrared light is.

      We have expanded the Discussion chapter to cover these aspects.

      (2) It would be helpful for Figure 2C (or supplementary) to also include the response to blue light stimulation.

      We agree and have acquired pertinent data for the blue-light response. The new data are included in an updated Fig. 2c. Data acquired at varying NIR-light intensities, originally included in Fig. 2c, have been moved to Suppl. Fig. 5a-b.

      (3) In Figure 4A, data on the response of E. coli Nissle to blue and red light are missing. Including this would help identify whether the reduced sensitivity to non-NIR wavelengths observed in the E. coli lab strain is preserved in the probiotic background.

      In response to this comment, we have acquired pertinent data on E. coli Nissle. While the results were overall similar to those in the laboratory strain, the response to blue and NIR light was yet lower in the Nissle bacteria which stands to benefit optogenetic applications.

      We have updated Fig. 4a accordingly. For clarity, we only show the data for AvNIRusk in the main paper but have relegated the data on AcNIRusk to Suppl. Fig. 8. (Note that this has necessitated a renumbering of the subsequent Suppl. Figs.)

      (4) On many of the figures, there are thin gray lines that appear between the panels that it would be nice to eliminate because, in some cases, they cut through words and numbers.

      The grey lines likely arose from embedding the figures into the text document. In the typeset manuscript, which has become available on the eLife webpage in the meantime, there are no such lines. That said, we will carefully check throughout the submission/publishing/proofing process lest these lines reappear.

      (5) Page 7, line 155: "As not least seen" typo or awkward phrasing.

      We have restructured the sentence and thereby hopefully clarified the unclear phrasing.

      (6) Page 7, line 167: It does not appear to be the case that the initial pNIRusk designs show constant fluorescence that is largely independent of illumination. AcNIRusk shows an almost twofold change from dark to NIR. Reword this to avoid confusion.

      We concur with this comment, similar to reviewer #1’s remark, and have adjusted the text accordingly.

      (7) Page 8, line 174: Related to the previous point, AvNIRusk has one design that is very minimally light switchable (-5), so stating that six light switchable designs have been identified is also confusing.

      As stated in our response to reviewer #1 above, the assignment of AvNIRusk-5 as light-switchable is based on the relative fluorescence change upon illumination. We have added an explanation to the text.

      (8) Page 10, line 228-229: I was not able to find the data showing that expression levels were higher for the DmTtr systems than the pREDusk and pNIRusk setups. This may be an issue related to the normalization point. It was not clear to me how to compare these values.

      We apologize for the initially unclear representation of the data. In response to this reviewer’s general comments above, we have now normalized all fluorescence values to a single reference value, thus allowing their direct comparison.

      (9) Page 12, line 264: "finer-grained expression control can be exerted..." Either show data or adjust the language so that it is clear this is a prediction.

      True, we have replaced ‘can’ by ‘could’.

      (10) Page 25, line 590: CmpX13 cells have a reference that is given later, but it should be added where it first appears.

      Agreed, we have added the reference in the indicated place.

      (11) Page 25, line 592: define LB/Kan.

      We had already defined this abbreviation further up but, for clarity, we have added it again in the indicated position.

      (12) Page 40, line 946: "normalized by" rather than "to".

      We have implemented the requested change in the indicated and several other positions of the manuscript.

      (13) Figures 2C, 3C, and similar plots in the supplementary material would benefit from having a legend for the colors.

      We agree and have added pertinent legends to the corresponding main and supplementary figures.

      (14) As a reader, I had some trouble following all the acronyms. This is at the author's discretion, but I would eliminate ones that are not strictly essential (e.g. MTP for microtiter plate; I was unable to identify what "MCS" meant; look for other opportunities to remove acronyms).

      In the revised manuscript, we have defined the abbreviation ‘MCS’ (for ‘multiple-cloning site’) upon first occurrence. We have decided to retain the abbreviation ‘MTP’ in the text.

      (15) Could the authors briefly speculate on why A. tumefaciens activation with red light might occur?

      While we can but speculate as to the underlying reasons for the divergent red-light response in A. tumefaciens, we discuss possible scenarios below.

      Commonly, two-component systems (TCS) exhibit highly cooperative and steep responses to signal. As a consequence, even small differences in the intracellular amounts of phosphorylated and unphosphorylated response regulator (RR) can give to significantly changed gene-expression output. Put another way, the gene-expression output need not scale linearly with the extent of RR phosphorylation but, rather, is expected to show nonlinear dependence with pronounced thresholding effects.

      Differences in the pertinent RR levels can for instance arise from variations in the expression levels of the pNIRusk system components between E. coli and A. tumefaciens. Moreover, the two bacteria greatly differ in their two-component-system (TCS) repertoire. Although TCSs are commonly well insulated from each other, cross-talk with endogenous TCSs, even if limited, may cause changes in the levels of phosphorylated RR and hence gene-expression output. In a similar vein, the RR can also be phosphorylated and dephosphorylated non-enzymatically, e.g., by reaction with high-energy anhydrides (such as acetyl phosphate) and hydrolysis, respectively. Other potential origins for the divergent red-light response include differences in the strength of the promoters driving expression of the pNIRusk system components and the fluorescent/luminescent reporters, respectively.

      (16) It would be helpful for the authors to briefly explain why they needed to switch to luminescence from fluorescence for the A. tumeraciens studies.

      While there was no strict necessity to switch from the fluorescence-based system used in E. coli to a luminescence-based system in A. tumefaciens, we opted for luminescence based on prior experience with other Alphaproteobacteria (e.g., 10.1128/mSystems.00893-21), where luminescence offered significant advantages. Specifically, it provides essentially background-free signal detection and greater sensitivity for monitoring gene expression. In addition, as demonstrated in Suppl. Fig. 9c and d, the luminescence system enables real-time tracking of gene expression dynamics, which further supported its use in our experimental setup (see our response to reviewer #2’s general comments).

      (17) This is a very minor comment that the authors can take or leave, but I got hung up on the word "implement" when it appeared a few times in the manuscript because I tended to read it as "put a plan into place" rather than its other meaning.

      In the abstract, we have replaced one instance of the word ‘implement’ by ‘instrument’.

      (18) The authors should include the relevant constructs on AddGene or another public strainsharing service.

      We whole-heartedly subscribe to the idea of freely sharing research materials with fellow scientists. Therefore, we had already deposited the most relevant AvNIRusk in Addgene, even prior to the initial submission of the manuscript (accession number 235084). In the meantime, we have released the deposition, and the plasmid can be obtained from Addgene since May 15<sub>th</sub> of this year.

      Reviewer #3 (Recommendations for the authors):

      Suggestion for improvement:

      This paper relies heavily on variations in linker sequences to shift responses. I am familiar with prior work from the Moglich lab in which helical linkers were employed to shift responses in synthetic two-component systems, with interesting periodicity in responses with every 7 residues (as expected for an alpha helix) and inversion of responses at smaller linker shifts. There is no mention in this paper whether their current engineering follows a similar rationale, what types of linkers are employed (e.g. flexible vs helical), and whether there is an interpretation for how linker lengths alter responses. Can you explain what classes of linker sequences are used throughout Figures 2 and 3, and whether length or periodicity affects the outcome? This would be very helpful for readers who are new to this approach, or if the rationale here differs from the authors' prior work.

      The PATCHY approach employed at present followed a closely similar rationale as in our previous studies. That is, linkers were extended/shortened and varied in their sequence by recombining different fragments of the natural linkers of the parental receptors, i.e., the bacteriophytochrome and the FixL sensor histidine kinase, respectively. We have added a statement to this effect in the text and a reference to Suppl. Fig. 3 which illustrates the principal approach.

      Compared to our earlier studies, we isolated fewer receptor variants supporting light-regulated responses, despite covering a larger sequence space. Owing to the sparsity of the light-regulated variants, an interpretation of the linker properties and their correlation with light-regulated activity is challenging. Although doubtless unsatisfying from a mechanistic viewpoint, we therefore refrain from a pertinent discussion which would be premature and speculative at this point. As the reviewer raises a valid and important point, we have expanded the text by referring to our earlier studies and the observed dependence of functional properties on linker composition.

      It is sometimes difficult to intuit or rationalize the differences in red/IR sensitivity across closely related variants. An important example appears in Figure 3C vs 3B. I think the AvTod+21 in 3B should be the equivalent to the DsRed response in the second column of 3C (AvTod+21 + DmDERusk), except, of course, that the bacteria in 3C carry an additional plasmid for the DERusk system. However, in 3B, the response to red light is substantial - ~50% as strong as that for IR, whereas in 3C, red light elicits no response at all. What is the difference? The reason this is important is that the AvTod+21 and DMDERusk represent the best "orthogonal" red and infrared light responses, but this is not at all obvious from 3B, where AvTod+21 still causes a substantial (and for orthogonality, undesirable) response under red light. Perhaps subtle differences in expression level due to plasmid changes cause these differences in light responses? Could the authors test how the expression level affects these responses? The paper would be greatly improved if observations of the diverse red/IR responses could be rationalized by some design criteria.

      As noted above in our response to reviewer #2, we have now normalized all fluorescence readings to joint reference values, thus allowing a better comparison across experiments.

      The reviewer is correct in noting that upon multiplexing, the individual plasmid systems support lower fluorescence levels than when used in isolation. We speculate that the combination of two plasmids may affect their copy numbers (despite the use of different resistance markers and origins of replications) and hence their performance. Likewise, the cellular metabolism may be affected when multiple plasmids are combined. These aspects may well account for the absent red-light response in AvTod+21 in the multiplexing experiments which is – indeed – unexpected. As, at present, we cannot provide a clear rationalization for this effect, we recommend verifying the performance of the plasmid setups when multiplexing.

      The paper uses "red" and "infrared" to refer to ~624 nm and ~800 nm light, respectively. I wonder whether it might be possible to shift these peak wavelengths to obtain even better separation for the multiplexing experiments. Perhaps shifting the specific red wavelength could result in better separation between DERusk and AvTod systems, for example? Could the authors comment on this (maybe based on action spectra of their previously developed tools) or perhaps test a few additional stimulation wavelengths?

      The choice of illumination wavelengths used in these experiments is dictated by the LED setups available for illumination of microtiter plates. On the one hand, we are using an SMD (surface-mount device) three-color LED with a fixed wavelength of the red channel around 624 nm (see Hennemann et al., 2018). On the other hand, we are deploying a custom-built device with LEDs emitting at around 800 nm (see Stüven et al., 2019 and this work). Adjusting these wavelengths is therefore challenging, although without doubt potentially interesting.

      To address this reviewer comment, we have added a statement to the text that the excitation wavelengths may be varied to improve multiplexed applications.

      Additional minor comments:

      (1) Figure 2C: It would be very helpful to place a legend on the figure panel for what the colors indicate, since they are unique to this panel and non-intuitive.

      This comment coincides with one by reviewer #2, and we have added pertinent legends to this and related supplementary figures.

      (2) Figure 3C: it is not obvious which system uses DsRed and which uses YPet in each combination, since the text indicates that all combinations were cloned, and this is not clearly described in the legend. Is it always the first construct in the figure legend listed for DsRed and the second for YPet?

      For clarification, we have revised the x-axis labels in Fig. 3C. (And yes, it is as this reviewer surmises: the first of the two constructs harbored DsRed and the second one YPet.)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This is an interesting study of the nature of representations across the visual field. The question of how peripheral vision differs from foveal vision is a fascinating and important one. The majority of our visual field is extra-foveal yet our sensory and perceptual capabilities decline in pronounced and well-documented ways away from the fovea. Part of the decline is thought to be due to spatial averaging (’pooling’) of features. Here, the authors contrast two models of such feature pooling with human judgments of image content. They use much larger visual stimuli than in most previous studies, and some sophisticated image synthesis methods to tease apart the prediction of the distinct models.

      More importantly, in so doing, the researchers thoroughly explore the general approach of probing visual representations through metamers-stimuli that are physically distinct but perceptually indistinguishable. The work is embedded within a rigorous and general mathematical framework for expressing equivalence classes of images and how visual representations influence these. They describe how image-computable models can be used to make predictions about metamers, which can then be compared to make inferences about the underlying sensory representations. The main merit of the work lies in providing a formal framework for reasoning about metamers and their implications, for comparing models of sensory processing in terms of the metamers that they predict, and for mapping such models onto physiology. Importantly, they also consider the limits of what can be inferred about sensory processing from metamers derived from different models.

      Overall, the work is of a very high standard and represents a significant advance over our current understanding of perceptual representations of image structure at different locations across the visual field. The authors do a good job of capturing the limits of their approach and I particularly appreciated the detailed and thoughtful Discussion section and the suggestion to extend the metamer-based approach described in the MS with observer models. The work will have an impact on researchers studying many different aspects of visual function including texture perception, crowding, natural image statistics, and the physiology of low- and mid-level vision.

      The main weaknesses of the original submission relate to the writing. A clearer motivation could have been provided for the specific models that they consider, and the text could have been written in a more didactic and easy-to-follow manner. The authors could also have been more explicit about the assumptions that they make.

      Thank you for the summary. We appreciate the positives noted above. We address the weaknesses point by point below.

      Reviewer #2 (Public Review):

      Summary

      This paper expands on the literature on spatial metamers, evaluating different aspects of spatial metamers including the effect of different models and initialization conditions, as well as the relationship between metamers of the human visual system and metamers for a model. The authors conduct psychophysics experiments testing variations of metamer synthesis parameters including type of target image, scaling factor, and initialization parameters, and also compare two different metamer models (luminance vs energy). An additional contribution is doing this for a field of view larger than has been explored previously

      General Comments

      Overall, this paper addresses some important outstanding questions regarding comparing original to synthesized images in metamer experiments and begins to explore the effect of noise vs image seed on the resulting syntheses. While the paper tests some model classes that could be better motivated, and the results are not particularly groundbreaking, the contributions are convincing and undoubtedly important to the field. The paper includes an interesting Voronoi-like schematic of how to think about perceptual metamers, which I found helpful, but for which I do have some questions and suggestions. I also have some major concerns regarding incomplete psychophysical methodology including lack of eye-tracking, results inferred from a single subject, and a huge number of trials. I have only minor typographical criticisms and suggestions to improve clarity. The authors also use very good data reproducibility practices.

      Thank you for the summary. We appreciate the positives noted above. We address the weaknesses point by point below.

      Specific Comments

      Experimental Setup

      Firstly, the experiments do not appear to utilize an eye tracker to monitor fixation. Without eye tracking or another manipulation to ensure fixation, we cannot ensure the subjects were fixating the center of the image, and viewing the metamer as intended. While the short stimulus time (200ms) can help minimize eye movements, this does not guarantee that subjects began the trial with correct fixation, especially in such a long experiment. While Covid-19 did at one point limit in-person eye-tracked experiments, the paper reports no such restrictions that would have made the addition of eye-tracking impossible. While such a large-scale experiment may be difficult to repeat with the addition of eye tracking, the paper would be greatly improved with, at a minimum, an explanation as to why eye tracking was not included.

      Addressed on pg. 25, starting on line 658.

      Secondly, many of the comparisons later in the paper (Figures 9,10) are made from a single subject. N=1 is not typically accepted as sufficient to draw conclusions in such a psychophysics experiment. Again, if there were restrictions limiting this it should be discussed. Also (P11) Is subject sub-00 is this an author? Other expert? A naive subject? The subject’s expertise in viewing metamers will likely affect their performance.

      Addressed on pg. 14, starting on line 308.

      Finally, the number of trials per subject is quite large. 13,000 over 9 sessions is much larger than most human experiments in this area. The reason for this should be justified.

      In general, we needed a large number of trials to fit full psychometric functions for stimuli derived for both models, with both types of comparison, both initializations, and over many target images. We could have eliminated some of these, but feel that having a consistent dataset across all these conditions is a strength of the paper.

      In addition to the sentence on pg. 14, line 318, a full enumeration of trials is now described on pg. 23, starting on line 580.

      Model

      For the main experiment, the authors compare the results of two models: a ’luminance model’ that spatially pools mean luminance values, and an ’energy model’ that spatially pools energy calculated from a multi-scale pyramid decomposition. They show that these models create metamers that result in different thresholds for human performance, and therefore different critical scaling parameters, with the basic luminance pooling model producing a scaling factor 1/4 that of the energy model. While this is certain to be true, due to the luminance model being so much simpler, the motivation for the simple luminance-based model as a comparison is unclear.

      The use of simple models is now addressed on pg. 3, starting on line 98, as well as the sentence starting on pg. 4 line 148: the luminance model is intended as the simplest possible pooling model.

      The authors claim that this luminance model captures the response of retinal ganglion cells, often modeled as a center-surround operation (Rodieck, 1964). I am unclear in what aspect(s) the authors claim these center-surround neurons mimic a simple mean luminance, especially in the context of evidence supporting a much more complex role of RGCs in vision (Atick & Redlich, 1992). Why do the authors not compare the energy model to a model that captures center-surround responses instead? Do the authors mean to claim that the luminance model captures only the pooling aspects of an RGC model? This is particularly confusing as Figures 6 and 9 show the luminance and energy models for original vs synth aligning with the scaling of Midget and Parasol RGCs, respectively. These claims should be more clearly stated, and citations included to motivate this. Similarly, with the energy model, the physiological evidence is very loosely connected to the model discussed.

      We have removed the bars showing potential scaling values measured by electrophysiology in the primate visual system and attempted to clarify our language around the relationship between these models and physiology. Our metamer models are only loosely connected to the physiology, and we’ve decided in revision not to imply any direct connection between the model parameters and physiological measurements. The models should instead be understood as loosely inspired by physiology, but not as a tool to localize the representation (as was done in the Freeman paper).

      The physiological scaling values are still used as the mean of the priors on the critical scaling value for model fitting, as described on pg. 27, starting on line 698.

      Prior Work:

      While the explorations in this paper clearly have value, it does not present any particularly groundbreaking results, and those reported are consistent with previous literature.The explorations around critical eccentricity measurement have been done for texture models (Figure 11) in multiple papers (Freeman 2011, Wallis, 2019, Balas 2009). In particular, Freeman 20111 demonstrated that simpler models, representing measurements presumed to occur earlier in visual processing need smaller pooling regions to achieve metamerism. This work’s measurements for the simpler models tested here are consistent with those results, though the model details are different. In addition, Brown, 2023 (which is miscited) also used an extended field of view (though not as large as in this work). Both Brown 2023, and Wallis 2019 performed an exploration of the effect of the target image. Also, much of the more recent previous work uses color images, while the author’s exploration is only done for greyscale.

      We were pleased to find consistency of our results with previous studies, given the (many) differences in stimuli and experimental conditions (especially viewing angle), while also extending to new results with the luminance model, and the effects of initialization. Note that only one of the previous studies (Freeman and Simoncelli, 2011) used a pooled spectral energy model. Moreover, of the previous studies, only one (Brown et al., 2023) used color images (we have corrected that citation - thanks for catching the error).

      Discussion of Prior Work:

      The prior work on testing metamerism between original vs. synthesized and synthesized vs. synthesized images is presented in a misleading way. Wallis et al.’s prior work on this should not be a minor remark in the post-experiment discussion. Rather, it was surely a motivation for the experiment. The text should make this clear; a discussion of Wallis et al. should appear at the start of that section. The authors similarly cite much of the most relevant literature in this area as a minor remark at the end of the introduction (P3L72).

      The large differences we observed between comparison types (original vs synthesized, compared to synthesized vs synthesized) surprised us. Understanding such difference was not a primary motivation for the work, but it is certainly an important component of our results. In the introduction, we thought it best to lay out the basic logic of the metamer paradigm for foveated vision before mentioning the complications that are introduced in both the Wallis and Brown papers (paragraph beginning p. 3, line 109). Our results confirm and bolster the results of both of those earlier works, which are now discussed more fully in the Introduction (lines 109 and following).

      White Noise: The authors make an analogy to the inability of humans to distinguish samples of white noise. It is unclear however that human difficulty distinguishing samples of white noise is a perceptual issue- It could instead perhaps be due to cognitive/memory limitations. If one concentrates on an individual patch one can usually tell apart two samples. Support for these difficulties emerging from perceptual limitations, or a discussion of the possibility of these limitations being more cognitive should be discussed, or a different analogy employed.

      We now note the possibility of cognitive limits on pg. 8, starting on line 243, as well as pg. 22, line 571. The ability of observers to distinguish samples of white noise is highly dependent on display conditions. A small patch of noise (i.e., large pixels, not too many) can be distinguished, but a larger patch cannot, especially when presented in the periphery. This is more generally true for textures (as shown in Ziemba and Simoncelli (2021)). Samples of white noise at the resolution used in our study are indistinguishable.

      Relatedly, in Figure 14, the authors do not explain why the white noise seeds would be more likely to produce syntheses that end up in different human equivalence classes.

      In figure 14, we claim that white noise seeds are more likely to end up in the same human equivalence classes than natural image seeds. The explanation as to why we think this may be the case is now addressed on pg. 19, starting on line 423.

      It would be nice to see the effect of pink noise seeds, which mirror the power spectrum of natural images, but do not contain the same structure as natural images - this may address the artifacts noted in Figure 9b.

      The lack of pink noise seeds is now addressed on pg. 19, starting on line 429.

      Finally, the authors note high-frequency artifacts in Figure 4 & P5L135, that remain after syntheses from the luminance model. They hypothesize that this is due to a lack of constraints on frequencies above that defined by the pooling region size. Could these be addressed with a white noise image seed that is pre-blurred with a low pass filter removing the frequencies above the spatial frequency constrained at the given eccentricity?

      The explanation for this is similar to the lack of pink noise seeds in the previous point: the goal of metamer synthesis is model testing, and so for a given model, we want to find model metamers that result in the smallest possible critical scaling value. Taking white noise seed images and blurring them will almost certainly remove the high frequencies visible in luminance metamers in figure 4 and thus result in a larger critical scaling value, as the reviewer points out. However, the logic of the experiments requires finding the smallest critical scaling value, and so these model metamers would be uninformative. In an early stage of the project, we did indeed synthesize model metamers using pink noise seeds, and observed that the high frequency artifacts were less prominent.

      Schematic of metamerism: Figures 1,2,12, and 13 show a visual schematic of the state space of images, and their relationship to both model and human metamers. This is depicted as a Voronoi diagram, with individual images near the center of each shape, and other images that fall at different locations within the same cell producing the same human visual system response. I felt this conceptualization was helpful. However, implicitly it seems to make a distinction between metamerism and JND (just noticeable difference). I felt this would be better made explicit. In the case of JND, neighboring points, despite having different visual system responses, might not be distinguishable to a human observer.

      Thanks for noting this – in general, metamers are subthreshold, and for the purpose of the diagram, we had to discretize the space showing metameric regions (Voronoi regions) around a set of stimuli. We’ve rewritten the captions to explain this better. We address the binary subthreshold nature of the metamer paradigm in the discussion section (pg. 19, line 438).

      In these diagrams and throughout the paper, the phrase ’visual stimulus’ rather than ’image’ would improve clarity, because the location of the stimulus in relation to the fovea matters whereas the image can be interpreted as the pixels displayed on the computer.

      We agree and have tried to make this change, describing this choice on pg. 3 line 73.

      Other

      The authors show good reproducibility practices with links to relevant code, datasets, and figures.

      Reviewer #1 (Recommendations For The Authors):

      In its current form, I found the introduction to be too cursory. I felt that the article would benefit from a clearer motivation for the two models that are considered as the reader is left unclear why these particular models are of special scientific significance. The luminance model is intended to capture some aspects of retinal ganglion cells response characteristics and the spectral energy model is intended to capture some aspects of the primary visual cortex. However, one can easily imagine models that include the pooling of other kinds of features, and it would be helpful to get an idea of why these are not considered. Which aspects of processing in the retina and V1 are being considered and which are being left out, and why? Why not consider representations that capture even higher-order statistical structure than those covered by the spectral energy model (or even semantics)? I think a bit of rewriting with this in mind could improve the introduction.

      Along similar lines, I would have appreciated having the logic of the study explained more explicitly and didactically: which overarching research question is being asked, how it is operationalised in the models and experiments, and what are the predictions of the different models. Figures 2 and 3 are certainly helpful, but I felt further explanations would have made it easier for the reader to follow. Throughout, the writing could be improved by a careful re-reading with a view to making it easier to understand. For example, where results are presented, a sentence or two expanding on the implications would be helpful.

      I think the authors could also be more explicit about the assumptions they make. While these are obviously (tacitly) included in the description of the models themselves, it would be helpful to state them more openly. To give one example, when introducing the notion of critical scaling, on p.6 the authors state as if it is a self-evident fact that "metamers can be achieved with windows whose size is matched to that of the underlying visual neurons". This presumably is true only under particular conditions, or when specific assumptions about readout from populations of neurons are invoked. It would be good to identify and state such assumptions more directly (this is partly covered in the Discussion section ’The linking proposition underlying the metamer paradigm’, but this should be anticipated or moved earlier in the text).

      We agree that our introduction was too cursory and have reworked it. We have also backed off of the direct comparison to physiology and clarified that we chose these two as the simplest possible pooling models. We have also added sentences at the end of each result section attempting to summarize the implication (before discussing them fully in the discussion). Hopefully the logic and assumptions are now clearer.

      There are also some findings that warrant a more extensive discussion. For example, what is the broader implication of the finding that original vs. synthesised and synthesised vs. synthesised comparisons exhibit very different scaling values? Does this tell us something about internal visual representations, or is it simply capturing something about the stimuli?

      We believe this difference is a result of the stimuli that are used in the experiment and thus the synthesis procedure itself, which interacts with the model’s pooled image feature. We have attempted to update the relevant figures and discussions to clarify this, in the sections starting on pg 17 line 396 and pg. 19 line 417.

      At some points in the paper, a third model (’texture model’) creeps into the discussion, without much explanation. I assume that this refers to models that consider joint (rather than marginal) statistics of wavelet responses, as in the famous Portilla & Simoncelli texture model. However, it would be helpful to the reader if the authors could explain this.

      Addressed on pg. 3, starting on line 94.

      Minor corrections.

      Caption of Figure 3: ’top’ and ’bottom’ should be ’left’ and ’right’

      Line 177: ’smallest tested scaling values tested’. Remove one instance of ’tested’

      Line 212: ’the images-specific psychometric functions’ -> ’image-specific’

      Line 215: ’cloud-like pink noise’. It’s not literally pink noise, so I would drop this.

      Line 236: ’Importantly, these results cannot be predicted from the model, which gives no specific insight as to why some pairs are more discriminable than others’. The authors should specify what we do learn from the model if it fails to provide insight into why some image pairs are more discriminable than others.

      Figure 9: it might be helpful to include small insets with the ’highway’ and ’tiles’ source images to aid the reader in understanding how the images in 9B were generated.

      Table 1 placement should be after it is first referred to on line 258.

      In the Discussion section "Why does critical scaling depend on the comparison being performed", it would be helpful to consider the case where the two model metamers *are* distinguishable from each other even though each is indistinguishable from the target image. I would assume that this is possible (e.g., if the target image is at the midpoint between the two model images in image space and each of the stimuli is just below 1 JND away from the target). Or is this not possible for some reason?

      Regarding line 236: this specific line has been removed, and the discussion about this issue has all been consolidated in the final section of the discussion, starting on pg. 19 line 438.

      Regarding the final comment: this is addressed in the paragraph starting on pg. 16 line 386. To expand upon that: the situation laid out by the reviewer is not possible in our conceptualization, in which metamerism is transitive and image discriminability is binary. In order to investigate situations like the one laid out by the reviewer, one needs models whose representations have metric properties, i.e., which allow you to measure and reason about perceptual distance, which we refer to in the paragraph starting on pg. 20 line 460. We also note that this situation has not been observed in this or any other pooling model metamer study that we are aware of. All other minor changes have been addressed.

      Reviewer #2 (Recommendations For The Authors):

      Original image T should be marked in the Voronoi diagrams.

      Brown et al is miscited as 2021 should be ACM Transactions on Applied Perception 2023.

      Figure 3 caption: models are left and right, not top and bottom.

      Thanks, all of the above have been addressed.

      References

      BrownReral Encoding, in the Human Visual System. ACM Transactions on Applied Perception. 2023 Jan; 20(1):1–22.http://dx.doi.org/10.1145/356460, Dutell V, Walter B, Rosenholtz R, Shirley P, McGuire M, Luebke D. Efficient Dataflow Modeling of Periph-5, doi: 10.1145/3564605.

      Freeman Jdoi: 10.1038/nn.2889, Simoncelli EP. Metamers of the ventral stream. Nature Neuroscience. 2011 aug; 14(9):1195–1201..

      Ziemba CMnications. 2021 jul; 12(1)., Simoncelli EP. Opposing Effects of Selectivity and Invariance in Peripheral Vision. Nature Commu-https://doi.org/10.1038/s41467-021-24880-5, doi: 10.1038/s41467-021-24880-5.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The authors make fairly strong claims that "arousal-related fluctuations are isolated from neurons in the deep layers of the SC" (emphasis added). This conclusion is based on comparisons between a "slow drift axis", a low-dimensional representation of neuronal drift, and other measures of arousal (Figures 2C, 3) and motor output sensitivity (Figures 2B, 3B). However, the metrics used to compare the slow-drift axis and motor activity were computed during separate task epochs: the delay period (600-1100 ms) and a perisaccade epoch (25 ms before and after saccade initiation), respectively. As the authors reference, deep-layer SC neurons are typically active only around the time of a saccade. Therefore, it is not clear if the lack of arousal-related modulations reported for deep-layer SC neurons is because those neurons are truly insensitive to those modulations, or if the modulations were not apparent because they were assessed in an epoch in which the neurons were not active. A potentially more valuable comparison would be to calculate a slow-drift axis aligned to saccade onset. 

      The reviewer makes an important point that the calculation of an axis can depend critically on the time window of neuronal response. We find when considering this that the slow drift axis is less sensitive to this issue because it is calculated on time-averaged activity over multiple trials. In previous work we found that slow drift calculated on the stimulus evoked response in V4 was very well aligned to slow drift calculated on pre-stimulus spontaneous activity (Cowley et al, Neuron, 2020, Supplemental Figure 3A and 3B). To address this issue in the present data, we compared the axis computed for an example session for neural activity during the delay period and neural activity aligned to saccade onset. As shown new Figure 2 – figure supplement 1 in the revised manuscript, we found a similar lack of arousal-related modulations for deep-layer SC neurons when slow drift was computed using the saccade epoch (25ms before to 25ms after the onset of the saccade). Figure 2 – figure supplement 1A shows loadings for the SC slow drift axis when it was computed using spiking responses during the delay period (as in the main manuscript analysis). In contrast, Figure 2 – figure supplement 1B shows loadings from the same session when the SC slow drift axis was computed using spiking responses during the saccade epoch. The plots are highly similar and in both cases the loadings were weaker for neurons recorded from channels at the bottom of the probe which have a higher motor index. Finally, we found that projections onto the SC slow drift axis for this session were strongly correlated when the slow drift axis was computed using spiking responses during the delay period and the saccade epoch (r = 0.66, p < 0.001, Figure 1C). Taken together, these results suggest that arousal-related modulations are less evident in deep-layer SC neurons irrespective of whether slow drift was computed during the delay or saccade epoch (see also Public Reviews, Reviewer 1, Point 2).

      (2) More generally, arousal-related signals may persist throughout multiple different epochs of the task. It would be worthwhile to determine whether similar "slow-drift" dynamics are observed for baseline, sensory-evoked, and saccade-related activity. Although it may not be possible to examine pupil responses during a saccade, there may be systematic relationships between baseline and evoked responses. 

      Similar to the point above, slow drift dynamics tend to be similar across different response epochs because they are averaged across many trials and seem to tap into responsivity trends that are robust across epochs. As shown in Author response image 1 below, and the Figure 2 – figure supplement 1 in the revised manuscript, similar dynamics were observed when the SC slow drift axis was computed using spiking responses during the baseline, delay, visual and saccade epochs. We did not investigate differences between baseline and evoked pupil responses in the current paper. However, these effects were characterized in one of our previous papers that focused exclusively on the relationship between slow drift and eye-related metrics (Johnston et al., 2022, Cereb. Cortex, Figure 6). In this previous work, we found a negative correlation between baseline and evoked pupil size. Both variables were significantly correlated with slow drift, the only difference being the sign of the correlation.

      Author response image 1.

      (A-C) Dynamics of slow drift for three example sessions when the SC slow drift axis was computed using spiking responses during the baseline, delay, visual and saccade epochs. Baseline = 100ms before the onset of the target stimulus; Delay = 600 to 1100ms after the offset of the target stimulus; Stim = 25ms to 125ms after the onset of the target stimulus; Sac = 25ms before to 25ms after the onset of the saccade.

      Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA (2022) The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cereb Cortex 32:3331–3346.

      (3) The relationships between changes in SC activity and pupil size are quite small (Figures 2C & 5C). Although the distribution across sessions (Figure 2C) is greater than chance, they are nearly 1/4 of the size compared to the PFC-SC axis comparisons. Likewise, the distribution of r2 values relating pupil size and spiking activity directly (Figure 5) is quite low. We remain skeptical that these drifts are truly due to arousal and cannot be accounted for by other factors. For example, does the relationship persist if accounting for a very simple, monotonic (e.g., linear) drift in pupil size and overall firing rate over the course of an individual session? 

      Firstly, it is important to note that the strength of the relationship between projections onto the SC slow drift axis and pupil size (r<sup>2</sup> = 0.06) is within the range reported by Joshi et al. (2016, Neuron, Figure 3). They investigated the median variance explained between the spiking responses of individual SC neurons and pupil size and found it to be approximately 0.02 across sessions. Secondly, our statistical approach of testing the actual distribution of r<sup>2</sup> values against a shuffled distribution was specifically designed to rule out the possibility that the relationship between SC spiking responses and pupil size occurred due to linear drifts. The shuffled distribution in Figure 2C of the main manuscript represents the variance that can be explained by one session’s slow drift correlated with another session’s pupil, which would contain effects that occurred due to linear drifts alone. That the actual proportion of variance explained was significantly greater than this distribution suggests that the relationship between projections onto the SC slow drift axis and pupil size reflects changes in arousal rather than other factors related to linear drifts.

      Joshi S, Li Y, Kalwani RM, Gold JI (2016) Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89:221–234.

      (4) It is not clear how the final analysis (Figure 6) contributes to the authors' conclusions. The authors perform PCA on: (i) residual spiking responses during the delay period binned according to pupil size, and (ii) spiking responses in the saccade epoch binned according to target location (i.e., the saccade tuning curve). The corresponding PCs are the spike-pupil axis and the saccade tuning axis, respectively. Unsurprisingly, the spikepupil axis that captures variance associated with arousal (and removes variance associated with saccade direction) was not correlated with a saccade-tuning axis that captures variance associated with saccade direction and omits arousal. Had these measures been related it would imply a unique association between a neuron's preferred saccade direction and pupil control- which seems unlikely. The separation of these axes thus seems trivial and does not provide evidence of a "mechanism...in the SC to prevent arousal-related signals interfering with the motor output." It remains unknown whether, for example, arousal-related signals may impact trial-by-trial changes in neuronal gain near the time of a saccade, or alter saccade dynamics such as acceleration, precision, and reaction time. 

      The reviewer makes a good point, and we agree that more evidence is needed to determine if the separation of the pupil size axis and saccade tuning axis is the mechanism through which cognitive and arousal-related signals can be intermixed in the SC. In the revised manuscript (lines 679-682), we have raised this as a possible explanation that necessitates further study rather than stating definitively that it is the exact mechanism through which these signals are kept separate. Our analysis here is similar to the one from Smoulder et al (2024, Neuron, Fig. 2F), in which the interactions between reward signals and target tuning in M1 were examined (and found to be orthogonal). While we agree with the reviewer that it may seem “trivial” for these axes to be orthogonal, it does not have to be so. If, for example, neural tuning curves shifted with changes in pupil size through gain changes that revealed tuning or affected tuning curve shape, there could be projections of the pupil axis onto the target tuning axis. Thus, while we agree with the reviewer that it appears sensible for these two axes to be orthogonal, our result is nonetheless a novel finding. We have edited the text in our revised manuscript, however, to make sure the nuance of this point is conveyed to the reader.

      Smoulder AL, Marino PJ, Oby ER, Snyder SE, Miyata H, Pavlovsky NP, Bishop WE, Yu BM, Chase SM, Batista AP. A neural basis of choking under pressure. Neuron. 2024 Oct 23;112(20):3424-33.

      Reviewer #2 (Public Review):

      (1) The greatest weakness in the present research is the fact that arousal is a functionally less important non-motoric variable. The authors themselves introduce the problem with a discussion of attention, which is without any doubt the most important cognitive process that needs to be functionally isolated from oculomotor processes. Given this introduction, one cannot help but wonder, why the authors did not design an experiment, in which spatial attention and oculomotor control are differentiated. Absent such an experiment, the authors should spend more time explaining the importance of arousal and how it could interfere with oculomotor behavior. 

      Although attention does represent an important cognitive process, we did not design an experiment in which attention and oculomotor control are differentiated because attention does not appear to be related to slow drift. In our first paper that reported on this phenomenon, we investigated the effects of spatial attention on slow fluctuations in neural activity by cueing the monkeys to attend to a stimulus in the left or right visual field in a block-wise manner. Each block lasted ~20 minutes and we found that slow drift did not covary with the timing of cued blocks (see Figure 4A, Cowley et al., 2020, Neuron). Furthermore, there is a large body of work showing that arousal also impacts motor behavior leading to changes in a range of eye-related metrics (e.g., pupil size, microsaccade rate and saccadic reaction time - for review, see Di Stasi et al. 2013, Neurosci. Biobehav. Rev.). We also note that the terms attention and arousal are often used in nonspecific and overlapping ways in the literature, adding to some potential confusion here. Nonetheless, pupil-linked arousal is an important variable that impacts motor performance. This has now been stated clearly in the Introduction of the revised manuscript (lines 108-114) to address the reviewer’s concerns and highlight the importance of studying how precise fixation and eye movements are maintained even in the presence of signals related to ongoing changes in brain state. 

      Cowley BR, Snyder AC, Acar K, Williamson RC, Yu BM, Smith MA (2020) Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex. Neuron 108:551-567.e8.

      (2) In this context, it is particularly puzzling that one actually would expect effects of arousal on oculomotor behavior. Specifically, saccade reaction time, accuracy, and speed could be influenced by arousal. The authors should include an analysis of such effects. They should also discuss the absence or presence of such effects and how they affect their other results. 

      As described above, several studies across species have demonstrated that arousal impacts motor behavior e.g., saccade reaction time, saccade velocity and microsaccade rate (for review, see Di Stasi et al. 2013, Neurosci. Biobehav. Rev.). This has been clarified in the Introduction of the revised manuscript to address the reviewer's concerns (lines 108-114). Our prior work (Johnston et al, Cerebral Cortex, 2022) shows that slow drift impacts several types of oculomotor behavior. Overall, these studies highlight the impact of arousal on eye movements as a robust effect, and support the present investigation into arousal and oculomotor control signals. While we agree reaction time, accuracy, and speed all can be influenced by arousal depending on task demands, the present study is focused on the connection between slow fluctuations in neural activity, linked to arousal, and different subpopulations of SC neurons. 

      Di Stasi LL, Catena A, Cañas JJ, Macknik SL, Martinez-Conde S (2013) Saccadic velocity as an arousal index in naturalistic tasks. Neurosci Biobehav Rev 37:968–975.

      Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA (2022) The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cereb Cortex 32:3331–3346.

      (3) The authors use the analysis shown in Figure 6D to argue that across recording sessions the activity components capturing variance in pupil size and saccade tuning are uncorrelated. however, the distribution (green) seems to be non-uniform with a peak at very low and very high correlation specifically. The authors should test if such an interpretation is correct. If yes, where are the low and high correlations respectively? Are there potentially two functional areas in SC? 

      We agree with the reviewer that our actual data distribution was non-uniform. We examined individual sessions with high and low variance explained and did not find notable differences. One source of this variation has to do with session length. Longer sessions in principle should have a chance distribution of variance explained closer to zero because they contained more time bins. Given that we had no specific hypothesis for a non-uniform distribution, we have simply displayed the full distribution of values in our figure and the statistical result of a comparison to a shuffled distribution.

      Reviewer #3 (Public Review):

      (1) However, I am concerned about two main points: First, the authors repeatedly say that the "output" layers of the SC are the ones with the highest motor indices. This might not necessarily be accurate. For example, current thresholds for evoking saccades are lowest in the intermediate layers, and Mohler & Wurtz 1972 suggested that the output of the SC might be in the intermediate layers. Also, even if it were true that the high motor index neurons are the output, they are very few in the authors' data (this is also true in a lot of other labs, where it is less likely to see purely motor neurons in the SC). So, this makes one wonder if the electrode channels were simply too deep and already out of the SC? In other words, it seems important to show distributions of encountered neurons (regardless of the motor index) across depth, in order to better know how to interpret the tails of the distributions in the motor index histogram and in the other panels of Figure Supplement 1. I elaborate more on these points in the detailed comments below. 

      The reviewer makes a good point about the efferent signals from SC. It is true that electrical thresholds are often lowest in intermediate layers, though deep layers do project to the oculomotor nuclei (Sparks, 1986; Sparks & Hartwich-Young, 1989) and often intermediate and deep layers are considered to function together to control eye movements (Wurtz & Albano, 1980). As suggested by the reviewer, we have edited the text throughout the manuscript to say that slow drift was less evident in SC neurons with a higher motor index, as well as included the above references and points about the intermediate and deep layers (Lines 73-81). Aside from the question of which layers of the SC function as the “motor output”, the reviewer raises a separate and important question – are our deep recordings still in SC. Here, we can say definitively that they are. We removed neurons if they did not exhibit elevated (above baseline) firing rates during the visual or saccade epochs of the MGS task (see Methods section on “Exclusion criteria”). All included neurons possessed a visual, visuomotor or motor response, consistent with the response properties of neurons in the SC. In addition, we found a number of neurons well above the bottom of the probe with strong motor responses and minimal loadings onto the slow drift axis (see Figure 2 – figure supplement 1A), consistent with the reviewer’s comment that intermediate layer neurons are tuned for movement and play a role in saccade production.

      Mohler CW, Wurtz RH. Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. Journal of neurophysiology. 1976 Jul 1;39(4):722-44.

      Sparks DL. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev. 1986 Jan;66(1):118-71. doi: 10.1152/physrev.1986.66.1.118. PMID: 3511480.

      Sparks DL, Hartwich-Young R. The deep layers of the superior colliculus. Reviews of oculomotor research. 1989 Jan 1;3:213-55.

      Wurtz RH, Albano JE. Visual-motor function of the primate superior colliculus. Annu Rev Neurosci. 1980;3:189-226. doi: 10.1146/annurev.ne.03.030180.001201. PMID: 6774653.

      (2) Second, the authors find that the SC cells with a low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual responses. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC. 

      The reviewer makes an important point about the SC’s visual responses. Neurons with a low motor index are, conversely, likely to have a stronger visual response index. However, we do not believe that changes in luminance can explain why the correlation between SC spiking response and pupil size is weaker for neurons with a lower motor index. Firstly, the changes in pupil size observed in the current paper and our previous work are slow and occur on a timescale of minutes (Cowley et al., 2020, Neuron) and are correlated with eye movement measures such as reaction time and microsaccade rate (Johnston et al., 2022, Cerebral Cortex). This is in stark contrast to luminance-evoked changes in pupil size that occur on a timescale of less than a second. Secondly, as shown the new Figure 5 – figure supplement 1 in the revised manuscript, very similar results were found when SC spiking responses were correlated with pupil size during the baseline period, when only the fixation point was on the screen. Although the luminance of the small peripheral target stimulus can result in small luminance-evoked changes in pupil size, no changes in luminance occurred during the baseline period which was defined as 100ms before the onset of the target stimulus. In Figure 2 – figure supplement 1 and Author response image 1 above, we show that slow drift is the same whether calculated on the baseline response, delay period, or peri-saccadic epoch. Thus, the measurement of slow drift is insensitive to the precise timing of the selection of both the window for the spiking response and the window for the pupil measurement. If luminance were the explanation for the slow changes in firing observed in visually responsive SC neurons, it would require those neurons to exhibit robust, sustained tuned responses to the small changes in retinal illuminance induced by the relatively small fluctuations in pupil size we observed from minute to minute. We are aware of no reports of such behavior in visually-responsive neurons in SC. We have included these analyses and this reasoning in the revised manuscript on lines 478-495.

      Reviewer#1 (Recommendations for the author):

      (1) It would be useful to provide line numbers in subsequent manuscripts for reviewers.

      Line numbers have been added in the revised version of the manuscript.

      (2) Page #6; last sentence: "...even impact processing at the early to mid stages of the visuomotor transformation, without leading to unwanted changes in motor output." I do not believe the authors have provided evidence that arousal levels were not associated with changes in motor output.

      As suggested by Reviewer 3 (see Public Reviews, Reviewer 3, Point 2), we have edited the text throughout the manuscript to say that slow drift was less evident in SC neurons with a higher motor index. This sentence in the revised manuscript now reads:

      “This provides a potential mechanism through which signals related to cognition and arousal can exist in the SC, and even impact processing at the early to mid stages of the visuomotor transformation, without leading to unwanted changes in SC neurons that are linked to saccade execution.”

      (3) Page #8; last paragraph: Although deep-layer SC neurons may not have been obtained during every recording session, a summary of the motor index scores observed along the probe across sessions would be useful to confirm their assumptions. 

      See Author response image 2 below which shows the motor index of each recoded SC neuron on the x-axis and session number on the y-axis. The points are colored by to the squared factor loading which represents the variance explained between the response a neuron and the slow drift axis (see Figure 3B of the main manuscript). You can see from this plot that neurons with a stronger component loading (shown in teal to yellow) typically have a lower motor index whereas the opposite is true for neurons with a weaker component loading (shown in dark blue).

      Author response image 2.

      Scatter plot showing the motor index of each recorded neuron along with the session number in which it was recorded. The points are colored by to the squared factor loading for each neuron along the slow drift axis. Note that loadings above 0.5 (33 data points in total) have been thresholded at 0.5 so that we could effectively use the color range to show all of the slow drift axis loadings.

      (4) Page #10; first paragraph: The authors should state the time window of the delay period used, since it may be distinct from the pupil analysis (first 200ms of delay). 

      This has been stated in the revised version of the manuscript. The sentence now reads:

      “We first asked if arousal-related fluctuations are present in the SC. As in previous studies that recorded from neurons in the cortex (Cowley et al., 2020), we found that the mean spiking responses of individual SC neurons during the delay period (chosen at random on each trial from a uniform distribution spanning 600-1100ms, see Methods) fluctuated over the course of a session while the monkeys performed the MGS task (Figure 2A, left).”

      (5) Page #10; second paragraph: Extra period at the end of a sentence: " most variance in the data..". 

      Fixed in the revised version of the manuscript.

      (6) Page #12: "between projections onto the SC slow drift axis and mean pupil size during the first 200ms of the delay period when a task-related pupil response could be observed." What criteria was used to determine whether a task-related pupil response was observed? 

      This was chosen based on the results of a previous study in our lab that used the same memory-guided saccade task to investigate the relationship between slow drift and changes in based and evoked pupil size (see Johnston et al., 2022, Cereb. Cortex, Figure 6B). The period was chosen based on plotting the average pupil size aligned on different trial epochs. As we show in Figure 5-figure supplement 3 above, the pupil interactions with slow drift did not depend on the particular time window of the pupil we chose.  

      (7) Page #14; Figure 2A: The axes for the individual channels are strangely floating and quite different from all other figures. Please label the channel in the figure legend that was used as an example of the projected values onto the slow drift axis.

      The figure has been changed in the revised version of the manuscript so that the tick mark denoting zero residual spikes per second is on the top layer of each plot. A scale bar was chosen instead of individual axes to reduce clutter in the figure as it was used to demonstrate how slow drift was computed. Residual spiking responses from all neurons were projected on the slow drift axis to generate the scatter plot in the bottom right-hand corner of Figure 2A. There is no single neuron to label.

      (8) Page #16: "These results demonstrate that even though arousal-related fluctuations are present in the SC, they are isolated from deep-layer neurons that elicit a strong saccadic response and presumably reside closer to the motor output." In line with our major comments, lack of arousal-related activity during the delay period is meaningless for deep-layer SC neurons that are generally inactive during this time. It does not imply that there is no arousal signal! 

      Addressed in Public Reviews, Reviewer 1, Point 1 & 2. We found a similar lack of arousal-related modulations reported for deep-layer SC neurons when slow drift was computed using the saccade epoch (Figure 1 above). In addition, similar dynamics were observed when the SC slow drift axis was computed using spiking responses during the baseline, delay, visual and saccade period (Figure 2).

      (9) Page #18: "These findings provide additional support for the hypothesis that arousalrelated fluctuations are isolated from neurons in the deep layers of the SC." The same criticism from above applies.

      Addressed in Public Reviews, Reviewer 1, Point 1 & 2.

      (10) Page #20; paragraph 3: "Taken together, the findings outlined above..." Would be useful to be more specific when referring to "activity" ; e.g., "...these neurons did not exhibit large fluctuations in delay-period activity over time".

      This sentence has been changed in the revised manuscript in light of the reviewer’s comments. It now reads:

      “In addition to being more weakly correlated with pupil size, the spiking responses of these neurons did not exhibit large fluctuations over time (Figure 2), and when considering the neuronal population as a whole, explained less variance in the slow drift axis when it was computed using population activity in the SC (Figure 3) and PFC (Figure 4).”

      Reviewer #3 (Recommendations for the author):

      The paper is clear and well-written. However, I am concerned about two main points: 

      (1) First, the authors repeatedly say that the "output" layers of the SC are the ones with the highest motor indices. This might not necessarily be accurate. For example, current thresholds for evoking saccades are lowest in the intermediate layers, and Mohler & Wurtz 1972 suggested that the output of the SC might be in the intermediate layers. Also, even if it were true that the high motor index neurons are the output, they are very few in the authors' data (this is also true in a lot of other labs, where it is less likely to see purely motor neurons in the SC). So, this makes one wonder if the electrode channels were simply too deep and already out of the SC. In other words, it seems important to show distributions of encountered neurons (regardless of motor index) across depth, in order to better know how to interpret the tails of the distributions in the motor index histogram and in the other panels of the figure supplement 1. I elaborate more on these points in the detailed comments below. 

      Addressed in Public Reviews, Reviewer 3, Point 1.

      (2) Second, the authors find that the SC cells with a low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual responses. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC. 

      Addressed in Public Reviews, Reviewer 3, Point 2.

      (3) I think that a remedy to the first point above is to change the text to make it a bit more descriptive and less interpretive. For example, just say that the slow drifts were less evident among the neurons with high motor index. 

      We thank the reviewer for this suggestion (see Public Reviews, Reviewer 3, Point 1).

      (4) For the second point, I think that it is important to consider the alternative caveat of different amounts of light entering the system. Changes in light level caused by pupil diameter variations can be quite large. 

      We thank the reviewer for this suggestion (see Public Reviews, Reviewer 3, Point 2).

      (5) Line 31: I'm a bit underwhelmed by this kind of statement. i.e. we already know that cognitive processes and brain states do alter eye movements, so why is it "critical" that high precision fixation and eye movements are maintained? And, isn't the next sentence already nulling this idea of criticality because it does show that the brain state alters the SC neurons? In fact, cognitive processes are already known to be most prevalent in the intermediate and deep layers of the SC. 

      It seems clear that while cognitive state does affect eye movements, it is desirable to have some separation between cognitive state and eye movement control. Covert attention, for instance, is precisely a situation where eye movement control is maintained to avoid overt saccades to the attended stimulus, and yet there are clear indications of attention’s impact on microsaccades and fixation. We stand by our statement that an important goal of vision is to have precise fixation and movements of the eye, and yet at the same time the eyes are subject to numerous influences by cognitive state.

      (6) Line 65: it is better to clarify that these are "functional layers" because there are actually more anatomical layers. 

      We have edited this sentence in the revised version of the manuscript so that it now reads:

      “The role of these projections in the visuomotor transformation depends on the functional layer of the SC in which they terminate”.

      (7) Line 73: this makes it sound like only the deepest layers are topographically organized, which is not true. Also, as early as Mohler & Wurtz, 1972, it was suggested that the intermediate layers have the biggest impacts downstream of the SC. This is also consistent with electrical microstimulation current thresholds for evoking saccades from the SC. 

      We have addressed the reviewers’ comments about the intermediate layers having the biggest impact downstream of the SC in Public Reviews, Reviewer 3, Point 1. Furthermore, line 73 has been changed in the revised manuscript so that it now reads:

      “As is the case for neurons in the superficial and intermediate layers, they [SC motor neurons] form a topographically organized map of visual space (White et al. 2017; Robinson 1972; Katnani and Gandhi 2011)”.  

      (8) Line 100: there is an analogous literature regarding the question of why unwanted muscle contractions do not happen. Specifically, in the context of why SC visual bursts do not automatically cause saccades (which is a similar problem to the ones you mention about cognitive signals interfering by generating unwanted eye movements), both Jagadisan & Gandhi, Curr Bio, 2022 and Baumann et al, PNAS, 2023 also showed that SC population activity not only has different temporal structure (Jagadisan & Gandhi) but also occupy different subspaces (Baumann et al) under these two different conditions (visual burst versus saccade burst). This is conceptually similar to the idea that you are mentioning here with respect to arousal. So, it is worth it to mention these studies here and again in the discussion. 

      We are grateful to the reviewer for these suggestions and have included text in the Introduction (Lines 125-128) and Discussion (Lines 678-682) of the revised manuscript along with the references cited above.

      (9) Line 147: as mentioned above, it is now generally accepted that there are quite a few "pure" motor neurons in the SC. This is consistent with what you find. E.g. Baumann et al., 2023. And, again see Mohler and Wurtz in the 1970's. So, I wonder how useful it is to go too much into this idea of the deeper motor neurons (e.g. the correlations in the other panels of the Figure 1 supplement). 

      This is related to the reviewer’s comment that the output of the SC might be in the intermediate layers. This concern has been addressed in Public Reviews, Reviewer 3, Point 1.

      (10) Figure 1 should say where the RF was for the shown spike rasters. i.e. were these the same saccade target across trials? And where was that location relative to the RF? It would help also in the text to say whether the saccade was always to the RF center or whether you were randomizing the target location. 

      We centered the array of saccade targets using the microstimulation-evoked eye movement for SC (see Methods section “Memory-guided saccade task”) to find the evoked eccentricity, and then used saccade targets with equal spacing of 45 degrees starting at zero (rightward saccade target). We did not do extensive RF mapping beyond this microstimulation centering. In Figure 1, the spike rasters are shown for a target that was visually identified to be within the neuron’s RF based on assessing responses to all 8 target angles. We have added information about this to the figure caption.

      (11) Line 218: but were there changes in the eye movement statistics? For example, the slow drift eye movements during fixation? Or even the microsaccades? 

      Addressed in Public Reviews, Reviewer 2, Point 2.  

      (12) Line 248: shuffling what exactly? I think that more explanation would be needed here. 

      Addressed in Public Reviews, Reviewer 1, Point 3.  

      (13) Line 263: but isn't this reflecting a sensory transient in the pupil diameter, since the target just disappeared? 

      Addressed in Public Reviews, Reviewer 3, Point 2.  

      (14) Line 271: I suspect that slow drift eye movements (in between microsaccades) would show higher correlations. Not sure how well you can analyze those with a video-based eye tracker. 

      We agree that fixational drift would be a worthwhile metric, but it is not one we have focused on here and to our knowledge does require higher precision tracking. 

      (15) Line 286: again, see above about similar demonstrations with respect to the visual and motor burst intervals, which clearly cause the same problem (even stronger) as the one studied here. 

      See reply, including Figure 2.

      (16) Line 330: again, I'm not sure deeper necessarily automatically means closer to the output. For example, current thresholds for evoked saccades grow higher as you go deeper. Maybe the authors can ask their colleague Neeraj Gandhi about this point specifically, just to be safe. Maybe the safest would be to remain descriptive about the data, and just say something like: arousal-related fluctuations were absent in our deepest recorded sites. 

      Addressed in Public Reviews, Reviewer 3, Point 1.

      (17) Line 332: likewise, statements like this one here would be qualified if the output was the intermediate layers......anyway if I understand what I read so far in the paper, the signal will be anyway orthogonal to the motor burst population subspace. So, maybe there's no need to emphasize that it goes away in the very deepest layers. 

      See reply above, Public Reviews, Reviewer 1, Point 4.

      (18) Figure 3A: related to the above, I think one issue could be that the deeper contacts might already be out of the SC. Maybe some cell count distribution from each channel should help in this regard. i.e. were you finding way fewer saccade-related neurons in the deepest channels (even though the few that you found were with high motor index)? If so, then wouldn't this just mean that the channel was too deep? I think there needs to be an analysis like this, to convince readers that the channels were still in the SC. Ideally, electrical stimulation current thresholds for evoking saccades at different depths would be tested, but I understand that this can be difficult at this stage. 

      Addressed in Public Reviews, Reviewer 3, Point 1.

      (19) I keep repeating this because in general, cognitive effects are stronger in the intermediate/deeper layers than in the superficial layers. If these interfere with eye movements like arousal, then why should arousal be different?

      Few studies have investigated the effects of attention on “pure” movement SC neurons that only discharge during a saccade. One study, which we cited in Introduction (Ignashchenkova et al., 2004, Nat. Neurosci.), found significant differences in spiking responses between trials with and without attentional cueing for visual and visuomotor neurons. No significant difference was found for motor neurons, consistent with our hypothesis that signals related to cognition and arousal are kept separate from saccade-related signals in the SC.

      (20) The problem with Figure 5 and its related text is that the neurons with low motor index are additionally visual. So, of course, they can be modulated if the pupil diameter changes!

      Addressed in Public Reviews, Reviewer 3, Point 2.  

      (21) I had a hard time understanding Figure 6. 

      See reply above, Public Reviews, Reviewer 1, Point 4.

      (22) Line 586: these cells have more visual responses and will be affected by the amount of light entering the eye. 

      Addressed in Public Reviews, Reviewer 3, Point 2.

    1. Establishing the boundaries for your research may come from your instructor’s assignment guidelines.

      I completely agree with this sentence I think establishing boundaries for your research is especially important but starting off with what your teacher has is important. For the context of academic papers written as a student your audience is a bit ambiguous generally speaking the only people who will read your academic papers is your professor and so understanding the guidelines and what necessarily the professor needs out of that paper is important. The purpose of the paper is to demonstrate that you not only can do research but that you are actively learning engaging and articulating the information you are researching. It's important that not only instructor headlines are clear and concise but also that in the moments that they aren't that we are asking and refining to ensure that it is an acceptable essay for the assignment.

    1. I use the end-pa-pers at the back of the book to makea personal index of the author's pointsin the order of their appearance

      The making of a personal index is a first step in building a mesh of knowledge. In just a few years, Vannevar Bush will speak of "associative trails" a phrase he uses twice in "As We May Think" (The Atlantic, July 1945), but of potentially more import is his phrase "associative indexing" which lays way to either juxtaposing or linking two ideas (either similar or disjoint) together. It bears asking the question of of whether it's more valuable to index and juxtapose similar ideas or disjoint ideas which may more frequently lead to better, more useful, and more relevant and rich future ideas.

      It affords an immediate step, however, to associative indexing, the basic idea of which is a provision whereby any item may be caused at will to select immediately and automatically another. This is the essential feature of the memex. The process of tying two items together is the important thing. Bush, Vannevar. 1945. “As We May Think.” The Atlantic 176: 101–8. https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/ (October 22, 2022). #

    1. It affords an immediate step, however, to associative indexing, the basic idea of which is a provision whereby any item may be caused at will to select immediately and automatically another. This is the essential feature of the memex. The process of tying two items together is the important thing.

      See also the precursor of personal indexing which Mortimer J. Adler mentions in 1940: https://hypothes.is/a/cPcoAqhVEfC0rJOZ0Pm-8Q

    1. Reviewer #3 (Public review):

      Summary

      The authors set out to explore the potential relationship between adult neurogenesis of inhibitory granule cells in the olfactory bulb and cumulative changes over days in odor-evoked spiking activity (representational drift) in the olfactory stream. They developed a richly detailed spiking neuronal network model based on Izhikevich (2003), allowing them to capture the diversity of spiking behaviors of multiple neuron types within the olfactory system. This model recapitulates the circuit organization of both the main olfactory bulb (MOB) and the piriform cortex (PCx), including connections between the two (both feedforward and corticofugal). Adult neurogenesis was captured by shuffling the weights of the model's granule cells, preserving the distribution of synaptic weights. Shuffling of granule cell connectivity resulted in cumulative changes in stimulus-evoked spiking of the model's M/T cells. Individual M/T cell tuning changed with time, and ensemble correlations dropped sharply over the temporal interval examined (long enough that almost all granule cells in the model had shuffled their weights). Interestingly, these changes in responsiveness did not disrupt low-dimensional stability of olfactory representations: when projected into a low-dimensional subspace, population vector correlations in this subspace remained elevated across the temporal interval examined. Importantly, in the model's downstream piriform layer, this was not the case. There, shuffled GC connectivity in the bulb resulted in a complete shift in piriform odor coding, including for low-dimensional projections. This is in contrast to what the model exhibited in the M/T input layer. Interestingly, these changes in PCx extended to the geometrical structure of the odor representations themselves. Finally, the authors examined the effect of experience on representational drift. Using an STDP rule, they allowed the inputs to and outputs from adult-born granule cells to change during repeated presentations of the same odor. This stabilized stimulus-evoked activity in the model's piriform layer.

      Strengths

      This paper suggests a link between adult neurogenesis in the olfactory bulb and representational drift in the piriform cortex. Using an elegant spiking network that faithfully recapitulates the basic physiological properties of the olfactory stream, the authors tackle a question of longstanding interest in a creative and interesting manner. As a purely theoretical study of drift, this paper presents important insights: synaptic turnover of recurrent inhibitory input can destabilize stimulus-evoked activity, but only to a degree, as representations in the bulb (the model's recurrent input layer) retain their basic geometrical form. However, this destabilized input results in profound drift in the model's second (piriform) layer, where both the tuning of individual neurons and the layer's overall functional geometry are restructured. This is a useful and important idea in the drift field, and to my knowledge, it is novel. The bulb is not the only setting where inhibitory synapses exhibit turnover (whether through neurogenesis or synaptic dynamics), and so this exploration of the consequences of such plasticity on drift is valuable. The authors also elegantly explore a potential mechanism to stabilize representations through experience, using an STDP rule specific to the inhibitory neurons in the input layer. This has an interesting parallel with other recent theoretical work on drift in the piriform (Morales et al., 2025 PNAS), in which STDP in the piriform layer was also shown to stabilize stimulus representations there. It is fascinating to see that this same rule also stabilizes piriform representations when implemented in the bulb's granule cells.

      The authors also provide a thoughtful discussion regarding the differential roles of mitral and tufted cells in drift in piriform and AON and the potential roles of neurogenesis in archicortex.

      In general, this paper puts an important and much-needed spotlight on the role of neurogenesis and inhibitory plasticity in drift. In this light, it is a valuable and exciting contribution to the drift conversation.

      Weaknesses

      I have one major, general concern that I think must be addressed to permit proper interpretation of the results.

      I worry that the authors' model may confuse thinking on drift in the olfactory system, because of differences in the behavior of their model from known features of the olfactory bulb. In their model, the tuning of individual bulbar neurons drifts over time. This is inconsistent with the experimental literature on the stability of odor-evoked activity in the olfactory bulb.

      In a foundational paper, Bhalla & Bower (1997) recorded from mitral and tufted cells in the olfactory bulb of freely moving rats and measured the odor tuning of well-isolated single units across a five-day interval. They found that the tuning of a single cell was quite variable within a day, across trials, but that this variability did not increase with time. Indeed, their measure of response similarity was equivalent within and across days. In what now reads as a prescient anticipation of the drift phenomenon, Bhalla and Bower concluded: "it is clear, at least over five days, that the cell is bounded in how it can respond. If this were not the case, we would expect a continual increase in relative response variability over multiple days (the equivalent of response drift). Instead, the degree of variability in the responses of single cells is stable over the length of time we have recorded." Thus, even at the level of single cells, this early paper argues that the bulb is stable.

      This basic result has since been replicated by several groups. Kato et al. (2012) used chronic two-photon calcium imaging of mitral cells in awake, head-fixed mice and likewise found that, while odor responses could be modulated by recent experience (odor exposure leading to transient adaptation), the underlying tuning of individual cells remained stable. While experience altered mitral cell odor responses, those responses recovered to their original form at the level of the single neuron, maintaining tuning over extended periods (two months). More recently, the Mizrahi lab (Shani-Narkiss et al., 2023) extended chronic imaging to six months, reporting that single-cell odor tuning curves remained highly similar over this period. These studies reinforce Bhalla and Bower's original conclusion: despite trial-to-trial variability, olfactory bulb neurons maintain stable odor tuning across extended timescales, with plasticity emerging primarily in response to experience. (The Yamada et al., 2017 paper, which the authors here cite, is not an appropriate comparison. In Yamada, mice were exposed daily to odor. Therefore, the changes observed in Yamada are a function of odor experience, not of time alone. Yamada does not include data in which the tuning of bulb neurons is measured in the absence of intervening experience.)

      Therefore, a model that relies on instability in the tuning of bulbar neurons risks giving the incorrect impression that the bulb drifts over time. This difference should be explicitly addressed by the authors to avoid any potential confusion. Perhaps the best course of action would be to fit their model to Mizrahi's data, should this data be available, and see if, when constrained by empirical observation, the model still produces drift in piriform. If so, this would dramatically strengthen the paper. If this is not feasible, then I suggest being very explicit about this difference between the behavior of the model and what has been shown empirically. I appreciate that in the data there is modest drift (e.g., Shani-Narkiss' Figure 8C), but the changes reported there really are modest compared to what is exhibited by the model. A compromise would be to simply apply these metrics to the model and match the model's similarity to the Shani-Narkiss data. Then the authors could ask what effect this has on drift in piriform.

      The risk here is that people will conclude from this paper that drift in piriform may simply be inherited from instability in the bulb. This view is inconsistent with what has been documented empirically, and so great care is warranted to avoid conveying that impression to the community.

      Major comments (all related to the above point)

      (1) Lines 146-168: The authors find in their model that "individual M/T cells changed their responses to the same odor across days due to adult-neurogenesis, with some cells decreasing the firing rate responses (Fig.2A1 top) while other cells increased the magnitude of their responses (Fig. 2A2 bottom, Fig. S2)" they also report a significant decrease in the "full ensemble correlation" in their model over time. They claim that these changes in individual cell tuning are "similar to what has been observed by others using calcium imaging of M/T cell activity (Kato et al., 2012 and Yamada et al., 2017)" and that the decrease in full ensemble correlation is "consistent with experimental observations (Yamada et al., 2017)." However, the conditions of the Kato and Yamada experiments that demonstrate response change are not comparable here, as odors were presented daily to the animals in these experiments. Therefore, the changes in odor tuning found in the Kato and Yamada papers (Kato Figure 4D; Yamada Figure 3E) are a function of accumulated experience with odor. This distinction is crucial because experience-induced changes reflect an underlying learning process, whereas changes that simply accumulate over time are more consistent with drift. The conditions of their model are more similar to those employed in other experiments described in Kato et al. 2012 (Figure 6C) as well as Shani-Narkiss et al. (2023), in which bulb tuning is measured not as a function of intervening experience, but rather as a function of time (Kato's "recovery" experiment). What is found in Kato is that even across two months, the tuning of individual mitral cells is stable. What alters tuning is experience with odor, the core finding of both the Kato et al., 2012 paper and also Yamada et al., 2017. It is crucial that this is clarified in the text.

      (2) The authors show that in a reduced-space correlation metric, the correlation of low-dimensional trajectories "remained high across all days"..."consistent with a recent experimental study" (Shani-Narkiss et al., 2023). It is true that in the Shani-Narkiss paper, a consistent low-dimensional response is found across days (t-SNE analysis in Shani-Narkiss Figure 7B). However, the key difference between the Shani-Narkiss data and the results reported here is that Shani-Narkiss also observed relative stability in the native space (Shani-Narkiss Figure 8). They conclude that they "find a relatively stable response of single neurons to odors in either awake or anesthetized states and a relatively stable representation of odors by the MC population as a whole (Figures 6-8; Bhalla and Bower, 1997)." This should be better clarified in the text.

      (3) In the discussion, the authors state that "In the MOB, individual M/T cells exhibited variable odor responses akin to gain control, altering their firing rate magnitudes over time. This is consistent with earlier experimental studies using calcium-imaging." (L314-6). Again, I disagree that these data are consistent with what has been published thus far. Changes in gain would have resulted in increased variability across days in the Bhalla data. Moreover, changes in gain would be captured by Kato's change index ("To quantify the changes in mitral cell responses, we calculated the change index (CI) for each responsive mitral cell-odor pair on each trial (trial X) of a given day as (response on trial X - the initial response on day 1)/(response on trial X + the initial response on day 1). Thus, CI ranges from −1 to 1, where a value of −1 represents a complete loss of response, 1 represents the emergence of a new response, and 0 represents no change." Kato et al.). This index will capture changes in gain. However, as shown in Figure 4D (red traces), Figure 6C (Recovery and Odor set B during odor set A experience and vice versa), the change index is either zero or near zero. If the authors wish to claim that their model is consistent with these data, they should also compute Kato's change index for M/T odor-cell pairs in their model and show that it also remains at 0 over time, absent experience.

    1. Reviewer #2 (Public review):

      Summary:

      This paper addresses an interesting issue: how is the search for a visual target affected by its orientation (and the viewer's) relative to other items in the scene and gravity? The paper describes a series of visual search tasks, using recognizable targets (e.g., a cat) positioned within a natural scene. Reaction times and accuracy at determining whether the target was present or absent, trial-to-trial, were measured as the target's orientation, that of the context, and of the viewer themselves (via rotation in a flight simulator) were manipulated. The paper concludes that search is substantially affected by these manipulations, primarily by the reference frame of gravity, then visual context, followed by the egocentric reference frame.

      Strengths:

      This work is on an interesting topic, and benefits from using natural stimuli in VR / flight simulator to change participants' POV and body position.

      Weaknesses:

      There are several areas of weakness that I feel should be addressed.

      (1) The literature review/introduction seems to be lacking in some areas. The authors, when contemplating the behavioral consequences of searching for a 'rotated' target, immediately frame the problem as one of rotation, per se (i.e., contrasting only rotation-based explanations; "what rotates and in which 'reference frame[s]' in order to allow for successful search?"). For a reader not already committed to this framing, many natural questions arise that are worth addressing.

      1a) Why do we need to appeal to rotation at all as opposed to, say, familiarity? A rotated cat is less familiar than a typically oriented one. This is a long-standing literature (e.g., Wang, Cavanagh, and Green (1994)), of course, with a lot to unpack.

      1b) What are the triggers for the 'corrective' rotation that presumably brings reference frames back into alignment? What if the rotation had not been so obvious (i.e. for a target that may not have a typical orientation, like a hand, or a ball, or a learned, nonsense object?) or the background had not had such clear orientation (like a cluttered non-naturalistic background of or a naturalistic backdrop, but viewed from an unfamiliar POV (e.g., from above) or a naturalistic background, but not all of the elements were rotated)? What, ultimately, is rotated? The entire visual field? Does that mean that searching for multiple targets at different angles of rotation would interfere with one another?

      1c) Relatedly, what is the process by which the visual system comes to know the 'correct' rotation? (Or, alternatively, is 'triggered to realize' that there is a rotation in play?) Is this something that needs to be learned? Is it only learned developmentally, through exposure to gravity? Could it be learned in the context of an experiment that starts with unfamiliar stimuli?

      1d) Why the appeal to natural images? I appreciate any time a study can be moved from potentially too stripped-down laboratory conditions to more naturalistic ones, but is this necessary in the present case? Would the pattern of results have been different if these were typical laboratory 'visual search' displays of disconnected object arrays?

      1e) How should we reconcile rotation-based theories of 'rotated-object' search with visual search results from zero gravity environments (e.g., for a review, see Leone (1998))?

      1f) How should we reconcile the current manipulations with other viewpoint-perspective manipulations (e.g., Zhang & Pan (2022))?

      (2) The presentation/interpretation of results would benefit from more elaboration and justification.

      2a) All of the current interpretations rely on just the RT data. First, the RT results should also be presented in natural units (i.e., seconds/ms), not normalized. As well, results should be shown as violin plots or something similar that captures distribution - a lot of important information is lost when just presenting one 'average' dot across participants. More fundamentally, I think we need to have a better accounting for performance (percent correct or d') to help contextualize the RT results. We should at least be offered some visualization (Heitz, 2014) of the speed accuracy trade-off for each of the conditions. Following this, the authors should more critically evaluate how any substantial SAT trends could affect the interpretation of results.

      2b) Unless I am missing something, the interpretation of the pattern of results (both qualitatively and quantitatively in their 'relative weight' analysis) relies on how they draw their contrasts. For instance, the authors contrast the two 'gravitational' conditions (target 0 deg versus target 90 deg) as if this were a change in a single variable/factor. But there are other ways to understand these manipulations that would affect contrasts. For instance, if one considers whether the target was 'consistent' (i.e., typically oriented) with respect to the context, egocentric, and gravitational frames, then the 'gravitational 0 deg' condition is consistent with context, egocentric view, but inconsistent with gravity. And, the 'gravitational 90 deg' condition, then, is inconsistent with context, egocentric view, but consistent with gravity. Seen this way, this is not a change in one variable, but three. The same is true of the baseline 0 deg versus baseline 90 deg condition, where again we have a change in all three target-consistency variables. The 'one variable' manipulations then would be: 1) baseline 0 versus visual context 0 (i.e., a change only in the context variable); 2) baseline 0 versus egocentric 0 (a change only in the egocentric variable); and 3) baseline 0 versus gravitational 0 (a change only in the gravitational variable). Other contrasts (e.g., gravitational 90 versus context 90) would showcase a change in two variables (in this case, a change in both context and gravity). My larger point is, again, unless I am really missing something, that the choice of how to contrast the manipulations will affect the 'pattern' of results and thereby the interpretation. If the authors agree, this needs to be acknowledged, plausible alternative schemes discussed, and the ultimate choice of scheme defended as the most valid.

      2c) Even with this 'relative weight' interpretation, there are still some patterns of results that seem hard to account for. Primarily, the egocentric condition seems hard to account for under any scheme, and the authors need to spend more time discussing/reconciling those results.

      2d) Some results are just deeply counterintuitive, and so the reader will crave further discussion. Most saliently for me, based on the results of Experiment 2 (specifically, the fact that gravitational 90 had better performance than gravitational 0), designers of cockpits should have all gauges/displays rotate counter to the airplane so that they are always consistent with gravity, not the pilot. Is this indeed a fair implication of the results?

      2e) I really craved some 'control conditions' here to help frame the current results. In keeping with the rhetorical questions posed above in 1a/b/c/d, if/when the authors engage with revisions to this paper, I would encourage the inclusion of at least some new empirical results. For me the most critical would be to repeat some core conditions, but with a symmetric target (e.g. a ball) since that would seem to be the only way (given the current design) to tease out nuisance confounding factors such as, say, the general effect of performing search while sideways (put another way, the authors would have to assume here that search (non-normalized RT's and search performance) for a ball-target in the baseline condition would be identical to that in the gravitational condition.)

  2. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. When someone presents themselves as open and as sharing their vulnerabilities with us, it makes the connection feel authentic. We feel like they have entangled their wellbeing with ours by sharing their vulnerabilities with us. Think about how this works with celebrity personalities. Jennifer Lawrence became a favorite of many when she tripped at the Oscars [f2], and turned the moment into her persona as someone with a cool-girl, unpolished, unfiltered way about her. She came across as relatable and as sharing her vulnerabilities with us, which let many people feel that they had a closer, more authentic connection with her. Over time, that persona has come to be read differently, with some suggesting that this open-styled persona is in itself also a performance. Does this mean that her performance of vulnerability was inauthentic?

      This chapter about authenticity really make me reflect on the current "performative" male trend. As you may know, the stereotype for these performative males goes along the lines of things like drinking matcha, wearing tote bags, listening to indie music like Clario... etc. In hindsight, you can chop this up as just ones interests, regardless of their gender. But the reason it's such a big trend is because people can sense when a guy is doing it purely for validation. More specifically- female validation, since these interests are more stereotypically women's interests. So like the text reads, "humans do not like to be duped", and when people can tell something is inauthentic, they're not going to take it seriously.

    1. Although it is increasingly recognised that the tools we use to examine our objects of study change our relationship to them, this is not an area that has been studied in any great detail within Digital Archaeology beyond perhaps discussions of the effects of different categories of software (the impact of GIS or database applications, for instance, or the effect of enlarged access to open data sources) on how we organise and understand the past. I have suggested elsewhere that through understanding how these technologies operate on us as well as for us, we can seek to ensure that they serve us better in what as archaeologists we already do, and help us initiate new and innovative ways of thinking about the past (Huggett 2004; 2012a). This entails going beyond the relatively commonplace reflections on specific software applications and their context of use: the tools we create, adopt, refine and employ have the effect of augmenting and scaffolding our thought and analysis, and consequently I have argued that they need to be approached in a considered, aware, and knowledgeable manner.

      it is highlights how the digital tools we use do more than organize data—they actively shape how we think about and interpret the past. He suggests that technologies “operate on us as well as for us,” meaning they influence not only the results of our research but also the cognitive processes that produce those results. This idea connects directly to my project on Tang poetry and emotion. When I use computational methods such as Voyant Tools and SnowNLP to analyze the emotional vocabulary of poems from the Tang dynasty, these tools shape the patterns I see and the questions I ask. For example, frequency counts or sentiment scores may emphasize some emotions while downplaying others that are culturally embedded in Chinese language and history. Therefore, as Huggett proposes, I must approach these technologies consciously and critically. They can scaffold my thought by helping me visualize large poetic patterns, but they can also reshape my understanding of the texts I study. This awareness encourages me to balance quantitative data with close reading and historical sensitivity, ensuring that the digital analysis deepens rather than distorts my interpretation of Tang emotional expression.

    1. Author response:

      The following is the authors’ response to the original reviews

      General Statements:

      In our manuscript, we demonstrate for the first time that RNA Polymerase I (Pol I) can prematurely release nascent transcripts at the 5' end of ribosomal DNA transcription units in vivo. This achievement was made possible by comparing wild-type Pol I with a mutant form of Pol I, hereafter called SuperPol previously isolated in our lab (Darrière at al., 2019). By combining in vivo analysis of rRNA synthesis (using pulse-labelling of nascent transcript and cross-linking of nascent transcript - CRAC) with in vitro analysis, we could show that Superpol reduced premature transcript release due to altered elongation dynamics and reduced RNA cleavage activity. Such premature release could reflect regulatory mechanisms controlling rRNA synthesis. Importantly, This increased processivity of SuperPol is correlated with resistance with BMH-21, a novel anticancer drugs inhibiting Pol I, showing the relevance of targeting Pol I during transcriptional pauses to kill cancer cells. This work offers critical insights into Pol I dynamics, rRNA transcription regulation, and implications for cancer therapeutics.

      We sincerely thank the three reviewers for their insightful comments and recognition of the strengths and weaknesses of our study. Their acknowledgment of our rigorous methodology, the relevance of our findings on rRNA transcription regulation, and the significant enzymatic properties of the SuperPol mutant is highly appreciated. We are particularly grateful for their appreciation of the potential scientific impact of this work. Additionally, we value the reviewer’s suggestion that this article could address a broad scientific community, including in transcription biology and cancer therapy research. These encouraging remarks motivate us to refine and expand upon our findings further.

      All three reviewers acknowledged the increased processivity of SuperPol compared to its wildtype counterpart. However, two out of three questions our claims that premature termination of transcription can regulate ribosomal RNA transcription. This conclusion is based on SuperPol mutant increasing rRNA production. Proving that modulation of early transcription termination is used to regulate rRNA production under physiological conditions is beyond the scope of this study. Therefore, we propose to change the title of this manuscript to focus on what we have unambiguously demonstrated:

      “Ribosomal RNA synthesis by RNA polymerase I is subjected to premature termination of transcription”.

      Reviewer 1 main criticisms centers on the use of the CRAC technique in our study. While we address this point in detail below, we would like to emphasize that, although we agree with the reviewer’s comments regarding its application to Pol II studies, by limiting contamination with mature rRNA, CRAC remains the only suitable method for studying Pol I elongation over the entire transcription units. All other methods are massively contaminated with fragments of mature RNA which prevents any quantitative analysis of read distribution within rDNA.  This perspective is widely accepted within the Pol I research community, as CRAC provides a robust approach to capturing transcriptional dynamics specific to Pol I activity. 

      We hope that these findings will resonate with the readership of your journal and contribute significantly to advancing discussions in transcription biology and related fields.

      Description of the planned revisions:

      Despite numerous text modification (see below), we agree that one major point of discussion is the consequence of increased processivity in SuperPol mutant on the “quality” of produced rRNA. Reviewer 3 suggested comparisons with other processive alleles, such as the rpb1-E1103G mutant of the RNAPII subunit (Malagon et al., 2006). This comparison has already been addressed by the Schneider lab (Viktorovskaya OV, Cell Rep., 2013 - PMID: 23994471), which explored Pol II (rpb1-E1103G) and Pol I (rpa190-E1224G). The rpa190-E1224G mutant revealed enhanced pausing in vitro, highlighting key differences between Pol I and Pol II catalytic ratelimiting steps (see David Schneider's review on this topic for further details).

      Reviewer 2 and 3 suggested that a decreased efficiency of cleavage upon backtracking might imply an increased error rate in SuperPol compared to the wild-type enzyme. Pol I mutant with decreased rRNA cleavage have been characterized previously, and resulted in increased errorrate. We already started to address this point. Preliminary results from in vitro experiments suggest that SuperPol mutants exhibit an elevated error rate during transcription. However, these findings remain preliminary and require further experimental validation to confirm their reproducibility and robustness. We propose to consolidate these data and incorporate into the manuscript to address this question comprehensively. This could provide valuable insights into the mechanistic differences between SuperPol and the wild-type enzyme. SuperPol is the first pol I mutant described with an increased processivity in vitro and in vivo, and we agree that this might be at the cost of a decreased fidelity.

      Regulatory aspect of the process:

      To address the reviewer’s remarks, we propose to test our model by performing experiments that would evaluate PTT levels in Pol I mutant’s or under different growth conditions. These experiments would provide crucial data to support our model, which suggests that PTT is a regulatory element of Pol I transcription. By demonstrating how PTT varies with environmental factors, we aim to strengthen the hypothesis that premature termination plays an important role in regulating Pol I activity.

      We propose revising the title and conclusions of the manuscript. The updated version will better reflect the study's focus and temper claims regarding the regulatory aspects of termination events, while maintaining the value of our proposed model.

      Description of the revisions that have already been incorporated in the transferred manuscript:

      Some very important modifications have now been incorporated:

      Statistical Analyses and CRAC Replicates:

      Unlike reviewers 2 and 3, reviewer 1 suggests that we did not analyze the results statistically. In fact, the CRAC analyses were conducted in biological triplicate, ensuring robustness and reproducibility. The statistical analyses are presented in Figure 2C, which highlights significant findings supporting the fact WT Pol I and SuperPol distribution profiles are different. We CRAC replicates exhibit a high correlation and we confirmed significant effect in each region of interest (5’ETS, 18S.2, 25S.1 and 3’ ETS, Figure 1) to confirm consistency across experiments. We finally took care not to overinterpret the results, maintaining a rigorous and cautious approach in our analysis to ensure accurate conclusions.

      CRAC vs. Net-seq:

      Reviewer 1 ask to comment differences between CRAC and Net-seq. Both methods complement each other but serve different purposes depending on the biological question on the context of transcription analysis. Net-seq has originally been designed for Pol II analysis. It captures nascent RNAs but does not eliminate mature ribosomal RNAs (rRNAs), leading to high levels of contamination. While this is manageable for Pol II analysis (in silico elimination of reads corresponding to rRNAs), it poses a significant problem for Pol I due to the dominance of rRNAs (60% of total RNAs in yeast), which share sequences with nascent Pol I transcripts. As a result, large Net-seq peaks are observed at mature rRNA extremities (Clarke 2018, Jacobs 2022). This limits the interpretation of the results to the short lived pre-rRNA species. In contrast, CRAC has been specifically adapted by the laboratory of David Tollervey to map Pol I distribution while minimizing contamination from mature rRNAs (The CRAC protocol used exclusively recovers RNAs with 3′ hydroxyl groups that represent endogenous 3′ ends of nascent transcripts, thus removing RNAs with 3’-Phosphate, found in mature rRNAs). This makes CRAC more suitable for studying Pol I transcription, including polymerase pausing and distribution along rDNA, providing quantitative dataset for the entire rDNA gene.

      CRAC vs. Other Methods:

      Reviewer 1 suggests using GRO-seq or TT-seq, but the experiments in Figure 2 aim to assess the distribution profile of Pol I along the rDNA, which requires a method optimized for this specific purpose. While GRO-seq and TT-seq are excellent for measuring RNA synthesis and cotranscriptional processing, they rely on Sarkosyl treatment to permeabilize cellular and nuclear membranes. Sarkosyl is known to artificially induces polymerase pausing and inhibits RNase activities which are involved in the process. To avoid these artifacts, CRAC analysis is a direct and fully in vivo approach. In CRAC experiment, cells are grown exponentially in rich media and arrested via rapid cross-linking, providing precise and artifact-free data on Pol I activity and pausing.

      Pol I ChIP Signal Comparison:

      The ChIP experiments previously published in Darrière et al. lack the statistical depth and resolution offered by our CRAC analyses. The detailed results obtained through CRAC would have been impossible to detect using classical ChIP. The current study provides a more refined and precise understanding of Pol I distribution and dynamics, highlighting the advantages of CRAC over traditional methods in addressing these complex transcriptional processes.

      BMH-21 Effects:

      As highlighted by Reviewer 1, the effects of BMH-21 observed in our study differ slightly from those reported in earlier work (Ref Schneider 2022), likely due to variations in experimental conditions, such as methodologies (CRAC vs. Net-seq), as discussed earlier. We also identified variations in the response to BMH-21 treatment associated with differences in cell growth phases and/or cell density. These factors likely contribute to the observed discrepancies, offering a potential explanation for the variations between our findings and those reported in previous studies. In our approach, we prioritized reproducibility by carefully controlling BMH-21 experimental conditions to mitigate these factors. These variables can significantly influence results, potentially leading to subtle discrepancies. Nevertheless, the overall conclusions regarding BMH-21's effects on WT Pol I are largely consistent across studies, with differences primarily observed at the nucleotide resolution. This is a strength of our CRAC-based analysis, which provides precise insights into Pol I activity.

      We will address these nuances in the revised manuscript to clarify how such differences may impact results and provide context for interpreting our findings in light of previous studies.

      Minor points:

      Reviewer #1:

      In general, the writing style is not clear, and there are some word mistakes or poor descriptions of the results, for example: 

      On page 14: "SuperPol accumulation is decreased (compared to Pol I)". 

      On page 16: "Compared to WT Pol I, the cumulative distribution of SuperPol is indeed shifted on the right of the graph." 

      We clarified and increased the global writing style according to reviewer comment.

      There are also issues with the literature, for example: Turowski et al, 2020a and Turowski et al, 2020b are the same article (preprint and peer-reviewed). Is there any reason to include both references? Please, double-check the references.  

      This was corrected in this version of the manuscript.

      In the manuscript, 5S rRNA is mentioned as an internal control for TMA normalisation. Why are Figure 1C data normalised to 18S rRNA instead of 5S rRNA? 

      Data are effectively normalized relative to the 5S rRNA, but the value for the 18S rRNA is arbitrarily set to 100%.

      Figure 4 should be a supplementary figure, and Figure 7D doesn't have a y-axis labelling. 

      The presence of all Pol I specific subunits (Rpa12, Rpa34 and Rpa49) is crucial for the enzymatic activity we performed. In the absence of these subunits (which can vary depending on the purification batch), Pol I pausing, cleavage and elongation are known to be affected. To strengthen our conclusion, we really wanted to show the subunit composition of the purified enzyme. This important control should be shown, but can indeed be shown in a supplementary figure if desired.

      Y-axis is figure 7D is now correctly labelled

      In Figure 7C, BMH-21 treatment causes the accumulation of ~140bp rRNA transcripts only in SuperPol-expressing cells that are Rrp6-sensitive (line 6 vs line 8), suggesting that BHM-21 treatment does affect SuperPol. Could the author comment on the interpretation of this result? 

      The 140 nt product is a degradation fragment resulting from trimming, which explains its lower accumulation in the absence of Rrp6. BMH21 significantly affects WT Pol I transcription but has also a mild effect on SuperPol transcription. As a result, the 140 nt product accumulates under these conditions.

      Reviewer #2:

      pp. 14-15: The authors note local differences in peak detection in the 5'-ETS among replicates, preventing a nucleotide-resolution analysis of pausing sites. Still, they report consistent global differences between wild-type and SuperPol CRAC signals in the 5'ETS (and other regions of the rDNA). These global differences are clear in the quantification shown in Figures 2B-C. A simpler statement might be less confusing, avoiding references to a "first and second set of replicates" 

      According to reviewer, statement has been simplified in this version of the manuscript.

      Figures 2A and 2C: Based on these data and quantification, it appears that SuperPol signals in the body and 3' end of the rDNA unit are higher than those in the wild type. This finding supports the conclusion that reduced pausing (and termination) in the 5'ETS leads to an increased Pol I signal downstream. Since the average increase in the SuperPol signal is distributed over a larger region, this might also explain why even a relatively modest decrease in 5'ETS pausing results in higher rRNA production. This point merits discussion by the authors. 

      We agree that this is a very important discussion of our results. Transcription is a very dynamic process in which paused polymerase is easily detected using the CRAC assay. Elongated polymerases are distributed over a much larger gene body, and even a small amount of polymerase detected in the gene body can represent a very large rRNA synthesis. This point is of paramount importance and, as suggested by the reviewer, is now discussed in detail.

      A decreased efficiency of cleavage upon backtracking might imply an increased error rate in SuperPol compared to the wild-type enzyme. Have the authors observed any evidence supporting this possibility? 

      Reviewer suggested that a decreased efficiency of cleavage upon backtracking might imply an increased error rate in SuperPol compared to the wild-type enzyme. We thank Reviewer #2 to point it as in our opinion, this is an important point what should be added to the manuscript. We have now included new data (panels 5G, 5H and 5I) in the manuscript showing that SuperPol in vitro exhibits an increased error rate compared to the WT enzyme. From these results obtained in vitro, we concluded that SuperPol shows reduced nascent transcript cleavage, associated with more efficient transcript elongation, but to the detriment of transcriptional fidelity.

      pp. 15 and 22: Premature transcription termination as a regulator of gene expression is welldocumented in yeast, with significant contributions from the Corden, Brow, Libri, and Tollervey labs. These studies should be referenced along with relevant bacterial and mammalian research. 

      According to reviewer suggestion, we referenced these studies.

      p. 23: "SuperPol and Rpa190-KR have a synergistic effect on BMH-21 resistance." A citation should be added for this statement. 

      This represents some unpublished data from our lab. KR and SuperPol are the only two known mutants resistant to BMH-21. We observed that resistance between both alleles is synergistic, with a much higher resistance to BMH-21 in the double mutant than in each single mutant (data not shown). Comparing their resistance mechanisms is a very important point that we could provide upon request. This was added to the statement.

      p. 23: "The released of the premature transcript" - this phrase contains a typo 

      This is now corrected.

      Reviewer #3:

      Figure 1B: it would be opportune to separate the technique's schematic representation from the actual data. Concerning the data, would the authors consider adding an experiment with rrp6D cells? Some RNAs could be degraded even in such short period of time, as even stated by the authors, so maybe an exosome depleted background could provide a more complete picture. Could also the authors explain why the increase is only observed at the level of 18S and 25S? To further prove the robustness of the Pol I TMA method could be good to add already characterized mutations or other drugs to show that the technique can readily detect also well-known and expected changes. 

      The precise objective of this experiment is to avoid the use of the Rrp6 mutant. Under these conditions, we prevent the accumulation of transcripts that would result from a maturation defect. While it is possible to conduct the experiment with the Rrp6 mutant, it would be impossible to draw reliable conclusions due to this artificial accumulation of transcripts.

      Figure 1C: the NTS1 probe signal is missing (it is referenced in Figure 1A but not listed in the Methods section or the oligo table). If this probe was unused, please correct Figure 1A accordingly. 

      We corrected Figure 1A.  

      Figure 2A: the RNAPI occupancy map by CRAC is hard to interpret. The red color (SuperPol) is stacked on top of the blue line, and we are not able to observe the signal of the WT for most of the position along the rDNA unit. It would be preferable to use some kind of opacity that allows to visualize both curves. Moreover, the analysis of the behavior of the polymerase is always restricted to the 5'ETS region in the rest of the manuscript. We are thus not able to observe whether termination events also occur in other regions of the rDNA unit. A Northern blot analysis displaying higher sizes would provide a more complete picture. 

      We addressed this point to make the figure more visually informative. In Northern Blot analysis, we use a TSS (Transcription Start Site) probe, which detects only transcripts containing the 5' extremity. Due to co-transcriptional processing, most of the rRNA undergoing transcription lacks its 5' extremity and is not detectable using this technique. We have the data, but it does not show any difference between Pol I and SuperPol. This information could be included in the supplementary data if asked.

      "Importantly, despite some local variations, we could reproducibly observe an increased occupancy of WT Pol I in 5'-ETS compared to SuperPol (Figure 1C)." should be Figure 2C. 

      Thanks for pointing out this mistake. It has been corrected.

      Figure 3D: most of the difference in the cumulative proportion of CRAC reads is observed in the region ~750 to 3000. In line with my previous point, I think it would be worth exploring also termination events beyond the 5'-ETS region. 

      We agree that such an analysis would have been interesting. However, with the exception of the pre-rRNA starting at the transcription start site (TSS) studied here, any cleaved rRNA at its 5' end could result from premature termination and/or abnormal processing events. Exploring the production of other abnormal rRNAs produced by premature termination is a project in itself, beyond this initial work aimed at demonstrating the existence of premature termination events in ribosomal RNA production.

      Figure 4: should probably be provided as supplementary material. 

      As l mentioned earlier (see comments), the presence of all Pol I specific subunits (Rpa12, Rpa34 and Rpa49) is crucial for the enzymatic activity we performed. This important control should be shown, but can indeed be shown in a supplementary figure if desired.

      "While the growth of cells expressing SuperPol appeared unaffected, the fitness of WT cells was severely reduced under the same conditions." I think the growth of cells expressing SuperPol is slightly affected. 

      We agree with this comment and we modified the text accordingly.

      Figure 7D: the legend of the y-axis is missing as well as the title of the plot. 

      Legend of the y-axis and title of the plot are now present.

      The statements concerning BMH-21, SuperPol and Rpa190-KR in the Discussion section should be removed, or data should be provided.

      This was discussed previously. See comment above.

      Some references are missing from the Bibliography, for example Merkl et al., 2020; Pilsl et al., 2016a, 2016b. 

      Bibliography is now fixed

      Description of analyses that authors prefer not to carry out:

      Does SuperPol mutant produces more functional rRNAs ?

      As Reviewer 1 requested, we agree that this point requires clarification.. In cells expressing SuperPol, a higher steady state of (pre)-rRNAs is only observed in absence of degradation machinery suggesting that overproduced rRNAs are rapidly eliminated. We know that (pre)rRNas are unable to accumulate in absence of ribosomal proteins and/or Assembly Factors (AF). In consequence, overproducing rRNAs would not be sufficient to increase ribosome content. This specific point is further address in our lab but is beyond the scope of this article.

      Is premature termination coupled with rRNA processing 

      We appreciate the reviewer’s insightful comments. The suggested experiments regarding the UTP-A complex's regulatory potential are valuable and ongoing in our lab, but they extend beyond the scope of this study and are not suitable for inclusion in the current manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Liu et al., present glmSMA, a network-regularized linear model that integrates single-cell RNA-seq data with spatial transcriptomics, enabling high-resolution mapping of cellular locations across diverse datasets. Its dual regularization framework (L1 for sparsity and generalized L2 via a graph Laplacian for spatial smoothness) demonstrates robust performance of their model and offers novel tools for spatial biology, despite some gaps in fully addressing spatial communication.

      Overall, the manuscript is commendable for its comprehensive benchmarking across different spatial omics platforms and its novel application of regularized linear models for cell mapping. I think this manuscript can be improved by addressing method assumptions, expanding the discussion on feature dependence and cell type-specific biases, and clarifying the mechanism of spatial communication.

      The conclusions of this paper are mostly well supported by data, but some aspects of model developmentand performance evaluation need to be clarified and extended.

      We are thankful for the positive comments and have made changes following the reviewer's advice, as detailed below.

      (1) What were the assumptions made behind the model? One of them could be the linear relationship between cellular gene expression and spatial location. In complex biological tissues, non-linear relationships could be present, and this would also vary across organ systems and species. Similarly, with regularization parameters, they can be tuned to balance sparsity and smoothness adequately but may not hold uniformly across different tissue types or data quality levels. The model also seems to assume independent errors with normal distribution and linear additive effects - a simplification that may overlook overdispersion or heteroscedasticity commonly observed in RNA-seq data.

      Thank you for this comment. We acknowledge that the non-linear relationships can be present in complex tissues and may not be fully captured by a linear model. 

      Our choice of a linear model was guided by an investigation of the relationship in the current datasets, which include intestinal villus, mouse brain, and fly embryo.There is a linear correlation between expression distance and physical distance [Nitzan et al]. Within a given anatomical structure, cells in closer proximity exhibit more similar expression patterns (Fig. 3c). In tissues where non-linear relationships are more prevalent—such as the human PDAC sample—our mapping results remain robust. We acknowledge that we have not yet tested our algorithm in highly heterogeneous regions like the liver, and we plan to include such analyses in future work if necessary.

      Regarding the regularization parameters, we agree that the balance between sparsity and smoothness is sensitive to tissue-specific variation and data quality. In our current implementation, we explored a range of values to find robust defaults. Supplementary Figure 7 illustrates the regularization path for cell assignment in the fly embryo.  

      The choice of L1 and L2 regularization parameters is crucial for balancing sparsity and smoothness in spatial mapping. 

      For Structured Tissues (brain):

      Moderate L1 to ensure cells are localized.

      Small to moderate L2 to maintain local smoothness without blurring distinct regions.

      For Less Structured (PDAC):

      Slightly lower L1 to allow cells to be associated with multiple regions if boundaries are ambiguous.

      Higher L2 to stabilize mappings in noisy or mixed regions.

      (2) The performance of glmSMA is likely sensitive to the number and quality of features used. With too few features, the model may struggle to anchor cells correctly due to insufficient discriminatory power, whereas too many features could lead to overfitting unless appropriately regularized. The manuscript briefly acknowledges this issue, but further systematic evaluation of how varying feature numbers affect mapping accuracy would strengthen the claims, particularly in settings where marker gene availability is limited. A simple way to show some of this would be testing on multiple spatial omics (imaging-based) platforms with varying panel sizes and organ systems. Related to this, based on the figures, it also seems like the performance varies by cell type. What are the factors that contribute to this? Variability in expression levels, RNA quantity/quality? Biases in the panel? Personally, I am also curious how this model can be used similarly/differently if we have a FISH-based, high-plex reference atlas. Additional explanation around these points would be helpful for the readers.

      Thank you for this thoughtful comment. The performance of our method is indeed sensitive to the number and quality of selected features. To optimize feature selection, we employed multiple strategies, including Moran’s I statistic, identification of highly variable genes, and the Seurat pipeline to detect anchor genes linking the spatial transcriptomics data with the reference atlas. The number of selected markers depends on the quality of the data. For highquality datasets, fewer than 100 markers are typically sufficient for prediction. To select marker genes, we applied the following optional strategies:

      (1) Identifying highly variable genes (HVGs).

      (2) Calculating Moran’s I scores for all genes to assess spatial autocorrelation.

      (3) Generating anchor genes based on the integration of the reference atlas and scRNA-seq data using Seurat.

      We evaluated our method across diverse tissue types and platforms—including Slide-seq, 10x Visium, and Virtual-FISH—which represent both sequencing-based and imaging-based spatial transcriptomics technologies. Our model consistently achieved strong performance across these settings. It's worth noting that the performance of other methods, such as CellTrek [Wei et al] and novoSpaRc [Nitzan et al], also depends heavily on feature selection. In particular, performance degrades substantially when fewer features are used. For fair comparison across different methods, the same set of marker genes was used. Under this condition, our method outperformed the others based on KL divergence (Fig. 2b, Fig. 5g). 

      To assess the effect of marker gene quantity, we randomly selected subsets of 2,000, 1500, 1,000, 700, 500, and 200 markers from the original set. As the number of markers decreases, mapping performance declines, which is expected due to the reduction in available spatial information. This result underscores the general dependence of spatial mapping accuracy on both the number and quality of informative marker genes (Supplementary Fig. 10).

      We do not believe that the observed performance is directly influenced by cell type composition. Major cell types are typically well-defined, and rare cell types comprise only a small fraction of the dataset. For these rare populations, a single misclassification can disproportionately impact metrics like KL divergence due to small sample size. However, this does not necessarily indicate a systematic cell type–specific bias in the mapping. We incorporated a high-resolution Slide-seq dataset from the mouse hippocampus to evaluate the influence of cell type composition on the algorithm’s performance [Stickels et al., 2020]. Most cell types within the CA1, CA2, CA3, and DG regions were accurately mapped to their original anatomical locations (Fig. 5e, f, g).

      (3) Application 3 (spatial communication) in the graphical abstract appears relatively underdeveloped. While it is clear that the model infers spatial proximities, further explanation of how these mappings translate into insights into cell-cell communication networks would enhance the biological relevance of the findings.

      Thank you for this valuable feedback. We agree that further elaboration on the connection between spatial proximity and cell–cell communication would enhance the biological interpretation of our results. While our current model focuses on inferring spatial relationships,  we may provide some cell-cell communications in the future.

      (4) What is the final resolution of the model outputs? I am assuming this is dictated by the granularity of the reference atlas and the imposed sparsity via the L1 norm, but if there are clear examples that would be good. In figures (or maybe in practice too), cells seem to be assigned to small, contiguous patches rather than pinpoint single-cell locations, which is a pragmatic compromise given the inherent limitations of current spatial transcriptomics technologies. Clarification on the precise spatial scale (e.g., pixel or micrometer resolution) and any post-mapping refinement steps would be beneficial for the users to make informed decisions on the right bioinformatic tools to use.

      Thank you for the comment. For each cell, our algorithm generates a probability vector that indicates its likely spatial assignment along with coordinate information. In our framework, each cell is mapped to one or more spatial spots with associated probabilities. Depending on the amount of regularization through L1 and L2 norms, a cell may be localized to a small patch or distributed over a broader domain (Supplementary Fig. 5 & 7). For the 10x Visium data, we applied a repelling algorithm to enhance visualization [Wei et al]. If a cell’s original location is already occupied, it is reassigned to a nearby neighborhood to avoid overlap. The users can also see the entire regularization path by varying the penalty terms. 

      Nitzan M, Karaiskos N, Friedman N, Rajewsky N. Gene expression cartography. Nature. 2019;576(7785):132-137. doi:10.1038/s41586-019-1773-3

      Wei, R. et al. (2022) ‘Spatial charting of single-cell transcriptomes in tissues’, Nature Biotechnology, 40(8), pp. 1190–1199. doi:10.1038/s41587-022-01233-1.

      Stickels, R.R. et al. (2020) ‘Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-SEQV2’, Nature Biotechnology, 39(3), pp. 313–319. doi:10.1038/s41587-020-0739-1. 

      Reviewer #2 (Public review):

      Summary:

      The author proposes a novel method for mapping single-cell data to specific locations with higher resolution than several existing tools.

      Strengths:

      The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus.

      Weakness:

      (1) Although the researchers claim that glmSMA seamlessly accommodates both sequencing-based and image-based spatial transcriptomics (ST) data, their testing primarily focused on sequencingbased ST data, such as Visium and Slide-seq. To demonstrate its versatility for spatial analysis, the authors should extend their evaluation to imaging-based spatial data.

      Thank you for the comment. We have tested our algorithm on the virtual FISH dataset from the fly embryo, which serves as an example of image-based spatial omics data (Fig. 4c). However, such datasets often contain a limited number of available genes. To address this, we will conduct additional testing on image-based data if needed. The Allen Brain Atlas provides high-quality ISH data, and we can select specific brain regions from this resource to further evaluate our algorithm if necessary [Lein et al]. Currently, we plan to focus more on the 10x Visium platform, as it supports whole-transcriptome profiling and offers a wide range of tissue samples for analysis.

      (2) The definition of "ground truth" for spatial distribution is unclear. A more detailed explanation is needed on how the "ground truth" was established for each spatial dataset and how it was utilized for comparison with the predicted distribution generated by various spatial mapping tools.

      Thank you for the comment. To clarify how ground truth is defined across different tissues, we provided the following details. Direct ground truth for cell locations is often unavailable in scRNA-seq data due to experimental constraints. To address this, we adopted alternative strategies for estimating ground truth in each dataset:

      10x Visium Data: We used the cell type distribution derived from spatial transcriptomics (ST) data as a proxy for ground truth. We then computed the KL divergence between this distribution and our model's predictions for performance assessment.

      Slide-seq Data: We validated predictions by comparing the expression of marker genes between the reconstructed and original spatial data.

      Fly Embryo Data: We used predicted cell locations from novoSpaRc as a reference for evaluating our algorithm.

      These strategies allowed us to evaluate model performance even in the absence of direct cell location data. In addition, we can apply multiple evaluation strategies within a single dataset.

      (3) In the analysis of spatial mapping results using intestinal villus tissue, only Figure 3d supports their findings. The researchers should consider adding supplemental figures illustrating the spatial distribution of single cells in comparison to the ground truth distribu tion to enhance the clarity and robustness of their investigation.

      Thank you for the comment. In the intestinal dataset, only six large domains were defined. As a result, the task for this dataset is relatively simple—each cell only needs to be assigned to one of the six domains. As the intestinal villus is a relatively simple tissue, most existing algorithms performed well on it. For this reason, we did not initially provide extensive details in the main text.

      (4) The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus. However, the original anatomical regions are not displayed, making it difficult to directly compare them with the predicted mapping results. Providing ground truth distributions for each tested tissue would enhance clarity and facilitate interpretation. For instance, in Figure 2a and  Supplementary Figures 1 and 2, only the predicted mapping results are shown without the corresponding original spatial distribution of regions in the mouse cortex. Additionally, in Figure 3c, four anatomical regions are displayed, but it is unclear whether the figure represents the original spatial regions or those predicted by glmSMA. The authors are encouraged to clarify this by incorporating ground truth distributions for each tissue.

      Thank you for the comment. To improve visualization, we included anatomical structures alongside the mapping results in the next version, wherever such structures are available (e.g., mouse brain cortex, human PDAC sample, etc.). Major cell type assignments for the PDAC samples, along with anatomical structures, are shown in Supplementary Figure 9. Most of these cell types were correctly mapped to their corresponding anatomical regions.

      (5) The cell assignment results from the mouse hippocampus (Supplementary Figure 6) lack a corresponding ground truth distribution for comparison. DG and CA cells were evaluated solely based on the gene expression of specific marker genes. Additional analyses are needed to further validate the robustness of glmSMA's mapping performance on Slide-seq data from the mouse hippocampus.

      Thank you for the comment. The ground truth for DG and CA cells was not available. To better evaluate the model's performance, we computed the KL divergence between the original and predicted cell type distributions, following the same approach used for the 10x Visium dataset. We identified a higher-quality dataset for the mouse hippocampus and used it to evaluate our algorithm. Additionally, we employed KL divergence as an alternative strategy to validate and benchmark our results (Fig. 5e, f, g). Most CA cells, including CA1, CA2, and CA3 principal cells, were correctly assigned back to the CA region. Dentate principal cells were accurately mapped to the DG region (Fig. 5e, f).

      (6) The tested spatial datasets primarily consist of highly structured tissues with well-defined anatomical regions, such as the brain and intestinal villus. Anatomical regions are not distinctly separated, such as liver tissue. Further evaluation of such tissues would help determine the method's broader applicability.

      Thank you for the insightful comment. We agree that many spatial datasets used in our study are from tissues with well-defined anatomical regions. To address the applicability of glmSMA in tissues without clearly separated anatomical structures, we applied glmSMA to the Drosophila embryo, which represents a tissue with relatively continuous spatial patterns and lacks well-demarcated anatomical boundaries compared to organs like the brain or intestinal villus.

      Despite this less structured spatial organization, glmSMA demonstrated robust performance in the fly embryo, accurately mapping cells to their correct spatial spots based on gene expression profiles. This result indicates that glmSMA is not strictly limited to highly structured tissues and can generalize to tissues with more continuous or gradient-like spatial architectures. These results suggest that glmSMA has broader applicability beyond highly compartmentalized tissues.

      Lein, E., Hawrylycz, M., Ao, N. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). https://doi.org/10.1038/nature05453

      Reviewer #3 (Public review):

      The authors aim to develop glmSMA, a network-regularized linear model that accurately infers spatial gene expression patterns by integrating single-cell RNA sequencing data with spatial transcriptomics reference atlases. Their goal is to reconstruct the spatial organization of individual cells within tissues, overcoming the limitations of existing methods that either lack spatial resolution or sensitivity.

      Strengths:

      (1) Comprehensive Benchmarking:

      Compared against CellTrek and Novosparc, glmSMA consistently achieved lower Kullback-Leibler divergence (KL divergence) scores, indicating better cell assignment accuracy.

      Outperformed CellTrek in mouse cortex mapping (90% accuracy vs. CellTrek's 60%) and provided more spatially coherent distributions.

      (2) Experimental Validation with Multiple Real-World Datasets:

      The study used multiple biological systems (mouse brain, Drosophila embryo, human PDAC, intestinal villus) to demonstrate generalizability.

      Validation through correlation analyses, Pearson's coefficient, and KL divergence support the accuracy of glmSMA's predictions.

      We thank reviewer #3 for their positive feedback and thoughtful recommendations.

      Weaknesses:

      (1) The accuracy of glmSMA depends on the selection of marker genes, which might be limited by current FISH-based reference atlases.

      We agree that the accuracy of glmSMA is influenced by the selection of marker genes, and that current FISH-based reference atlases may offer a limited gene set. To address this, we incorporate multiple feature selection strategies, including highly variable genes and spatially informative genes (e.g., via Moran’s I), to optimize performance within the available gene space. As more comprehensive reference atlases become available, we expect the model’s accuracy to improve further.

      (2) glmSMA operates under the assumption that cells with similar gene expression profiles are likely to be physically close to each other in space which not be true under various heterogeneous environments.

      Thank you for raising this important point. We agree that glmSMA operates under the assumption that cells with similar gene expression profiles tend to be spatially proximal, and this assumption may not strictly hold in highly heterogeneous tissues where spatial organization is less coupled to transcriptional similarity.

      To address this concern, we specifically tested glmSMA on human PDAC samples, which represent moderately heterogeneous environments characterized by complex tumor microenvironments, including a mixture of ductal cells, cancer cells, stromal cells, and other components. Despite this heterogeneity, glmSMA successfully mapped major cell types to their expected anatomical regions, demonstrating that the method is robust even in the presence of substantial cellular diversity and spatial complexity.

      This result suggests that while glmSMA relies on the assumption of spatialtranscriptomic correlation, the method can tolerate a reasonable degree of spatial heterogeneity without a significant loss of performance. Nevertheless, we acknowledge that in extremely disorganized or highly mixed tissues where transcriptional similarity is decoupled from spatial proximity, the performance may be affected.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      (1) Their first major claim is that fluid flows alone must be quite strong in order to fragment the cyanobacterial aggregates they have studied. With their rheological chamber, they explicitly show that energy dissipation rates must exceed "natural" conditions by multiple orders of magnitude in order to fragment lab strain colonies, and even higher to disrupt natural strains sampled from a nearby freshwater lake. This claim is well-supported by their experiments and data.

      We thank the reviewer for this positive comment. We fully agree, as our fragmentation experiments on division-formed colonies clearly demonstrate their strong mechanical resistance in naturally occurring flows.

      (2) The authors then claim that the fragmentation of aggregates due to fluid flows occurs through erosion of small pieces. Because their experimental setup does not allow them to explicitly observe this process (for example, by watching one aggregate break into pieces), they implement an idealized model to show that the nature of the changes to the size histogram agrees with an erosion process. However, in Figure 2C there is a noticeable gap between their experiment and the prediction of their model. Additionally, in a similar experiment shown in Figure S6, the experiment cannot distinguish between an idealized erosion model and an alternative, an idealized binary fission model where aggregates split into equal halves. For these reasons, this claim is weakened.

      The two idealized models of colony fragmentation, namely erosion of single cells and fragmentation into equal sizes (or binary fission), lead to distinguishable final size distributions. We believe that our experiments for division-formed colonies support the hypothesis of the erosion mechanism. Specifically, Figure 2E shows that colony fragmentation resulted in a decrease of large colonies and a strong increase of single cells and dimers (two cells). In our view, the strong increase of single cells and dimers provides quite convincing (but indirect) evidence supporting the erosion mechanism. This is described on lines 112-121. To further address the reviewer’s concern, we have included in the revised version of Figure 2 (panels B and D) a direct comparison between these two fragmentation models for large division-formed colonies fragmented at a high dissipation rate of ε = 5.8 m<sup>2</sup>/s<sup>3</sup>. Furthermore, we have included the new Supplementary Figure S9, which details the model predictions for the colony size distribution at various time points.

      The ideal equal fragments model (i.e., where every fracture event produces two identical fragments with half the original biovolume) does not capture the biovolume transfer from large colonies to single cells, as observed for the experimental results in panel D of Figure 2 and panel E of Figure S9. In contrast, the erosion model, in panel D of Figure 2 and panel D of Figure S9, provides a good prediction of the experimental results within the experimental uncertainty. The different fragmentation models are discussed in lines 226-228 of the revised manuscript and lines 865-873 of the SI.

      (3) Their third major claim is that fluid flows only weakly cause cells to collide and adhere in a "coming together" process of aggregate formation. They test this claim in Figure 3, where they suspend single cells in their test chamber and stir them at moderate intensity, monitoring their size histogram. They show that the size histogram changes only slightly, indicating that aggregation is, by and large, not occurring at a high rate. Therefore, they lend support to the idea that cell aggregation likely does not initiate group formation in toxic cyanobacterial blooms. Additionally, they show that the median size of large colonies also does not change at moderate turbulent intensities. These results agree with previous studies (their own citation 25) indicating that aggregates in toxic blooms are clonal in nature. This is an important result and well-supported by their data, but only for this specific particle concentration and stirring intensity. Later, in Figure 5 they show a much broader range of particle concentrations and energy dissipation rates that they leave untested.

      We thank the reviewer for this positive comment. We agree that our experimental results show clear evidence that aggregated colonies have a weaker structure in comparison to division-formed colonies, thus supporting the hypothesis that clonal expansion is the main mechanism for colony formation under most natural settings. The range of energy dissipation rates of our experimental setup covers almost entirely the region for which aggregated and division-formed colonies differ in their fragmentation behavior (Zone III of Figure 5). Within this zone, aggregated colonies are fragmented and only the division-formed colonies are able to withstand the hydrodynamic stresses. Furthermore, we show that this fragmentation behavior has a low sensitivity to the total biovolume fraction, as displayed in the Supplementary Figures S2 and S4 and discussed in lines 151-154 and 160-163. We agree that our cone-and-plate setup covers a limited parameter range, and we have added a detailed discussion of these limitations in the revised manuscript, under section Materials and Methods in lines 462-473.

      (4) The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful and represent a significant conceptual advance. However, there is a region of this phase map that the authors have left untested experimentally. The lowest energy dissipation rate that the authors tested in their experiment seemed to be \dot{epsilon}~1e-2 [m^2/s^3], and the highest particle concentration they tested was 5e-4, which means that the authors never tested Zone II of their phase map. Since this seems to be an important zone for toxic blooms (i.e. the "scum formation" zone), it seems the authors have missed an important opportunity to investigate this regime of high particle concentrations and relatively weak turbulent mixing.

      We agree with the reviewer that Zone (II) of Figure 5 is of great importance to dense bloom formation under wind mixing and that this parameter range was not covered by our experiments using a cone-and-plate shear flow. The measuring range of our device was motivated by engineering applications such as artificial mixing of eutrophic lakes using bubble plumes, as well as preliminary experiments which demonstrated that high levels of dissipation rate were required to achieve fragmentation. The range of dissipation rates that can be achieved by the cone-and-plate setup is limited at the lower end by the accumulation of colonies near the stagnation point at the conical tip and at the upper end by the spillage of fluid out of the chamber. We now discuss this measuring range in lines 462-473 of the revised manuscript.

      Although our setup does not cover Zone (II), we now refer to recent results in the literature for evidence of aggregation-dominance at Zone (II). The experimental study of Wu et al. (2024) (reference number 64 of the revised manuscript) investigated the formation of Microcystis surface scum layers in wind-mixed mesocosms. Their study identified aggregation of colonies in the scum layer, resulting in increases of colony size at rates faster than cell division. These results agree with our model, and the parameters range investigated fall within the Zone II. We have included in the revised version, lines 328-337, a detailed discussion elucidating the parameter range covered in our experiments and the findings of Wu et al. (2024).

      Other items that could use more clarity:

      (5) The authors rely heavily on size distributions to make the claims of their paper. Yet, how they generated those size distributions is not clearly shown in the text. Of primary concern, the authors used a correction function (Equation S1) to estimate the counts of different size classes in their image analysis pipeline. Yet, it is unclear how well this correction function actually performs, what kinds of errors it might produce, and how well it mapped to the calibration dataset the authors used to find the fit parameters.

      We agree with the reviewer that more details of the correction function should be included. We have included in the revised version of the Supporting Information, in lines 785-796, a more detailed explanation of the correction function. Furthermore, a direct comparison of raw and corrected histograms of the size distribution and its associated uncertainty is presented in the new Supplementary Figure S8.

      (6) Second, in their models they use a fractal dimension to estimate the number of cells in the group from the group radius, but the agreement between this fractal dimension fit and the data is not shown, so it is not clear how good an approximation this fractal dimension provides. This is especially important for their later derivation of the "aggregation-to-cell division" ratio (Equation 8)

      We agree with the reviewer that more details on the estimation of fractal dimension are needed. The revised version, under Materials and Methods in lines 508-515, now includes the detailed estimation procedure, the number of colonies analysed, and the associated uncertainty.

      Reviewer #1 (Recommendations For The Authors):

      In light of the weak evidence for claim #2 outlined above, I believe the paper would benefit from a more explicit comparison in Figure 2C of the two models - idealized erosion, and idealized binary fission. With such a comparison, the authors would have stronger footing to claim that one process is more important than the other.

      As mentioned in our answer above to comment #2 of public review, we have included in the revised version of Figure 2 (panels B and D) a direct comparison between the erosion and equal fragments (binary fission) models for large division-formed colonies fragmented under ε = 5.8 m<sup>2</sup>/s<sup>3</sup>. The comparison is further detailed in the new Supplementary Figure S9 for representative time points. Only the erosion models can recover the biovolume transfer from large colonies to single cells, as observed for the experimental results in Figure 2D and further detailed in Figure S9D. We believe that the revised version of Figure 2 and the new Supplementary Figure S9 provide strong evidence in support of the erosion fragmentation model.

      Would the authors comment on their chosen range of experimental dissipation rates? For instance, was their goal more to investigate industrial/engineering applications where the goal is to disrupt the cyanobacteria, but not really typical natural conditions under which the groups might form?

      The choice of experimental dissipation rates in our experiment was such that it covers engineering applications such as artificial mixing of eutrophic lakes using bubble plumes. We have now clarified in the Introduction, on lines 37-39, that artificial mixing has been successfully applied in several lakes to suppress cyanobacterial blooms. Furthermore, we have now clarified in the caption of Figure 5 that the bars on the right side indicate typical values of dissipation rates induced by natural wind-mixing, bubble plumes in artificially mixed lakes, and laboratory-scale experiments such as cone-and-plate systems and stirred tanks. The dissipation rates induced by the bubble plumes in artificially mixed lakes could potentially fragment aggregated cyanobacterial colonies and thus disrupt bloom formation. However, our preliminary experiments demonstrated that high levels of dissipation rate were required to achieve fragmentation, therefore we’ve focused on the upper range of values (0.01 to 10 m<sup>2</sup>/s<sup>3</sup>).

      The dissipation rates generated by the cone-and-plate approach are indeed higher than the dissipation rates under typical natural conditions in lakes. We have now added a detailed discussion of the range of dissipation rates generated by the cone-and-plate approach in the revised manuscript, under section Materials and Methods in lines 462-473, where we also explain that these values are higher than the natural dissipation rates generated by wind action in lakes. However, the more generic insights obtained by our study, shown in Figure 5, are relevant for dissipation rates of natural lakes (e.g., Zone II). Therefore, in our discussion of Figure 5 we have now included the recent findings of Wu et al. (2024) (reference number [64] of the revised manuscript), who studied bloom formation of Microcystis in mesocosm experiments at dissipation rates representative of natural conditions; see also our reply to the next comment.

      The authors should consider testing the space of Zone II on their phase map, for instance at very high particle concentrations and even lower rotational speeds, in order to show that their derivations match experiments.

      Good point. As mentioned in our answer above to comment #4 of the public review, Zone II lies beyond the measuring range of our experimental setup. Instead, we refer to the recent study of Wu et al. (2024) (reference number [64] of the revised manuscript) which demonstrated that dense scum layers of Microcystis colonies are aggregation-dominated. These mesocosm experiments agree with our model predictions and their parameter range falls within Zone II. We have included in the revised version, lines 328-337, a detailed discussion where we elucidate the parameter range covered in our experiments and compare our predictions for Zone II with the recent findings of Wu et al. (2024).

      The authors should show their calibration data and fit for the correction function of equation S1. Additionally, you may consider showing "raw" and "corrected" histograms of the size distribution, to demonstrate exactly what corrections are made.

      As mentioned in our answer above to comment #5 of the public review, we have included in the revised version of the Supporting Information the new Supplementary Figure S8, which shows the raw and adjusted histograms of the size distribution, including the associated uncertainties. Furthermore, the correction function is now explained in detail in the new Supporting Information Text in lines 785-796.

      The authors might consider commenting on Figure S3 a bit more in the main text. Even at very high dissipation rates, the cyanobacterial groups don't plummet to size 1, but stay in an equilibrium around 10-20x the diameter of a single cell. What might this mean for industrial applications trying to break up the groups?

      We agree with the reviewer that further discussion of Figure S3, panels E and F, is warranted. In the revised version of the manuscript, under section Fragmentation of Microcystis colonies occurs through erosion in lines 133-137, we have now included a discussion of this figure. Figure S3F shows that more than 90% of the total biovolume ends up in the category “small colonies” (mostly single cells and dimers); hence, most of the initially large colonies do fragment to single cells or dimers. Only about 5-10% of the biovolume remains as “large colonies” of 10-20 cells. Although it is challenging to draw definitive conclusions about the behavior of these remaining large colonies, as they account for only a minor fraction of the suspension, one hypothesis is that variability in mechanical properties between colonies results in a subset of colonies exhibiting exceptional resistance even to very high dissipation rates (see lines 133-137).

      Minor comments:

      Typo Caption of Figure 2: Should read [m^2/s^3] for units

      Thanks for catching this typo. The units in the caption of Figure 2 has been corrected to [m^2/s^3].

      There is no Equation 10 in Materials and Methods as indicated in the rheology section.

      We thank the reviewer for pointing out the lack of clarity in this algebraic manipulation. In fact, the yield stress has to be substituted in the current Equation 11 (previously Eq.10), from which the critical dissipation rate must be substituted in Equation 3. The result is the critical colony size (l* = 2.8) mentioned in line 243 of the revised manuscript. The correct equation numbers and algebraic substitutions are now indicated in lines 241-243 of the revised version of the manuscript.

      <Reviewer #2 (Public review):

      Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.

      We would like to emphasize several key findings that our study reveals about the impacts of fluid flow on cyanobacterial colonies:

      (I) Quantification of mechanical strength in cyanobacterial colonies: Our results demonstrate the high mechanical strength of cyanobacterial colonies, as evidenced by the requirement of high shear rates to achieve fragmentation. This is new knowledge, that was not known before for cyanobacterial colonies. To this end, our study highlights the resilience of these colonies against naturally occurring flows and bridges the gap between theoretical assumptions about colony strength and experimentally measured mechanical properties.

      (II) The discovery that the mechanical strength of colonies differs between colonies formed by cell division and colonies formed by aggregation. This is again new knowledge, that was not known before for cyanobacterial colonies.

      (III) Validation of a hypothesis regarding colony formation: Using a fluid-mechanical approach, we confirm the findings of recent genetic studies (references 25 and 67 of the revised version of the manuscript) which indicated that colony formation occurs predominantly via cell division rather than cell aggregation under natural conditions (except in very dense blooms).

      (IV) Practical guidelines for cyanobacterial bloom control: Our findings provide valuable insights into the design of artificial mixing systems applied in several lakes. Artificial mixing of lakes is based on fundamentals of fluid flow, aiming at preventing aggregation of buoyant cyanobacteria in scum layers at the water surface. Our results show that the dissipation rates generated by bubble blumes in artificially mixed lakes can fragment cyanobacterial colonies formed by aggregation, but are not intense enough to cause fragmentation of division-formed colonies (see Figure 5 and lines 348-360).

      The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.

      The influence of the fit parameters (namely the stickiness α1 and the pairs of colony strength parameters S1,q1,S2,q2) is discussed in the sections Dynamical changes in colony size modelled by a two-category distribution in lines 247-253 and Materials and Methods in lines 559-565. We kept the discussion concise to maintain readability. However, we agree with the reviewer that additional details about the importance of the fit parameters and the sensitivity of the results to these parameters could be beneficial. In the revised version of the section Materials and Methods in lines 560-563, we have included a detailed discussion of the fit parameters.

      The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.

      We apologize for the limited readability of the description of the experimental setup and model used. In the revised version of the manuscript and the SI, we have detailed further the new methods presented here. The modifications include a detailed description of the operating range of the cone-and-plate shear setup (subsection Cone-and-plate shear of the section Materials and Methods, in lines 462-473). Furthermore, we think that incorporation of the recent experimental results of Wu et al. (2024), on lines 331-337 of the manuscript, will appeal to readers with a biology background. Their mesocosm experiments support our model prediction that aggregation is the dominant mechanism for colony formation in region (II) of Figure 5.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors seem too modest in claiming technological advance. They should describe the technological advance of combining microscopy with rheometry, in such a way that this invites others to apply this or similar approaches on biological samples. Even though I feel that the advancement of knowledge of this system by their method is relatively modest, there may be more advances in other systems.

      We appreciate the positive view of the reviewer towards the importance of this technology and we agree that its advantages should be advertised to researchers investigating similar systems. We have now given more attention to the technological advance of combining microscopic imaging with rheometry in the final paragraph of the Conclusions (lines 386400), where we now also briefly discuss an interesting recent study of marine snow (Song et al. 2023, Song and Rau 2022, reference numbers 70 and 71 of the revised manuscript), which used a similar combination of microscopy and rheometry as in our study. Furthermore, in the Methods section, we now briefly explain how the rheometry can be adjusted to investigate other systems (lines 474-480).

      (2) It seems reasonable -also based on what we already know about these aggregates - to assume that the main difference in shear sensitivity between field samples and cultures lies in the production of extracellular polysaccharide substance (EPS). To go beyond what is already known, the study could try to provide more direct and quantitative evidence for EPS involvement. For example, using a chemical quantification of EPS levels, or perturbing EPS levels using digestive enzymes.

      We agree with the reviewer that further characterization of the EPS is highly relevant to understand the mechanical strength of colonies. However, we believe that chemical quantification and/or degradation of EPS lies beyond the scope of our article and should be addressed by future studies.

      (3) Assuming EPS is indeed the reason for the differences in shear resistance: the authors speculate the reason why the field samples have more EPS lies in chemical composition (Calcium/nitrogen levels). In addition, there could be grazing that is known to promote aggregation (possibly increasing EPS), or just inherent genetic differences between strains. I am not necessarily expecting the authors to explore this direction experimentally, but it seems certainly feasible and would make the final result less speculative.

      We agree with the reviewer that there are more biotic and abiotic factors that can influence EPS amount and composition. The influence of grazing and other relevant factors on cell adhesion is discussed in references [26-29], cited in our introduction in lines 50-53. As discussed in our answer to recommendation #2, we believe that a quantitative investigation of these various factors is beyond the scope of this work and should be addressed in future studies.

      (4) A cool finding seems to be the critical relative diameter (Fig 2E), a colony size that seems invariant under shear. I was slightly surprised that the authors seem to take little effort to understand this critical diameter mechanistically (for example by predicting it, or experimentally perturbing it). Again, not a necessary requirement, but this is where the study could harness its technological advantage to provide a more quantitative understanding of something that goes beyond the existing knowledge of the system.

      We apologize to the reviewer if our descriptions and discussions of Figure 2 were unclear. One of the key conclusions from our experiments is that the critical relative diameter depends on the dissipation rate, as shown in Figure 2F. This dependence is also incorporated into the model through the constitutive equation (2). Furthermore, we expect the mechanical resistance of colonies, quantified by the critical relative diameter, to be affected by other biotic and abiotic factors that influence EPS amount and composition.

      (5) The jump from 0.019 to 1.1 m²/s³ seems large. What was the reason for not exploring intermediate values? The authors should also define low, modest and intense dissipation rates more clearly. Currently, they seem somewhat arbitrarily defined, i.e. 0.019 m²/s³ is described as low (methods) and moderate (results). In Fig 2, the authors further talk about low dissipation rates without a quantitative description.

      We thank the reviewer for pointing out the lack of clarity in the choice of parameter range and the nomenclature. Regarding the former, the suspension of division-formed colonies of Microcystis strain V163 displayed negligible fragmentation for dissipation rates between 0.019 to 1.1 m<sup>2</sup>/s<sup>3</sup>, as seen in Figures S2A and S3A. Due to the low sensitivity of the fragmentation results in this region, we don’t expect change in behavior for intermediate values. Regarding the nomenclature, we have corrected the inconsistencies throughout the text. We have chosen to name the dissipation rate values as: low for values typical of windmixing, moderate for values typical of the core of bubble plumes, and intense for values typical of propellers. Whenever mentioned in the text, the numerical value of dissipation rate is also included to avoid doubt.

      (6.) The structure and narrative of the paper can be improved. The article first describes all lab culture experiments and then the model, while the first figure already shows model fits. Perhaps it would be better to first describe the aggregation experiments, to constrain the appropriate terms of the model, and then move to fragmentation.

      We appreciate the recommendation of the reviewer regarding the structure. We have chosen to describe first the fragmentation experiments (Fig. 2), as these can be understood without introducing the aggregation effects. In contrast, the steady state results in the aggregation experiments (Fig. 3) come from the balance between aggregation and fragmentation. Therefore, we judged the current order to be more appropriate. The model fits are combined with the experimental results in Figures 2 and 3 to have a concise display. We have ensured that all the concepts required to understand each figure panel are explained prior to their discussion.

      (7) The number of data points that go into the histogram needs to be indicated. The main reason is that the authors report the distribution in terms of the biovolume fraction, suggesting the numerical counts are converted into volume. This to me seems like the most sensible parameter, but I could not find how this conversion is calculated (my apologies if I missed it). This seems especially relevant because a single large colony can impact this histogram quite considerably.

      We apologize for the lack of clarity in the calibration and conversion steps of the size distribution. As discussed above in the answer to comment #5 of the reviewer #1, more details of the calibration process have been added to the revised version of the Supporting Information Text in lines 785-796. Furthermore, the new Supplementary Figure S8 presents examples of the raw and adjusted size distribution, including the total number of counted colonies per histogram and the associated uncertainties in the concentration and biovolume distributions.

      (8) Over the timescales measured here, colonies could start sinking (or floating), possibly in a size-dependent manner, that could lead to a bias due to boundary effects. Did the authors consider this potential artifact?

      The sinking or floating of colonies is a relevant process which was taken into account in the choice of our parameter range for the dissipation rate. The minimum dissipation rate used in our experiments ensures that the upward inertial velocity near stagnation is sufficient to counteract the sedimentation of colonies. A detailed discussion of the choice of the parameter range is now included in the revised version of the Materials and Methods in lines 462-473.

      (9) "On the one hand, sequencing of the genetic diversity within Microcystis colonies supports the hypothesis that colony formation undernatural conditions is primarily driven by cell division [25]. On the other hand, cell aggregation can occur on a shorter time scale and may offer improved protection against high grazing pressure [26]." This appears somewhat constructed, as what is described as "on the other hand" is not evidence against the genetic diversity.

      We agree that the suggested dichotomy in this text appeared somewhat constructed, and we have now removed the wording “on the one hand” and “on the other hand”. The studies from reference [25] demonstrated that the genetic diversity between independent Microcystis colonies is much greater than the diversity within colonies. If cell aggregation was the dominant mechanism, a similar genetic diversity would be observed between and within colonies, which contrasts the findings from reference [25]. We have adjusted the text in the revised manuscript, in lines 46-54, to clarify this point.

      (10) The phase diagram seems largely based on extrapolations that are made outside of the measurement regime (e.g. dark red bars indicating the dissipation rate, Fig 5 - by the way 1 this color scheme could use some better contrast, by the way 2 Fig S7 suggests a wider dissipation rate range as indicated in Fig 5, why?). Hence there seems to be the need to more clearly lineate experimental results, simulations, and extrapolations in the phase diagram.

      We agree with the reviewer that further clarifications should be given about the parameter range covered in our experiments and apologize for the lack of readability in the color scheme of Fig 5. In lines 329-337, 346-347, 353-355, we have highlighted the parameters range covered by our experiments as well as the range covered by previous studies of windmixed mesocosm (namely reference [64] of the revised manuscript). Regarding the color scheme of Figure 5, we have modified the legend of the figure to improve readability. The color contrast was increased and leader lines were added to connect the colored bars with the respective label.

      (11) Unfortunately, the manuscript did not contain line numbers.

      We apologize to the reviewer for the lack of line numbers in our initial version. The revised version of the manuscript now contains line numbers, both in the main text and the supporting information.

      (12) Fig 2D. Caption is too minimal. Y-axis could better be named "Fraction of colonies" as both small and large colonies are plotted.

      The caption for Figure 2D was extended to better describe the plot. We have kept the y-axis label as “Fraction of small colonies”, since this is the quantity displayed by the three curves in the plot.

      (13) An inset should have axis labels.

      All the insets in our plots display the same variables as their respective plots. In order to keep the plots light and preserve readability, we therefore prefer to present the axis labels only along the x-axis and y-axis of the main plots, which implies by convention that the same axis labels also apply to the insets. To the best of our knowledge, this is a common approach.

      (14) Page 5, first words. Likely Fig 3A, not 2A was meant.

      We thank the reviewer for pointing out this readability issue. We intend to compare both Figures 2A and 3A. The text of the revised manuscript, in lines 146-148, has been adjusted with the correct figure numbers.

      (15) Introduction, second last paragraph, third last line. "suspension leaded to a broad distribution" I assume you meant "... led to a ..."

      We thank the reviewer for pointing out this typo. It has been corrected (line 122).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this study, the authors offer a theoretical explanation for the emergence of nematic bundles in the actin cortex, carrying implications for the assembly of actomyosin stress fibers. As such, the study is a valuable contribution to the field actomyosin organization in the actin cortex. While the theoretical work is solid, experimental evidence in support of the model assumptions remains incomplete. The presentation could be improved to enhance accessibility for readers without a strong background in hydrodynamic and nematic theories.

      To address the weaknesses identified in this assessment, we have expanded the motivation and description of the theoretical model, specifically insisting on the experimental evidence supporting its rationale and assumptions. These changes in the revised manuscript are implemented in the two first paragraphs of Section “Theoretical model” and in a more detailed description and justification of the different mathematical terms that appear in that section. We have made an effort to map in our narrative different terms to mechanistic processes in the actomyosin network. Even if the nature of the manuscript is inevitably theoretical, we think that the revised manuscript will be more accessible to a broader spectrum of readers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this article, Mirza et al developed a continuum active gel model of actomyosin cytoskeleton that account for nematic order and density variations in actomyosin. Using this model, they identify the requirements for the formation of dense nematic structures. In particular, they show that self-organization into nematic bundles requires both flow-induced alignment and active tension anisotropy in the system. By varying model parameters that control active tension and nematic alignment, the authors show that their model reproduces a rich variety of actomyosin structures, including tactoids, fibres, asters as well as crystalline networks. Additionally, discrete simulations are employed to calculate the activity parameters in the continuum model, providing a microscopic perspective on the conditions driving the formation of fibrillar patterns.

      Strengths:

      The strength of the work lies in its delineation of the parameter ranges that generate distinct types of nematic organization within actomyosin networks. The authors pinpoint the physical mechanisms behind the formation of fibrillar patterns, which may offer valuable insights into stress fiber assembly. Another strength of the work is connecting activity parameters in the continuum theory with microscopic simulations.

      We thank the referee for these comments.

      Weaknesses:

      (A) This paper is a very difficult read for nonspecialists, especially if you are not well-versed in continuum hydrodynamic theories. Efforts should be made to connect various elements of theory with biological mechanisms, which is mostly lacking in this paper. The comparison with experiments is predominantly qualitative.

      We understand the point of the referee. While it is unavoidable to present the continuum hydrodynamic theory behind our results, we have made an effort in the revised manuscript to (1) motivate the essential features required from a theoretical model of the actomyosin cytoskeleton capable of describing its nematic self organization (two first paragraphs of Section “Theoretical model”), and to (2) explicitly explain the physical meaning of each of the mathematical terms in the theory, and when appropriate, relate them to molecular mechanisms in the cytoskeleton. We hope that the revised manuscript addresses the concern of the referee.

      Regarding the comparison with experiments, they are indeed qualitative because the main point of the paper is to establish a physical basis for the self-organization of dense nematic structures in actomyosin gels. Somewhat surprisingly, we argue that a compelling mechanism explaining the tendency of actomyosin gels to form patterns of dense nematic bundles has been lacking. As we review in the introduction, these patterns are qualitatively diverse across cell types and organisms in terms of geometry and dynamics, and for this reason, our goal is to show that the same material in different parameter regimes can exhibit such qualitative diversity. A quantitative comparison is difficult for several reasons. First, many of the parameters in our theory have not been measured and are expected to vary wildly between cell types. In fact, estimates in the literature often rely on comparison with hydrodynamic models such as ours. For this reason, we chose to delineate regimes leading to qualitatively different emerging architectures and dynamics. Second, the patterns of nematic bundles found across cell types depend on the interaction between (1) the intrinsic tendency of actomyosin gels to form such structures studied here and (2) other elements of the cellular context. For instance, polymerization and retrograde flow from the lamellipodium, the physical barrier of the nucleus, and the interaction with the focal adhesion machinery are essential to understand the emergence of stress fibers in adherent cells. Cell shape and curvature anisotropy control the orientation of actin bundles in parallel patterns in the wings and trachea of insects. Nuclear positions guide the actin bundles organizing the cellularization of Sphaeroforma arctica [11]. Here, we focus on establishing that actomyosin gels have an intrinsic ability to self organize into dense nematic bundles, and leave how this property enables the morphogenesis of specific structures for future work. We have emphasized this point in the revised section of conclusions.

      (B) It is unclear if the theory is suited for in vitro or in vivo actomyosin systems. The justification for various model assumptions, especially concerning their applicability to actomyosin networks, requires a more thorough examination.

      We thank the referee for this comment. Our theory is applicable to actomyosin gels originating from living cells. To our knowledge, the ability of reconstituted actomyosin gels from purified proteins to sustain the kind of contractile dynamical steady-states observed in living cells is very limited. In the revised manuscript, we cite a very recent preprint presenting very exciting but partial results in this direction [49]. Instead, reconstituted in vitro systems encapsulating actomyosin cell extracts robustly recapitulate contractile steady-states. This point has been clarified in the first paragraph of Section “Theoretical model”.

      (C) The classification of different structures demands further justification. For example, the rationale behind categorizing structures as sarcomeric remains unclear when nematic order is perpendicular to the axis of the bands. Sarcomeres traditionally exhibit a specific ordering of actin filaments with alternating polarity patterns.

      We agree with the referee and in the revised manuscript we have avoided the term “sarcomeric” because it refers to very specific organizations in cells. What we previously called “sarcomeric patterns”, where bands of high density exhibit nematic order perpendicular to the axis of the bands, is not a structure observed to our knowledge in cells. It is introduced to delimit the relevant region in parameter space. In the revised manuscript, we refer to this pattern as “banded pattern with perpendicular nematic organization” or “banded pattern” in short.

      (D) Similarly, the criteria for distinguishing between contractile and extensile structures need clarification, as one would expect extensile structures to be under tension contrary to the authors' claim.

      We thank the referee for raising this point, which was not sufficiently clarified in the original manuscript. We first note that in incompressible active nematic models, active tension is deviatoric (traceless and anisotropic) because an isotropic component would simply get absorbed by the pressure field enforcing incompressibility. Being compressible, our model admits an active tension tensor with deviatoric and isotropic components. We consider always a contractile (positive) isotropic component of active tension, but the deviatoric component can be either contractile (𝜅 > 0) or extensile (𝜅 < 0), where we follow the common terminology according to which in contractile/extensile active nematics the active stress is proportional to q with a positive/negative proportionality constant [see e.g. https://doi.org/10.1038/s41467018-05666-8]. Furthermore, as clarified in the revised manuscript, total active stresses accounting for the deviatoric and isotropic components are always contractile (positive) in all directions, as enforced by the condition |𝜅| < 1.

      For fibrillar patterns, we need 𝜅 < 0, and therefore active stresses are larger perpendicular to the nematic direction. This means that the anisotropic component of the active tension is extensile, although, accounting for the isotropic component, total active tension is contractile (see Fig. 1c). This is now clarified in the text following Eq. 7 and in Fig. 1.

      However, following fibrillar pattern formation and as a result of the interplay between active and viscous stresses, the total stress can be larger along the emergent dense nematic structures (“contractile structures”) or perpendicular to them (“extensile structures”). To clarify this point, in the revised Fig. 4 and the text referring to it, we have expanded our explanation and plotted the difference between the total stress component parallel to the nematic direction (𝜎∥) and the component perpendicular to the nematic direction (𝜎⊥), with contractile structures satisfying 𝜎∥ − 𝜎⊥ > 0 and extensile structures satisfying 𝜎∥ − 𝜎⊥ < 0. See lines 280 to 303. This is consistent with the common notion of contractile/extensile systems in incompressible nematic systems [see e.g. https://doi.org/10.1038/s41467-018-05666-8].

      (E) Additionally, its unclear if the model's predictions for fiber dynamics align with observations in cells, as stress fibers exhibit a high degree of dynamism and tend to coalesce with neighboring fibers during their assembly phase.

      In the present work, we focus on the self-organization of a periodic patch of actomyosin gel. However, in adherent cells boundary conditions play an essential role, as discussed in our response to comment (A) by this referee. In ongoing work, we are studying with the present model the dynamics of assembly and reconfiguration of dense nematic structures in domains with boundary conditions mimicking in adherent cells, possibly interacting with the adhesion machinery, finding dynamical interactions as those suggested by the referee. As an example, we show a video of a simulation where at the edge of the circular domain, there is an actin influx modeling the lamellipodium, and in four small regions friction is higher simulating focal adhesions. Under these boundary conditions, the model presented in the paper exhibits the kind of dynamical reorganizations alluded by the referee.

      Author response video 1.

      We would like to note, however, that the prominent stress fibers in cells adhered to stiff substrates, so abundantly reported in the literature, are not the only instance of dense nematic actin bundles. In the present manuscript, we emphasize the relation of the predicted organizations with those found in different in vivo contexts not related to stress fibers, such as the aligned patterns of bundles in insects (trachea, scales in butterfly wings), in hydra, or in reproductive organs of C elegans; the highly dynamical network of bundles observed in C elegans early embryos; or the labyrinth patters of micro-ridges in the apical surface of epidermal cells in fish.

      (F) Finally, it seems that the microscopic model is unable to recapitulate the density patterns predicted by the continuum theory, raising questions about the suitability of the simulation model.

      We thank the referee for raising this question, which needs further clarification. The goal of the microscopic model is not to reproduce the self-organized patterns predicted by the active gel theory. The microscopic model lacks essential ingredients, notably a realistic description of hydrodynamics and turnover. Our goal with the agent-based simulations is to extract the relation between nematic order and active stresses for a small homogeneous sample of the network. This small domain is meant to represent the homogeneous active gel prior to pattern formation, and it allows us to substantiate key assumptions of the continuum model leading to pattern formation, notably the dependence of isotropic and deviatoric components of the active stress on density and nematic order (Eq. 7) and the active generalized stress promoting ordering.

      We should mention that reproducing the range of out-of-equilibrium mesoscale architectures predicted by our active gel model with agent-based simulations seems at present not possible, or at least significantly beyond the state-of-the-art. To our knowledge, these models have not been able to reproduce the heterogeneous nonequilibrium contractile states involving sustained self-reinforcing flows underlying the pattern formation mechanism studied in our work. The scope of the discrete network simulations has been clarified in lines 340 to 349 in the revised manuscript.

      While agent-based cytoskeletal simulations are very attractive because they directly connect with molecular mechanisms, active gel continuum models are better suited to describe out-of-equilibrium emergent hydrodynamics at a mesoscale. We believe that these two complementary modeling frameworks are rather disconnected in the literature, and for this reason, we have attempted substantiate some aspects of our continuum modeling with discrete simulations. We have emphasized the complementarity of the two approaches in the conclusions.

      Reviewer #1 (Recommendations For The Authors):

      Questions on the theory:

      Does rho describe the density of actin or myosin? The authors say that they are modeling actomyosin material as a whole, but the actin and myosin should be modeled separately. Along, similar lines, does Q define the ordering of actin or myosin?

      Active gel models of the actomyosin cytoskeleton have been formulated with independent densities for actin and for myosin or using a single density field, implicitly assuming a fixed stoichiometry. Super-resolution imaging of the actomyosin cytoskeleton also suggest that in principle it makes sense to consider different nematic fields for actin and for myosin filaments. In the revised manuscript, we now explicitly mention that our density and nematic field are effective descriptions of the entire actomyosin gel (lines 82-84).

      A more detailed model would entail additional material parameters, not available experimentally, which may help reproduce specific experiments but that would make the systematic study of the different behaviors much more difficult. Our approach has been to keep the model minimal meeting the fundamental requirements outlined in the first paragraphs of Section “Theoretical model”.

      Should the active stress depend on material density? It seems strange (from Eq. 3) that active stress could be non-zero even where density is zero, since sigma_act does not depend on rho.

      Yes, active stress is assumed to be proportional to density. Eq. 3 in the original manuscript was misleading (it was multiplied by rho in Eq. 2). In the revised manuscript, we have explained with a bit more detail the theoretical model, clarifying this point.

      The authors should clearly explain their rationale for retaining certain types of nonlinear terms while ignoring others in theory. For instance, the nonlinearities in the equations of motion are sometimes quadratic in the fields, while there are also some cubic terms. Please remark up to what order in the fields the various interactions are modeled.

      We thank the referee for raising this point. The nonlinearities in the theory are easily explained on the basis of a small number of choices. We have added a new paragraph towards the end of Section “Theoretical model” (lines 145 to 152) providing a rationale for the origin and underlying assumptions leading to different nonlinearities.

      To connect with experiments and the biological context, please explain the biological origin of various terms in the model: (1) L-dependent terms in Eq. 2 and 4, (2) Flowalignment of nematic order and experimental evidence in support of it, (3) densitydependent susceptibility terms in Eq. 4

      (1) Unfortunately, the L-dependent terms are very bulky, but are very standard in nematic theories. The best way to understand their physical significance is through the expression of the nematic free-energy, which is now given and explained in the revised manuscript (Eq. 3). The resulting complicated expression for the molecular field and the nematic stress (Eqs. 4 and 5) are mathematical consequences of the choice of nematic free energy. In the revised manuscript, we also attempt to provide a basis for these terms in the context of the actin cytoskeleton. (2) To our knowledge, the best reference supporting this term from experiments is Reymann et al, eLife (2016). In the revised manuscript, we have provided a physical interpretation. (3) We have expanded the motivation and plausible microscopic justification of this term.

      There are different 'activity' terms in the model. Their biophysical origin is not made clear. For example, the authors should make clear if these activities arise from filament or motor activity. Relatedly, the authors should provide a comprehensive discussion of the signs of the different active parameters and their physical interpretations.

      In an active gel model, activity parameters are phenomenological and how they map to molecular mechanisms is not precisely known, although conventionally contractile active tension is ascribed to the mechanical transduction of chemical power by myosin motors. The fact is that, besides myosin activity, there are many nonequilibrium processes in the actomyosin cytoskeleton that may lead to active stresses including (de)polymerization of filaments or (un)binding of crosslinkers. In the revised manuscript, we have added sentences illustrating how different terms may result from microscopic mechanisms, but providing a precise mapping between our model and nonequilibrium dynamics of proteins is beyond the scope of our work, although our discrete network simulations address this issue to a certain degree.

      Following the suggestion of the referee, our description of the theory now discusses much more extensively the signs of activity parameters and their physical interpretations, e.g. the text following Eq. 7.

      Throughout the paper, various activity terms are varied independently of each other. Is that a reasonable assumption given that activities should depend on ATP and are thus not independent of one another?

      We agree that, ultimately, all active process depend on the conversion of chemical energy into mechanical energy. However, recent work has highlighted how active tension also depends on the microscopic architecture of the network controlled by multiple regulators of the actomyosin cytoskeleton (e.g. Chug et al, Nat Cell Biol, 2017). It is reasonable to expect that, for a given rate of ATP consumption, chemical power will be converted into mechanical power in different ways depending on the micro-architecture of the cytoskeleton, e.g. the stoichiometry of filaments, crosslinkers, myosins, or the length distribution of filaments (very long filaments crosslinked by myosins may be difficult to reorient but may contract efficiently).

      We have added a paragraph in Section “Theoretical model” with a discussion, lines 153 to 156.

      Sarcomeres are muscle fibers that exhibit alternating polarity pattern. Such patterning is not evident in what the authors call 'sarcomeres' in Fig. 2. I believe the authors should revise their terminology and not loosely interpret existing classifications in the field.

      We thank the referee for raising this point. We have changed the terminology.

      Fig 2a: Is the cartoon for filament alignment incorrect for kappa>0?

      The cartoon is correct. In the revised manuscript we have explained more clearly the physical meaning of kappa in the text following Eq. 7. In the caption of Fig. 1 and of Fig. 2a, we have also clarified that when the absolute value of kappa is <1, then active tension is positive in all directions.

      Within the section "Requirements for fibrillar and banded patterns", it will be useful to show the figures for varying the different active parameters in the main figures.

      We have followed the referee’s suggestion and moved Supp. Fig. 1 of the original manuscript to the main figures.

      How do the authors decide if bundles are contractile or extensile? Why are contractile bundles under tension while extensile bundles are under compression? I would expect the opposite.

      We agree that this point deserves a more detailed explanation. In the revised manuscript and in the new Figure 4, we further develop this point. The fibrillar pattern forms when kappa<0. We further assume that -1<kappa<0, so that active tension is positive in all directions. In this regime, the deviatoric (anisotropic) part of active tension is extensile. However, following pattern formation and because of the interplay between active and viscous stresses, the total stress in the emerging bundles may become extensile or contractile, depending on whether the largest component of stress is perpendicular or along the bundle axis. This is now presented in the updated figure, with new panels presenting maps of the total tension. The text discussing this point has been rewritten and we hope that the new version is much clearer (lines 280 to 303).

      A contractile bundle tends to shorten, but it cannot do it because of boundary conditions or the interaction with other bundles. As a result they are in tension. Conversely, an extensile bundle tries to elongate, but being constrained, it becomes compressed. As an analogy, consider the cortex of a suspended cell. The cortex is contractile, but it cannot contract because of volume regulation in th cell, which is typically pressurized. As a result, tension in the cortex is positive, as shown by Laplace’s law [10.1016/j.tcb.2020.03.005]. We have tried to clarify this point in the revised manuscript.

      Can the authors reproduce alternating density patterns using the cytosim simulations? This is an important step in establishing the correspondence between the continuum theory and the agent-based model.

      We have addressed this point in our response to public comment (F) of this referee.

      The authors do not provide code or data.

      The finite element code with an input file require to run a representative simulation in the paper is now made available, see Ref. [74].

      The customizations of Cytosim needed to account for nematic order in our discrete network simulations are available, see Ref. [98].

      Reviewer #2 (Public Review):

      Summary:

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article.

      We thank the referee for these comments. In the revised manuscript, we have highlighted the novelty, particularly in the last paragraph of the introduction, the first two paragraphs of Section “Theoretical model”, and in the conclusions. Despite a very large literature on theoretical models of stress fibers, actin rings, and active nematics, we argue that the active self-organization of dense nematic structures from an isotropic and low-density gel has not been compellingly explained so far. Many models assume from the outset the presence of actin bundles, or explain their formation using localized activity gradients. The literature of active nematics has extensively studied symmetry breaking and the self-organization. However, most of the works assume initial orientational order. Only a few works study the emergence of nematic order from a uniform isotropic state, but consider dry systems lacking hydrodynamic interactions or incompressible and density-independent systems [37,38]. Yet, pattern formation in actomyosin gels is characterized by large density variations, and by highly compressible flows, which coordinate in a mechanism relying on an advective instability and self-reinforcing flows.

      Our theoretical model is not particularly novel, and as we mention in the manuscript, it can be particularized to different models used in the literature. However, we argue that it has the right minimal features to capture nematic self-organization in actomyosin gels. To our knowledge, no previous study explains the emergence of dense and nematic structures from a low-density isotropic gel as a result of activity and involving the advective instability typical of symmetry-breaking and patterning in the actomyosin cytoskeleton. These are important qualitative features of our results that resonate with a large experimental record, and as such, we believe that our work provides a new and compelling mechanism relying on self-organization to explain the prominence and diversity of patterns involving dense nematic bundles in the actomyosin cytoskeleton across species.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

      We agree with the referee that this was a weakness of the original manuscript. In the revised manuscript, within reasonable space constraints given the size and dynamism of the field of active nematics, we have placed our work in the context of this field (end of introduction and first two paragraphs of Section “Theoretical model”). The published version of our companion manuscript [45] also contributes to providing a clear context to our theoretical model within the field.

      Reviewer #2 (Recommendations For The Authors):

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article. I explain my questions comments below.

      We have responded to this comment above.

      (i) Active nematics including density variations have been dealt quite extensively in the literature. For example, the works of Sriram Ramaswami have dealt with this system including linear stability analysis, simulations etc. In what way is the present work different from the system that they have considered?

      (ii) Active flows leading to self organization has been a topic of discussion in many works. For example: (i) Annual Review of Fluid Mechanics, Vol. 43:637-659, 2010, https://doi.org/10.1146/annurev-fluid-121108-145434 (ii) S Santhosh, MR Nejad, A Doostmohammadi, JM Yeomans, SP Thampi, Journal of Statistical Physics 180, 699-709 (iii) M. G. Giordano1, F. Bonelli2, L. N. Carenza1,3, G. Gonnella1 and G. Negro1, Europhysics Letters, Volume 133, Number 5. In what way this work is different from any of these?

      (iii) I am confused about the models used in the paper. There is significant literature from Prof. Mike Cates group, Prof. Julia Yeomans group, Prof. Marchetti's group who all use similar governing equations. In the present paper, I find it hard to understand whether the model used is similar to the existing ones in literature or are there significant differences. It should be clarified.

      Response to (i), (ii) and (iii).

      We completely agree with this referee (and also the previous referee), that the contextualization of our work in the field of active nematics was very insufficient. In the revised manuscript, the last paragraph of the introduction and the first two paragraphs of Section “Theoretical model” now address this point. In short, previous active nematic models predicting patterns with density variations have been either for dry active matter (disregarding hydrodynamic interactions), or for suspensions of active particles moving in an incompressible flow. None of these previous works predict nematic pattern formation as a result of activity relying on the advective instability and self-reinforcing compressible flows, leading to high density and high order bundles surrounded by an isotropic low density phase. Yet, these are fundamental features observed in actomyosin gels. Many works deal with symmetry-breaking of a system with pre-existing order, but very few address how order emerges actively from an isotropic state. We thank the referee for pointing at the paper by Santhosh et al, who nicely make this argument and is now cited. Our mechanism is fundamentally different from that in Santhosh, whose model is incompressible and ignores density variations.

      We hope that the revised manuscript addresses this important concern.

      (i) >(iv) Below Eqn 6, it starts by saying that the “...origin..is clear...” Its not. I don't understand the physical origin of the instability, and this should be clarified, may be with some illustrations.

      We apologize for this unfortunate sentence, which we have rewritten in the revised manuscript (lines 181 to 185).

      Reviewer #3 (Public Review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripelike patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the conclusions drawn from continuum simulations.

      The paper is well written, figures are mostly clear and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not yet stated this way by the authors, I would argue that combining these two is of the key ingredients that distinguishes this theoretical paper from similar ones. The diversity of patterning processes experimentally observed is nicely elaborated on in the introduction of the paper, though other closely related previous work could also have been included in these references (see below for examples).

      We thank the referee for these comments and for the suggestion to emphasize the interplay of isotropic and anisotropic active tension, which is possible only in a compressible gel, as mentioned in the revised manuscript. We have emphasized this point in different places in the revised manuscript. We thank the suggestions of the referee to better connect with existing literature.

      To introduce the continuum model, the authors exclusively cite their own, unpublished pre-print, even though the final equations take the same form as previously derived and used by other groups working in the field of active hydrodynamics (a certainly incomplete list: Marenduzzo et al (PRL, 2007), Salbreux et al (PRL, 2009, cited elsewhere in the paper), Jülicher et al (Rep Prog Phys, 2018), Giomi (PRX, 2015),...). To make better contact with the broad active liquid crystal community and to delineate the present work more compellingly from existing results, it would be helpful to include a more comprehensive discussion of the background of the existing theoretical understanding on active nematics. In fact, I found it often agrees nicely with the observations made in the present work, an opportunity to consolidate the results that is sometimes currently missed out on. For example, it is known that self-organised active isotropic fluids form in 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019), just as shown and discussed in Fig. 2. It is also known that extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis (the other way around for \kappa>0, see e.g. Doostmohammadi et al, Nat Comm, 2018 "Active Nematics" for a review that makes this point), consistent with all relative nematic director/flow orientations shown in Figs. 2 and 3 of the present work.

      We thank the referee for these suggestions. Indeed, in the original submission we had outsourced much of the justification of the model and the relevant literature to a related pre-print, but this is not reasonable. The companion publication has now been accepted in the New Journal of Physics, with significant changes to better connect the work to the field of active nematics. A preprint reflecting those changes is available in Ref. [64], but we hope to reference the published paper that will come out soon.

      In the revised manuscript, we have significantly rewritten the Section “Theoretical model” to frame the continuum model in the context of the field of active nematics. While our model and results have commonalities with previous work, there are also important differences. We have highlighted the novelty of the present work along with the relation with previous studies and theoretical models in the last paragraph of the introduction and the first two paragraphs of Section “Theoretical model”. Furthermore, as suggested by the referee, we have made an effort to connect our results with previous work by Kumar, Mietke, Doostmohammadi and others.

      Regarding the last point alluded by the referee (“extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis”), the picture raised by the referee would be nuanced for our compressible system as compared to the incompressible systems discussed in that reference. As we have elaborated in our response to point (D) of Referee #1, our systems are overall contractile (with positive active tension in all directions), but the deviatoric component of the active tension can be either extensile or contractile. In our “extensile” models (left in Fig. 2c), material is drawn to laterally to the nematic axis but it is not expelled along this axis. Instead, it is “expelled” by turnover. In the revised manuscript, we have added a comment about this.

      The results of numerical simulations are well-presented. Large parts of the discussion of numerical observations - specifically around Fig. 3 - are qualitative and it is not clear why the analysis is restricted to \kappa<0. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (https://arxiv.org/abs/2309.04224). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      We thank the referee for these comments. We are reluctant to extend the detailed analysis of emergent architectures and dynamics to the case \kappa > 0 as it leads to architectures not observed, to our knowledge, in actin networks. In the revised manuscript, we have expanded and clarified the characterization of emergent contractile/extensile networks by reporting the relative magnitude of stress along and perpendicular to the nematic direction. Our revised manuscript clearly shows that even though all of our simulations describe locally contractile systems with extensile anisotropic active tension, the emergent meso-structures can be either extensile or contractile, with the extensile ones exhibiting the usual bend-type instability (a secondary instability in our system) described classically for extensile active nematic systems. We have rewritten the text discussing this (lines 280 to 303), where we have placed these results in the context of recent work reporting the nontrivial relation between the contractility/extensibility of the local units vs the nematic pattern.

      I compliment the authors for trying to gain further mechanistic insights into this conclusion with microscopic filament simulations that are diligently performed. It is rightfully stated that these simulations only provide plausibility tests and, within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 (which is dropped ad-hoc from Fig. 3 onward) microscopically, in which the continuum theory does also predict the formation of stripe patterns - besides the short comment at the very end? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa?

      We thank the referee for this compliment. We think that the point raised by the referee is very interesting. It is reasonable to expect that the sign of \kappa may not be a constant but rather depend on S and \rho. Indeed, for a sparse network with low order, the progressive bundling by crosslinkers acting on nearby filaments is likely to produce a large active stress perpendicular to the nematic direction, whereas in a dense and highly ordered region, myosin motors are more likely to effectively contract along the nematic direction whereas there is little room for additional lateral contraction by additional bundling. As discussed in our response to referee #1, we believe that studying the formation of patterns using the discrete network simulations is far beyond the scope of our work. We discuss in lines 332 to 341, as well as in the last paragraph of the conclusions, the scope and limitations of our discrete network simulations.

      Overall, the paper represents a valuable contribution to the field of active matter and, if strengthened further, might provide a fruitful basis to develop new hypothesis about the dynamic self-organisation of dense filamentous bundles in biological systems.

      Reviewer #3 (Recommendations For The Authors):

      • The statement "the porous actin cytoskeleton is not a nematic liquid-crystal because it can adopt extended isotropic/low-order phases" is difficult to understand and should be clarified, as the next paragraph starts formulating a nematic active liquid crystal theory. Do the authors mean a crystal that "Tends to be in a disordered phase?", according to its equilibrium properties? It would still be a "nematic liquid crystal", only its ground state is not a nematic phase.

      We agree with the referee, and we hope that changes in the introduction and in Section “Theoretical model” address this comment.

      • I could not find what Frank energy is precisely used, that would be helpful information.

      In the revised manuscript, we have provided the expression for the nematic free energy in Eq. 3.

      • The Significance of green/purple arrows in Fig 2a sketch unclear, green arrows also in b,c, do they represent the same quantity? From the simulations images it is overall it is very difficult to see how the flows are oriented near the high-density regions (i.e. if they are towards / away from the strip).

      We thank the referee for bringing this up. The colorcodings of the sketches were confusing. The modified figures (Fig. 1(c) and Fig. 2(a)) present now a clearer and unified representation of anisotropic tension. The green arrows in Fig. 2(c) represent the out-of-equilibrium flows in the steady state. We agree that the zoom is insufficient to resolve the flow structure. For this reason, in the revised Fig. 2, we have added additional panels showing the flow with higher resolution.

      • It is currently unclear how the linear stability results - beyond identification of the parameter \delta - inform any of the remaining manuscript. Quantitative comparisons of the various length scales seen in simulated patterns (e.g. Fig. 2b, 3c etc) with linear predictions and known characteristic length scales would be instructive mechanistically, would make the overall presentation more compelling and probes limitations of linear results.

      In the revised manuscript, we have provided further information so that the readers can appreciate the predictions and limitations of the linear stability results. We have added a sentence and a Figure to show that, in addition to the critical activity, the linear theory provides a good prediction of the wavelengh of the pattern. See lines 199 to 201.

      • It is not clear what is meant by "[bundle-formation] requires that active tension perpendicular to nematic orientation is larger than along this direction", and therefore also not why that would be "counter-intuitive". If interpreted naively, I would say that a large tension brings in more filaments into the bundle, so that may well be an obviously helpful feature for bundle formation and maintenance. In any case, it would be helpful if clarity is improved throughout when arguments about "directions of tensions" are made.

      We have significantly rewritten the first paragraphs of section “Microscopic origin…” to clarify this point (lines 330 to 339). This paragraph, along with other changes in the manuscript such as the explanation of Eq. 7 or the discussion about the stress anisotropy in the new version of Fig. 4 (see lines 280 to 303), provide a better explanation of this important point.

      • All density color bars: Shouldn't they rather be labelled \rho/\rho_0?

      Yes! We have corrected this typo.

      • Scalar product missing in caption definition of order parameter Fig. 2

      We have corrected this typo.

      • Fig. 3a: I suggest to put the expression for q0 in the caption

      We have changed q_0 by S_0 and clarified its meaning in the caption of what now is Fig 4.

      • Paragraph on bottom right of page 6 should several times probably refer to Fig. 3c(...), instead of Fig. 3b

      We have corrected this typo.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Strengths: 

      Overall, this manuscript is well-written and contains a large amount of high-quality data and analyses. At its core, it helps to shed light on the overlapping roles of Edc3 and Scd6 in sculpting the yeast transcriptome. 

      Weaknesses: 

      (1) While the data presented makes conclusions about mRNA stability based on corresponding ChIP-Seq analyses and analyzing other mutants (e.g. Dcp2 knockout), at no point is mRNA stability actually ever directly assessed. This direct assessment, even for select transcripts, would further strengthen their conclusions. 

      We appreciate the reviewer’s concern but wish to emphasize that we conducted ChIP-Seq analysis of RNA Polymerase II occupancies in the CDSs of all genes, known to be a reliable indicator of transcription rate, and found only small increases in Pol II occupancies that cannot account for the increased transcript levels of the cohort of mRNAs up-regulated in the scd∆6edc3∆ double mutant (Fig. 3E). This provides strong evidence that increased transcription is not the main driver of increased mRNA abundance in this mutant.  Bolstering this conclusion, we showed that the Hap2/Hap3/Hap4/Hap5 complex of transcription factors responsible for induction of Ox. Phos. genes was not activated in scd6Δedc3Δ cells in glucose medium (Fig. 6F(ii)); nor was the Adr1 activator of CCR genes activated (Fig. S9C(i)), ruling out transcriptional induction of their target genes in glucose-replete scd6Δ/edc3Δ cells and instead favoring reduced degradation as the mechanism underlying derepression of Ox. Phos. and CCR gene transcripts in this mutant. In Fig. 3B, we further showed that the majority of mRNAs up-regulated in the scd6Δedc3Δ double mutant are also derepressed by dcp2Δ, and in Fig. 3D that the mRNAs up-regulated in scd∆6edc3∆ cells exhibit a higher than average codon protection index (CPI) indicating a heightened involvement of decapping and co-translational degradation by Xrn1 in their decay. To provide additional support for our conclusion, we have conducted new experiments to measure the abundance of capped mRNAs genome-wide by CAGE sequencing of total mRNA in both WT and scd∆6edc3∆ cells.  As established previously, normalizing CAGE TPMs to total mRNA TPMs determined by RNA-Seq, dubbed the C/T ratio, provides a reliable measure of the capped proportion of each transcript.  The new data presented in Fig. 3C indicate that the mRNAs up-regulated in the scd∆6edc3∆ mutant have significantly lower than average C/T ratios in WT cells, whereas the C/T ratios for the down-regulated transcripts are higher than average, and that these differences between the two groups and all expressed mRNAs are diminished in the scd∆6edc3∆ double mutant. These are the results expected if the up-regulated mRNAs are selectively targeted for decapping in WT cells dependent on Edc3/Scd6, whereas the downregulated mRNAs are targeted by Edc3/Scd6 less than the average transcript. In the original version of the paper, we came to the same conclusion by analyzing our previous CAGE data for the dhh1∆ mutant for the same transcripts dysregulated scd∆6edc3∆ cells, now presented as supportive data in Fig. S3F. Finally, we added the fact that among all four Dhh1 target mRNAs examined in the previous study of He et al. (2022) and found here to be up-regulated selectively in the scd6∆edc3∆ double mutant (Fig. S10), two of them (SDS23 and HXT6) were shown directly to have longer half-lives in dhh1∆ vs. WT cells by He et al. (2018). Hence, the combined evidence is compelling that selective up-regulation of particular mRNAs in the scd∆6edc3∆ mutant results from diminished decapping/decay rather than enhanced transcription; and we feel that the additional supporting evidence that would be provided by measuring half-lives of a small group of up-regulated transcripts would not justify the considerable effort required to do so.  Moreover, the standard approach for such experiments of impairing transcription with an inhibitor of Pol II or a Pol II Ts<sup>-</sup> mutation has been criticized because of the known buffering (suppression) of mRNA decay rates in response to impaired transcription.

      (2) Scd6 and Edc3 show a high level of functional redundancy, as demonstrated by the double mutant. As these proteins form complexes with other decapping factors/activators, I'm curious if depleting both proteins in the double mutant destabilizes any of these other factors. Have the authors ever assessed the levels of other key decapping factors in the double mutants (i.e. Dhh1, Pat1, Dcp2...etc)? I wonder if depleting both proteins leads to a general destabilization of key complexes. It would also be interesting to see if depleting Edc3 or Scd6 leads to a concomitant increase in the other protein as a compensatory mechanism. 

      We thank the reviewer for this insight.  Examining our Ribo-Seq and TMT-MS data revealed that Dhh1 expression and steady-state abundance are increased ~2-fold in the scd6∆edc3∆ strain, indicating that the up-regulation of many of the same mRNAs by scd6∆edc3∆ and dhh1∆ does not result indirectly from reduced levels of Dhh1 in the scd6∆edc3∆ mutant. The predicted increased in Dhh1 expression might signify a compensatory response to the absence of Scd6/Edc3.  We also observed an ~40% reduction in Dcp2 translation (RPFs) and mRNA abundance in the scd6∆edc3∆ strain, which might contribute to the up-regulation of mRNAs dysregulated in this mutant. However, our new immunoblot analyses revealed no significant reduction in steady-state Dcp2 levels in scd6∆edc3∆ cells (Input lanes in Figs. 3F and S4C(i)-(ii)). Moreover, our previous finding that the majority of mRNAs subject to NMD, up-regulated by both upf1∆ and dcp2∆, are not upregulated by scd6∆edc3∆ implies that Dcp2 abundance in scd6∆edc3∆ cells is adequate for normal levels of NMD and favors a direct role for Scd6/Edc3 in accelerating degradation of most transcripts up-regulated in this mutant. We have added these points to the DISCUSSION.

      (3) While not essential, it would be interesting if the authors carried out add-back experiments to determine which domain within Scd6/Edce3 plays a critical role in enforcing the regulation that they see. Their double mutant now puts them in a perfect position to carry out such experiments. 

      We agree with the reviewer that our scd6∆edc3∆ strain provides an opportunity to dissect the Scd6 and Edc3 proteins to determine which domains and motifs of each protein are most critically required for their functions in activating mRNA decay. However, if conducted thoroughly, this would entail an extensive analysis requiring a combination of genetics, biochemistry and genomics.  Considering the large amount of data already presented in 43 and 34 panels of main and supplementary figures, respectively, we feel that these additional experiments would be conducted more appropriately as a stand-alone follow-up study.

      Reviewer #2 (Public review): 

      Weaknesses: 

      The authors show very nicely in Figure S1A that growth phenotypes from scd6Δedc3∆ can be rescued by transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). The manuscript might benefit from using these rescue strategies in the analysis performed (e.g. RNA-seq, ribosome occupancies, and translational efficiencies). Also, these rescue assays could provide a good platform to further characterise the protein-protein interactions between Edc3, Scd6, and Dhh1. 

      We responded to this point immediately above in responding to Rev. #1.

      Reviewer #3 (Public review): 

      Weaknesses: 

      The limitations of the study include the use of indirect evidence to support claims that Edc3 and Scd6 recruit Dhh1 to the Dcp2 complex, which is inferred from correlations in mRNA abundance and ribosome profiling data rather than direct biochemical evidence. 

      While the reviewer makes a valid point, it is important to note that the greater correlations between effects of scd6∆edc3∆ with those conferred by dhh1∆ vs. pat1∆ also extended to changes in metabolites (Fig. 7A-C). To provide more direct evidence that Edc3 and Scd6 recruit Dhh1 to the Dcp2 complex, we have now conducted co-immunoprecipitation experiments (presented in new Figs. 3F and S5) demonstrating that association of Dhh1 with Dcp2 is diminished in the scd6∆edc3∆ double mutant but not in either scd6∆ or edc3∆ single mutant, thus providing biochemical support for our proposal.

      Also, there is limited exploration of other signals as the study is focused on glucose availability, and it is unclear whether the findings would apply broadly across different environmental stresses or metabolic pathways. Nonetheless, the study provides new insights into how mRNA decapping and degradation are tightly linked to metabolic regulation and nutrient responses in yeast. The RNA-seq and ribosome profiling datasets are valuable resources for the scientific community, providing quantitative information on the role of decapping activators in mRNA stability and translation control. 

      While not disputing the facts of this comment, we think it is unjustified to label as a weakness that our study focused on glucose-grown cells considering the large amount of new data and insights made possible by our multi-omics approach, presented in >70 separate figure panels and nine supplementary datafiles, which the reviewer has characterized as being valuable to the scientific community.  Parallel studies in non-preferred carbon or nitrogen sources are underway and represent large-scale investigations in their own right, for which the current dataset in glucose-replete cells provides the critical reference condition.

      Reviewer #1 (Recommendations for the authors): 

      The authors made a note that a set of 37 mRNAs is repressed exclusively by Edc3 with little contribution by Scd6, a list that includes the RPS28B mRNA. Edc3 has been previously reported to promote the decay of this mRNA in a deadenylation-independent fashion by binding to an element in its 3'UTR (PMIDs 15225544, 24492965). Can the authors comment on whether Edc3 may be binding to similar elements in the 3'UTRs of these transcripts in their shortlist? This could be an interesting topic matter for discussion as well. 

      While an interesting idea, this seems unlikely because the 3’UTR sequence in RPS28B mRNA was shown to bind Rps28 protein itself to confer heightened decapping and decay dependent on Edc3 in a negative autoregulatory loop that exerts tight control over Rps28 protein levels.  It would be surprising if Edc3mediated repression of the other 36 mRNAs would involve Rps28 as none of them encode cytoplasmic ribosomal proteins. Nevertheless, we searched for a conserved motif among the 3’UTRs of the 37 mRNAs using the MEME suite and found enrichment for motifs identified for RNA binding proteins Hrp1 and Nab2 and two novel motifs, but none of these motifs could be recognized within in the Rps28 autoregulatory loop.  We have chosen not to comment on these findings in the revised manuscript to avoid lengthening it unnecessarily with inconclusive observations.

      Reviewer #2 (Recommendations for the authors): 

      The authors show very nicely in Figure S1A that growth phenotypes from scd6Δedc3∆ can be rescued by the transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). The manuscript might benefit from using these rescue strategies on the analysis performed (e.g. RNA-seq, ribosome occupancies, and translational efficiencies); or expressing truncated mutants of EDC3 (pLfz614-7) or SCD6 (pLfz615-5), to show that they can act as dominant negative competitors, either on the binding to Dhh1 and Dcp2. 

      We addressed this comment above in our response to this Reviewer.

      Reviewer #3 (Recommendations for the authors): 

      (1) Labels such as "mRNA_up_s6,e3" are not defined in figures or the text. I suggest clearer sample labeling throughout. 

      The labels had been defined at first mention in the RESULTS but are now indicated there more explicitly, as well as in the legend to Fig. 1.

      (2) In Figure 1D it is surprising that the mRNA profile has a peak in the 5' UTR. I would expect to see such a peak in ribosome footprinting data. Is it possible these are incorrectly labeled?

      The figure is correctly labeled. Generally, one does not expect to see RPFs in the 5’UTR region unless there is an efficiently translated uORF, which appears not to be the case for MDH2.

      In general, the information in this panel and C is inadequate. None of the numbers are clearly explained in the figure legend or in the figure. 

      We had cited the legend to Fig. S3C for details of all such gene browser images but have now inserted this information into the Fig. 1D legend, at the first occurrence of such data in the regular figures. 

      (3) Figures 1C and 1D are in the wrong order.

      Corrected.

      (4) Figure 2D is a very complicated Venn Diagram. I suggest using UpSet plots as an alternative to Venn diagrams to more clearly convey overlaps between sets.  

      We provided additional explanatory text in the Fig. 2D legend to facilitate understanding.

      (5) The use of the same color scheme to represent different sets in panels of the same figure is a source of confusion. E.g. the cyan in Figures 2A, 2D, and 2E indicates unrelated categories, but one would think they are related.

      The use of the same cyan color in these three figure panels actually does designate results for the same set of 591 mRNAs up-regulated in the three mutants.  The application of the color schemes is now mentioned explicitly in Figs. 1, 2, and S3.

      (6) Reporting of p-values = 0 in figures is not useful.

      Corrected.

      (7) The whole manuscript is extremely long which reduces the overall impact. For example, the introduction is six pages long. I suggest reducing redundant text and being more concise to enhance readability. 

      We tried to streamline the text wherever possible, in particular shortening the Introduction by two pages.

      (8) Many abbreviations are used throughout the text that are not introduced the first time they are used. 

      Corrected throughout.

      (9) The ERCC normalization is unclear. Were the spike-ins added before cell lysis to allow estimation of per-cell RNA counts or to the extracted RNA? If added to extracted RNA rather than cells it is not clear to me how the claim can be made regarding increased mRNA abundance in the mutants. 

      We thank the reviewer for this comment. As we explained in the Methods, 2.4 µl of 1:100 diluted ERCC RNA Spike-In Control Mix 1 was added to 1.2 µg of each total RNA sample prior to cDNA library preparation.  Because the majority of total mRNA is comprised of rRNA, this normalization yields the abundance of each mRNA relative to rRNA. Owing to repression of rESR mRNAs encoding ribosomal proteins and biogenesis factors in the scd6∆edc3∆ strain (Fig. S3D), the ribosome content per cell is expected to be reduced in this mutant vs. WT. We showed previously that the isogenic dcp2∆ mutant that elicits an ESR response of similar magnitude, showed a 30% reduction in bulk ribosomal subunits per cell compared to same WT strain examined here {Vijjamarri, 2023 #7866}.  Assuming a similar reduction in ribosome abundance in the scd6∆edc3∆ mutant, the changes in mRNA per cell conferred by the scd6∆edc3∆ mutation are expected to be 0.7-fold of the ERCCnormalized values given in Fig. 3E, yielding fold-changes of 2.00 and 0.62 for the mRNA_up and mRNA_dn, groups, respectively, which still differ substantially from the corresponding changes in normalized Rpb1 occupancies of 1.2 and 0.93, respectively.  We have added this new analysis to the text of RESULTS.

      (10) The use of the terms "up-regulated" and "derepressed" throughout is confusing. Both refer to observed increased abundance of mRNAs, but they imply different causes which are never clearly defined. 

      We changed all occurrences of “derepressed” to “up-regulated”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public review):

      (1)  The sharpening model of expectation can predict surround suppression. The authors could further clarify how the cancellation model predicts a monotonic profile of expectation (Figure 1C) with the highest response at the expected orientation, while the cancellation model suggests a suppression of neurons tuned toward the expected stimulus.

      We thank the reviewer for the comment. We would like to emphasize that as the expected signal is suppressed, the relative weight or salience of unexpected inputs increases. We have clarified this interpretation in the manuscript as follows:

      “Here, given these two mechanisms making opposite predictions about how expectation changes the neural responses of unexpected stimuli, thereby displaying different profiles of expectation, we speculated that if expectation operates by the sharpening model with suppressing unexpected information, we should observe an inhibitory zone surrounding the focus of expectation, and its profile then should display as a center-surround inhibition (Fig. 1c, left). If, however, expectation operates as suggested by the cancelation model with highlighting unexpected information, the inhibitory zone surrounding the focus of expectation should be eliminated, and the profile should instead display a monotonic gradient (Fig. 1c, right).”

      (2) I'm a bit concerned about whether the profile solely arises from modulation of expectation. The two auditory cues are each associated with a fixed orientation, which may be confounded by other cognitive processes like visual working memory or attention (which I think the authors also discussed). Although the authors tried to use SFD task to render orientation task-irrelevant, luminance edges (i.e., orientation) and spatial frequency in gratings are highly intertwined and orientation of the gratings may help recall the first grating's SF (fixed at 0.9 c/{degree sign}), especially given the first and second grating's orientations are not very different (4.8{degree sign}).

      We agree that dissociating expectation from attention and other top-down processes remains a key challenge in visual expectation research (see Summerfield & Egner, 2009; Summerfield & de Lange, 2014; de Lange et al., 2018). As is generally acknowledged, expectation reflects the probability of a sensory event, while selective attention relates to its behavioral relevance. To minimize attentional influences, our task design ensured that grating orientation was not taskrelevant: on each trial, participants discriminated either orientation or spatial frequency difference, such that orientation itself did not require attentional allocation, a point already discussed in the manuscript.

      Regarding visual working memory, we argue that even if participants recalled the first grating’s spatial frequency in the SFD task, they were not required to retain its precise spatial frequency (or orientation), as their task was simply to judge whether the second grating appeared denser or sparser. In other words, orientation (or spatial frequency) itself was not task-relevant. Moreover, although not included in the manuscript, we conducted a post-experiment debriefing in which participants were asked whether they noticed any association between the auditory tone and the grating orientation. None of the participants reported this relationship correctly, suggesting that the tone-orientation mapping remained implicit and was unlikely to be driven by strategic attention or memory.

      However, we acknowledge that certain confounding processes such as statistical learning or implicit mapping acquisition cannot be fully ruled out given the current paradigm. Future studies using methods with higher temporal resolution (e.g., EEG/MEG) may help to dissociate these mechanisms more precisely.

      (3) For each of the expected orientations (20{degree sign} or 70{degree sign}), the unexpected ones are linearly separable (i.e., all unexpected ones lie on one side of the expected angle). This might further encourage people to shift their attended or expected orientation, according to the optimal tuning hypothesis. Would this provide an alternative explanation to the tuning shift that the authors found?

      We thank the reviewer for pointing out the relevance of the optimal tuning hypothesis. We acknowledge that the optimal tuning theory (Navalpakkam & Itti, 2007) is an important framework, particularly in visual search paradigms, where attentional templates may shift away from non-target features to enhance discriminability.

      In our task, this hypothesis would predict a shift of expectation toward <20° in E20° trials and >70° in E70° trials, given that all unexpected orientations lie on one side of the expected angle. Importantly, the optimal tuning hypothesis predicts such shifts not only in Δ20°, Δ25°, and Δ30° trials but also in the Δ0° trials. In this regard, the observed shift in Δ20° and Δ30° (Experiment 2) and Δ25° (Experiment 3) trials is broadly consistent with the predictions of the optimal tuning account. However, we did not observe a corresponding shift away from nontarget features in the Δ0° condition, suggesting limited behavioral evidence for optimal tuning effects under our current task settings.

      It is important to note that most previous studies supporting optimal tuning (e.g., Navalpakkam & Itti, 2007; Scolari & Serences, 2009; Geng, DiQuattro, & Helm, 2017; Yu & Geng, 2019) have used visual search paradigms that differ from our design in several critical ways, including the number of stimuli presented, their spatial arrangement (eccentricity), task demands, and so on. Therefore, it is difficult to determine whether the optimal tuning hypothesis could serve as an alternative explanation within the context of our current study. We agree that future studies could further examine how such task parameters influence the presence or absence of optimal tuning.

      (4) It is great that the authors conducted computational modeling to elucidate the potential neuronal mechanisms of expectation. But I think the sharpening hypothesis (e.g., reviewed in de Lange, Heilbron & Kok, 2018) focuses on the neural population level, i.e., narrowing of population tuning profile, while the authors conducted the sharpening at the neuronal tuning level. However, the sharpening of population does not necessarily rely on the sharpening of individual neuronal tuning. For example, neuronal gain modulation can also account for such population sharpening. I think similar logic applies to the orientation adjustment experiment. The behavioral level shift does not necessarily suggest a similar shift at the neuronal level. I would recommend that the authors comment on this.

      We thank the reviewer for this to-the-point comment. As de Lange et al. (2018) noted, “there is not always a direct correspondence between neural-level and voxel-level selectivity patterns.” That is, neuronal tuning, population-level tuning, voxel-level selectivity, and behavioral adaptive outcomes may reflect different underlying mechanisms and do not necessarily align in a one-toone fashion. We fully acknowledge that population-level tuning effects may also result from various neuronal mechanisms such as gain modulation (for review, see Salinas & Thier, 2000), shifts in preferred orientation (Ringach, et al., 1997; Jeyabalaratnam et al., 2013), asymmetric broadening of tuning curves (Schumacher et al., 2022), or tuning curve sharpening (Ringach, et al., 1997; Schoups et al., 2001).  

      In our modeling, we implemented sharpening and shifts of neuronal tuning curves as a conceptual model simplification, intended to explore potential mechanisms underlying expectation-related center-surround suppression effects. While sharpening-based accounts (e.g., Kok et al. 2012) have often been emphasized, we stress that other mechanisms, such as gain modulation or tuning shifts, may also contribute. Our goal is not to provide a definitive account, but to highlight such plausible mechanisms and encourage future investigation. We have revised the Discussion to emphasize that multiple mechanisms may underlie the observed effects.

      “We note that our implementation of sharpening and shifts at the neuronal level serves as a conceptual model simplification, as population-level tuning, voxel-level selectivity, and behavioral adaptive outcomes may reflect different underlying neuronal mechanisms and do not necessarily align in a one-to-one fashion. Here, we stress that other potential mechanisms beyond sharpening, such as tuning shifts, may also contribute to visual expectation.” 

      (5) If the orientation adjustment experiment suggests that both sharpening and shifting are present at the same time, have the authors tried combining both in their computational model?

      We agree with the reviewer that it is necessary to consider the combined model. Accordingly, we implemented a computational model incorporating sharpening of the expected orientation channel together with shifting of the unexpected orientation channels. This model

      successfully captured the sharpening of the expected-orientation channel and the shift of the unexpectedorientation channels (Supplementary Fig. 3). For the expected orientation (Δ0°) , results showed that the amplitude change was significantly higher than zero on both OD (t(23) = 2.582, p = 0.017, Cohen’s d = 0.527) and SFD (t(23) = 2.078, p = 0.049, Cohen’s d = 0.424) tasks (Supplementary Fig. 3e, vertical stripes); the width change was significantly lower than zero on both OD (t(23) = -2.438, p = 0.023, Cohen’s d = 0.498) and SFD (t(23) = -2.578, p = 0.017, Cohen’s d = 0.526) tasks (Supplementary Fig. 3e, diagonal stripes). For unexpected orientations (Δ10°-Δ40°), however, the amplitude and width changes were not significant with zero on either OD (amplitude change: t(23) = 0.443, p = 0.662, Cohen’s d = 0.091; width change: t(23) = -1.819, p = 0.082, Cohen’s d = 0.371) or SFD (amplitude change: t(23) = 1.130, p = 0.270, Cohen’s d = 0.231; width change: t(23) = -1.710, p = 0.101, Cohen’s d = 0.349) tasks (Supplementary Fig. 3f). In the meantime, the location shift was significantly different than zero for unexpected orientations (Δ10°-Δ40°, OD task: t(23) = 3.611, p = 0.001, Cohen’s d = 0.737; SFD task: t(23) = 2.418, p = 0.024, Cohen’s d = 0.493 (Supplementary Fig. 3g). These results provided further evidence that tuning sharpening and tuning shift jointly contribute to center– surround inhibition in expectation.  

      Reviewer#1 (Recommendation for the Author):

      (1) A direct comparison between tasks (baseline vs. expectation conditions) would have strengthened the findings. Specifically, contrasting performance in the orientation discrimination task with the spatial frequency discrimination task could have provided clearer evidence that participants actually used the auditory cues to attend to the expected orientation. This comparison would be particularly important for validating cue manipulation in the orientation discrimination task.

      We agree that a direct comparison between the orientation discrimination (OD) and spatial frequency discrimination (SFD) tasks could further clarify how expectation (auditory cues) differentially modulates orientation relevance. However, the primary goal of the current study was to examine expectation effects within each task separately and to demonstrate that such effects are independent of attentional modulation driven by the task-relevance of orientation.

      In addition, the OD and SFD tasks differ not only in the relevant task features (orientation vs. spatial frequency discrimination), but also in stimulus properties and difficulty, for example, the arbitrary use of 20–70° as the orientation range and ~0.9 cycles/° as the spatial frequency setting, a direct comparison could introduce confounding factors unrelated to expectation.

      Importantly, Previous studies (e.g., Kok et al., 2012, 2017; Aitken et al., 2020) and our current results show that participants performed significantly better when the auditory cue matched the expected orientation, supporting the validity of our expectation manipulation.

      (2) An interesting consideration is why the center-surround inhibition profile of expectation was independent of the task-relevance of orientation. Previous studies (e.g., Kok et al., 2012) have found that orientation discrimination patterns differ depending on whether orientation is taskrelevant or irrelevant. This could be useful to discuss the possible discrepancies.

      We thank the reviewer for this inspiring comment. Kok et al. (2012) showed that both orientation and contrast tasks elicited similar fMRI decoding results, regardless of task relevance, suggesting neural mechanisms of expectation operate independently of whether orientation is task relevant. Behaviorally, they reported better performance for expected versus unexpected trials in the orientation task (3.4° vs. 3.8°, t(17) = 2.8, p = 0.013), and a marginal trend (although not significant) in the contrast task (4.3% vs. 5.0%, t(17) = 1.9, p = 0.075). If any differences between the two tasks exist, they may lie in the correlation between behavioral and fMRI effects, a question that goes beyond the scope of the current study. Therefore, it is hard to strongly conclude that orientation discrimination patterns differ depending on whether orientation is taskrelevant or irrelevant in their paper.

      Our study differs from theirs in at least two important ways, which may account for the clearer expectation facilitatory effect we observed in the expectation (Δ0°) condition. First, in our study, the orientation-irrelevant task involved spatial frequency discrimination (SFD) rather than contrast discrimination. Compared to contrast, spatial frequency has been shown to exhibit a clear cueing effect, as reported in Fang & Liu (2019). Second, our design included a baseline condition, which was absent in their study. We computed discrimination sensitivity (DS) to quantify how much the discrimination threshold (DT) changed relative to baseline. By using this baseline-referenced approach, we observed a significant facilitatory expectation effect in the Δ0° condition, an effect that shifted from marginal significance in their orientation-irrelevant task to clear significance in our study.

      (3) The authors might consider briefly explaining how the orientation adjustment paradigm used in this study is particularly effective for examining the potential co-existence of tuning sharpening and tuning shift computations, and how this approach complements traditional orientation discrimination tasks in characterizing expectation-related mechanisms.

      We thank the reviewer for this valuable suggestion. We agree that further clarification is needed to better connect the two experiments. To explain this, we have elaborated further in the manuscript.

      “To further explore the co-existence of both Tuning sharpening and Tuning shift computations in center-surround inhibition profile of expectation, participants were asked to perform a classic orientation adjustment experiment. Unlike profile experiment (discrimination tasks), the adjustment experiment provides a direct, trial-by-trial measure of participants’ perceived orientation, capturing the full distribution of responses. This enables the construction of orientation-specific tuning curves, allowing us to detect both tuning sharpening and tuning shifts, thereby offering a more nuanced understanding of the computational mechanisms underlying expectation.”

      (4) These interesting findings raise important questions about their relationship to existing hybrid models of attentional modulation. Could the authors discuss how their results might align with or extend previous work demonstrating combined feature-similarity gain and surround suppression effects for orientation (e.g., Fang & Liu, 2019)? Could a hybrid model potentially provide a better account of these data than the pure surround suppression model?

      We thank the reviewer for this valuable comment. We agree that hybrid model should be mentioned in the manuscript and we have elaborated further in the Discussion.

      “For example, within the orientation space, the inhibitory zone was about 20°, 45°, and 54° for expectation evident here, feature-based attention[21], and visual perceptual learning[35], respectively; within the feature-based attention, it was about 30° and 45° in color [77] and motion direction [53] spaces, respectively These variations hint at the exciting possibility that the width of the inhibitory surround may flexibly adapt to stimulus context and task demands, ultimately facilitating our perception and behavior in a changing environment. This principle is consistent with the hybrid model of feature-based attention [53,54,75], where attention is deployed adaptively to prioritize task-relevant information through feature-similarity gain which filters out the most distinctive distractors, and surround suppression which inhibits similar and confusable ones, thereby jointly shaping the attentional tuning profile.”

      (5) On page 19, there appears to be a missing symbol in the description of the Tuning Sharpening model. The text states: 'the tuning width of each channel's tuning function is parameterized by ??', where the question marks seem to indicate a missing parameter symbol.

      We appreciate the reviewer’s careful attention. Yes, the "ơ" is missing, which was likely caused by a formatting issue. We have corrected it.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      This work investigated how the sense of control influences perceptions of stress. In a novel "Wheel Stopping" task, the authors used task variations in difficulty and controllability to measure and manipulate perceived control in two large cohorts of online participants. The authors first show that their behavioral task has good internal consistency and external validity, showing that perceived control during the task was linked to relevant measures of anxiety, depression, and locus of control. Most importantly, manipulating controllability in the task led to reduced subjective stress, showing a direct impact of control on stress perception. However, this work has minor limitations due to the design of the stressor manipulations/measurements and the necessary logistics associated with online versus in-person stress studies.

      Nevertheless, this research adds to our understanding of when and how control can influence the effects of stress and is particularly relevant to mental health interventions.

      We thank the reviewer for their clear and accurate summary of the findings. 

      Strengths:

      The primary strength of this research is the development of a unique and clever task design that can reliably and validly elicit variations in beliefs about control. Impressively, higher subjective control in the task was associated with decreased psychopathology measures such an anxiety and depression in a non-clinical sample of participants. In addition, the authors found that lower control and higher difficulty in the task led to higher perceived stress, suggesting that the task can reliably manipulate perceptions of stress. Prior tasks have not included both controllability and difficulty in this manner and have not directly tested the direct influence of these factors on incidental stress, making this work both novel and important for the field.

      We thank the reviewer for their positive comments.

      Weaknesses:

      One minor weakness of this research is the validity of the online stress measurements and manipulations. In this study, the authors measure subjective stress via self-report both during the task and also after either a Trier Social Stress Test (high-stress condition) or a memory test (low-stress condition). One concern is that these stress manipulations were really "threats" of stress, where participants never had to complete the stress tasks (i.e., recording a speech for judgment). While this is not unusual for an in-lab study and can reliably elicit substantial stress/anxiety, in an online study, there is a possibility for communication between participants (via online forums dedicated to such communication), which could weaken the stress effects. That said, the authors did find sensible increases and decreases of perceived stress between relevant time points, but future work could improve upon this design by including more complete stress manipulations and measuring implicit physiological signs of stress.

      We thank the reviewer for urging us to expand on this point. The reviewer is right that stress was merely anticipatory and is in that sense different to the canonical TSST. However, there are ample demonstrations that such anticipatory stress inductions are effective at reliably eliciting physiological and psychological stress responses (e.g. Nasso et al., 2019; Schlatter et al., 2021; Steinbeis et al., 2015). Further, there is evidence that online versions of the TSST are also effective (DuPont et al., 2022; Meier et al., 2022), including evidence that the speech preparation phase conducted online was related to increases in heart rate and blood pressure (DuPont et al., 2022). Importantly, and as the reviewer notes in relation to our study specifically, the anticipatory TSST had a significant impact on subjective stress in the expected direction demonstrating that it was effective at eliciting subjective stress. We have elaborated further on this in our manuscript (pages 8 and 9) as follows: 

      “Prior research has found TSST anticipation to elicit both psychological and physiological stress responses [37-39], suggesting that the task anticipation would be a valid stress induction despite participants not performing the speech task. Moreover, prior research has validated the use of remote TSST in online settings [40, 41], including evidence that the speech preparation phase (online) was related to increased heart rate and blood pressure compared to controls [40].”

      Reviewer #2 (Public review):

      Summary:

      The authors have developed a behavioral paradigm to experimentally manipulate the sense of control experienced by the participants by changing the level of difficulty of a wheel-stopping task. In the first study, this manipulation is tested by administering the task in a factorial design with two levels of controllability and two levels of stressor intensity to a large number of participants online while simultaneously recording subjective ratings on perceived control, anxiety, and stress. In the second study, the authors used the wheel-stopping task to induce a high sense of controllability and test whether this manipulation buffers the response to a subsequent stress induction when compared to a neutral task, like looking at pleasant videos.

      We thank the reviewer for their accurate summary.

      Strengths:

      (1) The authors validate a method to manipulate stress.

      (2) The authors use an experimental manipulation to induce an enhanced sense of controllability to test its impact on the response to stress induction.

      (3) The studies involved big sample sizes.

      We thank the reviewer for noting these positive aspects of our study. 

      Weaknesses:

      (1) The study was not preregistered.

      This is correct.

      (2) The control manipulation is conflated with task difficulty, and, therefore the reward rate. Although the authors acknowledge this limitation at the end of the discussion, it is a very important limitation, and its implications are not properly discussed. The discussion states that this is a common limitation with previous studies of control but omits that many studies have controlled for it using yoking.

      We agree that these are very important issues to consider in the interpretation of our findings. It is important to note, that while our task design does not separate these constructs, we are able to do so in our statistical analyses. For example, our measure of perceived difficulty was included in analyses assessing the fluctuations in stress and control in which subjective control still had a unique effect on the experience of stress over and above perceived difficulty, suggesting that subjective control explains variance in stress beyond what is accounted for by perceived difficulty. Similarly, we have also included additional analyses in which we include the win rate (i.e. percentage of trials won) as a covariate when assessing the relationship between subjective control, perceived difficulty and subjective stress, in which subjective control and perceived difficulty still uniquely predict subjective stress when controlling for win rate. This suggests that there is unique variance in subjective control, separate from perceived task difficulty and win rate that is relevant to stress. We have included these analyses (page 16 of manuscript) as follows:

      “To further isolate the relationship between subjective control and stress separate from perceived task difficulty or objective task performance, we also included the overall win rate (percentage of trials won during the WS task) in the models. In Study 1, lower feelings of control were related to higher levels of subjective stress (β= -0.12, p<.001) even when controlling for both  win rate (β= -0.06, p=.220) and perceived task difficulty (β= 0.37, p<.001, Table S10). This also replicated in Study 2, where lower subjective control was associated with higher feelings of stress (β= -0.32, p<.001) when controlling for perceived task difficulty (β= 0.31, p<.001) and win rate (β= -0.11, p=.428, Table S11). This suggests that there is unique variance in subjective feelings of control, separate from task performance, relevant to subjective stress.”

      As well as expanding on this in the Discussion (pages 27 and 28) as follows:

      “While our task design does not separate control from obtained reward, we are able to do so in the statistical analyses. Like with perceived difficulty, we statistically accounted for reward rate and showed that the relationship between subjective control and stress was not accounted for by reward rate, for example. Similarly, participants received feedback after every trial, and thus feedback valence may contribute to stress perception. However, given that overall win rate (which captures the feedback received during the task) did not predict stress over and above perceived difficulty or subjective control, it suggests that feedback is unlikely to relate to stress over and above difficulty. Future work will need to disentangle this further to rule out such potential confounds.”

      Further, in terms of the wider literature on these issues, we have added more to this point in our discussion, especially in relation to previous literature that also varies control by reward rate (e.g. Dorfman & Gershman, 2019, who use a reward rate of 80% in high control conditions and 50% in low control conditions). This can be found in the manuscript on page 27 as follows: 

      “Previous research typically accounts for different outcomes (e.g. punishment) by yoking controllable and uncontrollable conditions [3] though other work has manipulated the controllability of rewards by changing the reward rate [for example 30] where a decoy stimulus is rewarded 50% of the time in the low control condition but 80% in the high control condition).”

      (3) The methods are not always clear enough, and it is difficult to know whether all the manipulations are done within-subjects or some key manipulations are done between subjects.

      We have added more information in the methods section (page 8) clarifying withinsubject manipulations (WS task parameters) and between-subject manipulations (stressor intensity task, WS task version in Study 1, and WS task/video task in Study 2). Additionally, as recommended by Reviewer 1, we have provided more information in the methods section and Table S3 regarding the details of on-screen written feedback provided to participants after each trial of the WS Task.

      (4) The analysis of internal consistency is based on splitting the data into odd/even sliders. This choice of data parcellation may cause missed drifts in task performance due to learning, practice effects, or tiredness, thus potentially inflating internal consistency.

      We agree that this can indeed be an issue, though drift is likely to be present in any task including even in mood in resting-state (Jangraw et al., 2023). To respond to this specific point, we parcellated the timepoints into a 1<sup>st</sup>/2<sup>nd</sup> half split and report the ICC in the supplementary information. While values are lower, indeed likely due to systematic drifts in task performance as participants learn to perform the task (especially for Study 2 since the order of parameters were designed to get easier throughout the experiment), the ICC values are still high. Control sliders: Study 1 = 0.82, Study 2: = 0.68; Difficulty sliders: Study 1: = 0.84, Study 2 = 0.57; Stress sliders: Study 1 = 0.45, Study 2 = 0.71. As seen, the lowest ICC is for stress sliders in Study 1. This may be because the first 3 sliders (included in the 1<sup>st</sup> half split) were all related to the stress task (initial, post-stress, task, post-debrief) and the final 4 sliders (in the 2<sup>nd</sup> half split) were the three sliders during the WS task and shortly afterwards. 

      (5) Study 2 manipulates the effect of domain (win versus loss WS task), but the interaction of this factor with stressor intensity is not included in the analysis.

      We agree that this would be a valuable analysis to include. We have run additional analyses (section Sensitivity and Exploratory Analyses, pages 24 and 25), testing the interaction of Domain (win or loss) with stressor intensity (and time) when predicting the stress buffering and stress relief effects. This revealed no significant main effects of domain or interactions including domain, suggesting that domain did not impact the stress induction or relief differently depending on whether it was followed by the high or low stressor intensity condition. While the control by time interaction (our main effect of interest) still held for stress induction in this more complex model, the control by time interaction did not hold for the stress relief. However, this more complex model did not provide a better fit for the data, motivating us to continue to draw conclusions from the original model specification with domain as a covariate (rather than an interaction).

      We outline these analyses on page 24 of the manuscript, as follows:

      “Third, we included the interaction of domain with stressor intensity and with time, to test whether the win or loss domain in the WS task significantly impacted stress induction or stress relief differently depending on stressor intensity. There were no significant effects or interactions of domain (Table S14) for stress induction or stress relief, and the main effect of interest (the interaction between time and control) still held for the stress induction (β= 10.20, SE=4.99 p=.041, Table S14), though was no longer significant for the stress relief  (β= 6.72, SE=4.28, p=.117, Table S14). This more complex model did not significantly improve model fit (χ<sup>²</sup>(3)= 1.46, p=.691) compared to our original specification (with domain as a covariate rather than an interaction) and had slightly worse fit (higher AIC and BIC) than the original model (AIC = 5477.2 versus 5472.7, BIC = 5538.5 versus 5520.8).”

      This study will be of interest to psychologists and cognitive scientists interested in understanding how controllability and its subjective perception impact how people respond to stress exposure. Demonstrating that an increased sense of control buffers/protects against subsequent stress is important and may trigger further studies to characterize this phenomenon better. However, beyond the highlighted weaknesses, the current study only studied the effect of stress induction consecutive to the performance of the WS task on the same day and its generalizability is not warranted.

      We thank the reviewer for this assessment and agree that we cannot assume these findings would generalise to more prolonged effects on stress responses.

      Reviewer #3 (Public review):

      Summary:

      This is an interesting investigation of the benefits of perceiving control and its impact on the subjective experience of stress. To assess a subjective sense of control, the authors introduce a novel wheel-stopping (WS) task where control is manipulated via size and speed to induce low and high control conditions. The authors demonstrate that the subjective sense of control is associated with experienced subjective stress and individual differences related to mental health measures. In a second experiment, they further show that an increased sense of control buffers subjective stress induced by a trier social stress manipulation, more so than a more typical stress buffering mechanism of watching neutral/calming videos.

      We agree with this accurate summary of our study. 

      Strengths:

      There are several strengths to the manuscript that can be highlighted. For instance, the paper introduces a new paradigm and a clever manipulation to test an important and significant question. Additionally, it is a well-powered investigation that allows for confidence in replicability and the ability to show both high internal consistency and high external validity with an interesting set of individual difference analyses. Finally, the results are quite interesting and support prior literature while also providing a significant contribution to the field with respect to understanding the benefits of perceiving control.

      We thank the reviewer for this positive assessment. 

      Weaknesses:

      There are also some questions that, if addressed, could help our readership.

      (1) A key manipulation was the high-intensity stressor (Anticipatory TSST signal), which was measured via subjective ratings recorded on a sliding scale at different intervals during testing. Typically, the TSST conducted in the lab is associated with increases in cortisol assessments and physiological responses (e.g., skin conductance and heart rate). The current study is limited to subjective measures of stress, given the online nature of the study. Since TSST online may also yield psychologically different results than in the lab (i.e., presumably in a comfortable environment, not facing a panel of judges), it would be helpful for the authors to briefly discuss how the subjective results compare with other examples from the literature (either online or in the lab). The question is whether the experienced stress was sufficiently stressful given that it was online and measured via subjective reports. The control condition (low intensity via reading recipes) is helpful, but the low-intensity stress does not seem to differ from baseline readings at the beginning of the experiment.

      We agree that it would be helpful to expand on this further. Similar to the comment made by Reviewer 1, we wish to point out that there are ample demonstrations that such anticipatory stress inductions are effective at reliably eliciting physiological and psychological stress responses (e.g. Nasso et al., 2019; Schlatter et al., 2021; Steinbeis et al., 2015). Further, there is evidence that online versions of the TSST are also effective (DuPont et al., 2022; Meier et al., 2022), including evidence that the speech preparation phase conducted online was related to increases in heart rate and blood pressure (DuPont et al., 2022). We have elaborated further on this in our manuscript on pages 8 and 9 as follows:

      “Prior research has found TSST anticipation to elicit both psychological and physiological stress responses [37-39], suggesting that the task anticipation would be a valid stress induction despite participants not performing the speech task. Moreover, prior research has validated the use of remote TSST in online settings [40, 41], including evidence that the speech preparation phase (online) was related to increased heart rate and blood pressure compared to controls [40].”

      (2) The neutral videos represent an important condition to contrast with WS, but it raises two questions. First, the conditions are quite different in terms of experience, and it is interesting to consider what another more active (but not controlled per se) condition would be in comparison to the WS performance. That is, there is no instrumental action during the neutral video viewing (even passive ratings about the video), and the active demands could be an important component of the ability to mitigate stress. Second, the subjective ratings of the stress of the neutral video appear equivalent to the win condition. Would it have been useful to have a high arousal video (akin to the loss condition) to test the idea that experience of control will buffer against stress? That way, the subjective stress experience of stress would start at equivalent points after WS3.

      We agree with the reviewer that this is an important issue to clarify. In our deliberations when designing this study, we considered that that any task with actionoutcome contingencies would have a degree of controllability. To better distinguish experiences of control (WS task) to an experience of no/neutral control (i.e., neither high nor low controllability), we decided to use a task in which no actions were required during the task itself. Importantly, however, there was an active demand and concentration was still required in order to perform the attention checks regarding the content of the videos and ratings of the videos. 

      Thank you for the suggestion of having a high arousal video condition. This would indeed be interesting to test how experiencing ‘neutral’ control and high(er) stress levels preceding the stressor task influences stress buffering and stress relief, and we have included this suggestion for future research in the discussion section (page 28) as below:

      “Another avenue for future research would be to test how control buffers against stress when compared to a neutral control scenario of higher stress levels, akin to the loss domain in the WS Task, given that participants found the video condition generally relaxing. However, given that we found no differences dependent on domain for the stress induction in the WS Task conditions, it is possible that different versions of a neutral control condition would not impact the stress induction.”

      (3) For the stress relief analysis, the authors included time points 2 and 3 (after the stressor and debrief) but not a baseline reading before stress. Given the potential baseline differences across conditions, can this decision be justified in the manuscript?

      We thank the reviewer for raising this. Regarding the stress relief analyses (timepoints 2 and 3) and not including timepoint 1 (after the WS/video task) stress in the model, we have added to the manuscript that there was no significant difference in stress ratings between the high control and neutral control (collapsed across stress and domain) at timepoint 1 (hence why we do not think it’s necessary to include in the stress relief model). Nevertheless, we have now included a sensitivity analysis to test the Timepoint*Control interaction of stress relief when including timepoint 1 stress as a covariate. The timepoint by control interaction still holds, suggesting that the initial stress level prior to the stress induction does not impact our results of interest. The details of this analysis are included in the Sensitivity and Exploratory Analyses section on page 24:

      “Although there were no significant differences between control groups in subjective stress immediately after the WS/video task (t(175.6)=1.17, p=.244), we included participants’ stress level after the WS/video task as a covariate in the stress relief analyses (Table S12). The results revealed a main effect of initial stress (β= 0.643, SE=0.040, p<.001, Table S12) on the stress relief after the stressor debrief. Compared to excluding initial stress as in the original analyses (Table 4), there was now no longer a main effect of domain (β= 0.236, SE=2.60, p=.093, Table S12), but the inference of all other effects remained the same. Importantly, there was still a significant time by control interaction (β= 9.65, SE=3.74, p=.010, Table S12) showing that the decrease in stress after the debrief was greater in the highly controllable WS condition than the neutral control video condition, even when accounting for the initial stress level.”

      (4) Is the increased control experience during the losses condition more valuable in mitigating experienced stress than the win condition?

      We agree that this would be helpful to clarify. To test whether the loss domain was more valuable at mitigating experiences of stress than the win condition, we ran additional analyses with just the high control condition (WS task) to test for a Domain*Time interaction. This revealed no significant Domain*Time interaction, suggesting that the stress buffering or stress relief effect was not dependent on domain in the high control conditions. These analyses are outlined in the Sensitivity and Exploratory Analyses section on page 25:

      “Finally, to test whether the loss domain was more valuable at mitigating experiences of stress than the win condition, we ran additional analyses with just the high control condition (WS task) for the stress induction and stress relief to test for an interaction of domain and time. For the stress induction, there was no significant two-way interaction of domain and time (β= -1.45, SE=4.80, p=.763), nor a significant three-way interaction of domain by time by stressor intensity (β= -3.96, SE=6.74, p=.557, Table S15), suggesting that there were no differences in the stress induction dependent on domain. Similarly for the stress relief, there was no significant two-way interaction of domain and time (β= -5.92, SE=4.42, p=.182), nor a significant three-way interaction of domain by time by stressor intensity interaction (β= 8.86, SE=6.21, p=.154, Table S15), suggesting that there were no differences in the stress relief dependent on the WS Task domain.

      (5) The subjective measure of control ("how in control do you feel right now") tends to follow a successful or failed attempt at the WS task. How much is the experience of control mediated by the degree of experienced success/schedule of reinforcement? Is it an assessment of control or, an evaluation of how well they are doing and/or resolution of uncertainty? An interesting paper by Cockburn et al. 2014 highlights the potential for positive prediction errors to enhance the desire for control.

      We thank the reviewer for this comment. Similar to comments regarding reward rate, our task does not allow us to fully separate control from success/reinforcement because of the manipulation of difficulty. However, we did undertake sensitivity analyses and the inclusion of overall win rate accounted for limited variance when predicting stress over and above subjective control and difficulty (page 16). 

      “To further isolate the relationship between subjective control and stress separate from perceived task difficulty or objective task performance, we also included the overall win rate (percentage of trials won during the WS task) in the models. In Study 1, lower feelings of control were related to higher levels of subjective stress (β= -0.12, p<.001) even when controlling for both  win rate (β= -0.06, p=.220) and perceived task difficulty (β= 0.37, p<.001, Table S10). This also replicated in Study 2, where lower subjective control was associated with higher feelings of stress (β= -0.32, p<.001) when controlling for perceived task difficulty (β= 0.31, p<.001) and win rate (β= -0.11, p=.428, Table S11). This suggests that there is unique variance in subjective feelings of control, separate from task performance, relevant to subjective stress.” 

      (6) While the authors do a very good job in their inclusion and synthesis of the relevant literature, they could also amplify some discussion in specific areas. For example, operationalizing task controllability via task difficulty is an interesting approach. It would be useful to discuss their approach (along with any others in the literature that have used it) and compare it to other typically used paradigms measuring control via presence or absence of choice, as mentioned by the authors briefly in the introduction.

      We are delighted to expand on this particular point and have done so in the Discussion on page 27:

      “Previous research typically accounts for different outcomes (e.g. punishment) by yoking controllable and uncontrollable conditions [3] though other work has manipulated the controllability of rewards by changing the reward rate [for example 30] where a decoy stimulus is rewarded 50% of the time in the low control condition but 80% in the high control condition). While our task design does not separate control from obtained reward, we are able to do so in the statistical analyses.” 

      (7) The paper is well-written. However, it would be useful to expand on Figure 1 to include a) separate figures for study 1 (currently not included) and 2, and b) a timeline that includes the measurements of subjective stress (incorporated in Figure 1). It would also be helpful to include Figure S4 in the manuscript.

      We have expanded Figure 1 to include both Studies 1 and 2 and a timeline of when subjective stress was assessed throughout the experiment as well as adding Figure S4 to the main manuscript (now top panel within Figure 4). 

      Reviewer #1 (Recommendations for the authors):

      (1) Study 2 shows a greater decrease in subjective stress after the high-control task manipulation than after the pleasant video. One possible confound is whether the amount of time to complete the WS task and the video differ. It could be helpful to look at the average completion time for the WS task and compare that to the length of the videos. Alternatively, in future studies, control for this by dynamically adjusting the video play length to each participant based on how long they took to complete the WS task.

      This is an interesting suggestion. As a result, we have included the time taken as a covariate in the stress induction and stress relief analyses to ensure that any differences in time between the WS task and video task were not accounting for any of the stress induction or relief analyses. Controlling for the total time taken did not impact the stress induction or relief results. This is included in the Sensitivity and Exploratory Analyses section on page 24:

      “Our second sensitivity analyses was conducted because the experiment took longer to complete for the video condition (mean = 54.3 minutes, SD = 12.4 minutes) than the WS task condition (mean = 39.7 minutes, SD = 12.8 minutes, t(186.19)=-9.32, p<.001). We therefore included the total time (in ms) as a covariate in the stress induction and stress relief analyses for Study 2. This showed that accounting for total time did not change the results of interest (Table S13), further highlighting that the time by control interactions were robust.”

      (2) Because participants received feedback about their success/failure in the WS task, a confounding factor could be that they received positive feedback on highly controllable trials and negative feedback on low control trials (and/or highly difficult trials). This would suggest that it is not controllability per se that contributes to stress perception but rather feedback valence. The authors show that this is a likely factor in their results in Study 2, which shows significant effects of the loss domain on perceived control and stress. Was a similar analysis done in Study 1? Do participants receive feedback in Study 1? It would be helpful to include this information somewhere in the manuscript. I would be curious to know whether *any* feedback at all influences controllability/stress perceptions.

      We thank the reviewer for this interesting suggestion. It is an interesting question as to whether feedback valence is related to stress in Study 1, and we have added this point to the Discussion on pages 27 and 28. To speak to this point, when we include the overall win rate (which captures the subsequent feedback received) when predicting subjective stress, win rate is not a significant predictor of stress over and above perceived difficulty and subjective control, suggesting that overall feedback valence may not be related to stress in Study 1. We take this as evidence that feedback may not be as important in terms of accounting for the relationship between stress and control. However, we unfortunately do not have any data in which there was no feedback provided to speak to this conclusively. This would be an interesting future study. The excerpt below is added to pages 27 and 28 of the discussion section:

      “Like with perceived difficulty, we statistically accounted for reward rate and showed that the relationship between subjective control and stress was not accounted for by reward rate, for example. Similarly, participants received feedback after every trial, and thus feedback valence may contribute to stress perception. However, given that overall win rate (which captures the feedback received during the task) did not predict stress over and above perceived difficulty or subjective control, it suggests that feedback is unlikely to relate to stress over and above difficulty. Future work will need to disentangle this further to rule out such potential confounds.”

      To respond specifically to the reviewer’s question about the feedback given to participants, written feedback was provided on screen to participants on a trial-bytrial basis also in Study 1 (i.e. for both studies), and we have provided more clarity about this in the manuscript on page 8 as well as providing additional details in Table S3:

      “After each trial, participants were shown written feedback on screen as to whether the segment had successfully stopped on the red zone (or not), and the associated reward (or lack of). See Table S3 for details.”

      (3) I'm not sure how to interpret the fact that in Figure S1, the BICs are all essentially the same. Does this mean that you don't really need all of these varying aspects of the task to achieve the same effects? Could the task be made simpler?

      The similarity of BIC values suggests that a simpler WS task would have produced a worse account of the data approximately in keeping with the extent to which it is a simpler model. Here, the BIC scores for the models are similar, suggesting that adding these parameters adds explanatory power in keeping with what would have been expected from adding a parameter, but not more. We do note that the BIC is a relatively strict and conservative comparison. The fact that the most complex model overall narrowly improves parsimony; combined with the interpretable parameter values and the prior expectations given the task setup led us to focus on this most complex model.  

      (4) A minor point, but the authors refer to their sample as "neurotypical." Were they assessed for prior/current psychopathology/medications? If not, I might use a different term here (perhaps "non-clinical sample"), since some prior work has shown that online samples actually have higher instances of psychopathology compared to community samples.

      We have changed the phrasing of ‘neurotypical’ to a ‘non-clinical sample’ as recommended.

      Reviewer #2 (Recommendations for the authors):

      Figure 4S is very informative and could be presented in the main text.

      We have expanded Figure 1 to include both Studies 1 and 2 and a timeline of when subjective stress was assessed throughout the experiment as well as adding Figure S4 to the main manuscript (top panel of Figure 4). 

      References:

      Dorfman, H. M., & Gershman, S. J. (2019). Controllability governs the balance between Pavlovian and instrumental action selection. Nature Communications, 10(1), 5826. https://doi.org/10.1038/s41467-019-13737-7

      DuPont, C. M., Pressman, S. D., Reed, R. G., Manuck, S. B., Marsland, A. L., & Gianaros, P. J. (2022). An online Trier social stress paradigm to evoke affective and cardiovascular responses. Psychophysiology, 59(10), e14067. https://doi.org/10.1111/psyp.14067

      Jangraw, D. C., Keren, H., Sun, H., Bedder, R. L., Rutledge, R. B., Pereira, F., Thomas, A. G., Pine, D. S., Zheng, C., Nielson, D. M., & Stringaris, A. (2023). A highly replicable decline in mood during rest and simple tasks. Nature Human Behaviour, 7(4), 596–610. https://doi.org/10.1038/s41562-023-015197

      Meier, M., Haub, K., Schramm, M.-L., Hamma, M., Bentele, U. U., Dimitroff, S. J., Gärtner, R., Denk, B. F., Benz, A. B. E., Unternaehrer, E., & Pruessner, J. C. (2022). Validation of an online version of the trier social stress test in adult men and women. Psychoneuroendocrinology, 142, 105818. https://doi.org/10.1016/j.psyneuen.2022.105818

      Nasso, S., Vanderhasselt, M.-A., Demeyer, I., & De Raedt, R. (2019). Autonomic regulation in response to stress: The influence of anticipatory emotion regulation strategies and trait rumination. Emotion, 19(3), 443–454. https://doi.org/10.1037/emo0000448

      Schlatter, S., Schmidt, L., Lilot, M., Guillot, A., & Debarnot, U. (2021). Implementing biofeedback as a proactive coping strategy: Psychological and physiological effects on anticipatory stress. Behaviour Research and Therapy, 140, 103834. https://doi.org/10.1016/j.brat.2021.103834

      Steinbeis, N., Engert, V., Linz, R., & Singer, T. (2015). The effects of stress and affiliation on social decision-making: Investigating the tend-and-befriend pattern. Psychoneuroendocrinology, 62, 138–148. https://doi.org/10.1016/j.psyneuen.2015.08.003

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript reports a series of experiments designed to test whether optogenetic activation of infralimbic (IL) neurons facilitates extinction retrieval and whether this depends on animals' prior experience. In Experiment 1, rats underwent fear conditioning followed by either one or two extinction sessions, with IL stimulation given during the second extinction; stimulation facilitated extinction retrieval only in rats with prior extinction experience. Experiments 2 and 3 examined whether backward conditioning (CS presented after the US) could establish inhibitory properties that allowed IL stimulation to enhance extinction, and whether this effect was specific to the same stimulus or generalized to different stimuli. Experiments 5 - 7 extended this approach to appetitive learning: rats received backward or forward appetitive conditioning followed by extinction, and then fear conditioning, to determine whether IL stimulation could enhance extinction in contexts beyond aversive learning and across conditioning sequences. Across studies, the key claim is that IL activation facilitates extinction retrieval only when animals possess a prior inhibitory memory, and that this effect generalizes across aversive and appetitive paradigms.

      Strengths:

      (1) The design attempts to dissect the role of IL activity as a function of prior learning, which is conceptually valuable.

      We thank the Reviewer for their positive assessment.

      (2) The experimental design of probing different inhibitory learning approaches to probe how IL activation facilitates extinction learning was creative and innovative.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      (1) Non-specific manipulation.

      ChR2 was expressed in IL without distinction between glutamatergic and GABAergic populations. Without knowing the relative contribution of these cell types or the percentage of neurons affected, the circuit-level interpretation of the results is unclear.

      ChR2 was intentionally expressed in the infralimbic cortex (IL) without distinction between local neuronal populations for two reasons. First, this manuscript aimed to uncover some of the features characterizing the encoding of inhibitory memories in the IL, and this encoding likely engages interactions among various neuronal populations within the IL. Second, the hypotheses tested in the manuscript derived from findings that indiscriminately stimulated the IL using the GABA<sub>A</sub> receptor antagonist picrotoxin, which is best mimicked by the approach taken. We agree that it is also important to determine the respective contributions of distinct IL neuronal populations to inhibitory encoding; however, the global approach implemented in the present experiments represents a necessary initial step. This rationale will be incorporated into the revised manuscript, which will also make reference to the need to identify the relative contributions of the various neuronal populations within the IL. 

      (2) Extinction retrieval test conflates processes

      The retrieval test included 8 tones. Averaging across this many tone presentations conflate extinction retrieval/expression (early tones) with further extinction learning (later tones). A more appropriate analysis would focus on the first 2-4 tones to capture retrieval only. As currently presented, the data do not isolate extinction retrieval.

      It is unclear when retrieval of what has been learned across extinction ceases and additional extinction learning occurs. In fact, it is only the first stimulus presentation that unequivocally permits a distinction between retrieval and additional extinction learning, as the conditions for this additional learning have not been fulfilled at that presentation. However, confining evidence for retrieval to the first stimulus presentation introduces concerns that other factors could influence performance. For instance, processing of the stimulus present at the start of the session may differ from that present at the end of the previous session, thereby affecting what is retrieved. Such differences between the stimuli present at the start and end of an extinction session have been long recognized as a potential explanation for spontaneous recovery (Estes, 1955). More importantly, whether the test data presented confound retrieval and additional extinction learning or not, the interpretation remains the same with respect to the effects of a prior history of inhibitory learning on enabling the facilitative effects of IL stimulation. Finally, it is unclear how these facilitative effects could occur in the absence of the subjects retrieving the extinction memory formed under the stimulation. Nevertheless, the revised manuscript will provide the trial-by-trial performance during the post-extinction retrieval tests and discuss this issue.

      (3) Under-sampling and poor group matching.

      Sample sizes appear small, which may explain why groups are not well matched in several figures (e.g., 2b, 3b, 6b, 6c) and why there are several instances of unexpected interactions (protocol, virus, and period). This baseline mismatch raises concerns about the reliability of group differences.

      Efforts were made to match group performance upon completion of each training stage and before IL stimulation. Unfortunately, these efforts were not completely successful due to exclusions following post-mortem analyses. However, we acknowledge that the unexpected interactions deserve further discussion, and this will be incorporated into the revised manuscript (see also comment from Reviewer 2). Although we cannot exclude that sample sizes may have contributed to some of these interactions, we remain confident about the reliability of the main findings reported, especially given their replication across the various protocols. Overall, the manuscript provides evidence that IL stimulation does not facilitate brief extinction in the absence of prior inhibitory experience in five different experiments, replicating previous findings (Lingawi et al., 2018; Lingawi et al., 2017). It also replicates these previous findings by showing that prior experience with either fear or appetitive extinction enables IL stimulation to facilitate subsequent fear extinction. Furthermore, the facilitative effects of such stimulation following fear or appetitive backward conditioning are replicated in the present manuscript.  

      (4) Incomplete presentation of conditioning data.

      Figure 3 only shows a single conditioning session despite five days of training. Without the full dataset, it is difficult to evaluate learning dynamics or whether groups were equivalent before testing.

      We apologize, as we incorrectly labeled the X axis for the backward conditioning data set in Figures 3B, 4B, 4D and 5B. It should have indicated “Days” instead of “Trials”. This error will be corrected in the revised manuscript.

      (5) Interpretation stronger than evidence.

      The authors conclude that IL activation facilitates extinction retrieval only when an inhibitory memory has been formed. However, given the caveats above, the data are insufficient to support such a strong mechanistic claim. The results could reflect non-specific facilitation or disruption of behavior by broad prefrontal activation. Moreover, there is compelling evidence that optogenetic activation of IL during fear extinction does facilitate subsequent extinction retrieval without prior extinction training (Do-Monte et al 2015, Chen et al 2021), which the authors do not directly test in this study.

      As noted above, the revised manuscript will show that the interpretations of the main findings stand whether ore the test data confounds retrieval with additional extinction learning. The revised manuscript will also clarify the plotting of the data for the backward conditioning stages. We do agree that further discussion of the unexpected interactions is necessary, and this will also be incorporated into the revised manuscript. However, the various replications of the core findings provide strong evidence for their reliability and the interpretations advanced in the original manuscript. The proposal that the results reflect non-specific facilitation or disruption of behavior seems highly unlikely. Indeed, the present experiments and previous findings (Lingawi et al., 2018; Lingawi et al., 2017) provide multiple demonstrations that IL stimulation fails to produce any facilitation in the absence of prior inhibitory experience with the target stimulus. Although these demonstrations appear inconsistent with previous studies (Do-Monte et al., 2015; Chen et al., 2021), this inconsistency is likely explained by the fact that these studies manipulated activity in specific IL neuronal populations. Previous work has already revealed differences between manipulations targeting discrete IL neuronal populations as opposed to general IL activity (Kim et al., 2016). Importantly, as previously noted, the present manuscript aimed to generally explore inhibitory encoding in the IL that, as we will acknowledge, is likely to engage several neuronal populations within the IL. Adequate statements on these matters will be included in the revised manuscript.

      Impact:

      The role of IL in extinction retrieval remains a central question in the fear learning literature. However, because the test used conflates extinction retrieval with new learning and the manipulations lack cell-type specificity, the evidence presented here does not convincingly support the main claims. The study highlights the need for more precise manipulations and more rigorous behavioral testing to resolve this issue.

      As noted in our responses, the interpretations of the data presented remain identical whether the test data conflate extinction retrieval with additional extinction learning or not. Although we agree that it is important to establish the role of specific IL neuronal populations in extinction learning, this was beyond the scope of the manuscript and the findings reported remain valuable to our understanding of inhibitory encoding within the IL.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors examine the mechanisms by which stimulation of the infralimbic cortex (IL) facilitates the retention and retrieval of inhibitory memories. Previous work has shown that optogenetic stimulation of the IL suppresses freezing during extinction but does not improve extinction recall when extinction memory is probed one day later. When stimulation occurs during a second extinction session (following a prior stimulation-free extinction session), freezing is suppressed during the second extinction as well as during the tone test the following day. The current study was designed to further explore the facilitatory role of the IL in inhibitory learning and memory recall. The authors conducted a series of experiments to determine whether recruitment of IL extends to other forms of inhibitory learning (e.g., backward conditioning) and to inhibitory learning involving appetitive conditioning. Further, they assessed whether their effects could be explained by stimulus familiarity. The results of their experiments show that backward conditioning, another form of inhibitory learning, also enabled IL stimulation to enhance fear extinction. This phenomenon was not specific to aversive learning, as backward appetitive conditioning similarly allowed IL stimulation to facilitate extinction of aversive memories. Finally, the authors ruled out the possibility that IL facilitated extinction merely because of prior experience with the stimulus (e.g., reducing the novelty of the stimulus). These findings significantly advance our understanding of the contribution of IL to inhibitory learning. Namely, they show that the IL is recruited during various forms of inhibitory learning, and its involvement is independent of the motivational value associated with the unconditioned stimulus.

      Strengths:

      (1) Transparency about the inclusion of both sexes and the representation of data from both sexes in figures.

      We thank the Reviewer for their positive assessment.

      (2) Very clear representation of groups and experimental design for each figure.

      We thank the Reviewer for their positive assessment.

      (3) The authors were very rigorous in determining the neurobehavioral basis for the effects of IL stimulation on extinction. They considered multiple interpretations and designed experiments to address these possible accounts of their data.

      We thank the Reviewer for their positive assessment.

      (4) The rationale for and the design of the experiments in this manuscript are clearly based on a wealth of knowledge about learning theory. The authors leveraged this expertise to narrow down how the IL encodes and retrieves inhibitory memories.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      (1) In Experiment 1, although not statistically significant, it does appear as though the stimulation groups (OFF and ON) differ during Extinction 1. It seems like this may be due to a difference between these groups after the first forward conditioning. Could the authors have prevented this potential group difference in Extinction 1 by re-balancing group assignment after the first forward conditioning session to minimize the differences in fear acquisition (the authors do report a marginally significant effect between the groups that would undergo one vs. two extinction sessions in their freezing during the first conditioning session)?

      As noted (see response to Reviewer 1), efforts were made daily to match group performance across the training stages, but these efforts were ultimately hampered by the necessary exclusions following post-mortem analyses. This will be made explicit in the revised manuscript. Regarding freezing during Extinction 1, as noted by the Reviewer, the difference, which was not statistically significant, was absent across trials during the subsequent forward fear conditioning stage. Likewise, the protocol difference observed during the initial forward fear conditioning was absent in subsequent stages. We are therefore confident that these initial differences (significant or not) did not impact the main findings at test. Importantly, these findings replicate previous work using identical protocols in which no differences were present during the training stages. These considerations will be addressed in the revised manuscript.

      (2) Across all experiments (except for Experiment 1), the authors state that freezing during the initial conditioning increased across "days". The figures that correspond to this text, however, show that freezing changes across trials. In the methods, the authors report that backward conditioning occurred over 5 days. It would be helpful to understand how these data were analyzed and collated to create the final figures. Was the freezing averaged across the five days for each trial for analyses and figures?

      We apologize, as noted above, we incorrectly labeled the X axis for the backward conditioning data sets in Figures 3B, 4B, 4D and 5B. It should have indicated “Days” instead of “Trials”. The data shown in these Figures use the average of all trials on a given day. This will be clarified in the methods section of the revised manuscript. The labeling errors on the Figures will be corrected.

      (3) In Experiment 3, the authors report a significant Protocol X Virus interaction. It would be useful if the authors could conduct post-hoc analyses to determine the source of this interaction. Inspection of Figure 4B suggests that freezing during the two different variants of backward conditioning differs between the virus groups. Did the authors expect to see a difference in backward conditioning depending on the stimulus used in the conditioning procedure (light vs. tone)? The authors don't really address this confounding interaction, but I do think a discussion is warranted.

      We agree with the Reviewer that further discussion of the Protocol x Virus interaction that emerged during the backward conditioning and forward conditioning stages of Experiment 3 is warranted. This will be provided in the revised manuscript. Briefly, during both stages, follow-up analyses did not reveal any differences (main effects or interactions) between the two groups trained with the light stimulus (Diff-EYFP and Diff-ChR2). By contrast, the ChR2 group trained with the tone (Back-ChR2) froze more overall than the EYFP group (Back-EYFP), but there were no other significant differences between the two groups. Based on these analyses, the Protocol x Virus interaction appears to be driven by greater freezing in the ChR2 group trained with the tone rather than a difference in the backward conditioning performance based on stimulus identity. Consistent with this, the statistical analyses did not reveal a main effect of Protocol during either the backward conditioning stage or the stimulus trials during the forward conditioning stage. Nevertheless, during this latter stage, a main effect of Protocol emerged during baseline performance, but once again, this seems to be driven by the Back-ChR2 group. Critically, it is unclear how greater stimulus freezing in the Back-ChR2 group during forward conditioning would lead to lower freezing during the post-extinction retrieval test.  

      (4) In this same experiment, the authors state that freezing decreased during extinction; however, freezing in the Diff-EYFP group at the start of extinction (first bin of trials) doesn't look appreciably different than their freezing at the end of the session. Did this group actually extinguish their fear? Freezing on the tone test day also does not look too different from freezing during the last block of extinction trials.

      We confirm that overall, there was a significant decline in freezing across the extinction session shown in Figure 4B. The Reviewer is correct to point out that this decline was modest (if not negligible) in the Diff-EYFP group, which was receiving its first inhibitory training with the target tone stimulus. It is worth noting that across all experiments, most groups that did not receive infralimbic stimulation displayed a modest decline in freezing during the extinction session since it was relatively brief, involving only 6 or 8 tone alone presentations. This was intentional, as we aimed for the brief extinction session to generate minimal inhibitory learning and thereby to detect any facilitatory effect of infralimbic stimulation. This issue will be clarified and explained in the revised version of the manuscript.

      (5) The Discussion explored the outcomes of the experiments in detail, but it would be useful for the authors to discuss the implications of their findings for our understanding of circuits in which the IL is embedded that are involved in inhibitory learning and memory. It would also be useful for the authors to acknowledge in the Discussion that although they did not have the statistical power to detect sex differences, future work is needed to explore whether IL functions similarly in both sexes.

      In line with the Reviewer’s suggestion (see also Reviewer 3), the revised manuscript will include a discussion of the broader implications of the findings regarding inhibitory brain circuitry and will acknowledge the need to further explore sex differences and IL functions.

      Reviewer #3 (Public review):

      Summary:

      This is a really nice manuscript with different lines of evidence to show that the IL encodes inhibitory memories that can then be manipulated by optogenetic stimulation of these neurons during extinction. The behavioral designs are excellent, with converging evidence using extinction/re-extinction, backwards/forwards aversive conditioning, and backwards appetitive/forwards aversive conditioning. Additional factors, such as nonassociative effects of the CS or US, are also considered, and the authors evaluate the inhibitory properties of the CS with tests of conditioned inhibition.

      Strengths:

      The experimental designs are very rigorous with an unusual level of behavioral sophistication.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      (1) More justification for parametric choices (number of days of backwards vs forwards conditioning) could be provided.

      All experimental parameters were based on previously published experiments showing the capacity of the backward conditioning protocols to generate inhibitory learning and the forward conditioning protocols to produce excitatory learning. Although this was mentioned in the methods section, we acknowledge that further explanation is required to justify the need for multiple days of backward training. This will be provided in the revised manuscript.

      (2) The current discussion could be condensed and could focus on broader implications for the literature.

      The revised manuscript will make an effort to condense the discussion and focus on broader implications for the literature.

      References

      Chen, Y.-H., Wu, J.-L., Hu, N.-Y., Zhuang, J.-P., Li, W.-P., Zhang, S.-R., Li, X.-W., Yang, J.-M., & Gao, T.-M. (2021). Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest, 131(14), e145692. https://doi.org/10.1172/JCI145692

      Do-Monte, F. H., Manzano-Nieves, G., Quiñones-Laracuente, K., Ramos-Medina, L., & Quirk, G. J. (2015). Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci, 35(8), 3607-3615. https://doi.org/10.1523/JNEUROSCI.3137-14.2015

      Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychol Rev, 62(3), 145-154. https://doi.org/10.1037/h0048509

      Kim, H.-S., Cho, H.-Y., Augustine, G. J., & Han, J.-H. (2016). Selective Control of Fear Expression by Optogenetic Manipulation of Infralimbic Cortex after Extinction. Neuropsychopharmacology, 41(5), 1261-1273. https://doi.org/10.1038/npp.2015.276

      Lingawi, N. W., Holmes, N. M., Westbrook, R. F., & Laurent, V. (2018). The infralimbic cortex encodes inhibition irrespective of motivational significance. Neurobiol Learn Mem, 150, 64-74. https://doi.org/10.1016/j.nlm.2018.03.001

      Lingawi, N. W., Westbrook, R. F., & Laurent, V. (2017). Extinction and Latent Inhibition Involve a Similar Form of Inhibitory Learning that is Stored in and Retrieved from the Infralimbic Cortex. Cereb Cortex, 27(12), 5547-5556. https://doi.org/10.1093/cercor/bhw322

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript presents a study on expectation manipulation to induce placebo and nocebo effects in healthy participants. The study follows standard placebo experiment conventions with the use of TENS stimulation as the placebo manipulation. The authors were able to achieve their aims. A key finding is that placebo and nocebo effects were predicted by recent experience, which is a novel contribution to the literature. The findings provide insights into the differences between placebo and nocebo effects and the potential moderators of these effects.

      Specifically, the study aimed to:

      (1) assess the magnitude of placebo and nocebo effects immediately after induction through verbal instructions and conditioning

      (2) examine the persistence of these effects one week later, and

      (3) identify predictors of sustained placebo and nocebo responses over time.

      Strengths:

      An innovation was to use sham TENS stimulation as the expectation manipulation. This expectation manipulation was reinforced not only by the change in pain stimulus intensity, but also by delivery of non-painful electrical stimulation, labelled as TENS stimulation.

      Questionnaire-based treatment expectation ratings were collected before conditioning and after conditioning, and after the test session, which provided an explicit measure of participants' expectations about the manipulation.

      The finding that placebo and nocebo effects are influenced by recent experience provides a novel insight into a potential moderator of individual placebo effects.

      We thank the reviewer for their thorough evaluation of our manuscript and for highlighting the novelty and originality of our study.

      Weaknesses:

      There are a limited number of trials per test condition (10), which means that the trajectory of responses to the manipulation may not be adequately explored.

      We appreciate the reviewer’s comment regarding the number of trials in the test phase. The trial number was chosen to ensure comparability with previous studies addressing similar research questions with similar designs (e.g. Colloca et al., 2010). Our primary objective was to directly compare placebo and nocebo effects within a within-subject design and to examine their persistence one week after the first test session. While we did not specifically aim to investigate the trajectory of responses within a single testing session, we fully agree that a comprehensive analysis of the trajectories of expectation effects on pain would be a valuable extension of our work. We have now acknowledged this limitation and future direction in the revised manuscript.

      The paragraph reads as follows: “It is important to note that our study was designed in alignment with previous studies addressing similar questions (e.g., Colloca et al., 2010). Our primary aim was to directly compare placebo and nocebo effects in a within-subject design and assess their persistence of these effects one week following the first test session. One limitation of our approach is the relatively short duration of each session, which may have limited our ability to examine the trajectory of responses within a single session. Future studies could address this limitation by increasing the number of trials for a more comprehensive analysis.”

      On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60, and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. There is a potential risk of revealing the manipulation to participants during the re-familiarization process, as they were not previously briefed to expect the painful stimulus intensity to vary without the application of sham TENS stimulation.

      We thank the reviewer for the opportunity to clarify this point. Participants were informed at the beginning of the experiment that we would use different stimulation intensities to re-familiarize them with the stimuli before the second test session. We are therefore confident that participants perceived this step as part of a recalibration rather than associating it with the experimental manipulation. We have added this information to the revised version of the manuscript.

      The paragraph now reads as follows: “On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60 and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. Note that participants were informed that these pre-test stimuli were part of the recalibration and refamiliarization procedure conducted prior to the second test session.”

      The differences between the nocebo and control conditions in pain ratings during conditioning could be explained by the differing physiological effects of the different stimulus intensities, so it is difficult to make any claims about expectation effects here.

      We appreciate the reviewer’s comment and agree that, despite the careful calibration of the three pain stimuli, we cannot entirely rule out the possibility that temporal dynamics during the conditioning session were influenced by differential physiological effects of the varying stimulus intensities (e.g., intensity-dependent habituation or sensitization). We have addressed this in the revision of the manuscript, but we would like to emphasize that the stronger nocebo effects during the test phase are statistically controlled for any differences in the conditioning session.

      The paragraph now reads: “This asymmetry is noteworthy in and of itself because it occurred despite the equidistant stimulus calibration relative to the control condition prior to conditioning. It may be the result of different physiological effects of the stimuli over time or amplified learning in the nocebo condition, consistent with its heightened biological relevance, but it could also be a stronger effect of the verbal instructions in this condition.”

      A randomisation error meant that 25 participants received an unbalanced number of 448 trials per condition (i.e., 10 x VAS 40, 14 x VAS 60, 12 x VAS 80).

      We agree that this is indeed unfortunate. However, we would like to point out that all analyses reported in the manuscript have been controlled for the VAS ratings in the conditioning session, i.e., potential effects of the conditioned placebo and nocebo stimuli. Moreover, we have now conducted additional analyses, presented here in our response to the reviewers, to demonstrate that this imbalance did not systematically bias the results. Importantly, the key findings observed during the test phase remain robust despite this issue.

      Specifically, when excluding these 25 participants from the analyses, the reported stronger nocebo compared to placebo effects in the test session on day 1 remain unchanged. Likewise, the comparison of placebo and nocebo effects between days 1 and 8 shows the same pattern when excluding the participants in question. The only exception is the interaction between effect (placebo vs nocebo) x session (day 1 vs day 8), which changed from a borderline significant result (p = .049) to insignificant (p = .24). However, post hoc tests continued to show the same pattern as originally reported: a significant reduction in the nocebo effect from day 1 to day 8 and no significant change in the placebo effect.

      Reviewer #2 (Public review):

      Summary:

      Kunkel et al aim to answer a fundamental question: Do placebo and nocebo effects differ in magnitude or longevity? To address this question, they used a powerful within-participants design, with a very large sample size (n=104), in which they compared placebo and nocebo effects - within the same individuals - across verbal expectations, conditioning, testing phase, and a 1-week follow-up. With elegant analyses, they establish that different mechanisms underlie the learning of placebo vs nocebo effects, with the latter being acquired faster and extinguished slower. This is an important finding for both the basic understanding of learning mechanisms in humans and for potential clinical applications to improve human health.

      Strengths:

      Beyond the above - the paper is well-written and very clear. It lays out nicely the need for the current investigation and what implications it holds. The design is elegant, and the analyses are rich, thoughtful, and interesting. The sample size is large which is highly appreciated, considering the longitudinal, in-lab study design. The question is super important and well-investigated, and the entire manuscript is very thoughtful with analyses closely examining the underlying mechanisms of placebo versus nocebo effects.

      We thank the reviewer for their positive evaluation of our manuscript and for acknowledging the methodological rigor and the significant implications for clinical applications and the broader research field.

      Weaknesses:

      There were two highly addressable weaknesses in my opinion:

      (1) I could not find the preregistration - this is crucial to verify what analyses the authors have committed to prior to writing the manuscript. Please provide a link leading directly to the preregistration - searching for the specified number in the suggested website yielded no results.

      We thank the reviewer for pointing this out. We included a link to the preregistration in the revised manuscript. This study was pre-registered with the German Clinical Trial Register (registration number: DRKS00029228; https://drks.de/search/de/trial/DRKS00029228).

      (2) There is a recurring issue which is easy to address: because the Methods are located after the Results, many of the constructs used, analyses conducted, and even the main placebo and nocebo inductions are unclear, making it hard to appreciate the results in full. I recommend finding a way to detail at the beginning of the results section how placebo and nocebo effects have been induced. While my background means I am familiar with these methods, other readers will lack that knowledge. Even a short paragraph or a figure (like Figure 4) could help clarify the results substantially. For example, a significant portion of the results is devoted to the conditioning part of the experiment, while it is unknown which part was involved (e.g., were temperatures lowered/increased in all trials or only in the beginning).

      We thank the reviewer for their helpful comment and agree that the Results section requires additional information that would typically be provided by the Methods section if it directly followed the Introduction. In response, we have moved the former Figure 4 from the Methods section to the beginning of the Results section as a new Figure 1, to improve clarity. Further, we have revised the Methods section to explicitly state that all trials during the conditioning phase were manipulated in the same way.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the authors are claiming (correctly) that there is only limited work comparing placebo/nocebo effects, there are some papers missing from their citations:

      Nocebo responses are stronger than placebo responses after subliminal pain conditioning - - Jensen, K., Kirsch, I., Odmalm, S., Kaptchuk, T. J. & Ingvar, M. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc. Natl. Acad. Sci. USA 112, 7863-7 (2015)

      We thank the reviewer and have now included this relevant publication into the introduction of the revised manuscript.

      Hird, E.J., Charalambous, C., El-Deredy, W. et al. Boundary effects of expectation in human pain perception. Sci Rep 9, 9443 (2019). https://doi.org/10.1038/s41598-019-45811-x

      We thank the reviewer for suggesting this relevant publication. We have now included it into the discussion of the revised manuscript by adding the following paragraph:

      “Recent work using a predictive coding framework further suggests that nocebo effects may be less susceptible to prediction error than placebo effects (Hird et al., 2019), which could contribute to their greater persistence and strength in our study.”

      (2) The trial-by-trial pain ratings could have been usefully modelled with a computational model, such as a Bayesian model (this is especially pertinent given the reference to Bayesian processing in the discussion). A multilevel model could also be used to increase the power of the analysis. This is a tentative suggestion, as I appreciate it would require a significant investment of time and work - alternatively, the authors could acknowledge it in the Discussion as a useful future avenue for investigation, if this is preferred.

      We thank the reviewer for this thoughtful suggestion. While we agree that computational modelling approaches could provide valuable insights into individual learning, our study was not designed with this in mind and the relatively small number of trials per condition and the absence of trial-by-trial expectancy ratings limit the applicability of such models. We have therefore chosen not to pursue such analysis but highlight it in the discussion as a promising direction for future research.

      “Notably, the most recent experience was the most predictive in all three analyses; for instance, the placebo effect on day 8 was predicted by the placebo effect on day 1, not by the initial conditioning. This finding supports the Bayesian inference framework, where recent experiences are weighted more heavily in the process of model updating because they are more likely to reflect the current state of the environment, providing the most relevant and immediate information needed to guide future actions and predictions24. Interestingly, while a change in pain predicted subsequent nocebo effects, it seemed less influential than for placebo effects. This aligns with findings that longer conditioning enhanced placebo effects, while it did not affect nocebo responses10 and the conclusion that nocebo instruction may be sufficient to trigger nocebo responses. Using Bayesian modeling, future studies could identify individual differences in the development of placebo and nocebo effects by integrating prior experiences and sensory inputs, providing a probabilistic framework for understanding the underlying mechanisms.”

      (3) The paper is missing any justification of sample size, i.e. power analysis - please include this.

      We apologize for the missing information on our a priori power analysis. As there is a lack of prior studies investigating within-subjects comparisons of placebo and nocebo effects that could inform precise effect size estimates for our research question, we based our calculation on the ability detect small effects. Specifically, the study was powered to detect effect sizes in the range of d = 0.2 - 0.25 with α = .05 and power = .9, yielding a required sample size of N = 83-129. We have now added this information to the methods section of the revised manuscript.

      (4) "On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60 and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation."

      What were the instructions about this? Was it before the electrode was applied? This runs the risk of unblinding participants, as they only expect to feel changes in stimulus intensity due to the TENS stimulation.

      We thank the reviewer for pointing out the potential risk of unblinding participants due to the re-familiarization process prior to the second test session. We would like to clarify that we followed specific procedures to prevent participants from associating this process with the experimental manipulation. The re-familiarisation with the thermal stimuli was conducted after the electrode had been applied and re-tested to ensure that both stimulus modalities were re-introduced in a consistent and neutral context. Participants were explicitly informed that both procedures were standard checks prior to the actual test session (“We will check both once again before we begin the actual measurement.”). For the thermal stimuli, we informed participants that they would experience three different intensities to allow the skin to acclimate (e.g., “...we will test the heat stimuli in 3 trials with different temperatures, allowing your skin to acclimate to the stimuli. …”), without implying any connection to the experimental conditions.

      Importantly, this re-familiarization procedure mirrored what participants had already experienced during the initial calibration session on day 1. We therefore assume that participants interpreted as a routine technical step rather than part of the experimental manipulation. We have now clarified this procedure in the methods section of the revised manuscript.

      (5) "For a comparison of pain intensity ratings between time-points, an ANOVA with the within-subject factors Condition (placebo, nocebo, control) and Session (day 1, day 8) was carried out. For the comparison of placebo and nocebo effects between the two test days, an ANOVA with the with-subject factors Effect (placebo effect, nocebo effect) and Session (day 1, day 8) was used."

      It seems that one ANOVA is looking at raw pain scores and one is looking at difference scores, but this is a bit confusing - please rephrase/clarify this, and explain why it is useful to include both.

      We thank the reviewer for highlighting this point. Our primary analyses focus on placebo and nocebo effects, which we define as the difference in pain intensity ratings between the control and the placebo condition (placebo effect) and the nocebo and the control condition (nocebo effect), respectively.

      To examine whether condition effects were present at each time-point, we first conducted two separate repeated measures ANOVAs - one for day 1 and one for day 8 - with the within-subject factor CONDITION (placebo, nocebo, control).

      To compare the magnitude and persistence of placebo and nocebo effects over time, we then calculated the above-mentioned difference scores and submitted these to a second ANOVA with within-subject factors EFFECT (placebo vs. nocebo effect) and SESSION (day 1 vs. day 8). We have now clarified this approach on page 19 of the revised manuscript. To avoid confusion, the Condition x Session ANOVA has been removed from the manuscript.

      (6) Please can the authors provide a figure illustrating trial-by-trial ratings during test trials as well as during conditioning trials?

      In response to the reviewer’s point, we now provide the trial-by-trial ratings of the test phases on days 1 and 8 as an additional figure in the Supplement (Figure S1) and would like to clarify that trial-by-trial pain intensity ratings of the conditioning phase are displayed in Figure 2C of the manuscript,

      (7) "Separate multiple linear regression analyses were performed to examine the influence of expectations (GEEE ratings) and experienced effects (VAS ratings) on subsequent placebo and nocebo effects. For day 1, the placebo effect was entered as the dependent variable and the following variables as potential predictors: (i) expected improvement with placebo before conditioning, (ii) placebo effect during conditioning and (iii) the expected improvement with placebo before the test session at day 1"

      The term "placebo effect during conditioning" is a bit confusing - I believe this is just the effect of varying stimulus intensities - please could the authors be more explicit on the terminology they use to describe this? NB changes in pain rating during the conditioning trials do not count as a placebo/nocebo effect, as most of the change in rating will reflect differences in stimulation intensity.

      We agree with the reviewer that the cited paragraph refers to the actual application of lower or higher pain stimuli during the conditioning session, rather than genuinely induced placebo or nocebo effect. We thank the reviewer for this helpful observation and have revised the terminology, accordingly, now referring to these as “pain relief during conditioning” and “pain worsening during conditioning”.

      (8) Supplementary materials: "The three temperature levels were perceived as significantly different (VAS ratings; placebo condition: M= 32.90, SD= 16.17; nocebo condition: M= 56.62, SD= 17.09; control condition: M= 80.84, SD= 12.18"

      This suggests that the VAS rating for the control condition was higher than for the nocebo condition. Please could the authors clarify/correct this?

      We thank the reviewer for spotting this error. The values for the control and the nocebo condition had accidentally been swapped. This has now been corrected in the manuscript: control condition: M= 56.62, SD= 17.09; nocebo condition: M= 80.84, SD= 12.18.

      (9) "To predict placebo responses a week later (VAScontrol - VASplacebo at day 8), the same independent variables were entered as for day 1 but with the following additional variables (i) the placebo effect at day 1 and (ii) the expected improvement with placebo before the test session at day 8."

      Here it would be much clearer to say 'pain ratings during test trials at day 1".

      We agree with the reviewer and have revised the manuscript as suggested.

      (10) For completeness, please present the pain intensity ratings during conditioning as well as calibration/test trials in the figure.

      Please see our answer to comment (6).

      (11) In Figure 1a, it looks like some participants had rated the control condition as zero by day 8. If so, it's inappropriate to include these participants in the analysis if they are not responding to the stimulus. Were these the participants who were excluded due to pain insensitivity?

      On day 8, the lowest pain intensity ratings observed were VAS 3 in the placebo condition and VAS 2 in the control condition, both from the same participant. All other participants reported minimum values of VAS 11 or higher (all on a scale from 0-100). Thus, no participant provided a pain rating of VAS 0, and all ratings indicated some level of pain perception in response to the stimulus. We did not define an exclusion criterion based on day 8 pain ratings in our preregistration, and we did not observe any technical issues with the stimulation procedure. To avoid post-hoc exclusions and maintain consistency with our preregistered analysis plan, we therefore decided to include all participants in the analysis.

      (12) "Comparison of day 1 and day 8. A direct comparison of placebo and nocebo effects on day 1 and day 8 pain intensity ratings showed a main effect of Effect with a stronger nocebo effect (F(1,97)= 53.93, 131 p< .001, η2= .36) but no main effect of Day (F(1,97)= 2.94, p= .089, η2 = .029). The significant Effect x Session interaction indicated that the placebo effect and the nocebo effect developed differently over time (F(1,97)= 3.98, p= .049, η2 = .039)"

      This is confusing as it talks about a main effect of "day" and then interaction with "session" - are they two different models? The authors need to clarify.

      We thank the reviewer for pointing this out. In our analysis, “Session” is the correct term for the experimental factor, which has two factor levels, “day 1” and “day 8”. This has now been corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) More information on how "size of the effect" in Figures 1b and 2b was calculated is needed; this can be in the legend. If these are differences between control and each condition, then they were reversed for one condition (nocebo?), which is ok - but this should be clearly explained.

      We agree with the reviewer and have now revised the figure legends to improve clarity. The legends now read:

      1b: “Figure 1. Pain intensity ratings and placebo and nocebo effects during calibration and test sessions. (A) Mean pain intensity ratings in the placebo, nocebo and control condition during calibration, and during the test sessions at day 1 and day 8. (B) Placebo effect (control condition - placebo condition, i.e., positive value of difference) and nocebo effect (nocebo condition - control condition, i.e., positive value of difference) on day 1 and day 8. Error bars indicate the standard error of the mean, circles indicate mean ratings of individual participants. *: p < .001, : p < .01, n.s.: non-significant.”

      2b: “Figure 2. Mean and trial-by-trial pain intensity ratings, placebo and nocebo effects during conditioning. (A) Mean pain intensity ratings of the placebo, nocebo and control condition during conditioning. (B) Placebo effect (control condition - placebo condition, i.e., positive value of difference) and nocebo effect (nocebo condition - control condition, i.e., positive value of difference) during conditioning. (C) Trial-by-trial pain intensity ratings (with confidence intervals) during conditioning. Error bars indicate the standard error of the mean, circles indicate mean ratings of individual participants. ***: p < .001.”

      (2) In the methods, I was missing a clear understanding of how many trials there were in the conditioning phase, and then how many in the other testing phases. Also, how long did the experiment last in total?

      We apologize that the exact number of trials in the testing phases was not clear in the original manuscript. We now indicate on page 18 of the revised manuscript that we used 10 trials per condition in the test sessions. We have also added information on the duration of each test day (i.e., three hours on day 1 and one hour on day 8) on page 15.

      (3) In expectancy ratings, line 186 - are improvement and worsening expectations different from expected pain relief? It is implied that these are two different constructs - it would be helpful to clarify that.

      We agree that this is indeed confusing and would like to clarify that both refer to the same construct. We used the Generic rating scale for previous treatment experiences, treatment expectations, and treatment effects (GEEE questionnaire, Rief et al. 2021) that discriminates between expected symptom improvement, expected symptom worsening, and expected side effects due to a treatment. We now use the terms “expected pain relief” and “expected pain worsening” throughout the whole manuscript.

      (4) In the last section of the Results, somatosensory amplification comes out of nowhere - and could be better introduced (see point 2 above).

      We agree with the reviewer that introducing the concept of somatosensory amplification and its potential link to placebo/nocebo effects only in the Methods is unhelpful, given that this section appears at the end of the manuscript. We therefore now introduce the relevant publication (Doering et al., 2015) before reporting our findings on this concept.

      (5) In line 169, if the authors want to specify what portion of the variance was explained by expectancy, they could conduct a hierarchical regression, where they first look at R2 without the expectancy entered, and only then enter it to obtain the R2 change.

      We fully agree that hierarchical regression can be a useful approach for isolating the contribution of variables. However, in our case, expectancy was assessed at different time points (e.g., before conditioning and before the test session on day 1), and there was no principled rationale for determining the order in which these different expectancy-related variables should be entered into a hierarchical model.

      That said, in response to the reviewer’s suggestion, we have now conducted hierarchical regression analyses in which all expectancy-related variables were entered together as a single block (see below). These analyses largely confirmed the findings reported so far and are provided here in the response to the reviewers below. Given the exploratory nature of this grouping and the lack of an a priori hierarchy, we feel that the standard multiple regression models remain the most appropriate for addressing our research question because it allows us to evaluate the total contribution of expectancy-related predictors while also examining the individual contribution of each variable within the block. We would therefore prefer to retain these as the primary analyses in the manuscript.

      Results of the hierarchical regression analyses:

      Day 1 - Placebo response: In step 1, we entered the difference in pain intensity ratings between the control and the placebo condition during conditioning as a predictor. In step 2, we added the two variables reflecting expectations (i.e., expected improvement with placebo (i) before conditioning and (ii) before the test session on day 1). This allowed us to assess whether expectation-related variables explained additional variance beyond the effect of conditioning.

      The overall regression model at step 1 was significant, F(1, 102) = 13.42, p < .001, explaining 11.6% of the variance in the dependent variable (R<sup>2</sup> = .116). Adding the expectancy-related predictors in step 2 did not lead to a significant increase in explained variance, ΔR<sup>2</sup> = .007, F(2, 100) = 0.384, p = .682. Thus, the conditioning response significantly predicted placebo-related pain reduction on day 1, but additional information on expectations did not account for further variance.

      Day 1 - Nocebo response: The equivalent analysis was run for the nocebo response on day 1. In step 1, the pain intensity difference between the nocebo and the control condition was entered as a predictor before adding the two expectancy ratings (i.e., expected worsening with nocebo (i) before conditioning and (ii) before the test session on day 1).

      In step 1, the regression model was not statistically significant, F(1, 102) = 2.63, p = .108, and explained only 2.5% of the variance in nocebo response (R<sup>2</sup> = .025). Adding the expectation-related predictors in Step 2 slightly increased the explained variance by ΔR<sup>2</sup> = .027, but this change was also non-significant, F(2, 100) = 1.41, p = .250. The overall variance explained by the full model remained low (R<sup>2</sup> = .052). These results suggest that neither conditioning nor expectation-related variables reliably predicted nocebo-related pain increases on day 1.

      Day 8 - Placebo response: For the prediction of the placebo effect on day 8, the following variables reflecting perceived effects were entered as predictors in step 1: the difference in pain intensity ratings between the control and the placebo condition (i) during conditioning and (ii) on day 1. In step 2, the variables reflecting expectations were added: the expected improvement with placebo (i) before conditioning, (ii) before the test session on day 1 and (iii) before the test session on day 8.

      In step 1, the model was statistically significant, F(3, 95) = 14.86, p < .001, explaining 23.8% of the variance in the placebo response (R<sup>2</sup> = .238, Adjusted R<sup>2</sup> = .222). In step 2, the addition of the expectation-related predictors resulted in a non-significant improvement in model fit, ΔR<sup>2</sup> = .051, F(3, 92) = 2.21, p = .092. The overall variance explained by the full model increased modestly to 29.0%.

      Day 8 - Nocebo response: For the equivalent analyses of nocebo responses on day 8, the following variables were included in step 1: the difference in pain intensity ratings between the nocebo and the control condition (i) during conditioning and (ii) on day 1. In step 2, we entered the variables reflecting nocebo expectations including expected worsening with nocebo (i) before conditioning, (ii) before the test session on day 1 and (iii) before the test session on day 8. In step 1, the model significantly predicted the day 8 nocebo response, F(3, 95) = 6.04, p = .003, accounting for 11.3% of the variance (R<sup>2</sup> = .113, Adjusted R<sup>2</sup> = .094). However, the addition of expectation-related predictors in Step 2 resulted in only a negligible and non-significant improvement, ΔR<sup>2</sup> = .006, F(3, 92) = 0.215, p = .886. The full model explained just 11.9% of the variance (R<sup>2</sup> = .119).

      Typos:

      (6) Abstract - 104 heathy xxx (word missing).

      (7) Line 61 - reduce or decrease - I think you meant increase.

      Thank you, we have now corrected both sentences.

      References

      Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. How the number of learning trials affects placebo and nocebo responses. Pain. 2010

      Doering BK, Nestoriuc Y, Barsky AJ, Glaesmer H, Brähler E, Rief W. Is somatosensory amplification a risk factor for an increased report of side effects? Reference data from the German general population. J Psychosom Res. 2015

    1. Kasirzadeh’s account of accumulative risk still relies on threat actors such as cyberattackers to a large extent, whereas our concern is simply about the current path of capitalism. And we think that such risks are unlikely to be existential, but are still extremely serious

      so not so much about a single Superintelligent AI, as society gradually drowning in AI enshittification. it may not be existential to society but it still really sucks

    1. Some design scholars have questioned whether focusing on people and activities is enough to account for what really matters, encouraging designers to consider human values77 Friedman, B., & Hendry, D. G. (2019). Value sensitive design: Shaping technology with moral imagination. MIT Press. . For example, instead of viewing a pizza delivery app as a way to get pizza faster and more easily, we might view it as a way of supporting the independence of elderly who do not have the mobility to pick up a pizza on their own. Or, perhaps more darkly, instead of viewing TSA screening at an airport a way of identifying potential terrorists, we consider it through the value of power, as the screening process had more to do with maintaining political power in times of fear than it did with actually preventing terrorism. This shift in framing can enable designers to better consider the values of design stakeholders through their design process, and identify people they may not have designed for otherwise (e.g., people who are house bound because of injury, or politicians).

      This section specifically got me reflecting about to what degree should human values be balanced when comparing to people and activities. The way I see it, I believe the people and activities (and systems) should be the main focus whenever one is designing. Shifting the focus to an aspect as subjective as "human values" may go into a downfall sacrificing resources that could be otherwise used towards a people/activity focused design. Overall I think that encouraging the consideration of subject matters similar to these may end up wasting resources.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Ledamoisel et al. examined the evolution of visual and chemical signals in closely related Morpho butterfly species to understand their role in species coexistence. Using an integrative, state-of-the-art approach combining spectrophotometry, visual modeling, and behavioral mate choice experiments, they quantified differences in wing iridescence and assessed its influence on mate preference in allopatry and sympatry. They also performed chemical analyses to determine whether sympatric species exhibit divergent chemical cues that may facilitate species recognition and mate discrimination. The authors found iridescent coloration to be similar in sympatric Morpho species. Furthermore, male mate choice experiments revealed that in sympatry, males fail to discriminate conspecific females based on coloration, reinforcing the idea that visual signal convergence is primarily driven by predation pressure. In contrast, the divergence of chemical signals among sympatric species suggests their potential role in facilitating species recognition and mate discrimination. The authors conclude that interactions between ecological pressures and signal evolution may shape species coexistence.

      Strengths:

      The study is well-designed and integrates multiple methodological approaches to provide a thorough assessment of signal evolution in the studied species. I appreciate the authors' careful consideration of multiple selective pressures and their combined influence on signal divergence and convergence. Additionally, the inclusion of both visual and chemical signals adds an interesting and valuable dimension to the study, enhancing its importance. Beyond butterflies, this research broadens our understanding of multimodal communication and signal evolution in the context of species coexistence.

      Weaknesses:

      (1) The broader significance of the findings needs to be better articulated. While the authors emphasize that comparing adaptive traits in sympatry and allopatry provides insights into selective processes shaping reproductive isolation and coexistence, it is unclear what key conceptual or theoretical questions are being addressed. Are these patterns expected under certain evolutionary scenarios? Have they been empirically demonstrated in other systems? The authors should explicitly state the overarching research question, incorporate some predictions, and better contextualize their findings within the existing literature. If the results challenge or support previous work, that should be highlighted to strengthen the study's importance in a broader context.

      We thank the reviewer for their valuable feedback. We understand that the framing of the results and the discussion may fail to convey the broader significance of our findings. In the first version of the manuscript, we framed our manuscript around the processes shaping reproductive isolation and co-existence in sympatry, but now realize that this question was too broad in regards to our results. We thus strictly focused on outlining the importance of ecological interactions in the evolution of traits in sympatric species. In the revised version of the manuscript, we rewrote the first paragraph of the introduction to introduce context regarding the effect of ecological interactions on trait evolution (lines 43-60). We then explicitly introduce the theoretical question investigated in our paper (i.e. “we investigate how ecological interactions in sympatry can constrain natural and sexual selection shaping trait evolution”, lines 62-63) and our predictions regarding the evolution of traits in sympatry vs. allopatry (lines 74-80). We also added predictions regarding our experiments on Morpho at the end of the introduction (lines 146-157). As a result, the discussion is now better aligned with the introduction, by discussing the putative effect of predation and mate choice on the evolution of wing iridescence in Morpho.

      (2) The motivation for studying visual signals and mate choice in allopatric populations (i.e., at the intraspecific level) is not well articulated, leaving their role in the broader narrative unclear. In particular, the rationale behind experiments 1, 2, and 3 is not well defined, as the authors have not made a strong case for the need for these intraspecific comparisons in the introduction. This issue is further compounded by the authors' primary focus on signal evolution in sympatry throughout both the results and the discussion. For instance, the divergence of iridescence in allopatry is a potentially interesting result. But the authors have not discussed its implications.

      We now clearly state in the introduction our motivation for studying visual signals and mate choice in allopatric populations (lines 74-80, lines 146-157). We argued that intraspecific comparisons help identify whether visual cues can be used in mate recognition between phylogenetically close subspecies, between whom visual resemblance is supposed to be higher than between closely-related species (tetrad experiment, and experiment 1). As M. h. bristowi and M. h. theodorus have different wing pattern, we also used this comparison to identify the traits involved in male mate preference within a species, testing the importance of iridescent color (experiment 2) or iridescent patterning (experiment 3). The results of those experiments can then be used to assess whether these traits are used in species recognition between sympatric species. See also our answers to recommendations 11 and 15 from reviewer #1.

      Overall, given that the primary conclusions are based on results and analyses in sympatry, the role of allopatric populations in shaping these conclusions needs to be better integrated and justified. Without a stronger link between the comparative framework and the study's key takeaways, the use of allopatric populations feels somewhat peripheral rather than central to the study's aim. Since the primary conclusions remain valid even without the allopatric comparisons, their inclusion requires a clearer rationale.

      To make a stronger case for the use of the allopatric population in our manuscript, we strengthened the justification behind the study of intraspecific allopatric populations vs. interspecific sympatric populations, as the iridescence measurements and the mate choice experiments in allopatric populations can serve as a baseline in studying how species interactions can shape the evolution of traits and mate recognition when compared to sympatric populations. Following your major comment #1, we rewrote the introduction to include a justification to the need for studying allopatric vs. sympatric populations (lines 74-80), and also further highlighted the need to study iridescence in sympatric species to fully understand the trait evolution of sympatric species in the discussion (339-343).

      (3) While the authors demonstrate that iridescence is indistinguishable to predators in sympatry, they overstate the role of predation in driving convergence. The present study does not experimentally demonstrate that iridescence in this species has a confusion effect or contributes to evasive mimicry. Alternatively, convergence could result from other selective forces, such as signal efficacy due to environmental conditions, rather than being solely driven by predation.

      We acknowledge that our study does not directly demonstrate that iridescence contributes to evasive mimicry. We did tone down the interpretation of the results in the discussion and state that predation is not the only selective pressure that could have promoted a convergent evolution of iridescence in sympatric species, as iridescence is a trait that could be involved in thermoregulation (lines 346-353) and camouflage (lines 363-369) for example. We made sure to mention that convergence in iridescent signals in sympatry is only an indirect support to the evasive mimicry hypothesis, and that further research is still needed, including direct predation experiments, to show that this convergence is indeed triggered by predation (lines 391-396).  

      Reviewer #2 (Public review):

      This study presents an investigation of the visual and chemical properties and mating behaviour in Morpho butterflies, aimed at addressing the nature of divergence between closely related species in sympatry. The study species consists of three subspecies of Morpho helenor (bristowi, theodorus, and helenor), and the conspecific Morpho achilles achilles. The authors postulate that whereas the iridescent blue signals of all (sub)species should function as a predator reduction signal (similar to aposematism) and therefore exhibit convergence, the same signals should indicate divergence if used as a mating signal, particularly in sympatric populations. They also assess chemical profiles among the species to assess the potential utility of scent in mediating species/sex discrimination.

      The authors first used reflectance spectrometry to calculate hue, brightness, and chroma, plus two measures of "iridescence" (perhaps better phrased as angular dependence) in each (sub)species. This indicated the ubiquitous presence of sexual dimorphism in brightness (males brighter), which also appears to be the case for iridescence (Figure 3A-B). Analysis of these data also indicated that whereas there is evidence for divergence among subspecies in allopatry, the same evidence is lacking for species in sympatry (P = 0.084). This was supported further by visual modelling, which showed that both conspecifics and birds should be (theoretically) capable of perceiving the colour difference among allopatric populations of M. helenor, whereas the same is not true for the sympatric species.

      The authors then conducted mate choice trials, first using live individuals and second using female dummies. The live experiments indicated the presence of assortative mating among the two subspecies of M. helenor (bristowi and theodorus). The dummy presentations indicated (a) bristowi males prefer conspecific wings, whereas theodorus have no preference, (b) bristowi males prefer the con(sub)specific colour pattern, (c) theodorus prefer the con(sub)specific iridescence when the pattern is manipulated to be similar among female dummies. A fourth experiment, using sympatric M. achilles and M. helenor, indicated no preference for conspecific female dummies. Finally, chemical analysis indicated substantial differences between these two species in putative pheromone compounds, and especially so in the males.

      The authors conclude that the similarity of iridescence among species in sympatry is suggestive of convergence upon a common anti-predation signal. Despite some behavioural evidence in favourof colour (iridescence)-based mate discrimination, chemical differences between Achilles and Helenor are posed as more likely to function for species isolation than visual differences.

      Overall, I enjoyed reading this manuscript, which presents a valiant attempt at studying visual, chemical and behavioural divergence in this iconic group of butterflies.

      Major comments

      My only major comment concerns the authors' favoured explanation for aposematism (or evasive mimicry) for convergence among species, which is based upon the you-can't-catch-me hypothesis first presented by Young 1971. Although there is supporting work showing that iridescent-like stimuli are more difficult to precisely localize by a range of viewers, most of the evidence as applied to the Morpho system is circumstantial, and I'm not certain that there is widespread acceptance of this hypothesis. Given that the present study deals with closely-related  (sub)species, one alternative explanation - a "null" hypothesis of sorts - is for a lack of divergence (from a common starting point) as opposed to evolutionary convergence per se. in other words, two subspecies are likely to retain ancestral character states unless there is selection that causes them to diverge. I feel that the manuscript would benefit from a discussion of this alternative, if not others. Signalling to predators could very well be involved in constraining the extent of convergence, but this seems a little premature to state as an up-front conclusion of this work. There is also the result of a *dorsal* wing manipulation by Vieira-Silva et al. 2024 which seems difficult to reconcile in light of this explanation. Whereas this paper is cited by the authors, a more nuanced discussion of their experimental results would seem appropriate here.

      We thank the reviewer for their constructive comments on our manuscript. We appreciate the reviewer’s concern regarding the way iridescence convergence between sympatric species is discussed in our manuscript, which align with similar concerns raised by Reviewer 1. Indeed, the you-can't-catch-me hypothesis has not been yet empirically tested in Morpho, this is currently a working hypothesis only supported by indirect lines of evidence.

      Among the 30 known Morpho species, iridescence is most likely the ancestral character, notably because iridescence is a trait shared by a majority of Morpho (we now mention this in the introduction lines 108-110). In this paper, we thus did not aim to identify the evolutionary forces involved in the appearance of iridescence in this group, but rather wanted to understand to what extent ecological interactions can impact the diversification (or not) of this trait. As such, the dorsal manipulations performed in Vieira-Silva et al 2024 showing that iridescence in Morpho may have a similar effect than crypsis does not impact our working hypothesis. Instead, we use VieraSilva et al 2024 to discuss the potential anti-predator effect of iridescence, that could potentially promote convergent evolution of iridescent patterns.

      In the main text, we now clearly mention our null hypothesis: under a scenario of neutral evolution of iridescence, we would expect that the divergence in wing coloration between two M. helenor subspecies would be lower than between two different Morpho species (M. helenor and M. achilles) and showed that our results sharply differ from this null expectation.

      We then improved the discussion by adding alternative hypotheses potentially explaining the convergent iridescent signal detected in sympatric species: we discussed the expected effect under neutral evolution (lines 339-343), but also added alternative hypotheses regarding the diversification of iridescence due to camouflage (lines 363-369), predator evasion (lines 373-377) and thermoregulation (lines 346-353).

      Reviewer #3 (Public review):

      The authors investigated differences in iridescence wing colouration of allopatric (geographically separated) and sympatric (coexisting) Morpho butterfly (sub)species. Their aim was to assess if iridescence wing colouration of Morpho (sub)species converged or diverged depending on coexistence and if iridescence wing colouration was involved in mating behaviour and reproductive isolation. The authors hypothesize that iridescence wing colouration of different (sub)species should converge in sympatry and diverge in allopatry. In sympatry, iridescence wing colouration can act as an effective antipredator defence with shared benefits if multiple (sub)species share the same colouration. However, shared wing colouration can have potential costs in terms of reproductive interference since wing colouration is often involved in mate recognition. If the benefits of a shared antipredator defence outweigh the costs of reproductive interference, iridescence wing colouration will show convergence and alternative mate recognition strategies might evolve, such as chemical mate recognition. In allopatry, iridescence wing colouration is expected to diverge due to adaptation to different local conditions and no alternative mate recognition is expected.

      Strengths:

      (1) Using allopatric and sympatric (sub)species that are closely related is a powerful way to test evolutionary hypotheses

      (2) By clearly defining iridescence and measuring colour spectra from a variety of angles, applying different methods, a very comprehensive dataset of iridescence wing colouration is achieved.

      (3) By experimentally manipulating wing coloration patterns, the authors show visual mate recognition for M. h. bristowi and could, in theory, separate different visual aspects of colouration (patterns VS iridescence strength).

      (4) Measurements of chemical profiles to investigate alternative mate recognition strategies in case of convergence of visual signals.

      Weaknesses:

      In my opinion, studies should be judged on the methods and data included, and not on additional measurements that could have been taken or additional treatments/species that should be included, since in most ecological and evolutionary studies, more measurements or treatments/species can always be included. However, studies do need to ensure appropriate replication and appropriate measurements to test their hypothesis AND support their conclusions. The current study failed to ensure appropriate replication, and in various cases, the results do not support the conclusions.

      First, when using allopatric and sympatric (sub)species pairs to test evolutionary hypotheses, replication is important. Ideally, multiple allopatric and sympatric (sub)species pairs are compared to avoid outlier (sub)species or pairs that lead to biased conclusions. Unfortunately, the current study compares 1 allopatric and 1 sympatric (sub)species pair, hence having poor (no) replication on the level of allopatric and sympatric (sub)species pairs,

      We would like to thank the reviewer for their constructive feedback. We agree that replication is important to test evolutionary hypotheses and that our study lacks replication for allopatric and sympatric Morpho populations. Ideally, one would require several allopatric and sympatric replicates to conclude on the effect of species interaction in trait evolution. Our study is a preliminary attempt at answering this question, covering a few Morpho populations but proposing a broad assessment of iridescence and mate preference for those populations. We clearly mentioned in the discussion that investigating multiple populations is needed to test whether the trend we observed in this paper can be generalized (line 388-392).

      Second, chemical profiles were only measured for sympatric species and not for allopatric (sub)species, which limits the interpretation of this data. The allopatric (sub)species could have been measured as non-coexistence "control". If coexistence and convergence in wing colouration drives the evolution of alternative mate recognition signals, such alternative signals should not evolve/diverge for allopatric (sub)species where wing colouration is still a reliable mate recognition cue. More importantly, no details are provided on the quantification of butterfly chemical profiles, which is essential to understand such data. It is unclear how the chemical profiles were quantified and what data (concentrations, ratios, proportions) were used to perform NDMS and generate Figure 5 and the associated statistical tests.

      We recognize that having the chemical profiles of the genitalia of the Morpho from the allopatric populations would have made a stronger case in favor of reinforcement acting on the divergence of the chemical compounds found on the genitalia of the sympatric Morpho species. Due to limited access to the biological material needed at the time of the chromatography, we could not test for lower divergence in the chemical profiles of allopatric Morpho butterflies. We made sure to mention this limitation in the discussion (lines 457-461). 

      We already stated in the methods that we compiled the area under the peak of each components found in the chromatograms of our samples and that we performed all the statistical analyses on this dataset. To make it clearer, we mention in the new version of the manuscript that the area under the peak of each component allows to measure the concentration of the components (in the methods lines 720, 723, 733). We also added some precisions in the legend of Figure 5.

      Third, throughout the discussion, the authors mention that their results support natural selection by predators on iridescent wing colouration, without measuring natural selection by predators or any other measure related to predation. It is unclear by what predators any of the butterfly species are predated on at this point

      We made sure to mention in the introduction (line 132-136) and in the discussion (line 373-377) that previous predation experiments performed on Morpho and other butterflies showed evidence that birds are likely predators for these species. These observations lead us to test for the putative effect of predation on the evolution of their color pattern, without directly testing predatory rates. We made sure this information is transparent in the revised manuscript, and now precise that assessing wing convergence is only an indirect way of testing the escape mimicry hypothesis (line 393-396).

      To continue on the interpretation of the data related to selection on specific traits by specific selection agents: This study did not measure any form of selection or any selection agent. Hence, it is not known if iridescent wing colouration is actually under selection by predators and/or mates, if maybe other selection agents are involved or if these traits converge due to genetic correlations with other traits under selection. For example, Iridescent colouration in ground beetles has functions as antipredator defence but also thermo- and water regulation. None of these issues are recognized or discussed.

      The lack of discussion of alternative selective pressures involved in the evolution of iridescence was pointed out by all reviewers. We thus modified the text to account for this comment, and no longer limit our discussion to the putative effects of predation. We now specifically discuss alternative hypotheses, including crypsis (362-369) and thermoregulation (line 346-353).

      Finally, some of the results are weakly supported by statistics or questionable methodology.

      Most notably, the perception of the iridescence coloration of allopatric subspecies by bird visual systems. Although for females, means and errors (not indicated what exactly, SD, SE or CI) are clearly above the 1 JND line, for males, means are only slightly above this line and errors or CIs clearly overlap with the 1 JND line. Since there is no additional statistical support, higher means but overlap of SD, SE or CI with the baseline provides weak statistical support for differences.

      We thank the reviewer for bringing interpretation issues concerning the chromatic distances of allopatric Morpho species measured with a bird vision model. We made sure to be nuanced in the description of this graph in the results section (line 208-212). Note that this addition does not change our main conclusion stating that Morpho and predator visual models better discriminate iridescence differences between allopatric subspecies than between sympatric species.

      We now also clearly mention in the figure’s legend that the error bars represent the confidence intervals obtained after performing a bootstrap analysis, in addition to the mention of the nature of the error bars already mentioned in the methods (line 580).

      Regarding the assortative mating experiment, the results are clearly driven by M. bristowi. For M. theodorus, females mate equally often with conspecifics (6 times) as with M. bristowi (5 times). For males, the ratio is slightly better (6 vs 3), but with such low numbers, I doubt this is statistically testable. Overall low mating for M. bristowi could indicate suboptimal experimental conditions, and hence results should be interpreted with care.

      We recognize that the tetrad experiment results are mainly driven by M. bristowi’s behavior as already mentioned in the results (line 231-232) but we now also mention it in the discussion (lines 401-402). This experiment would have benefited from more replicates, but the limited access to live males and virgin females for both subspecies was a limiting factor. Fisher’s exact test used to assess assortative mating is specifically appropriate to small sample sizes. We recognize that the sampling size is not ideal, however it is still statistically testable.

      Regarding the wing manipulation experiment, M. theodorus does not show a preference when dummies with non-modified wings are presented and prefers non-modified dummies over modified dummies. This is acknowledged by the authors but not further discussed. Certainly, some control treatment for wing modification could have been added.

      The use of controls to consider the effect of wing modification and odor by the permanent marker were already mentioned in the methods (lines 636-639). Following your recommendation and comments from the other reviewers, we now mention the use of this control in the results (lines 278283). We also address a potential issue that would have resulted in the rejection of these modified dummies by live males: we cannot be sure whether butterflies perceive these modifications as equivalent to natural coloration (lines 281-282). An additional control could have been used, adding black ink on the black dorsal parts of the pattern to assess its potential visual effect. The constraints on sampling unfortunately did not allow to add another treatment.

      Overall, the fact that certain measurements only provide evidence for 1 of the 2 (sub)species (assortative mating, wing manipulation) or one sex of one of the species (bird visual systems) means overall interpretation and overgeneralization of the results to both allopatric or sympatric species should be done with care, and such nuances should ideally be discussed.

      The aim of the authors, "to investigate the antagonistic effects of selective pressures generated by mate recognition and shared predation" has not been achieved, and the conclusions regarding this aim are not supported by the results. Nevertheless, the iridescence colour measurements are solid, and some of the behavioural experiments and chemical profile measurements seem to yield interesting results. The study would benefit from less overinterpretation of the results in the framework of predation and more careful consideration of methodological difficulties, statistical insecurities, and nuances in the results.

      Overall, we would like to thank all reviewers for their thorough assessment of our work. We understand that the imbalance between mate choice data, visual model data and chemical data only gives us a partial assessment of species recognition in Morpho butterflies, thus requiring more precision in the interpretation and the discussion of our results. We made sure to add balanced interpretations in our discussion, by mentioning the lack of replicates for allopatric and sympatric populations (lines 391-392), and the lack of chemical characterization of allopatric species (lines 458361, see previous comments) and by being more transparent on methodological limitations that we failed to convey in the first version of our manuscript. We brought nuance to our discussion and also discussed alternative hypotheses to predation to explain the convergence of iridescence found in sympatry.

      Reviewing Editor Comments:

      While all reviewers acknowledge the value of your data, they converge in their recommendations to tone down the evolutionary interpretations. Ideally, to test your main hypothesis, you would need several species pairs, or if only one, as in your case, replicated sympatric and allopatric sites for both species. Furthermore, your more specific hypotheses about convergence (vs. nondivergence), response to predators (vs. other environmental variables), and avoiding interspecific mating in sympatry (vs. not avoiding it in allopatry) would require appropriate alternative treatments/controls. We therefore recommend that you focus on those statements that you can support with your experiments and data, and introduce these statements in the introduction with reference to the appropriate literature.

      Reviewer #1 (Recommendations for the authors):

      (1) Line 25: This stated aim seems a bit off. The authors did not sensu stricto quantify 'how shared adaptive traits may shape genetic divergence' in this study. I suggest rewriting or deleting this whole sentence altogether. The study's aim is already clear in lines 29-34.

      We deleted the mention of the characterization of genetic divergence, since this study did not focus on any genetic analysis.

      (2) Line 34: The authors here state that they compared allopatric vs sympatric populations. This is strictly not true for M. Achilles. Further, the results after this sentence focus solely ondivergence/convergence in sympatry, nothing at the intraspecific level and implications of the findings

      We now mention that we tested allopatric vs. sympatric species of M. helenor only (lines 28-29). We also mention that the behavioral experiments were based on intraspecific comparisons, and discuss the implications of this result in the discussion.

      (3) Line 35: 'convergence driven by predation': this is a strong statement and cannot be directly inferred from the present set of experiments. Consider toning it down.

      We added nuance to this statement by rephrasing it “suggesting that predation may favors local resemblance” (lines 32-33)

      (4) Line 36: Replace 'behavioral results' with 'behavioral experiments' or something similar.

      Corrected

      (5) Line 45-49: These opening statements need some citations.

      We provided references for the first few lines, by citing terHorst et al 2018 (line 44) underlining the importance of species interactions in trait evolution, and Blomberg et al 2003 (line 45) showing that closely-related species tend to resemble each other by quantifying the phylogenetic signal of various traits.

      (6) Line 83, 165: 'visual effect', not sure what the authors are referring to. Please rewrite.

      We defined “visual effect” as the way wing color patterns could be perceived by predators or mates. We removed mentions of “visual effect” and directly used its definition instead.

      (7) Line 105 onwards: This section of the introduction could benefit from more concise writing. The authors might consider reducing the number of specific examples and instead offering broader general statements, supported by citations from multiple studies.

      We reduced the number of examples given in this paragraph and used general statements supported by multiple citations as examples. (lines 102-119).

      (8) Line 108-110: This sentence seems to be redundant with the previous one.

      We merged this sentence with the previous one to improve clarity. (lines 103-105)

      (9) Line 140: 'with chemical defenses': include citations here.

      We added citations of Joron et al 1999 and Merrill et al 2014, which document the evolution of convergent wing patterns (mimicry) in butterfly species with chemical-defenses.

      (10) Line 149: This is a bit of a stretch. Note that genetic divergence could be influenced by many other things, not only the processes that the authors examined.

      We agree with the reviewer that the study of the convergent vs. divergent evolution of visual cues is not enough to fully understand the mechanisms allowing genetic divergence between species. Because this paper does not focus on characterizing genetic divergence, we removed it from the manuscript to avoid oversimplification.

      (11) Line 151: Again. Here, the author's primary focus seems to be at an interspecific level. One is left to wonder about the need for comparisons at the intraspecific level in M.helenor and the implications. Please clarify

      In the end of the introduction (lines 146-157), we specifically highlighted the importance of intraspecific comparisons. While studying the effect of sympatry on the evolution of the iridescent color pattern, we use this intraspecific comparison as a baseline to account for convergence or divergence of iridescence in a sympatric interspecific pair of Morpho, because under neutral evolution two subspecies are expected to be more similar than two different species (this assumption has been clarified line 147-148). We also used intraspecific mate choice to test for the use of visual cues in mate recognition (experiment 1) and to test what type of signal could be perceived by Morphos (the iridescent coloration or the iridescent pattern, experiment 2 and 3). These results help contextualize the interspecific mate choice, focused on determining whether visual cues could also be used in species recognition. Since we show that iridescent coloration is important in mate recognition at the intraspecific scale, it helps understand why species recognition is low at the interspecific scale because of wing color convergence between M. helenor and M. achilles.

      (12) Line 154: 'signals on mate preferences'.

      Corrected.

      (13) Line 189: 'At the intraspecific level', maybe in the brackets include 'allopatric populations' just so the results are in a similar format as in the color contrast section below.

      We added details to make clearer that the intraspecific level is studied between allopatric Morpho populations (line 189).

      (14) Line 189-192: Please rearrange the figure (current B as A and vice versa) or present the results in order as in the figure (interspecific first and then intraspecific level).

      We rearranged Figure 3 so that the intraspecific comparison (allopatric population) appears as A and the interspecific level (sympatric population) appears as B, to follow the order of presentation in the main text.

      (15) Line 232: The motivation behind experiments 1, 2, and 3 is unclear. The authors have not made a strong point in the introduction about the need for these comparisons at an intraspecific level. Given that the authors are focused on divergence/convergence at an interspecific level, this set of experiments seems to be irrelevant to the present study. The implications of these findings are also not discussed.

      We added motivation to the use of experiment 1, 2, and 3 in the introduction (lines 151-154) by stating that those experiments were used to assess whether blue color could indeed be used as a mating cue in Morpho helenor (experiment 1) and to try to understand what part of the visual signal is important in mate choice in Morpho helenor: the wing pattern (experiment 2) or the iridescent coloration (experiment 3). Although motivation for these experiments was not detailed in our manuscript, we already discussed the implications of the results of experiments 1, 2 and 3 in the discussion by stating that visual cues can take many forms and that considering both color AND pattern is important in understanding visual cues (lines 408-416). We carefully reworked this new version to make it more straightforward.

      (16) Line 260: Insert 'wild-type' before model to ensure similar wording as in the previous section.

      Corrected.

      (17) Line 286: Insert 'sympatric' after mimetic.

      Corrected.

      (18) Line 307: Include a reference to the figures or table where these results are presented.

      We now mention in the main text that the different proportions of beta-ocimene found between males M. helenor and M. achilles are shown in Table S2.

      (19) Line 343: These inferences are speculative. Add a line here, something like 'although this warrants further research in this species'.

      We detailed what additional experiments are needed lines 388-396.

      (20) Line 357: The authors have not discussed their results on iridescence divergence in allopatric populations (line 190) and its implications.

      We now made clear in the beginning of the discussion that the divergence of iridescence in allopatric populations is used as a baseline to test for convergent iridescence between species (lines 339-343).

      (21) Line 361 onwards: This first paragraph is a bit confusing, as the results mainly focus on allopatry, while the title refers to sympatry.

      To avoid confusion between the title and the content of the discussion, we divided the last part of the discussion into two different parts. As the first paragraph mainly focus on allopatry, we isolated it and titled it “Iridescent color patterns can be used as mate recognition cues in M. helenor” (line 498). The next paragraph of the discussion, focusing on the sympatric Morpho populations, has been titled “Evolution of visual and olfactory cues in mimetic sister-species living in sympatry” (line 418).

      (21)  Line 383: visual cues 'as' poor species.

      Corrected.

      (23) Line 405: Why females here and not males? This is again confusing since the authors tested for male mate choice in the main experiments. Some background information on sex-specific mate choice in the methods might help.

      In this specific sentence, we talk about performing mate choice experiments to test for the discrimination of olfactory cues by females (and not males) because we found a high divergence in the chemical compounds found on male genitalia. Although female chemical compounds could also be used as a cue by males in mate recognition, olfactive mate choice is often driven by female choice in butterflies. We recognize that this perspective does not line up with the mate choice presented in our results section which focused on male mate choice based on visual cues, because of ecological reasons (Morpho males tend to be attracted to bright blue colorations but not females) and technical reasons (in cages, females tend to hide away from the males or male dummies, and this behavior is not compatible with experiments involving flying around false males). In the discussion, we made sure to precise that the perspective we cite here is about testing the implications of divergence in male olfactory cues (line 454). We also added motivation to why we chose to investigate male (and not female) mate choice based on visual cues in the methods (lines 613-618) and in the results (219-223).

      (24) Line 417: This inference is speculative. Consider toning it down.

      We rewrote the sentence: “We find evidence of converging iridescent patterns in sympatry suggesting that predation could play a major role in the evolution of iridescence. Further work is nevertheless needed to directly test this hypothesis and establish the important of evasive mimicry in Morpho” (lines 465-468).

      (25) Line 429: 'Convergent trait evolution leads to mutualistic interactions enhancing coexistence'. Careful here. It is not very evident how convergent trait evolution (iridescence) is mutualistic in this case, as there is no experimental evidence for evasive mimicry yet. Consider rewording or toning this sentence down.

      We agree with the reviewer and removed this statement, only keeping the end of the sentence: “Altogether, this study addresses how convergence in one trait as a result of biotic interactions may alter selection on traits in other sensory modalities, resulting in a complex mosaic of biodiversity. (lines 479-481).

      (26) Line 442: Since the samples come from a breeding farm, I have a few questions. How are the authors sure about the location where the specimens were collected? How long have they been kept in captivity? Have they been subjected to any artificial selection? More details are needed here.

      Since M. helenor bristowi and M. helenor theodorus are only found in the wild in West and East Ecuador respectively, those M. helenor subspecies can only be collected in those two allopatric populations. Their phenotype is directly linked to their geographic repartition, this is how we made sure about their collect location. M. h. theodorus we used in this study were caught in East Ecuador in Tena, and M. h. bristowi were caught in West Ecuador in Pedro Vincente Madonado. We received pupae from the breeding farm, meaning that the Morpho used for the experiments were raised in captivity since their date of emergence. Upon emergence, they were transferred into cages for 4 to 5 days to wait for sexual maturity before performing the tetrad and mate choice experiments. This information was added to the method (lines 490-496).

      (27) Line 476: Include some citations supporting this statement.

      We now cite Bennett and Théry (2007), reviewing avian color vision, and Briscoe (2008), characterizing the sensitivity of the photoreceptors found in the eyes of butterflies. Both citations show that the 300-700nm range is seen by avian and butterfly visual systems.

      (28) Line 480 onwards: Please clarify if the analysis used only one value (mean?) per species, sex, angle of measurement, and locality or included data from multiple individuals.

      The analyses of both colorimetric variables and global iridescence were performed using iridescence data from multiple individuals (10 males and 10 females from M. h. bristowi, M. h. theodorus, M. h. helenor and M. a. achilles), for which we measured iridescence at 21 angles of illumination. Sampling size are mentioned lines 507, 515, 540-542.

      (29) Line 510: Is there a specific reason that authors did not investigate achromatic contrasts? Provide some justification here. Or include the results of achromatic contrasts in the supplement.

      We added the achromatic results in the supplement and in the results (lines 200-204). For both the avian visual model and the Morpho visual model, the confidence intervals always overlapped with the JND threshold, showing that neither birds nor butterflies could theoretically discriminate the wing reflectance brightness in allopatric and sympatric populations.

      (30) Line 552 onwards: I may have missed it. It is not entirely clear why the authors focused on male mate choice rather than female preference for visual cues. The authors should explicitly justify this choice and cite previous studies demonstrating that male mate choice, rather than female preference, is important in this species. This should be stated in the results section as well.

      We added a paragraph in the method (lines 613-618) to describe the ecological and technical reasons leading to testing only male mate choice using visual cues (also see our response to recommendation #23).

      (31) Line 537 onwards: What was the criterion used to score that mating had occurred? Why first mating and not how long they were mating? Please add these details.

      We stopped the experiment as soon as a male/female pair was formed by joining their genitalia (we added this information in the method lines 599-600). Since the tetrad experiment involves the interaction of two males and two females from different subspecies, we considered that mate choice happened before the formation of any couple, and is not necessarily dependent on how long they mate by observing their mating behavior. For instance, we witnessed avoidance behaviors from females that systematically hide their genitalia and refused to join their abdomen to some males, while being very ‘open’ to others (but did not quantify it).  

      (32) Line 571: The authors used a black permanent marker to modify wing patterns but did not validate whether butterflies perceive these modifications as equivalent to natural coloration. It is possible that the alterations introduced unintended visual cues and may explain why most males rejected the dummies (line 267). The authors should acknowledge this limitation here.

      We now acknowledge this limitation in the method (lines 638-639) and in the results section (lines 278-283).

      (33) Line 591: Insert 'above' after protocol.

      Corrected.

      (34) Line 605: If the authors included random effects in their model, then it should be generalized linear mixed model (GLMM) and not GLM as they wrote.

      We indeed included a random effect in our model accounting for male ID and trial number, we thus replaced “GLM” by “GLMM” in the manuscript.

      (35) Line 615: This set of analyses does not seem to account for pseudo-replication, as the data were recorded from the same male more than once (Line 583). Please clarify and redo the analysis with the GLMM framework

      We run new analyses using the GLMM framework: we used a binomial GLMM to test whether individuals preferentially interacted with dummy 1 vs. dummy 2 while accounting for pseudoreplication. The previously detected tendencies hold true with these new analyses, except for the visual mate discrimination of M. achilles: we now find statistical evidence that M. achilles tend to approach more their conspecifics during the mate choice experiment, although the signal is weak (line 297-307). Indeed, while we previously concluded that both species in sympatry (M. helenor and M. achilles) could not discriminate their conspecific mates, we now emphasize that M. achilles is somewhat sensitive to some visual signals. However, its estimated probability of approaching a conspecific is only 0.54, which is low compared to the estimated probability of approaching (0.61) or touching (0.84) a con-subspecific for M. bristowi. We thus concluded that even though some visual cues could be relevant for mate recognition, they are less reliable for male choice in sympatric populations were color patterns are more convergent, compared to allopatric populations. We thus updated Figure 4 and Figure S8 and S9, which are now picturing the probability of approaching or touching a conspecific or con-subspecific with the updated pvalues retrieved from the GLMM analyses. We also updated the results (line 297-307) and the discussion (lines 430-438) to bring nuance to our previous results.  

      (36) Line 963: Figure 3D. Is there a particular reason for comparing allopatric populations only within Ecuador rather than between Ecuador and French Guiana for M. helenor? Please clarify.

      We aimed at comparing the putative discrimination of blue coloration using visual models vs. what the butterflies actually discriminate using mate choice experiments. Since we only performed mate choice experiments involving M. h. bristowi x M. h. theodorus (allopatric populations within Ecuador) and M. h. helenor x M. a. achilles (sympatric population from Ecuador), we only looked at those comparisons using visual models. We added this precision lines (559-560).

      (37) Line 980: Are these predicted probabilities or just mean proportions as written in line 614? Then the label should be changed to 'Proportion of approaches' or something similar.

      Following our answer to recommendation #35, the points now represent the probability of touching a conspecific in the graph for each male, for every trial of every male tested. We corrected the legend of the figure. 

      Reviewer #2 (Recommendations for the authors):

      (1) Line 25: "...therefore facilitating co-existence in sympathy".

      Corrected.

      (2) Line 28: "contrasting" instead of contrasted.

      Corrected.

      (3) Line 33: begin a new sentence at the colon.

      Corrected.

      (4) Line 49: the phrase "habitat filtering" is unclear and should perhaps be defined or qualified.

      We replaced “habitat filtering” by its definition and cited Keddy (1992), describing the community assembly rules and defining habitat filtering (line 46)

      (5) Line 52: remove "even".

      Corrected.

      (6) Line 53: divergent suites may also result because traits are often constrained by genetic architecture (multivariate genetic covariances). This is discussed at length and specifically in relation to ornamental coloration by Kemp et al. 2023

      We rewrote the introduction and focused on only reviewing the ecological interactions promoting trait divergence in sympatric species, and did not mention genetics in this paper.

      (7) Line 87: (and throughout) refer to "colouration" or "colour pattern" rather than "colourations".

      Corrected.

      (8) Line 151: Remove "To do so,".

      Corrected.

      (9) Line 191: I would like to see the degrees of freedom for this test.

      We added the F-statistic=2.09 and the degrees of freedom df=1 of this test, and for all the following tests.

      (10) Line 201: (and throughout) replace "on" with "of".

      Corrected.

      (11) Line 205: modelling the visual properties of the wings allows one to infer what is theoretically visible/distinguishable. The modelling is useful but not necessarily definitive of vision/behaviour per se under different conditions in the wild. I therefore think it is appropriate to phrase the wording around the modelling approach more carefully. Perhaps refer to "theoretical" or "inferred" discriminability, or state (e.g.) that species should/should not be capable of perceiving differences based on the modelling data. You do this well in your wording of lines 207-209. This need not apply in the discussion because you're then dealing with the combination of modelling results and behaviour (mating trials).

      We agree with the reviewer that visual modelling only allows to infer what is theoretically discriminated by the butterflies, and that the wording of our sentence is confusing. We therefore modified the sentence to account for those precisions: “Morpho butterflies and predators can theoretically visually perceive the difference in the blue coloration between different subspecies of M. helenor…… using both bird and Morpho visual models” (line 206-209).

      (12) Line 222: Either the chi-square test or Fisher's exact test should be sufficient (why report both?)

      Chi-square test relies on large-sample assumptions (expected counts>5) whereas Fischer’s exact test does not and is valid even with small or unbalanced sample sizes. Since the M. bristowi female/M. h. theodorus male paring only occurred 3 times, we do not meet the primary assumptions to apply a Chi-square test, although it is significant. We used a Fischer’s test to confirm the results. Using both and finding that both tests are significant shows that the results are robust, although they may appear redundant. To simplify, we remove the results of the Chisquare test and only keep the Fisher’s test in the methodology and the results.

      (13) Line 224 (and throughout): Degrees of freedom should be provided for statistical tests.

      We reported the statistic value and the degrees of freedom for all mentions of the statistical tests in the main text, except for the Fischer test which does not rely on an asymptotic distribution like the Chi-squared distribution as it is an exact test.

      (14) Lines 266-267: This sentence has interest, but it is rather vague at present. Wouldn't your controls account for the effect of manipulation? This could be explained further.

      During our mate choice experiments, all Morpho female dummies used for the experiments were painted with black markers, either on their dorsal blue band to modify their blue iridescent phenotype, or on their ventral side, thus controlling for the effect of manipulation. However, we cannot rule out that the modification of the dorsal blue iridescence could have had a “repulsive” effect for males for several reasons. For example, depending on the visual discrimination of darker colors by Morphos, the painted black band could have a slightly different color compared to the dark “brown” usually surrounding their blue iridescent patterns. We now explain this in the results (lines 278-283) and in the methodology (lines 638-639)  

      (15) Line 316: I'm not certain that the similarity is best described as "striking", given a P-value of 0.084 for this contrast

      We agree with the reviewer and removed this adjective for this line.

      (16) Lines 387-390: This sentence is puzzling because, theoretically speaking, we should expect selection on visual preference to be heightened (not relaxed) in sympatry if colouration isincluded among the traits used in mate selection. I'm not certain I have understood the meaning here.

      We would like to thank the reviewer for pointing out this typo. If shared predatory pressures favors convergent evolution of color pattern, then the visual signals become less reliable for species recognition. As a result, sexual selection on visual preference is heightened and becomes stronger, favoring the evolution of alternative cues used to discriminate conspecific mates. We changed the sentence and now write “the convergent evolution of iridescent wing patterns… may have negatively impact visual discrimination and favored the evolution of divergent olfactory cues” (lines 457-458).

      (17) Line 529: Mating experiments. Given that these are quite large butterflies, I wondered whether a 3x3x2m cage would be sufficient in size to allow the expression of male courtship. A brief description of the courtship behaviour in these species or Morphos generally would be a useful addition to the paper.

      A cage this size was enough for the males to express a flight behavior similar to what can be seen in nature, while also being able to see the females (live females or dummies). We tried to perform mate experiments in a larger cage (7m x 5m x 3m) but the trials were not conclusive because male did not find the dummies depending on where they were flying in the cage. A 3mx3mx2m cage is a good compromise maximizing interactions while still allowing enough space to fly. We now describe Morpho male behavior and female behavior in the methods (lines 613-618).

      (18) Line 546: Why are both tests needed (chi-square AND Fisher's exact)?

      Similarly to our answer on recommendations #12, were used both tests to show robustness in the statistical results. We only kept the Fisher’s test results to simplify the results.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This valuable study investigates the role of HIF1a signalling in epicardial activation and neonatal heart regeneration in mice. Through a combination of genetic and pharmacological approaches, the authors show that stabilization of HIF1a enhances epicardial activation and extends the regenerative capacity of the heart beyond the typical neonatal window following myocardial infarction (MI). However, several aspects of the study remain incomplete and would benefit from further clarification and additional experimental support to solidify the conclusions.

      We reveal herein prolonged epicardial activation following myocardial infarction (MI) beyond post-natal days 1-7 (P1-P7) by genetic or pharmacological stabilisation of HIF-signalling. This extends the so-called “regenerative window” during an adult-like response to injury, leading to enhanced survived myocardium and functional improvement of the heart, even against a backdrop of persistent, albeit reduced, fibrosis. The epicardium is known to enhance cardiomyocyte proliferation and myocardial growth during heart development via trophic growth factor (for example, IGF-1, FGF, VEGF, TGFβ and BMP) signalling (reviewed in PMID:29592950) and epicardium-derived cell-conditioned medium reduces infarct size and improves heart function (PMID: 21505261). Further experiments, outside of the scope of the current study, are required to determine whether activated neonatal epicardium elicits similar paracrine support to sustain the myocardium and heart function after injury beyond P7 into adulthood.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts.

      Strengths:

      The study presents convincing genetic and pharmacological approaches to the role of hypoxia signaling in enhancing the regenerative potential of the epicardium.

      Weaknesses:

      The major weakness is the lack of convincing evidence demonstrating the role of hypoxia signaling in EMT modulation in epicardial cells. Additionally, novel experimental approaches should be performed to allow for the translation of these findings to the clinical arena.

      We respectfully disagree that we have not convincingly demonstrated a role for HIF-signalling in promoting epicardial EMT. We adopt epicardial explant assays utilising a well characterised ex vivo protocol previously described for studying EMT in embryonic, neonatal and adult epicardium (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142). These assays demonstrate in WT1<sup>CreERT2</sup>;Phd2<sup>fl/fl</sup> explants enhanced cobblestone to spindle-like change in cell morphology, increased cell migration, appearance of stress fibres and an up-regulation of the mesenchymal marker alpha-smooth muscle actin (αSMA); all parameters associated with EMT. In addition, our in vivo analyses of Wt1<sup>CreERT2</sup>;Phd2<sup>fl/fl</sup> hearts, in response to neonatal injury, reveal elevated numbers of WT1+ epicardial cells within the sub-epicardial region and underlying myocardium as is associated with active EMT and subsequent migration from the epicardium.

      Reviewer #2 (Public review):

      Summary:

      In this study, Gamen et al. investigated the roles of hypoxia and HIF1a signaling in regulating epicardial function during cardiac development and neonatal heart regeneration. They found that WT1<sup>+</sup> epicardial cells become hypoxic and begin expressing HIF1a from mid-gestation onward. During development, epicardial HIF1a signaling regulates WT1 expression and promotes coronary vasculature formation. In the postnatal heart, genetic and pharmacological upregulation of HIF1a sustained epicardial activation and improved regenerative outcomes.

      Strengths:

      HIF1a signaling was manipulated in an epicardium-specific manner using appropriate genetic tools.

      Weaknesses:

      There appears to be a discrepancy between some of the conclusions and the provided histological data. Additionally, the study does not offer mechanistic insight into the functional recovery observed.

      We respectfully disagree with the comment that our histological data does not support our conclusions and expand on this in the response to specific reviewer comments. We agree that further mechanistic experiments outside of the scope of the current study are required to identify precisely how activated neonatal epicardium results in increased healthy myocardium after injury beyond post-natal day 7 (P7).

      Reviewer #3 (Public review):

      Summary:

      The authors' research here was to understand the role of hypoxia and hypoxia-induced transcription factor Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart, and this persisted into neonatal stages until postnatal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart, and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction, and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infarction. This study outlines the potential to extend the regenerative time window in neonatal mammalian hearts.

      We thank the reviewer for this positive endorsement and recognition of the importance of mechanistic insight into how to extend the window of neonatal heart regeneration.

      Weaknesses:

      While the observations of improved cardiac function are clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      We report an increase in healthy myocardium arising from prolonged activation of the epicardium during the neonatal window and following injury at post-natal day 7 (P7). We speculate this recapitulates the role of the epicardium during heart development which is known to be a source of trophic growth factors that can enhance myocardial growth. Further experiments are required, out-of-scope of this study, to define a mechanistic link between HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      We believe the decreased fibrosis is a natural consequence of the increase in survived myocardium arising from the activated epicardium. There is strong precedent here following injury at post-natal day 1 (P1) in which fibrosis is evident early-on but is resolved over time with growth of the myocardium in the regenerating heart (PMID: 23248315).

      Recommendations for the authors:

      Reviewing Editor Comments:

      (1) Address issues related to image quality, colocalization, sample labeling, appropriate controls, and quantification - particularly in Figures 1, 2, 6, and Supplementary Figure 9. Increase sample size as noted by reviewers.

      The issues of co-localisation and sample labelling have been addressed under response to reviewers. We are unable to increase sample numbers but have clarified the number of regions per section and numbers of sections per heart analysed where appropriate.

      (2) Clarify the effects of epicardial HIF1a activation on neovascularization.

      We have removed reference in the abstract to an effect on neovascularisation.

      (3) Extend assessments of epicardial hypoxia and HIF1a expression to earlier embryonic stages, when epicardial EMT is more active.

      Our earliest timepoint of E12.5 marks the onset of epicardial EMT and E13.5 is the stage with the most significant mobilisation of epicardium-derived cells (EPDCs) into the sub-epicardial region and underlying myocardium (PMID: 32359445). In the same study, E11.5 lineage tracing of epicardial cells is restricted to outer layer of the heart; thus, our timepoints are representative in capturing both the onset and progression of in vivo EMT.

      (4) Strengthen EMT assays and mechanistic modeling. Provide evidence from physiologically relevant models, as current 2D culture assays do not adequately support conclusions about EMT. Include additional EMT markers and quantification where appropriate.

      We respectfully disagree that epicardial explants are not a valid assay for assessing EMT. As noted under responses to reviewers, such primary explants have been widely described elsewhere (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142) and enable documentation of multiple parameters that are associated with active EMT, including an assessment of the extent of cell migration, cobblestone (epithelial) to spindle-like (mesenchymal) cell morphologies, stress fibre formation and expression of alpha-smooth muscle actin as a mesenchymal marker. We support our findings in explants by revealing reduced WT1+ epicardium-derived cells (EPDCs) in the sub-epicardial region and underlying myocardium of WT1<sup>CreERT2/+</sup>;Hif1a<sup>fl/fl</sup> embryonic hearts (data in Figure 2) indicative of impaired epicardial EMT and migration of EPDCs and in vivo following neonatal MI with pharmacological inhibition of PHD2, where we observe the reciprocal phenotype of increased numbers of epicardium-derived cells emerging from the outer epicardial layer (data in Figure 6).

      (5) Strengthen mechanistic insights into the role of epicardial cells in the functional recovery observed in MI hearts.

      We agree that further experiments are required, out-of-scope of this study, to define a mechanistic link between HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      Reviewer #1 (Recommendations for the authors):

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts. The study is potentially interesting, but it presents several major caveats.

      (1) One of the critical points reported in the early stages of this study is the early co-localization of Wt1, the hypoxic report (HP1), and HIF signaling pathways master regulators (i.e., HIF1a and HIF1b) during embryonic development. Figure 1 is meant to report such findings. However, unfortunately, I hardly see any co-localization at all in the Wt1+ epicardial cells for HP1, with some colocalization is seen for HIF1 and 2 alpha, although none of these data are quantified. Thus, it is hard to believe such co-localization.

      We respectfully disagree with this comment. We highlight cells in Figure 1 that are co-stained for WT1+ and HP1. In addition, we identify HIF1-α and HIF2- α positive cells which either reside within the epicardium, as the outer cell layer, or within the underlying sub-epicardial region, respectfully.

      (2) The authors claimed that they have analyzed the expression of the hypoxic report, as well as Wt1 and the HIF signaling pathways master regulators (i.e., HIF1a and HIF1b) in the AV groove, as compared to the apex, in embryonic heart ranging from E12.5 to E18.5 (Figure 1). Unfortunately, all images provided that are tagged as AV groove are rather misleading. They do not represent the AV groove but part of the right ventricular free wall. If the authors want to refer to the AV groove, AV cushions should be visible underneath.

      We have removed specific reference to the AV groove and refer to the highlighted regions as the “Base” of the heart.

      (3) The authors analyzed the hypoxic condition of the developing heart from E12.5 to E18.5. However, it remains unclear why the authors only explored the hypoxic conditions from E12.5 onwards, since epicardial EMT mainly occurs earlier than this time point, i.e., E10.5 onwards. Therefore, it would be needed to explore it already at this earlier time point.

      We respectfully disagree with the reviewer and refer to the comment above regarding the fact that E12.5 marks the onset of epicardial EMT and E13.5 is the stage with the most significant mobilisation of epicardium-derived cells (EPDCs) into the sub-epicardial region and underlying myocardium (PMID: 32359445).

      (4) The authors reported a conditional mouse model of HIF1alpha deletion by using the Wt1CreERT2 driver. Curiously, Wt1 is dependent on hypoxia signaling (i.e., HIF1a). Therefore, it is unclear whether there is a negative feedback loop between the deletion of Hif1alpha and the activation of the Cre driver might have functional consequences. Convincing evidence should be provided that such crosstalk does not interfere with Hif1alpha inactivation, and therefore, appropriate controls should be run in parallel.

      We discount a negative feedback loop in this instance based on the fact we have utilised heterozygous mice for the WT1<sup>CreERT2/+</sup> line and observe a consistent and reproducible phenotype for the developing hearts on a Wt1<sup>CreERT2/+</sup>;Hif1a<sup>fl/fl</sup> background and following injury in Wt1<sup>CreERT2/+</sup>;Phd2<sup>fl/fl</sup> mice. Collectively this indicates that the WT1-CreERT2 driver is active in the context of diminishing HIF-1α and Phd2, respectively. In addition, have carried out parallel experiments using epicardial explants derived from R26R-CreERT2;Phd2<sup>fl/fl</sup> (Figure 3) to circumvent any potential confounding issues; the results of which are consistent with increased epicardial EMT in support of our overall hypothesis.

      (5) On Figure 2a-f the authors reported that epicardial cells are diminished in Wt1CreERT2Hif1alpha mice as compared to controls. I am very sorry, but I do not see any difference. Furthermore, it is unclear to me how the authors quantified such differences, i.e., what marker signal did they use and how it was performed (Figure 2c and d)?

      We respectfully disagree with the reviewer and draw attention to the single channel panels of WT1+ staining in Figure 2, which show clear differences between numbers of epicardial cells in the mutant mice compared to controls (comparing magenta cells in panels a) versus b). Quantification was carried out for numbers of WT1+ cells residing within the PDPN-positive epicardium (and underlying PDPN-negative myocardium) across multiple images from multiple sections and multiple hearts.

      (6) On Figure 2g, the authors reported differences in total vessel length. Are they referring to impaired microvasculature development? Or is this analysis also including major coronary vessels? What about the major coronary vessels and trees, is there any affection?

      This analysis refers to the microvasculature and not the major coronary arteries or coronary trees.

      (7) The authors reported that there might be some differences in EMT markers, but unfortunately, all of them are analyzed on 2D cultures, where no substrate for EMT is present, i.e., an underlying ECM bed. Thus, the authors cannot claim that EMT is altered. Additional experiments using either collagen substrate and/or Matrigel are required to fully demonstrate that EMT is impaired. Furthermore, quantitative analyses of such differences should be provided.

      The 2D cultures are epicardial explants from mutant versus wild type hearts and represent a widely adopted previously published ex-vivo assay for investigating epicardial EMT across embryonic to adult stages (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142); including an assessment of the extent of migration and cobblestone (epithelial) to spindle-like (mesenchymal) cell morphologies, stress fibre formation and expression of alpha-smooth muscle actin as a mesenchymal marker. We do not understand the comment regarding an “underlying ECM bed” as the cells exhibit EMT routinely on tissue culture plastic and will deposit their own ECM during the culture time course and in response to EMT/cell migration. In terms of quantification this was carried out for scratch assay experiments, as a proxy for EMT and emergent mesenchymal cell migration, as presented in Figure 3i, j with significant enhanced scratch closure and cell migration following Molidustat treatment.

      (8) The description of data provided on Supplementary Figure 5 is spurious and should be removed. A note in the discussion might be sufficient.

      We respectfully disagree. The ChIP-seq data, in what is now Figure 2- figure supplement 3, highlights a HIF-1 α binding site within the Wt1 locus suggesting putative upstream regulation of WT1 by HIF-1α. Thus this provides a potential explanation as to how HIF-1α may activate the epicardium through up-regulation of Wt1/WT1.

      (9) On Figure 3, the authors further illustrate the change of EMT markers using ex vivo cardiac explants. They reported increased expression of Snai2 that, although statistically significant, is most likely of no biological relevance (increase of only 20% at transcript level). What about Snai1, Prrx1, and other EMT promoters? Are they also induced? As previously stated, these 2D cultures do not provide supporting evidence that EMT is occurring, thus 3D gel assays should be performed in which Z-axis analyses will provide evidence on the different migratory behaviour of those cells.

      We respectfully suggest that a 20% change in snai2 expression is biologically meaningful with respect to EMT. This in-turn is supported by associated cell migration, reduced ZO-1 expression, increased stress fibres and increased alpha-SMA as a mesenchymal marker; all properties associated with active EMT. Other suggested markers have not been validated as formally required for EMT, for example Snai1 (PMID: 23097346). The migratory capacity of targeted versus epicardial cells was assessed by combined explant and scratch assay experiments.

      (10) The description of single-cell analyses is very incomplete. Which mice were used for these analyses, wildtype control, or hypoxic mice? Please provide a clearer description of the samples used. Additionally, the entire rationale of these analyses is dubious. Doing single-cell analyses to analyze a couple or three markers in a very small cell population is rather ridiculous. qPCR might be far more appropriate and convincing, or a bulk RNAseq analysis of isolated epicardial cells.

      The single-cell analyses represent an unbiased assessment of different pathways in epicardial cells (identified bioinformatically) between intact P1 and P7 stages in wild type (control) hearts, with a focus on hypoxia-related gene expression and HIF-dependent pathways. It was not designed to analyse a small number of genes, rather global differences in the hypoxic states between P1 and P7 hearts. Selected genes (Vegfa, Pdk3, Egln 1 (Phd2)) were analysed to highlight the key differences in hypoxic signalling across the regenerative window. The fact the hearts were uninjured/intact is clarified in the text and legends for Figure 4 and now Figure 4-figure supplement 1.

      (11) The analyses provided in Figure 5 are very interesting and their findings are very relevant. However, I would think that the complementary experimental approach should also be done, i.e, MI followed by activation with tamoxifen, since that situation would be more realistic in the clinical setting.

      Tamoxifen causes respiratory failure in neonates with MI, so the two cannot be combined at the same time or soon after surgery. Moreover, tamoxifen takes significant time to take effect on targeted gene down-regulation which may negate sufficient activation of the epicardium following injury.

      The experiments in Figure 5 were designed to demonstrate that prolonged heart regeneration could be elicited in a cell-specific (epicardial-specific) manner via a genetic approach. The pharmacological experiments in Figure 6 are complementary in this regard by demonstrating equivalent effects with drug (Molidustat) delivery to reduce PHD2 and stabilise HIF post-MI.

      (12) In Figure 6, expression of Wt1 is highly prominent in P7 controls, mainly restricted to the epicardial lining while in the experimental setting, such Wt1 expression is broadly distributed on the subepicardial space, nicely demonstrating epicardial activation. However, it is very surprising to see such Wt1 expression in controls, something that is not expected, as compared to the data reported in Figure 4g. Could the authors please reconcile these findings?

      Figure 6 represents the injury setting and Figure 4g the intact setting (as clarified above, in the text and revised figure legends). Hence in the latter WT1 expression is significantly reduced in the P7 heart, as anticipated. With injury at P7 we anticipate activation of WT1 in control hearts, albeit restricted to the epicardial layer (as occurs in adult hearts, PMID: 21505261). In contrast, following Molidustat-treatment of P7 hearts post-MI we observe extensive epicardial expansion into the sub-epicardial region and EPDC migration into the underlying myocardium (Figure 6b).

      Reviewer #2 (Recommendations for the authors):

      The role of hypoxia and HIF1a signaling in epicardial activation is an important topic, and the genetic approaches employed in this study are appropriate. However, several aspects of the study remain unclear and would benefit from further clarification or explanation by the authors:

      (1) The authors detected hypoxic regions using an anti-pimonidazole fluorescence-conjugated monoclonal antibody (HP1). The data would become more compelling if negative and positive controls were provided.

      We believe the HP1 staining is compelling in the images shown and is consistent with hypoxic regions of the developing heart. We reveal HP1 staining at cellular resolution with neighbouring cells positive and negative for the HP1 signal in the apex of the heart and within the epicardium and sub-epicardial regions at E12.5 (Figure 1a) and diminished/altered hypoxic/HP1 regional signal through subsequent developmental stages at E14.5-18.5 (Figure 1a-d).

      (2) Many HIF1a-positive cells in the AV groove region do not appear to overlap with HP1 staining (Figure 1a). Providing a low-magnification image of HIF1α expression would be helpful to better assess the extent of overlap with HP1 staining

      HIF-1 is highly unstable and hence detection of HIF-1+ cells will likely only sample of cells compared to HP1 which is a surrogate for broader regions of hypoxia.

      (3) Although the authors conclude that epicardial HIF1a deletion results in a significant reduction of WT1⁺ cells in both the epicardium and myocardium (Figure 2a-d), the provided images are not sufficiently clear to fully support this interpretation. Providing additional evidence to support this conclusion would be helpful.

      We respectfully disagree with the reviewer and draw attention to the single channel panels of WT1+ staining which show clear differences between numbers of epicardial cells in the mutant mice compared to controls (Figure 2a versus 2b; magenta WT1+ staining).

      (4) Similar to the point raised above, the authors' conclusion regarding the increased expression of WT1 following Molidustat treatment does not appear to be fully supported by the provided images (Figure 6b-f). Immunofluorescence staining for WT1 does not clearly demonstrate epicardial expression in the remote zone of either the control or Molidustat-treated hearts. In addition, while an increase of WT1<sup>+</sup> cells is observed in the infarct zone of the Molidustat-treated heart, it is somewhat unexpected that such expansion is not evident in the corresponding region of the control heart, given that epicardial cells typically expand near the infarct area. Clarification on these points would be helpful.

      Figure 6b reveals WT1 expression in controls (upper panel set) that is reactivated proximal to the infarct region, given WT1 is not expressed in adult epicardium but restricted to the epicardial layer (as occurs in injured adult mouse hearts PMID: 21505261). This contrasts with what is observed in the Molidustat-treated P7 hearts post-MI, where we observe epicardial expansion and migration of WT1+ cells into the underlying myocardium (Figure 6b, lower panel set, infarct zone).

      (5) The authors conclude that WT1<sup>+</sup> cells in the myocardial tissue exhibit endothelial identity based on the colocalization of WT1 and EMCN signals (Supplementary Figure 9c). However, this interpretation is difficult to assess, as WT1 is a nuclear marker and EMCN is a membrane protein, which makes precise colocalization challenging to confirm with confidence. Additional supporting evidence may be necessary to substantiate this conclusion.

      WT1 is known to be up regulated in endothelial cells in response to injury as shown previously in several studies (for example, PMID: 25681586). Here we show clear co-localisation of nuclear WT1 and cytoplasmic Endomucin (EMCN) in what is now Figure 6- figure supplement 1c and would encourage the reviewer and readers to magnify the image by zooming-in on the relevant co-stained panel.

      (6) The authors conclude that activation of epicardial HIF1a signaling has no effect on neovascularization in postnatal MI hearts (Figure 5c). However, the abstract states: "Finally, a combination of genetic and pharmacological stabilisation of HIF ... increased vascularisation, augmented infarct resolution and preserved function beyond the 7-day regenerative window" (Lines 38-41). Clarification regarding this apparent discrepancy would be appreciated.

      The abstract has been altered to remove the statement of increased vascularisation.

      (7) The study appears somewhat incomplete, as it lacks mechanistic insight into the functional recovery observed following epicardial Phd2 deletion and Molidustat treatment in postnatal MI hearts. Although the authors suggest a potential paracrine role of the epicardium in protecting cardiomyocytes from apoptosis, this hypothesis has not been experimentally addressed. Incorporating such analysis would help to reinforce the study's conclusions.

      Further experiments are required, which are out-of-scope of this study, to define a mechanistic link between the genetic or pharmacological stabilisation of HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      Other points:

      (1) Providing single-channel images for Figures 1a-d and 6g would be helpful for clarity and interpretation.

      We believe the combined channel views of co-staining for two markers on a background of DAPI staining to pin-point cell nuclei, are informative and support our conclusions.

      (2) Have the authors considered using AngioTool to quantify the number of vessels in Figure 5b-c?

      AngioToolTM was used to quantify the vessels, as we have used previously (PMID: 33462113) and this is now added to the methods and legend of Figure 2.

      Reviewer #3 (Recommendations for the authors):

      There are several areas where the manuscript can be improved, such that its conclusions can be solidified.

      (1) The authors highlight a point where blocking Phd2 can enhance survival of cardiac tissue, but did not report on survival markers. They surmised that apoptosis could be decreased in Phd2 mutant or Molidustat treatment but did not show this. The authors should determine if apoptosis is decreased in the myocardium and epicardium.

      We show evidence of increased levels of healthy myocardium in the genetic and pharmacological models of stabilised HIF-signalling. We exclude increased cardiac hypertrophy or increased cardiomyocyte proliferation as causative, so suggest as a reasonable alternative enhanced survival, albeit this need not necessarily be via an apoptotic pathway given the incidence of necrotic cell death during MI. We are unable to generate new surgeries and mutant/treated heart samples to analyse for apoptotic markers at this stage.

      (2) There appears to be no difference in cardiomyocyte proliferation in Molidustat-treated animals, but the experiment was only performed on 2 to 3 animals. This is too small a sample size to conclude from these results. The authors should increase the sample size to make this assertion.

      We respectfully disagree that we are unable to conclude no effect on cardiomyocyte proliferation. We analysed multiple heart regions per section, for EdU+/cTnT+ colocalised signals across several sections per heart, set against a consistency of effect on other parameters in hearts treated with Molidustat. We are unable to generate more P7 heart surgeries +/- Molidustat and +/- EdU at this stage.

      (3) It is curious as to how, after myocardial infarction, the fibrotic scar tissue is decreased in the Phd2 deletion but not as profound in Molidustat-treated mice at d21. Can the authors speculate why the difference exists and how this decrease arises? For example, are there decreased pro-inflammatory signals in Phd2 deleted mice? Is there decreased collagen deposition and ECM gene expression? Do macrophage recruitment into the infarct zone differ between mutant/treated vs WT?

      The representative images in Figure 6k reveal a trend towards reduced fibrosis with Molidistat treatment (Figure 6l), but across all hearts analysed this was not as significant as observed in the epicardial-specific deletion injured hearts (Figure 5g, h). This may be due to the relatively short half-life of Molidustat (approximately 4-10 hours, PMID: 32248614), the dosing regimen for the drug and/or the fact that it was not specifically delivered/targeted to the epicardium.

      (4) The magnified images in Figure 1 do not match the boxes in the whole heart images. It is unclear what the white boxes signify.

      The white boxes have been removed from Figure 1. The magnified image panels are from serial heart sections and this is now clarified in the Figure 1 legend.

    1. However, most societies do not value creative thinking and so our skills in generating ideas rapidly atrophies, as we do not practice it, and instead actively learn to suppress it11 Csikszentmihalyi, M. (2014). Society, culture, and person: A systems view of creativity. Springer Netherlands. . That time you said something creative and your mother called you weird? You learned to stop being creative. That time you painted something in elementary school and your classmate called it ugly? You learned to stop taking creative risks. That time you offered an idea in a class project and everyone ignored it? You must not be creative. Add up all of these little moments and where most people end up in life is possessing a strong disbelief in their ability to generate ideas

      I agree with the idea that our society actively works to suppress creativity. This affirms my perspective that we often prioritize getting the right answers rather than thinking creatively in order to get a range of answers for a question. I think this because we, inherently, as humans think of things in black and white. If something isn't the "right" or "correct" idea, it is simply wrong. In reality, these answers may not be wrong and may just be different. Through my own experiences at school, I've seen how people are quick to shut down the idea generation process to just skip ahead to the solution. Especially with generative AI now, we're outsourcing our thinking. This is harmful because we need to be able to think. If we can't think, we can't create.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Weaknesses: 

      (1) The authors claim that choroidal neovascular tuft phenotypes are similar in TgfbrR1 KO and TgfbrR2 KO mice. However, the phenotypes look more severe in the TgfbrR1 KO rather than TgfbrR2 KO mice. Can the authors show a quantitative comparison of the number of choroidal neovascular tufts per whole eye cross-section in both genotypes? 

      Thank you for asking about this.  Each VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retina exhibits multiple zones of choroidal neovascularization.  The examples in Figures 1 and Figure 1 – Figure supplements 1 and 2 are mostly from retinas with loss of TGFBR1, but we could have chosen similar examples from retinas with loss of TGFBR2.  The quantification in the original version of Figure 1- Figure supplement 1 panel C had a labeling error.  It actually showed the quantification choroidal neovascularization (CNV) in the sum of both VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, not only in VE-cad-CreER;TGFBR1 CKO/- retinas as originally labeled.  The point that it made is that CNV is seen with loss of TGF-beta signaling but not in control retinas or retinas with loss of Norrin signaling.  We have now updated that plot by separating the data points for VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, so that they can be compared to each other.   The result shows ~2.5-fold more CNV in VE-cad-CreER;TGFBR2 CKO/- retinas compared to VE-cad-CreER;TGFBR1 CKO/-.  We think it likely that a more extensive sampling would show little or no difference between these two genotypes – but the data is what it is. This is now described in the Results section. 

      We have also added a panel D to Figure 1- Figure supplement 1, which shows a retina flatmount analysis of CNV.  This is done by mounting the retina with the photoreceptor side up so that the outer retina can be optimally imaged. 

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation. The authors claim that there is increased vascular leakage in the TgfbR1 KO mice. However, it does not seem like Sulfo-NHS-biotin is leaking outside the vessels. Therefore, it cannot be increased vascular permeability. Can the authors provide a detailed quantification of the leakage phenotype? 

      Thank you for raising this point.  Your comment prompted us to look at this question in greater depth with more experiments.  We have expanded Figure 2 to show and quantify a comparison between control (i.e. phenotypically WT), NdpKO, and TGFBR1 endothelial KO and we have expanded the associated part of the Results section (Figure 2C and D).  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in or around the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is minimally or not at all leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      (3) The immune cell phenotyping by snRNAseq is premature, as the number of cells is very small. The authors should sort for CD45+ cells and perform single-cell RNA sequencing. 

      Thank you for raising this point.  For the revised manuscript, we have performed additional snRNAseq analyses using the same tissue processing protocol as for our original snRNAseq data.  We have opted to homogenize the tissue and prepare nuclei (our original method) rather than dissociate the tissue and FACS sorting for CD45+ cells because the nuclear isolation approach is unbiased – we assume that nuclei from all cell types are present after tissue homogenization.  By contrast, we cannot be certain that CD45 FACS will capture the full range of immune cells since some cells may not express CD45, may express CD45 at low level, or may be tightly adherent to other cells, such as vascular endothelial cell.  Additionally, by following the original protocol, we can combine the original snRNAseq dataset and the new snRNAseq dataset.  In the revised manuscript we present the snRNAseq data from the combination of the original and the more recent snRNAseq datasets (revised Figure 4; N=628 immune cell nuclei).  The new analysis comes to the same conclusions as the original analysis: the immune cell infiltrate in the mutant retinas is composed of a wide variety of immune cells.

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include tracers as well as serum IgG leakage. 

      As described in our response to query 2, we have conducted additional experiments to look at vascular leakage in control, VE-cad-CreER;TGFBR1 CKO/-, and NdpKO retinas.  We have also looked at Sulfo-NHS-biotin leakage in the VE-cadCreER;TGFBR1 CKO/- brain, and it is indistinguishable from WT controls.  Since Sulfo-NHS-biotin is a low MW tracer (<1,000 kDa), this implies that loss of TGF-beta signaling does not increase non-specific diffusion of either low or high MW molecules.  Therefore, the elevated levels of IgG in the brain parenchyma in young VE-cad-CreER;TGFBR1 CKO/- mice (Figure 8A) likely represents specific transport of IgG across the BBB.  Such transport is known to occur via Fc receptors expressed on vascular endothelial cells, although it is normally greater in the brain-to-blood direction than in the blood-to-brain direction.  For example, see Lafrance-Vanasse et al (2025) Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier.  Nat Commun. 16:4143.  This is now described in greater detail in the Results section.

      (5) A previous study (Zarkada et al., 2021, Developmental Cell) showed that EC-deletion of Alk5 affects the D tip cells. The phenotypes of those mice look very similar to those shown for TgfbrR1 KO mice. Are D-tip cells lost in these mutants by snRNAseq? 

      Please note: Alk5 is another name for TGFBR1.  This is noted in the second sentence of paragraph 4 of the Introduction.  The reviewer is correct: there are a lot of similarities because these are exactly the same KO mice.  Also, Zarkada and we used the same VEcadCreER to recombine the CKO allele.  The proposed snRNAseq analysis would serve as an independent check on the diving (D) tip vs stalk cell analyses published in Zarkada et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237-2251.  We have not gone in this direction because the question of tip vs. stalk cells and of subtypes of tip cells in WT vs. mutant retinas is beyond our focus on choroidal neovascularization and the role of immune cells and vascular inflammation.  The proposed snRNAseq analysis would also require a major effort since tip cells are rare and must be harvested from large numbers of early postnatal retinas followed by FACS enrichment for vascular endothelial cells.  Finally, we have no reason to doubt the results of Zarkada et al.

      Reviewer #2 (Public review): 

      Summary:

      The authors meticulously characterized EC-specific Tgfbr1, Tgfbr2, or double knockout in the retina, demonstrating through convincing immunostaining data that loss of TGF-β signaling disrupts retinal angiogenesis and choroidal neovascularization. Compared to other genetic models (Fzd4 KO, Ndp KO, VEGF KO), the Tgfbr1/2 KO retina exhibits the most severe immune cell infiltration. The authors proposed that TGF-β signaling loss triggers vascular inflammation, attracting immune cells - a phenotype specific to CNS vasculature, as non-CNS organs remain unaffected. 

      Strengths: 

      The immunostaining results presented are clear and robust. The authors performed well-controlled analyses against relevant mouse models. snRNA-seq corroborates immune cell leakage in the retina and vascular inflammation in the brain. 

      Weaknesses: 

      The causal link between TGF-β loss, vascular inflammation, and immune infiltration remains unresolved. The authors' model posits that EC-specific TGF-β loss directly causes inflammation, which recruits immune cells. However, an alternative explanation is plausible: Tgfbr1/2 KO-induced developmental defects (e.g., leaky vessels) permit immune extravasation, subsequently triggering inflammation. The observations that vein-specific upregulation of ICAM1 staining and the lack of immune infiltration phenotypes in the non-CNS tissues support the alternative model. Late-stage induction of Tgfbr1/2 KO (avoiding developmental confounders) could clarify TGF-β's role in retinal angiogenesis versus anti-inflammation. 

      Thank you for raising this point.  Your comment prompted us to look at this question in greater depth with more experiments.  We have expanded Figure 2 to show and quantify a comparison between control (i.e. phenotypically WT), NdpKO, and TGFBR1 endothelial KO and we have expanded the associated part of the Results section (Figure 2C and D).  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in or around the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is minimally or not at all leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      In the revised manuscript, we have expanded the Discussion section to address the two alternative hypotheses raised by the reviewer.  Here are the relevant data in a nutshell: (1) vascular leakage into the parenchyma, as measured with sulfo-NHSbiotin, in TGFBR1 endothelial CKO retinas is far less than in NdpKO retinas, where nearly all ECs convert to a fenestration+ (PLVAP+) phenotype and there is leakage of sulfo-NHS-biotin, (2) ICAM1 in ECs in TGFBR1 endothelial CKO retinas increases several-fold more than in NdpKO or Frizzled4KO retinas, (3) TGFBR1 endothelial CKO retinas have more infiltrating immune cells than NdpKO or Frizzled4KO retinas, and (4) in TGFBR1 endothelial CKO retinas large numbers of immune cells are observed within and adjacent to blood vessels.  We think that the simplest explanation for these data is that loss of TGFbeta signaling in ECs causes an endothelial inflammatory state with enhanced immune cell extravasation.  That said, the case for this model is not water-tight, and there could be less direct mechanisms at play.  In particular, this model does not explain why the inflammatory phenotype is limited to CNS (and especially retinal) vasculature.

      Regarding the last sentence of the reviewer’s comment (“Late stage induction…”), we have tried activating CreER recombination at different ages and we observe a large reduction in the inflammatory phenotype when recombination is initiated after vascular development is complete.   This observation suggests that the vascular developmental/anatomic defect – and perhaps the resulting retinal hypoxia response – is required for the inflammatory phenotype.  In the revised manuscript we have expanded the Results and Discussion sections to describe this observation.

      Reviewer #1 (Recommendations for the authors): 

      Suggestions for experiments: 

      (1) The authors need to show a quantitative comparison of the number of choroidal neovascular tufts per whole eye crosssection in both genotypes (TgfbR1 and TgfbR2 KO mice). 

      Thank you for raising this point.  The quantification in the original version of Figure 1- Figure supplement 1 panel C was mis-labeled.  It quantifies choroidal neovascularization (CNV) in both VE-cad-CreER;TGFBR1 CKO/- and VE-cadCreER;TGFBR2 CKO/- retinas, not VE-cad-CreER;TGFBR1 CKO/- retinas only as originally labeled.  The point it makes is that CNV is seen with loss of TGF-beta signaling but not in control retinas or retinas with loss of Norrin signaling.  We have now corrected that plot by separating the data points for VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, so that they can be compared to each other.   The result shows ~2.5-fold more CNV in VE-cad-CreER;TGFBR2 CKO/- retinas compared to VE-cad-CreER;TGFBR1 CKO/-.  This is now described in the Results section. 

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation. The authors should provide a detailed quantification of the leakage phenotype outside the vessels into the CNS parenchyma, both in the retina and brain, in TgfbR1 KO mice. 

      Thank you for raising this point.  There is no detectable Sulfo-NHS-biotin leakage into the brain parenchyma in VE-cadCreER;TGFBR1 CKO/- mice.  We have expanded Figure 2 to show and quantify the data for retinal vascular leakage (Figure 2C and D).  The data show that in VE-cad-CreER;TGFBR1 CKO/- mice there is accumulation of Sulfo-NHS-biotin in the vascular tufts but minimal accumulation elsewhere in the retinal vasculature and minimal leakage of Sulfo-NHS-biotin into the retinal parenchyma.

      (3) The immune cell phenotyping by snRNAseq is premature, as the number of cells is very small. The authors should sort for CD45+ cells and perform single-cell RNA sequencing to ascertain these preliminary data. 

      Thank you for raising this point.  We have performed additional snRNAseq analyses using the same tissue processing protocol as for our original snRNAseq data to increase the numbers of cells.  We have opted to homogenize the tissue and prepare nuclei (our original method) rather than dissociating the cells and FACS sorting for CD45+ cells because the nuclear isolation approach is unbiased – we assume that nuclei from all cell types are present.  By contrast, we cannot be certain that CD45 FACS will capture the full range of immune cells, since some cells may not express CD45, may express CD45 at low level, or may be tightly adherent to other cells, such as vascular endothelial cell.  Additionally, by following the original protocol, we can combine the original snRNAseq dataset of and the new snRNAseq dataset.  In the revised manuscript we present the snRNAseq data from the combination of the original and the more recent snRNAseq datasets (revised Figure 4; N=628 immune cell nuclei).  The new analysis comes to the same conclusion as in the original submission, namely that the immune cell infiltrate in the mutant retinas is composed of a wide variety of immune cells.  The Results section has been expanded to describe this new data and analysis.    

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include tracers as well as serum IgG leakage. 

      Sulfo-NHS biotin leakage in the VE-cad-CreER;TGFBR1 CKO/- brain is minimal, and it is indistinguishable from WT controls.  Since Sulfo-NHS biotin is a low MW tracer (<1,000 kDa), this implies that loss of TGF-beta signaling does not increase non-specific diffusion of either low or high MW molecules.  Therefore, the elevated levels of IgG in the brain parenchyma in young VE-cad-CreER;TGFBR1 CKO/- mice (Figure 8A) likely represents specific transport of IgG across the BBB.  Such transport is known to occur via Fc receptors expressed on vascular endothelial cells, although it is normally greater in the brain-to-blood direction than in the blood-to-brain direction.  For example, see Lafrance-Vanasse et al (2025) Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier.  Nat Commun. 16:4143.  This is now described in greater detail in the Results section.

      (5) The authors should perform a more detailed RNAseq analysis of tip and stack (stalk) cells in TgfbrR1 KO mice to determine whether D tip cells are lost in these mutants by snRNAseq. 

      The proposed snRNAseq analysis would serve as an independent check on the diving (D) tip vs stalk cell analyses published by Zarkada et al, who analyzed the same VE-cad-CreER;TGFBR1 CKO/- mutant mice, although they refer to the TGFBR1 gene by its alternate name ALK5 [Zarkada et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237-2251].  We have not gone in this direction because the question of tip vs. stalk cells and of subtypes of tip cells in WT vs. mutant retinas is beyond our focus on choroidal neovascularization and the role of immune cells and vascular inflammation.  The proposed snRNAseq analysis would also require a major effort since tip cells are rare and must be harvested from large numbers of early postnatal retinas followed by FACS enrichment for vascular endothelial cells.

      Suggestions for improving the manuscript:  

      (6) The statement that ECs acquire properties of immune cells (Page 2, Line 90) is incorrect. Endothelial cells may acquire characteristics of antigen presenting cells. 

      Thank you for that correction.  Based on the review from Amersfoort et al (2022) (Amersfoort J, Eelen G, Carmeliet P. (2022) Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol 22:576-588) and the articles cited in it, we have changed the sentence to “Although vascular endothelial cells (ECs) are not generally considered to be part of the immune system, in some locations and under some conditions they acquire properties characteristic of immune cells, including secretion of cytokines, surface display of co-stimulatory or co-inhibitory receptors, and antigen presentation in association with MHC class II proteins (Pober and Sessa, 2014; Amersfoort et al., 2022).”  

      (7) The statement in Page 3, Line 100-101 [In CNS ECs, quiescence is maintained in part by the actions of astrocyte-derived Sonic Hedgehog, with the result that few immune cells other than resident microglia are found within the CNS (Alvarez et al., 2011).] is incomplete. Wnt signaling also suppresses the expression of leukocyte adhesion molecules from endothelial cells and therefore helps with immune cell quiescence. 

      Thank you for raising that point.  We have expanded that sentence to include Wnt signaling in CNS endothelial cells, as described in the following reference: Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, Choi C, Walsh CM, Raine CS, Agalliu I, Agalliu D. (2017) Endothelial Wnt/beta-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci USA 114:E1168-E1177.

      (8) It may be beneficial for the reader to separate the results of the vascular phenotypes related to choroidal neovascularization compared to retinal vascular development. 

      Thank you for this suggestion.  The two topics are partly overlapping: choroidal neovascularization is described in Figure 1, and retinal development is described in Figures 1 and 2.  The challenge is that some of same images illustrate both phenotypes as in Figure 1, so the topics cannot be easily separated.

      (9) In addition to comparing the phenotypes in Tgfb signaling mutant mice with Wnt signaling and VEGF-A signaling mutants, the authors should compare and contrast their data with those found in Alk5 KO mice, as there are a lot of similarities. 

      The reviewer has alerted us to a nomenclature challenge which we will try to resolve in the introduction: Alk5 is just another name for TGFBR1.  The reviewer is correct: there are a lot of similarities between the present study and that of Zarkada et al (2021) because both use the same TGFBR1(=Alk5) CKO mice.

      Reviewer #2 (Recommendations for the authors): 

      Figure 2 

      For 2B, the authors should clarify whether the two regions shown in the Tgfbr1 KO retina (P14) represent central vs. peripheral areas, as phenotype severity varies. 

      For 2C, does the uneven biotin accumulation reflect developmental gradients (e.g., central-peripheral maturation timing)? 

      Thank you for raising these points.  Regarding Figure 2B, these images are all from the mid-peripheral retina, where the phenotype is moderately severe.  This is now noted in the figure legend.

      Regarding Figure 2C, the reviewer is correct that the pattern of Sulfo-NHS-biotin is uneven in VEcadCreER;Tgfbr1CKO/- retinas – it accumulates only in the tufts.  We have expanded Figure 2C to show a comparison between control (i.e.

      phenotypically WT), NdpKO, and TGFBR1 endothelial KO retinas, and we have expanded the associated part of the Results section.  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is not leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      Figure 6 

      The claim that PECAM1+ rings on veins reflect EC-immune cell binding is uncertain, as PECAM1 is also known to be expressed by immune cells. The complete correlation of PECAM1 and CD45 staining signals suggests that a subset of immune cells upregulates PECAM1. The VEcadCreER;Tgfbr1 flox/-; SUN1:GFP reporter would be helpful to delineate ECimmune cell proximity. Super-resolution imaging with Z-stacks could also resolve spatial relationships (luminal vs. abluminal immune cell adhesion). 

      Thank you for this comment.  The reviewer is correct that, at the resolution of these images, we cannot determine whether the PECAM1 immunostaining signal is derived from ECs, from leukocytes, or from both.  This is now stated in the Results section.  The PECAM1-rich endothelial ring structure associated with leukocyte extravasation has been characterized in various publications, for example in (1) Carman CV, Springer TA. (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377-388 and (2) Mamdouh Z, Mikhailov A, Muller WA. (2009) Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med 206:2795-2808.  The ring structures visualized in Figure 6D by PECAM1 immunostaining conform to the ring structures described in these and other papers.  In showing these structures, our point is simply that they likely represent sites of leukocyte extravasation.  This is now clarified in the text.  We have also added some additional references on leukocyte extravasation and the ring structures.

      Figure 7 

      A time-course analysis of ICAM1 would strengthen the mechanistic model. Does ICAM1 upregulation precede immune infiltration (supporting inflammation as the primary defect)? Given that immune cells appear by P14 (per snRNA-seq), is ICAM1 elevated earlier? 

      This is an interesting idea, but based on what is known about leukocyte adhesion and extravasation we predict that there will not be a clean temporal separation between ICAM1 induction and leukocyte adhesion/infiltration.  That is, if the proinflammatory state causes an increase in the number of leukocytes, then as ICAM1 levels increase, leukocyte adhesion would also increase.  Similarly, if the presence of leukocytes increases the pro-inflammatory state, then as the number of leukocytes increases, the levels of ICAM1 would be predicted to increase.  Thus, we think that a time course analysis is unlikely to provide a definitive conclusion.

      Figure 8-SF1 

      In brain slices, a transient pan-IgG accumulation suggests a self-resolving defect in the BBB. However, this BBB impairment appears to be spatiotemporally distinct from ICAM1 upregulation. ICAM1 staining is restricted to the lesion site, aligning with immune cell-driven inflammation. 

      Thank you for raising these points.  The reviewer is correct that these observations don’t fit together in a clear way.  There does not appear to be a general increase in brain vascular permeability in VE-cad-CreER;TGFBR1 CKO/- mice, as shown by sulfo-NHS-biotin.  However, there is a large and transient increase in IgG in the brain parenchyma, suggestive of a general vascular alteration, and – as the reviewer correctly notes – it is not accompanied by a generalized increase in ICAM1 vascular immunostaining.  At this point, we don’t have any real insight into the mechanistic basis of the transient IgG increase.

      Thank you for handling this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preference (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, that directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2 that examined the vicarious inequality aversion on conditions where feedback was never provided is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION

      (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulted directly by their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. But the intro and set are heavily around vicarious learning, and late the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020

      EXPERIMENTAL DESIGN

      (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder how this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participants, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the leanring phase can largely impact on the preference learning of the participants.

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING

      (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the chance between baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model? This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      (7) I quite liked Study 2 that tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assumed the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference updated (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study2 will be very helpful for the paper.

      Comments on revisions:

      I kept my original public review, so that future readers can see the progress and development of the manuscript.

      The authors have largely addressed my original questions/concerns, and I have two outstanding comments.

      (a) Related to my original comment #6, where I suggested to apply the F-S model also to the baseline and transfer phase. The authors were inclined not to do it, but in fact later in comment #7 and in the manuscript they opted to use a more complex F-S-based model to their learning phase. I agree that the rejection rate is indeed a clear indication, but for completeness, it'd be more consistent and compelling if the paper follows a model-free (model-agnostic) and model-based approach in all phases of the experiment.

      (b) Related to my original comment #4, I appreciate that the authors have provided more details of their LMM models. But I don't think it is accurate regardless. First, all offer levels (50:50, 30:70, 10:90), should not be coded as pure categorical levels. In fact, they have an ordinal meaning, a single ordinal predictor with three levels should be used. This also avoids the excessive number of interactions the authors have pointed out.

      Second, running a model with only interactions without main effects is flawed. All textbooks on stats emphasize that without the presence of the main effects, the interpretation of interaction only is biased.

      So these LMMs needs to be revised before the manuscript eventually gets to a version of record.

    2. Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments aim to demonstrate that individuals can learn to reject such offers by observing a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles an important topic relevant to social norms, morality, and justice. The findings are promising (though further control conditions are necessary to support the conclusions). The study is well-situated in the literature, with a clever experimental design and a computational approach that may offer insights into latent cognitive processes. In the revision, the authors clarified some questions related to the initial submission.

      Weaknesses:

      Despite these strengths, I remain unconvinced that the current evidence supports the paper's central claims. Below, I outline several issues that, in my view, limit the strength of the conclusions.

      (1) Experimental Design and Missing Control Condition:

      The authors set out to test whether observing a "teacher" who is averse to advantageous inequity (Adv-I) will affect observers' own rejection of Adv-I offers. However, I think the design of the task lacks an important control condition needed to address this question. At present, participants are assigned to one of two teachers: DIS or DIS+ADV. Behavioral differences between these groups can only reveal relative differences in influence; they cannot establish whether (and how) either teacher independently affects participants' own behavior. For example, a significant difference between conditions can emerge even if participants are only affected by the DIS teacher and are not affected at all by the DIS+ADV teacher. What is crucially missing here is a no-teacher control condition, which can then be compared with each teacher condition separately. This control condition would also control for pure temporal effects unrelated to teacher influence (e.g., increasing Adv-I rejections due to guilt build-up).

      While this criticism applies to both experiments, it is especially apparent in Experiment 2. As shown in Figure 4, the interaction for 10:90 offers reflects a decrease in rejection rates following the DIS teacher, with no significant change following the DIS+ADV teacher. Ignoring temporal effects, this pattern suggests that participants may be learning NOT to reject from the DIS teacher, rather than learning to reject from the DIS+ADV teacher. On this basis, I do not see convincing evidence that participants' own choices were shaped by observing Adv-I rejections.

      In the Discussion, the authors write that "We found that participants' own Adv-I-averse preferences shifted towards the preferences of the Teacher they just observed, and the strength of these contagion effects related to the degree of behavior change participants exhibited on behalf of the Teachers, suggesting that they internalized, at least somewhat, these inequity preferences." However, there is no evidence that directly links the degree of behaviour change (on the teacher's behalf) to contagion effects (own behavioural change). I think there was a relevant analysis in the original version, but it was removed from the current version.

      (2) Modelling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided. Additionally, behavioural fits for the losing models are not shown, leaving readers in the dark about where these models fail. Readers would benefit from seeing qualitative/behavioural patterns that favour the winning model. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related. For example, the feedback that the teacher would have rejected an offer provides evidence that rejection is "correct" but also that acceptance is "an error," and the latter is not incorporated into the modelling. In other words, offers are modelled as two-armed bandits (where separate values are learned for reject and accept actions), but the situation is effectively a one-armed bandit (if one action is correct, the other is mistaken). It is unclear to what extent this limitation affects the current RL formulations. Can the authors justify/explain their reasoning for including these specific variants? The manuscript only states Q-values for reject actions, but what are the Q-values for accept actions? This is unclear.

      In Experiment 2, only the preferred model is capable of generalization, so it is perhaps unsurprising that this model "wins." However, this does not strongly support the proposed learning mechanism, lacking a comparison with simpler generalizing mechanisms (see following comments).

      (3) Conceptual Leap in Modelling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models, learning occurs independently for each offer (hence no cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore "model-free" RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner acquires a functional form that allows prediction of the teacher's feedback based on offer features (e.g., linear or quadratic weighting). Because feedback for an offer modulates the parameters of this function (feature weights), generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even outperform the preference learning model, casting doubt on the authors' conclusions.

      Of note: even the behaviourists knew that when Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean Little Albert had a sophisticated model of animals that he used to infer how they behave.

      In their rebuttal letter, the authors acknowledge these possibilities, but the manuscript still does not explore or address alternative mechanisms.

      (4) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g., Fig. 3A, AI+DI blue group). This is puzzling. Thinking about this, I realized the model makes quite strong, unintuitive predictions which are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then, over learning, the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact that the teacher rejects 75% of the offers. In other words, as learning continues, learners will diverge from the teacher. On the other hand, if a participant begins learning by tending to accept this offer (guilt < 1.5), then during learning, they can increase their rejection rate but never above 50%. Thus, one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

      In their rebuttal letter, the authors acknowledged these anomalies and stated that they were able to build a better model (where anomalies are mitigated, though not fully eliminated). But they still report the current model and do not develop/discuss alternatives. A more principled model may be a Bayesian model where participants learn a belief distribution (rather than point estimates) regarding the teacher's parameters.

      (5) Statistical Analysis: The authors state in their rebuttal letter that they used the most flexible random effect structure in mixed-effects models. But this seems not to be the case in the model reported in Table SI3 (the very same model was used for other analyses too). Indeed, here it seems only intercepts are random effects. This left me confused about which models were used.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation". 

      In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity. 

      The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types. 

      Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing diseaseeQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits. 

      We thank the reviewer for their accurate summary of our study and positive review of our findings for immune-related diseases.

      It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al. 

      We thank the reviewer for their positive review of our results and manuscript. As Reviewer #1 noted, whether our and others' observation extends to other diseases or traits is an open question. For instance, Figure 2b in Mostafavi et al., Nat. Genet. (2023) demonstrated that there was a spectrum of depletion of eQTLs and enrichment of GWAS signals in constrained genes across various tissues and traits, respectively. Therefore, gene expression constraint may play a larger or smaller role in different diseases or traits. That immune cell types and cell states are extremely diverse (Schmiedel et al., Cell (2018) and Calderon et al., Nat. Genet. (2019), just to name a few) likely adds to the complexity of gene regulation that contributes to immune-mediated disease.

      Reviewer #2 (Public Review): 

      Summary: 

      eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin. 

      However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study. 

      We thank the reviewer for their accurate summary of our results.

      (1) For reproducibility, details are necessary in the method section.

      Details about adding YRI samples in ATAC-seq: For example, how many samples are there, and what is used among public data? There is LCL-derived iPSC and differentiated iPSC (cardiomyocytes) data, not LCL itself. How does this differ from LCL, and what is the rationale for including this data despite the differences?

      Banovich et al., Genome Research (2018) (PMID: 29208628), who generated data using LCLderived iPSCs and differentiated iPSCs (cardiomyocytes), also generated ATAC-seq data from 20 YRI LCL samples. We analyzed those data to identify open chromatin regions (i.e., ATACseq peaks) in LCLs and merged the regions with open chromatin regions identified with 100 GBR LCL samples from two studies by Kumasaka et al. (Nature Genetics (2016)

      PMID: 26656845 and Nature Genetics (2019) PMID: 30478436). However, we restricted the caQTL analysis to only the 100 GBR samples because of possible ancestry effects and batch effects. We attempted caQTL analysis with the 20 YRI samples as well, but the result was noisy, likely due to smaller sample size and lower read depth of the ATAC-seq data.

      caQTL is described as having better power than eQTL despite having fewer samples. How does the number of ATAC peaks used in caQTL compare to the number of gene expressions used in eQTL?

      The number of ATAC peaks used in caQTL (99,320) is ~6.7 times greater than the number of genes (14,872) used in the eQTL analysis. Therefore, there is a higher chance of detecting a significant caQTL signal and a significant colocalization signal than there is for eQTLs. However, we reasoned that since distal eQTLs are more easily detected as caQTLs and since increasing the sample size of eQTLs through meta-analysis uncovered additional eQTL colocalization at loci with caQTL colocalization only, colocalized caQTLs are likely capturing disease-relevant regulatory effects.

      Details about RNA expression data: In the method section, it states that raw data (ERP001942) was accessed, and in data availability, processed data (E-GEUV-1) was used. These need to be consistent.

      Thank you for pointing this out. We used the processed data from Expression Atlas (https://www.ebi.ac.uk/gxa/experiments/E-GEUV-1/Results), and that's what we meant by "We downloaded RNA expression level data of the LCL samples from the Expression Atlas." We have revised the “RNA expression data preparation” section in our manuscript to make the text clearer.

      How many samples were used (the text states 373, but how was it reduced from the original 465, and the total genotype is said to be 493 samples while ATAC has n=100; what are the 20 others?), and it mentions European samples, but does this exclude YRI?

      We thank the reviewer for pointing out these points of confusion. Our reported count of 493 samples included YRI samples with RNA-seq data or ATAC-seq data that we ultimately did not use for QTL analyses. There were 373 European samples with RNA-seq data that we used for eQTL analysis, and 100 GBR samples (including some that overlap with the 373 European samples) that we used for caQTL analysis. We have revised the text to clarify these points.

      (2) Experimental results determining which TFs might bind to the representative signals of caQTL are required.

      We agree that caQTL colocalization is just the start of elucidating the regulatory mechanism of a GWAS locus. Determining which TFs are bound and which TFs' binding is altered would be necessary to describe the causal regulatory mechanism. For this, we utilized the Cistrome database to search for TFs whose binding overlaps the colocalized caQTL peaks. We present the results of this analysis in Supplementary Table 3 and Supplementary Figure 4, both of which we have added in our revised manuscript. Overall, protein factors associated with active transcription, such as POL2RA, and several immune cell TFs, including RUNX3, SPI1, and RELA, were frequently detected in those peaks. Detecting these factors in most peaks supports the likelihood that the colocalized caQTL peaks are active cis-regulatory elements. These results are consistent with our observation of enriched caQTL-mediated heritability in regions with active histone marks (Figure 1).

      (3) It is stated that caQTL is less tissue-specific compared to eQTL; would caQTL performed with ATAC-seq results from different cell types, yield similar results?

      We thank the reviewer for the question. Calderon et al. (PMID: 31570894) observed that "most effects on allelic imbalance (of ATAC-seq) were shared regardless of lineage or condition". Yet, there were regions where a different cell type or state would show inaccessibility (Figure 4d in Calderon et al.). Thus, we expect that ATAC-seq results from different cell types (e.g., T cells, B cells, monocytes, etc.) would lead to additional caQTLs showing colocalization at cell-typespecific open chromatin. However, if a region is accessible in both cell types, caQTL may be detected in both. Moreover, Alasoo et al., Nature Genetics (2018) (PMID: 29379200) observed that “many disease-risk variants affect chromatin structure in a broad range of cellular states, but their effects on expression are highly context specific.” In both studies, the authors investigated immune cell types, and there could be different observations in non-immune cell types and other diseases and traits.

      Reviewer #1 (Recommendations For The Authors): 

      I think it would strengthen the paper to explore gene-level differences in the discovery of caQTLs and eQTLs. For example, complex disease-relevant genes, on average, have more/longer regulatory domains (as shown by Wang and Goldstein, AJHG 2020; Mostafavi et al., Nat. Genet. 2023). Therefore, it is plausible that for such genes, caQTLs are much more easily discoverable than eQTLs due to (i) a larger mutational target size for caQTLs, and (ii) dispersion of expression heritability across multiple domains, which hampers the discovery of eQTLs but not caQTLs, which are studied independently of other domains in the region. In other words, discovered caQTLs and eQTLs likely vary in terms of their distance to genes (as the authors report), as well as their target genes.

      We thank the reviewer for the suggestion to explore gene-level differences. We expect that the effects of complex disease-relevant genes having more / longer regulatory domains, on average, to explain our observations. We agree on both of your points that there are many more regulatory elements that are captured as accessible regions than expressed genes and that genes often have multiple independent eQTLs leading to dispersion of heritability. The genelevel trend that we described was the distance of the regulatory element from the genes. Additional analyses would be a relevant future direction.

      Also considering gene-level analysis, Mostafavi et al. show that the types of biases they report for eQTLs also apply to other molecular QTLs. It would be valuable to compare GWAS hits with versus without caQTL colocalization. Similarly, it would be insightful to compare GWAS hits with both colocalized caQTLs and eQTLs to GWAS hits with colocalized caQTLs but no eQTLs in any of the cell types. 

      We thank the reviewer for the comment. Investigating for potential biases in the colocalized caQTL would be useful, but we considered it beyond the scope of this work. In terms of biological factors, we demonstrated through mediated heritability analyses that more accessible chromatin (based on ATAC-seq read coverage) and regions with active histone marks were enriched for autoimmune disease associations (Figure 1). Furthermore, as greater distance of the regulatory variant from the transcription start site significantly reduced the cis-heritability, we would expect that distance would play a major role, similar to Mostafavi et al.’s conclusions.

      I don't think the argument for the role of natural selection contributing to the "missing regulation" is presented accurately. Specifically, large eQTLs acting on top trait-relevant genes are under stronger selection and thus, on average, segregate at lower frequencies. This makes them difficult to discover in eQTL assays. However, if not lost, they contribute as much, if not more, to trait heritability than weaker eQTLs at the same gene because their larger effects compensate for their lower frequency. At the most extreme, selection should have a "flattening" effect (e.g., see Simons et al., PLOS Biol 2018; O'Connor et al., AJHG 2019): weak and strong eQTLs at the same gene are expected to contribute equally to heritability. Therefore, the statement "Consequently, only weak eQTL variants, often in regions distal to the gene's promoter, may remain and affect traits" is not correct. If this turns out to be empirically true, other models, such as pleiotropic selection, need to explain it. 

      We thank the reviewer for the correction. We agree with the comment and have revised the sentences in the introduction accordingly.

      It is worth speculating why caQTLs may be more consistent across cell types than cis-eQTLs. Additionally, readers may infer from the paper that the focus should shift from eQTLs to caQTLs, which may not be the authors' intention. Perhaps these approaches are complementary: caQTLs can help with TSS-distal disease variants, while finding the target gene and regulatory context is more straightforward with eQTL colocalization. Addressing these points in the discussion will be helpful.

      We appreciate the reviewer's suggestion to clarify the advantages of incorporating cis-eQTLs and caQTLs. Our argument is exactly as you put it, and we added a paragraph on this in the Discussion.

      I believe the authors could do more to contextualize their findings within the existing literature on the subject, particularly Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; and Mostafavi et al., Nat. Genet. 2023. For instance, Umans et al. suggest that "if most standard eQTLs are generally benign, increasing sample size and adding more tissue types in an effort to identify even more standard eQTLs may not help us to explain many more disease risk mutations". Conversely, Mostafavi et al. argue for a multipronged approach, which appears more aligned with the authors' conclusions.

      We followed the reviewer’s suggestion to place our work in the context of existing literature on this topic. Moreover, we clarified what our recommendations for future data generation are.

      I thought Figures 1C-D were unclear. 

      We added a sentence in the figure legend describing that stronger and more significant enrichment indicate that mediated heritability is concentrated in that subset.

      Reviewer #2 (Recommendations For The Authors): 

      Complete workflow figures for caQTL calling and eQTL calling are required. 

      To improve clarity of the caQTL and eQTL calling workflow, we added Supplementary Figure 1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this manuscript, Chen et al. investigate the role of the membrane estrogen receptor GPR30 in spinal mechanisms of neuropathic pain. Using a wide variety of techniques, they first provide convincing evidence that GPR30 expression is restricted to neurons within the spinal cord, and that GPR30 neurons are well-positioned to receive descending input from the primary sensory cortex (S1). In addition, the authors put their findings in the context of the previous knowledge in the field, presenting evidence demonstrating that GRP30 is expressed in the majority of CCK-expressing spinal neurons. Overall, this manuscript furthers our understanding of neural circuity that underlies neuropathic pain and will be of broad interest to neuroscientists, especially those interested in somatosensation. Nevertheless, the manuscript would be strengthened by additional analyses and clarification of data that is currently presented. 

      Strengths: 

      The authors present convincing evidence for the expression of GPR30 in the spinal cord that is specific to spinal neurons. Similarly, complementary approaches including pharmacological inhibition and knockdown of GPR30 are used to demonstrate the role of the receptor in driving nerve injury-induced pain in rodent models. 

      Weaknesses: 

      Although steps were taken to put their data into the broader context of what is already known about the spinal circuitry of pain, more considerations and analyses would help the authors better achieve their goal. For instance, to determine whether GPR30 is expressed in excitatory or inhibitory neurons, more selective markers for these subtypes should be used over CamK2. Moreover, quantitative analysis of the extent of overlap between GPR30+ and CCK+ spinal neurons is needed to understand the potential heterogeneity of the GPR30 spinal neuron population, and to interpret experiments characterizing descending SI inputs onto GPR30 and CCK spinal neurons. Filling these gaps in knowledge would make their findings more solid. 

      Thank you very much for your constructive feedback.

      In response to your suggestion, we have used more specific markers to distinguish excitatory (VGLUT2) and inhibitory (VGAT) neurons via in situ hybridization. These analyses revealed that GPR30 is predominantly expressed in excitatory neurons of the superficial dorsal horn (SDH), as presented in the Results section (lines 117-120) and in Figure 2A-B.

      Additionally, we performed a quantitative analysis to determine the extent of co-localization between GPR30+ and CCK+ neurons. The data were included in the Results (lines 131–132) and Figure 2G.

      Reviewer #2 (Public review):

      Using a variety of experimental manipulations, the authors show that the membrane estrogen receptor G protein-coupled estrogen receptor (GPER/GPR30) expressed in CCK+ excitatory spinal interneurons plays a major role in the pain symptoms observed in the chronic constriction injury (CCI) model of neuropathic pain. Intrathecal application of selective GPR30 agonist G-1 induced mechanical allodynia and thermal hyperalgesia in male and female mice. Downregulation of GPR30 in CCK+ interneurons prevented the development of mechanical and thermal hypersensitivity during CCI. They also show the up modulation of AMPA receptor expression by GPR30. 

      Generally, the conclusions are supported by the experimental results. I also would like to see significant improvements in the writing and the description of results. 

      Methodological details for some of the techniques are rather sparse. For example, when examining the co-localization of various markers, the authors do not indicate the number of animals/sections examined. Similarly, when examining the effect of shGper1, it is unclear how many cells/sections/animals were counted and analyzed. 

      In other sections, there is no description of the concentration of drugs used (for example, Figure 4H). In Figures 4C-E, there is no indication of the duration of the recordings, the ionic conditions, the effect of glutamate receptor blockers, etc 

      Some results appear anecdotal in the way they are described. For example, in Figure 5, it is unclear how many times this experiment was repeated. 

      We sincerely appreciate your valuable feedback and thoughtful recommendations.

      To address your concerns regarding methodological transparency, we have added the following details to the revised manuscript:

      The number of animals and sections analyzed in co-localization studies.

      The number of cells/sections/animals used in each quantification following shGper1 treatment.

      The concentrations of drugs administered (e.g., in Figure 4H).

      Detailed recording conditions, including duration, ionic composition, and pharmacological conditions (Figures 4C-E).

      In addition, we have thoroughly revised the writing throughout the manuscript to enhance clarity and precision in the description of our findings.

      Reviewer #3 (Public review): 

      Summary: 

      The authors convincingly demonstrate that a population of CCK+ spinal neurons in the deep dorsal horn express the G protein-coupled estrogen receptor GPR30 to modulate pain sensitivity in the chronic constriction injury (CCI) model of neuropathic pain in mice. Using complementary pharmacological and genetic knockdown experiments they convincingly show that GPR30 inhibition or knockdown reverses mechanical, tactile, and thermal hypersensitivity, conditioned place aversion, and c-fos staining in the spinal dorsal horn after CCI. They propose that GPR30 mediates an increase in postsynaptic AMPA receptors after CCI using slice electrophysiology which may underlie the increased behavioral sensitivity. They then use anterograde tracing approaches to show that CCK and GPR30 positive neurons in the deep dorsal horn may receive direct connections from the primary somatosensory cortex. Chemogenetic activation of these dorsal horn neurons proposed to be connected to S1 increased nociceptive sensitivity in a GPR30-dependent manner. Overall, the data are very convincing and the experiments are well conducted and adequately controlled. However, the proposed model of descending corticospinal facilitation of nociceptive sensitivity through GPR30 in a population of CCK+ neurons in the dorsal horn is not fully supported. 

      Strengths: 

      The experiments are very well executed and adequately controlled throughout the manuscript. The data are nicely presented and supportive of a role for GPR30 signaling in the spinal dorsal horn influencing nociceptive sensitivity following CCI. The authors also did an excellent job of using complementary approaches to rigorously test their hypothesis. 

      Weaknesses: 

      The primary weakness in this manuscript involves overextending the interpretations of the data to propose a direct link between corticospinal projections signaling through GPR30 on this CCK+ population of spinal dorsal horn neurons. For example, even in the cropped images presented, GPR30 is present in many other CCK-negative neurons. Only about a quarter of the cells labeled by the anterograde viral tracing experiment from S1 are CCK+. Since no direct evidence is provided for S1 signaling through GPR30, this conclusion should be revised. 

      Thank you for your encouraging comments and critical insights.

      We fully acknowledge the concern regarding the proposed direct involvement of corticospinal projections in modulating nociceptive behavior via GPR30 in CCK+ neurons. While our anterograde tracing experiments suggest anatomical overlap, we agree that definitive evidence of functional connectivity is lacking.

      Accordingly, we have revised the Abstract, Discussion, and Graphical Abstract to present our findings more cautiously. We now describe our observations as indicating that S1 projections potentially interact with GPR30<sup>+</sup> spinal neurons, rather than asserting a definitive functional link.

      To support this revised interpretation, we performed additional quantitative analyses examining the co-localization among S1 projections, CCK+, and GPR30+ neurons. Furthermore, we clarified that the chemogenetic activation studies targeted a mixed neuronal population and did not exclusively manipulate CCK+ neurons.

      These changes aim to better align our conclusions with the presented data and provide a more nuanced framework for future investigations.

      Reviewer #1 (Recommendations for the authors): 

      Major corrections 

      (1) Figure 2: The authors conclude that GPR30 is mainly expressed in excitatory spinal neurons because they are labeled by a virus with a Camk2 promoter. While there is evidence that Camk2 is specific to excitatory neurons in the brain, based on RNAseq datasets (e.g. Linnarsson Lab, http://mousebrain.org/adolescent/genesearch.html ) this is less clear cut within the spinal cord. A more direct way to assess the relative expression of GPR30 in excitatory versus inhibitory neurons would be to perform immunohistochemistry or FISH with GPR30/Vglut2/Vgat. 

      Alternatively, if this observation is not crucial for the overall arch of the story, I recommend the authors eliminate these data, as they do not support the idea that GPR30 is mainly in excitatory neurons. 

      We thank the reviewer for highlighting this important limitation. To strengthen our conclusion regarding the neuronal identity of GPR30-expressing cells, we performed fluorescent in situ hybridization (FISH) using vGluT2 (marker for excitatory neurons) and VGAT (marker for inhibitory neurons). The results confirmed that GPR30 is predominantly expressed in vGluT2-positive excitatory neurons within the spinal cord. These new data are presented in the revised manuscript (lines 117-120) and shown in Figure 2A-B.

      (2) (2a) Figure 2: The authors also report that GPR30 is expressed in most CCK+ spinal neurons. A more rigorous way to present the data would be to perform quantification and report the % of CCK neurons that are GPR30. 

      (2b) More importantly, it is unclear what % of GPR30 neurons are CCK+. These types of quantifications would provide useful insights into the heterogeneity of CCK and GPR30 neuron populations, and help align findings of experiments using the behavioral pharmacology using GRP antagonists to the knockdown of Gper1 in CCK spinal neurons - for instance, does a population of GRP30+/CCK- neurons exist? If so, it would be worth discussing what role (if any) that population might play in nerve injury-induced mechanical allodynia. 

      Understanding the breakdown of GPR30 populations becomes even more relevant when the authors characterize which cell types are targeted by descending projections from S1. It is clear that the vast majority of CCK+ neurons that receive descending input from S1 neurons are GPR30+, but there are many other GPR30+ neurons that do not receive input from SI neurons presented in 5M. Is this simply because only a small fraction of CCK+/GPR30+ neurons are targeted by descending S1 projections, or could they represent a distinct population of GPR30 neurons? 

      (2a) We appreciate the suggestion. Quantification showed that approximately 90% of CCK⁺ neurons express GPR30, and about 50% of GPR30⁺ neurons co-express CCK. These data are now provided in the revised Results (lines 131-132) and in Figure 2F-G.

      (2b) Indeed, our data reveal that a substantial portion of GPR30⁺ neurons do not co-express CCK. While this study focuses on GPR30 function in CCK⁺ neurons, we recognize the potential relevance of GPR30⁺/CCK⁻ populations. We have addressed this point in the Discussion (lines 303-306):

      “However, it should be noted that half of GPR30⁺ neurons are not co-localized with CCK⁺ neurons, and further studies are needed to explore the function of these GPR30⁺/CCK⁻ neurons in neuropathic pain.”

      Regarding descending input, our data in Figure 5 show that S1 projections selectively innervate a subset (~30%) of CCK⁺ neurons, most of which co-express GPR30. This suggests that S1-targeted CCK⁺/GPR30⁺ neurons may represent a functionally distinct population. We have added clarification to the revised manuscript, while acknowledging that further studies are needed to elucidate the roles of non-targeted GPR30⁺ neurons.

      (3) Throughout the manuscript both male and female mice were used in experiments. Rather than referring to male and female mice as different genders, it would be more appropriate to describe them as different sexes. 

      As suggested, we have replaced all instances of “gender” with “sex” throughout the revised manuscript.

      (4) Figure 5: To increase the ease of interpreting the figure, in panels 5J and 5N, it would be helpful to indicate directly on the figure panel which another marker was assessed in double-labeling analyses.

      We have revised Figures 5J and 5N to include clear labels identifying the markers used in double-labeling analyses, to improve interpretability.

      Minor corrections: 

      (1) Line 36, I believe the authors mean to say "GPER/GPR30 in spinal neurons", rather than just "spinal". 

      Corrected as suggested. The sentence now reads (line 34):

      “Here we showed that the membrane estrogen receptor G-protein coupled estrogen receptor (GPER/GPR30) in spinal neurons was significantly upregulated in chronic constriction injury (CCI) mice…”

      (2) There are minor grammatical errors throughout the manuscript that interfere with comprehension. Proofreading/editing of the English language use may be beneficial. 

      We have thoroughly revised the manuscript for clarity and corrected grammatical and syntactic errors to improve readability.

      (3) Line 169-170, reads "Known that EPSCs are mediated by glutamatergic receptors like AMPA receptors and several studies have been reported the relationship between GPR30 and AMPA receptor25,29". Rewriting the sentence such that it better describes what the known relationship is between GPR30 and AMPA would be helpful in setting up the rationale of the experiment in Figure 4. 

      We have rewritten this section to better clarify the rationale behind the electrophysiological experiments (lines 161-164):

      “Given that EPSCs are primarily mediated through glutamatergic receptors such as AMPA receptors, and emerging evidence suggesting that GPR30 enhances excitatory transmission by promoting clustering of glutamatergic receptor subunits, we examined whether GPR30 modulates EPSCs via AMPA receptor-dependent mechanisms.”

      (4) Line 198-199 "Then we explored the possible connections among GPR30, S1-SDH projections and CCK+ neuron." In the context of spinal circuitry, "connections" may raise the expectation that synaptic connectivity will be evaluated. What I think best describes what the authors investigated in Figure 5 is the "relationship" between GPR30, S1-SDH projections, and CCK+ neurons. 

      We have revised the sentence accordingly (lines 184-186):

      “Building on previous findings suggesting a functional interaction between S1-SDH projections and spinal CCK⁺ neurons, our current study aimed to further elucidate the structural relationship among GPR30, S1-SDH projections, and CCK⁺ neurons.”

      (5) Figure 5: To increase the ease of interpreting the figure, in panels 5J and FN, it would be helpful to indicate directly on the figure panel which other marker was assessed in double-labeling analyses. 

      We have added direct labels to figure panels to clarify double-labeled analyses in the revised Figure 5J and 5N.

      Reviewer #2 (Recommendations for the authors): 

      (1) Can the authors provide more detail about the distribution of CCK+ cells in the spinal cord and, in particular, the localization of double-stained (CCK/cfos) neurons? 

      We thank the reviewer for this suggestion. To better characterize the distribution of CCK⁺ neurons within the spinal dorsal horn (SDH), we performed immunostaining in CCK-tdTomato mice using lamina-specific markers: CGRP (lamina I), IB4 (lamina II), and NF200 (lamina III–V). Our results demonstrate that CCK⁺ neurons are primarily localized in the deeper laminae of the SDH. These findings are now described in the revised Results (lines 126–129) and shown in Figure 2E.

      In addition, we conducted c-Fos immunostaining in CCK-Ai14 mice and found increased activation of CCK⁺ neurons following CCI. This supports the involvement of CCK⁺ neurons in neuropathic pain. These data are included in the Results (lines 129–131) and Supplementary Figure S4.

      (2) Figure 2A. There is no formal quantification of the percentage of TdTomato+ neurons that are also CCK+. The description of these results is insufficient. 

      We appreciate this point and have revised the description of Figure 2A accordingly. To strengthen our analysis, we conducted additional FISH experiments with vGluT2 and VGAT probes. Quantification revealed that GPR30 is predominantly expressed in excitatory neurons (approximately 60%). These data are shown in the revised Results (lines 117-119) and Figures 2A-B and S3. This supports our conclusion that GPR30 is largely localized to excitatory spinal interneurons.

      (3) Figure 4H. What is the evidence that these are AMPA-mediated currents? This is not explained in the text. 

      Thank you for raising this point. We now provide detailed experimental procedures to clarify that the recorded EPSCs are AMPA receptor–mediated. Specifically, spinal slices from CCK-Cre mice were used, and excitatory postsynaptic currents were recorded in the presence of APV (100 μM, NMDA receptor blocker), bicuculline (20 μM, GABA_A receptor blocker), and strychnine (0.5 μM, glycine receptor blocker), ensuring that the observed currents were AMPA-dependent. These methodological details are now clearly described in the revised Results (lines 165–173) and supported by prior literature (Zhang et al., J Biol Chem 2012; Hughes et al., J Neurosci 2010).

      (1) Yan Zhang, Xiao Xiao, Xiao-Meng Zhang, Zhi-Qi Zhao, Yu-Qiu Zhang (2012). Estrogen facilitates spinal cord synaptic transmission via membrane-bound estrogen receptors: implications for pain hypersensitivity. J Biol Chem. Sep 28;287(40):33268-81.

      (2) Ethan G Hughes, Xiaoyu Peng, Amy J Gleichman, Meizan Lai, Lei Zhou, Ryan Tsou, Thomas D Parsons, David R Lynch, Josep Dalmau, Rita J Balice-Gordon (2010). Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010 Apr 28;30(17):5866-75.

      (4) What is the signaling mechanism leading to a larger amplitude of currents after G-1 infusion? 

      We thank the reviewer for this important question. G-1 is a selective agonist for GPR30. Based on previous studies by Luo et al. (2016), we speculate that activation of GPR30 may increase the clustering of glutamatergic receptor subunits at postsynaptic sites, thereby enhancing AMPA receptor-mediated currents. While our current study did not directly address the intracellular signaling cascade, we have incorporated this mechanistic speculation in the Discussion.

      Jie Luo, X.H., Yali Li, Yang Li, Xueqin Xu, Yan Gao, Ruoshi Shi, Wanjun Yao, Juying Liu, Changbin Ke (2016). GPR30 disrupts the balance of GABAergic and glutamatergic transmission in the spinal cord driving to the development of bone cancer pain. Oncotarget 7, 73462-73472. 10.18632/oncotarget.11867.

      (5) Figure 4I. Please include error bars. 

      We have revised Figure 4I to include error bars, as requested.

      (6) Line 198. What is the evidence that AAV2/1 EF1α FLP is an antegrade trans monosynaptic marker? 

      We thank you for this request. AAV2/1 has been widely used for anterograde monosynaptic tracing based on its properties (Wang et al., Nat Neurosci 2024; Wu et al., Neurosci Bull 2021): (1) it infects neurons at the injection site and undergoes active anterograde transport; (2) newly assembled viral particles are released at synapses and infect postsynaptic partners; (3) in the absence of helper viruses, the spread halts at the first synapse, ensuring monosynaptic restriction. We have elaborated on this in the revised manuscript (line 198), citing Wang et al. (Nat Neurosci 2024) and Wu et al. (Neurosci Bull 2021).

      (1) Hao Wang, Qin Wang, Liuzhe Cui, Xiaoyang Feng, Ping Dong, Liheng Tan, Lin Lin, Hong Lian, Shuxia Cao, Huiqian Huang, Peng Cao, Xiao-Ming Li (2024). A molecularly defined amygdalaindependent tetra-synaptic forebrain-tohindbrain pathway for odor-driven innate fear and anxiety. Nat Neurosci. 2024 Mar;27(3):514-526.

      (2) Zi-Han Wu, Han-Yu Shao, Yuan-Yuan Fu, Xiao-Bo Wu, De-Li Cao, Sheng-Xiang Yan, Wei-Lin Sha, Yong-Jing Gao, Zhi-Jun Zhang (2021). Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull. 2021 Sep;37(9):1345-1350.

      (7) Figure 5G. I do not understand the logic of this experiment. A Cre AAV is injected in the S1 cortex. Why should this lead to the expression of tdTomato on a downstream (postsynaptic?) neuron? The authors should quote the literature that supports this anterograde transsynaptic transport.

      We appreciate this question. As described in previous studies (e.g., Wu et al., Neurosci Bull 2021), AAV2/1-Cre injected into the S1 cortex leads to Cre expression in projection targets due to transsynaptic anterograde transport. Subsequent injection of a Cre-dependent AAV (AAV2/9-DIO-mCherry) into the spinal cord enables specific labeling of postsynaptic neurons that receive input from S1. We have clarified this mechanism in line 206 and provided the appropriate citation.

      Zi-Han Wu, Han-Yu Shao, Yuan-Yuan Fu, Xiao-Bo Wu, De-Li Cao, Sheng-Xiang Yan, Wei-Lin Sha, Yong-Jing Gao, Zhi-Jun Zhang (2021). Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull. 2021 Sep;37(9):1345-1350.

      (8) The same question arises when interpreting the results obtained in Figure 6.

      We thank the reviewer for the question, and we have addressed it in point (7).

      (9) Line 257. How do the authors envision that estrogen would change its modulation of GPR30 under basal and neuropathic conditions? Is there any evidence for this speculation? 

      We thank the reviewer for raising this thoughtful question. In the current study, we focused on pharmacologically manipulating GPR30 activity via its selective agonist and antagonist. We did not directly investigate how endogenous estrogen regulates GPR30 under physiological and neuropathic states. We have recognized this limitation and highlighted the need for future research to investigate this regulatory mechanism.

      (10-20) In my opinion, the entire manuscript needs a careful revision of the English language. While one can follow the text, it contains numerous grammatical and syntactic errors that make the reading far from enjoyable. I am highlighting just a few of the many errors. 

      We appreciate the reviewer’s honest assessment. The manuscript has undergone thorough language editing by a native English speaker to correct grammatical errors, improve clarity, and enhance overall readability. We also restructured several sections, particularly the Discussion, to improve logical flow.

      (21) The discussion of results is a bit disorganized, with disconnected sentences and statements, and somewhat repetitive. For example, lines 303 to 306 lack adequate flow. It is also quite long and includes general statements that add little to the discussion of the new findings (lines 326-333). 

      We agree and have revised the Discussion extensively. Disconnected or repetitive sentences (e.g., lines 303-306, 326-333) have been removed or rewritten. For instance, we added a new transitional paragraph (lines 307-311) to improve flow:

      “Abnormal activation of neurons in the SDH is a key contributor to hyperalgesia, and enhanced excitatory synaptic transmission is a major mechanism driving increased neuronal excitability. Therefore, we evaluated excitatory postsynaptic currents (EPSCs) and observed increased amplitudes in CCK⁺ neurons following CCI, suggesting elevated excitability in these neurons.”

      We also removed redundant generalizations to maintain a focused discussion of our novel findings.

      Reviewer #3 (Recommendations for the authors): 

      (1) What is the distribution of GPR30 throughout the spinal cord and DRG? The authors demonstrate that this can overlap with a CCK+ population, but there are many GPR30+ and CCK negative neurons, even in the cropped images presented. It would be helpful to quantify the colocalization with CCK. 

      We thank the reviewer for this important point. As shown in the revised manuscript, GPR30 is expressed in both the spinal cord and dorsal root ganglia (DRG). However, our updated data (Figure 1B) demonstrate that Gper1 mRNA levels in the DRG are not significantly altered after CCI, suggesting a limited involvement of DRG GPR30 in neuropathic pain. These results are described in the revised Results (line 94).

      Regarding spinal co-expression, we performed a detailed quantification. Approximately 90% of CCK⁺ neurons express GPR30, while about 50% of GPR30⁺ neurons are CCK⁺. These co-localization results are now included in the revised Results and presented in Figure 2G.

      (2) It is clear that CCI and GPR30 influence excitatory synaptic transmission in CCK+ neurons. However, these experiments do not fully support the authors' claims of a postsynaptic upregulation of AMPARs. Comparing amplitudes and frequencies of spontaneous EPSCs cannot necessarily distinguish a pre- vs postsynaptic change since some of these EPSCs can arise from spontaneous action potential firing. I suggest revising this conclusion. 

      We appreciate these insightful comments. We fully agree that our data from spontaneous EPSC recordings (sEPSCs) in CCK⁺ neurons are not sufficient to distinguish between pre- and postsynaptic mechanisms, as sEPSCs may include spontaneous presynaptic activity. Therefore, we have revised the text throughout the manuscript to avoid overstating conclusions related to postsynaptic AMPA receptor upregulation.

      (3) What is the rationale for the evoked EPSC experiments from electrical stimulation in "the deep laminae of SDH?" I do not think that this experiment can rule out a presynaptic contribution of GPR30 to the evoked responses, particularly if these are Gs-coupled at presynaptic terminals. Paired-pulse stimulations could help answer this question, otherwise, alternative interpretations, also related to the point above, should be provided. 

      We thank the reviewer for this thoughtful critique. Indeed, electrical stimulation of the deep SDH laminae does not exclude presynaptic involvement, especially considering that GPR30 is a G protein–coupled receptor (GPCR) and could act presynaptically. We agree that paired-pulse ratio (PPR) analysis would be more informative in distinguishing pre- from postsynaptic effects, but this was not performed due to technical limitations in our current experimental setup.

      Accordingly, we have revised our interpretations in both the Results and Discussion to acknowledge that our data do not rule out presynaptic contributions. We now state that GPR30 activation enhances EPSCs in CCK⁺ neurons, while further studies are needed to dissect the precise site of action.

      (4) I appreciate the challenging nature of the trans-synaptic viral labeling approaches, but the chemogenetic and Gper knockdown experiments do not selectively target this CCK+ population of deep dorsal horn neurons. The data are clear that each of these components (descending corticospinal projections, CCK neurons, and GPR30) can modulate nociceptive hypersensitivity, but I do not agree with the overall conclusion that each of are directly linked as the authors propose. I recommend revising the overall conclusion and title to reflect the convincing data presented. 

      We thank the reviewer for this critical observation. We agree that while our data show functional roles for descending cortical input, CCK⁺ neurons, and GPR30 in modulating pain hypersensitivity, the evidence does not establish a definitive direct circuit integrating all three components.

      In response, we have revised our conclusions to reflect this limitation. Specifically, we avoided claiming a direct functional link among S1 projections, CCK⁺ neurons, and GPR30. Instead, we now propose that GPR30 modulates neuropathic pain primarily through its action in CCK⁺ spinal neurons, with potential involvement of descending facilitation from the somatosensory cortex.

      Additionally, we have revised the manuscript title to better reflect our mechanistic focus:<br /> “GPR30 in spinal CCK-positive neurons modulates neuropathic pain.”

      Minor Corrections

      (1) The authors should refer to mice by sex, not gender. 

      Corrected throughout the manuscript.

      (2) Page 9, line 195: "significantly" is used to refer to co-localization of 28.1%. What is this significant to? 

      We have revised the sentence to accurately describe the observed percentage, without implying statistical significance:

      “Our co-staining results revealed that a high proportion of CCK⁺ S1-SDH postsynaptic neurons expressed GPR30” (line 198-199).

      (3) I recommend modifying some of the transition phrases like "by the way," "what's more," and "besides". 

      All informal expressions have been replaced with academic alternatives including “Furthermore,” “Additionally,” and “Moreover.”

      (4) Additional guides to mark specific laminae in the dorsal horn would be useful. 

      We added immunostaining with laminar markers (CGRP for lamina I and NF200 for lamina III–V), and these data are now shown in Figure 2E and described in the Results (lines 126-129).

      (5) Page 5, line 115: immunochemistry should be immunohistochemistry. 

      Corrected as suggested.

      (6) Page 6, line 136: "Confirming the structural connnections" was not demonstrated here. Perhaps co-localization between GPR30 and CCK+. 

      The text was revised to “To functionally interrogate GPR30 and CCK⁺ neurons in neuropathic pain...” (line 133).

      (7) Page 8, line 166: unsure what "took and important role" means. 

      This phrasing was corrected for clarity and replaced with an accurate scientific description.

      (8) Page 8, line 168: "IPSCs of spinal CCK+ neurons" implies that they are sending inhibitory inputs. 

      We revised the term to “EPSCs” to correctly reflect excitatory synaptic currents in CCK⁺ neurons.

      (9) Page 8, line 169: "Known that EPSCs" is missing an introductory phrase. 

      The sentence was rewritten to include an appropriate introductory clause (lines 161–164):

      “Given that EPSCs are primarily mediated through glutamatergic receptors such as AMPA receptors...”

      (10) Page 10, line 227 and 228: "adequately" and "sufficiently" should be adequate and sufficient. 

      We corrected these terms to the proper adjective forms: “adequate” and “sufficient” (lines 224-225).

    1. Before we can outline these perspectives, it is necessary to make somegeneral demarcations about what we mean when we talk about politicalsignificance in the context of data visualizations. First, ‘politics’ may beunderstood in narrow terms, as the workings of political parties, processes,and institutions. Politics may also be understood in a wider sense, as thestruggle for power more broadly, as this struggle takes place both in theprivate as well as the cultural sphere, and by symbolic as well as materialmeans.

      I think it's very interesting that the context of political significance is necessary here to explain how data and politics are intertwined. In a broad or a narrow sense, data visualizations are equally as important in conveying things of important, and in regards to politics, can seriously impact how persuasive, informative, or even divisive a subject is.

    1. Back to the university: what are you supposed to be learning here? At minimum, you’ll probably pick up bits of knowledge here and there, but an effective education isn’t just about memorizing facts. It’s much more than about learning that but also learning how, especially given Cal Poly’s motto of “Learn by Doing.” But if you rely on using AI for your coursework, you might not even be learning that some particular thing is true. With AI and search engines, you can still access that knowledge you’re supposed to be learning, but being able to access x isn’t the same as internalizing x; the latter is much more useful, as we’ll discuss more below in part 3, “Future risks.”

      I think this is an important distinction. Just being able to access information with AI isn’t the same as actually learning and internalizing it. Memorizing facts may not be the point of education, but being able to apply and use knowledge is. If we skip the process of working through ideas ourselves then we risk missing the deeper how of learning

    1. Suzanne Briet: Physical evidence as document

      In part, I appreciate the pragmatism of Briet's approach. It would certainly make a cataloger's life easier to view documents in this way and, on its surface, it makes a tremendous amount of "sense".

      However, I can't help but feel this view is a little too limited. Certainly, it seems to me, the antelope itself would be a source of information. In one way it is an example of what an "antelope" is, but it is also an individual and, beyond that, an individual at a certain snapshot in time.

      In a very broad view, we can think that nothing is truly permanent as all things are constantly changing. I think it depends so much on how we observe and questions of time scale.

      Human beings are not even exactly what we were in the past. We grow (both physically and in other ways), we change (we age, we change our minds, we change our clothes, we get tattoos, we erase tattoos) and eventually we, as an individual, will cease to exist by any observable means (depending on your belief system) other than by the "things" we leave behind.

      We also continue to exist, in a sense, in the minds of those who knew us, but their memories cannot be a whole picture of who we were and certainly no one may know truly how we are inside our own heads. Others will certainly bring their own biases or preferences to their memories of us which may or may not be a complete picture of who we were.

    1. Author response:

      Reviewer #1 (Public review):

      In this important study, the authors develop a suite of machine vision tools to identify and align fluorescent neuronal recording images in space and time according to neuron identity and position. The authors provide compelling evidence for the speed and utility of these tools. While such tools have been developed in the past (including by the authors), the key advancement here is the speed and broad utility of these new tools. While prior approaches based on steepest descent worked, they required hundreds of hours of computational time, while the new approaches outlined here are >600-fold faster. The machine vision tools here should be immediately useful to readers specifically interested in whole-brain C. elegans data, but also for more general readers who may be interested in using BrainAlignNet for tracking fluorescent neuronal recordings from other systems.

      I really enjoyed reading this paper. The authors had several ground truth examples to quantify the accuracy of their algorithms and identified several small caveats users should consider when using these tools. These tools were primarily developed for C. elegans, an animal with stereotyped development, but whose neurons can be variably located due to internal motion of the body. The authors provide several examples of how BrainAlignNet reliably tracked these neurons over space and time. Neuron identity is also important to track, and the authors showed how AutoCellLoader can reliably identify neurons based on their fluorescence in the NeuroPAL background. A challenge with NeuroPAL though, is the high expression of several fluorophores, which compromises behavioral fidelity. The authors provide some possible avenues where this problem can be addressed by expressing fewer fluorophores. While using all four channels provided the best performance, only using the tagRFP and CyOFP channels was sufficient for performance that was close to full performance using all 4 NeuroPAL channels. This result indicates that the development of future lines with less fluorophore expression could be sufficient for reliable neuronal identification, which would decrease the genetic load on the animal, but also open other fluorescent channels that could be used for tracking other fluorescent tools/markers. Even though these tools were developed for C. elegans specifically, they showed BrainAlignNet can be applied to other organisms as well (in their case, the cnidarian C. hemisphaerica), which broadens the utility of their tools.

      Strengths:

      (1) The authors have a wealth of ground-truth training data to compare their algorithms against, and provide a variety of metrics to assess how well their new tools perform against hand annotation and/or prior algorithms.

      (2) For BrainAlignNet, the authors show how this tool can be applied to other organisms besides C. elegans.

      (3) The tools are publicly available on GitHub, which includes useful README files and installation guidance.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) Most of the utility of these algorithms is for C. elegans specifically. Testing their algorithms (specifically BrainAlignNet) on more challenging problems, such as whole-brain zebrafish, would have been interesting. This is a very, very minor weakness, though.

      We appreciate the reviewer’s point that expanding to additional animal models would be valuable. In the study, we have so far tested our approaches on C. elegans and Jellyfish. Given that this is considered a ‘very, very minor weakness’ and that it does not directly affect the results or analyses in the paper, we think this might be better to address in future work.

      (2) The tools are benchmarked against their own prior pipeline, but not against other algorithms written for the same purpose.

      We agree that it would be valuable to benchmark other labs’ software pipelines on our datasets. We note that most papers in this area, which describe those pipelines, provide the same performance metrics that we do (accuracy of neuron identification, tracking accuracy, etc), so a crude, first-order comparison can be obtained by comparing the numbers in the papers. But, we agree that a rigorous head-to-head comparison would require applying these different pipelines to a common dataset. We considered performing these analyses, but we were concerned that using other labs’ software ‘off the shelf’ on our data might not represent those pipelines in their best light when compared to our pipeline that was developed with our data in mind. Data from different microscopy platforms can be surprisingly different and we wouldn’t want to perform an analysis that had this bias. Therefore, we feel that this comparison would be best pursued by all of these labs collaboratively (so that they can each provide input on how to run their software optimally). Indeed, this is an important area for future study. In this spirit, we have been sharing our eat-4::GFP datasets (that permit quantification of tracking accuracy) with other labs looking for additional ways to benchmark their tracking software.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (3) Considerable pre-processing was done before implementation. Expanding upon this would improve accessibility of these tools to a wider audience.

      Indeed, some pre-processing was performed on images before registration and neuron identification -- understanding these nuances can be important. The pre-processing steps are described in the Results section and detailed in the Methods. They are also all available in our open-source software. For BrainAlignNet, the key steps were: (1) selecting image registration problems, (2) cropping, and (3) Euler alignment. Steps (1) and (3) were critically important and are extensively discussed in the Results and Discussion sections of our study (lines 142-144, 218-234, 318-323, 704-712). Step (2) is standard in image processing. For AutoCellLabeler and CellDiscoveryNet, the pre-processing was primarily to align the 4 NeuroPAL color channels to each other (i.e. make sure the blue/red/orange/etc channels for an animal are perfectly aligned). This is also just a standard image processing step to ensure channel alignment. Thus, the more “custom” pre-processing steps were extensively discussed in the study and the more “common” steps are still described in the Methods. The implementation of all steps is available in our open-source software.

      Reviewer #2 (Public review):

      Summary:

      The paper introduced the pipeline to analyze brain imaging of freely moving animals: registering deforming tissues and maintaining consistent cell identities over time. The pipeline consists of three neural networks that are built upon existing models: BrainAlignNet for non-rigid registration, AutoCellLabeler for supervised annotation of over 100 neuronal types, and CellDiscoveryNet for unsupervised discovery of cell identities. The ambition of the work is to enable high-throughput and largely automated pipelines for neuron tracking and labeling in deforming nervous systems.

      Strengths:

      (1) The paper tackles a timely and difficult problem, offering an end-to-end system rather than isolated modules.

      (2) The authors report high performance within their dataset, including single-pixel registration accuracy, nearly complete neuron linking over time, and annotation accuracy that exceeds individual human labelers.

      (3) Demonstrations across two organisms suggest the methods could be transferable, and the integration of supervised and unsupervised modules is of practical utility.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) Lack of solid evaluation. Despite strong results on their own data, the work is not benchmarked against existing methods on community datasets, making it hard to evaluate relative performance or generality.

      We agree that it would be valuable to benchmark many labs’ software pipelines on some common datasets, ideally from several different research labs. We note that most papers in this area, which describe the other pipelines that have been developed, provide the same performance metrics that we do (accuracy of neuron identification, tracking accuracy, etc), so a crude, first-order comparison can be obtained by comparing the numbers in the papers. But, we agree that a rigorous head-to-head comparison would require applying these different pipelines to a common dataset. We considered performing these analyses, but we were concerned that using other labs’ software ‘off the shelf’ and comparing the results to our pipeline (where we have extensive expertise) might bias the performance metrics in favor of our software. Therefore, we feel that this comparison would be best pursued by all of these labs collaboratively (so that they can each provide input on how to run their software optimally). Indeed, this is an important area for future study. In this spirit, we have been sharing our eat-4::GFP datasets (that permit quantification of tracking accuracy) with other labs looking for additional ways to benchmark their tracking software.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (2) Lack of novelty. All three models do not incorporate state-of-the-art advances from the respective fields. BrainAlignNet does not learn from the latest optical flow literature, relying instead on relatively conventional architectures. AutoCellLabeler does not utilize the advanced medNeXt3D architectures for supervised semantic segmentation. CellDiscoveryNet is presented as unsupervised discovery but relies on standard clustering approaches, with limited evaluation on only a small test set.

      We appreciate that the machine learning field moves fast. Our goal was not to invent entirely novel machine learning tools, but rather to apply and optimize tools for a set of challenging, unsolved biological problems. We began with the somewhat simpler architectures described in our study and were largely satisfied with their performance. It is conceivable that newer approaches would perhaps lead to even greater accuracy, flexibility, and/or speed. But, oftentimes, simple or classical solutions can adequately resolve specific challenges in biological image processing.

      Regarding CellDiscoveryNet, our claim of unsupervised training is precise: CellDiscoveryNet is trained end-to-end only on raw images, with no human annotations, pseudo-labels, external classifiers, or metadata used for training, model selection, or early stopping. The loss is defined entirely from the input data (no label signal). By standard usage in machine learning, this constitutes unsupervised (often termed “self-supervised”) representation learning. Downstream clustering is likewise unsupervised, consuming only image pairs registered by CellDiscoveryNet and neuron segmentations produced by our previously-trained SegmentationNet (which provides no label information).

      (3) Lack of robustness. BrainAlignNet requires dataset-specific training and pre-alignment strategies, limiting its plug-and-play use. AutoCellLabeler depends heavily on raw intensity patterns of neurons, making it brittle to pose changes. By contrast, current state-of-the-art methods incorporate spatial deformation atlases or relative spatial relationships, which provide robustness across poses and imaging conditions. More broadly, the ANTSUN 2.0 system depends on numerous manually tuned weights and thresholds, which reduces reproducibility and generalizability beyond curated conditions.

      Regarding BrainAlignNet: we agree that we trained on each species’ own data (worm, jellyfish) and we would suggest other labs working on new organisms to do the same based on our current state of knowledge. It would be fantastic if there was an alignment approach that generalized to all possible cases of non-rigid-registration in all animals – an important area for future study. We also agree that pre-alignment was critical in worms and jellyfish, which we discuss extensively in our study (lines 142-144, 318-321, 704-712).

      Regarding AutoCellLabeler: the animals were not recorded in any standardized pose and were not aligned to each other beforehand – they were basically in a haphazard mix of poses and we used image augmentation to allow the network to generalize to other poses, as described in our study. It is still possible that AutoCellLabeler is somehow brittle to pose changes (e.g. perhaps extremely curved worms) – while we did not detect this in our analyses, we did not systematically evaluate performance across all possible poses. However, we do note that this network was able to label images taken from freely-moving worms, which by definition exhibit many poses (Figure 5D, lines 500-525); aggregating the network’s performance across freely-moving data points allowed it to nearly match its performance on high-SNR immobilized data. This suggests a degree of robustness of the AutoCellLabeler network to pose changes.

      Regarding ANTSUN 2.0: we agree that there are some hyperparameters (described in our study) that affect ANTSUN performance. We agree that it would be worthwhile to fully automate setting these in future iterations of the software.

      Evaluation:

      To make the evaluation more solid, it would be great for the authors to (1) apply the new method on existing datasets and (2) apply baseline methods on their own datasets. Otherwise, without comparison, it is unclear if the proposed method is better or not. The following papers have public challenging tracking data: https://elifesciences.org/articles/66410, https://elifesciences.org/articles/59187, https://www.nature.com/articles/s41592-023-02096-3.

      Please see our response to your point (1) under Weaknesses above.

      Methodology:

      (1) The model innovations appear incrementally novel relative to existing work. The authors should articulate what is fundamentally different (architectural choices, training objectives, inductive biases) and why those differences matter empirically. Ablations isolating each design choice would help.

      There are other efforts in the literature to solve the neuron tracking and neuron identification problems in C. elegans (please see paragraphs 4 and 5 of our Introduction, which are devoted to describing these). However, they are quite different in the approaches that they use, compared to our study. For example, for neuron tracking they use t->t+1 methods, or model neurons as point clouds, etc (a variety of approaches have been tried). For neuron identification, they work on extracted features from images, or use statistical approaches rather than deep neural networks, etc (a variety of approaches have been tried). Our assessment is that each of these diverse approaches has strengths and drawbacks; we agree that a meta-analysis of the design choices used across studies could be valuable.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (2) The pipeline currently depends on numerous manually set hyperparameters and dataset-specific preprocessing. Please provide principled guidelines (e.g., ranges, default settings, heuristics) and a robustness analysis (sweeps, sensitivity curves) to show how performance varies with these choices across datasets; wherever possible, learn weights from data or replace fixed thresholds with data-driven criteria.

      We agree that there are some ANTSUN 2.0 hyperparameters (described in our Methods section) that could affect the quality of neuron tracking. It would be worthwhile to fully automate setting these in future iterations of the software, ensuring that the hyperparameter settings are robust to variation in data/experiments.

      Appraisal:

      The authors partially achieve their aims. Within the scope of their dataset, the pipeline demonstrates impressive performance and clear practical value. However, the absence of comparisons with state-of-the-art algorithms such as ZephIR, fDNC, or WormID, combined with small-scale evaluation (e.g., ten test volumes), makes the strength of evidence incomplete. The results support the conclusion that the approach is useful for their lab's workflow, but they do not establish broader robustness or superiority over existing methods.

      We wish to remind the reviewer that we developed BrainAlignNet for use in worms and jellyfish. These two animals have different distributions of neurons and radically different anatomy and movement patterns. Data from the two organisms was collected in different labs (Flavell lab, Weissbourd lab) on different types of microscopes (spinning disk, epifluorescence). We believe that this is a good initial demonstration that the approach has robustness across different settings.

      Regarding comparisons to other labs’ C. elegans data processing pipelines, we agree that it will be extremely valuable to compare performance on common datasets, ideally collected in multiple different research labs. But we believe this should be performed collaboratively so that all software can be utilized in their best light with input from each lab, as described above. We agree that such a comparison would be very valuable.

      Impact:

      Even though the authors have released code, the pipeline requires heavy pre- and post-processing with numerous manually tuned hyperparameters, which limits its practical applicability to new datasets. Indeed, even within the paper, BrainAlignNet had to be adapted with additional preprocessing to handle the jellyfish data. The broader impact of the work will depend on systematic benchmarking against community datasets and comparison with established methods. As such, readers should view the results as a promising proof of concept rather than a definitive standard for imaging in deformable nervous systems.

      Regarding worms vs jellyfish pre-processing: we actually had the exact opposite reaction to that of the reviewer. We were surprised at how similar the pre-processing was for these two very different organisms. In both cases, it was essential to (1) select appropriate registration problems to be solved; and (2) perform initialization with Euler alignment. Provided that these two challenges were solved, BrainAlignNet mostly took care of the rest. This suggests a clear path for researchers who wish to use this approach in another animal. Nevertheless, we also agree with the reviewer’s caution that a totally different use case could require some re-thinking or re-strategizing. For example, the strategy of how to select good registration problems could depend on the form of the animal’s movement.

      Reviewer #3 (Public review):

      Context:

      Tracking cell trajectories in deformable organs, such as the head neurons of freely moving C. elegans, is a challenging task due to rapid, non-rigid cellular motion. Similarly, identifying neuron types in the worm brain is difficult because of high inter-individual variability in cell positions.

      Summary:

      In this study, the authors developed a deep learning-based approach for cell tracking and identification in deformable neuronal images. Several different CNN models were trained to: (1) register image pairs without severe deformation, and then track cells across continuous image sequences using multiple registration results combined with clustering strategies; (2) predict neuron IDs from multicolor-labeled images; and (3) perform clustering across multiple multicolor images to automatically generate neuron IDs.

      Strengths:

      Directly using raw images for registration and identification simplifies the analysis pipeline, but it is also a challenging task since CNN architectures often struggle to capture spatial relationships between distant cells. Surprisingly, the authors report very high accuracy across all tasks. For example, the tracking of head neurons in freely moving worms reportedly reached 99.6% accuracy, neuron identification achieved 98%, and automatic classification achieved 93% compared to human annotations.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) The deep networks proposed in this study for registration and neuron identification require dataset-specific training, due to variations in imaging conditions across different laboratories. This, in turn, demands a large amount of manually or semi-manually annotated training data, including cell centroid correspondences and cell identity labels, which reduces the overall practicality and scalability of the method.

      We performed dataset-specific training for image registration and neuron identification, and we would encourage new users to do the same based on our current state of knowledge. This highlights how standardization of whole-brain imaging data across labs is an important issue for our field to address and that, without it, variations in imaging conditions could impact software utility. We refer the reviewer to an excellent study by Sprague et al. (2025) on this topic, which is cited in our study.

      However, at the same time, we wish to note that it was actually reasonably straightforward to take the BrainAlignNet approach that we initially developed in C. elegans and apply it to jellyfish. Some of the key lessons that we learned in C. elegans generalized: in both cases, it was critical to select the right registration problems to solve and to preprocess with Euler registration for good initialization. Provided that those problems were solved, BrainAlignNet could be applied to obtain high-quality registration and trace extraction. Thus, our study provides clear suggestions on how to use these tools across multiple contexts.

      (2) The cell tracking accuracy was not rigorously validated, but rather estimated using a biased and coarse approach. Specifically, the accuracy was assessed based on the stability of GFP signals in the eat-4-labeled channel. A tracking error was assumed to occur when the GFP signal switched between eat-4-negative and eat-4-positive at a given time point. However, this estimation is imprecise and only captures a small subset of all potential errors. Although the authors introduced a correction factor to approximate the true error rate, the validity of this correction relies on the assumption that eat-4 neurons are uniformly distributed across the brain - a condition that is unlikely to hold.

      We respectfully disagree with this critique. We considered the alternative suggested by the reviewer (in their private comments to the authors) of comparing against a manually annotated dataset. But this annotation would require manually linking ~150 neurons across ~1600 timepoints, which would require humans to manually link neurons across timepoints >200,000 times for a single dataset. These datasets consist of densely packed neurons rapidly deforming over time in all 3 dimensions. Moreover, a single error in linking would propagate across timepoints, so the error tolerance of such annotation would be extremely low. Any such manually labeled dataset would be fraught with errors and should not be trusted. Instead, our approach relies on a simple, accurate assumption: GFP expression in a neuron should be roughly constant over a 16min recording (after bleach correction) and the levels will be different in different neurons when it is sparsely expressed. Because all image alignment is done in the red channel, the pipeline never “peeks” at the GFP until it is finished with neuron alignment and tracking. The eat-4 promoter was chosen for GFP expression because (a) the nuclei labeled by it are scattered across the neuropil in a roughly salt-and-pepper fashion – a mixture of eat-4-positive and eat-4-negative neurons are found throughout the head; and (b) it is in roughly 40% of the neurons, giving very good overall coverage. Our view is that this approach of labeling subsets of neurons with GFP should become the standard in the field for assessing tracking accuracy – it has a simple, accurate premise; is not susceptible to human labeling error; is straightforward to implement; and, since it does not require manual labeling, is easy to scale to multiple datasets. We do note that it could be further strengthened by using multiple strains each with different ‘salt-and-pepper’ GFP expression patterns.

      (3) Figure S1F demonstrates that the registration network, BrainAlignNet, alone is insufficient to accurately align arbitrary pairs of C. elegans head images. The high tracking accuracy reported is largely due to the use of a carefully designed registration sequence, matching only images with similar postures, and an effective clustering algorithm. Although the authors address this point in the Discussion section, the abstract may give the misleading impression that the network itself is solely responsible for the observed accuracy.

      Our tracking accuracy requires (a) a careful selection of registration problems, (b) highly accurate registration of the selected registration problems, and (c) effective clustering. We extensively discussed the importance of the choosing of the registration problems in the Results section (lines 218-234 and 318-321), Discussion section (lines 704-708), and Methods section (955-970 and 1246-1250) of our paper. We also discussed the clustering aspect in the Results section (lines 247-259), Discussion section (lines 708-712), and Methods section (lines 1162-1206). In addition, our abstract states that the BrainAlignNet needs to be “incorporated into an image analysis pipeline,” to inform readers that other aspects of image analysis need to occur (beyond BrainAlignNet) to perform tracking.

      (4) The reported accuracy for neuron identification and automatic classification may be misleading, as it was assessed only on a subset of neurons labeled as "high-confidence" by human annotators. Although the authors did not disclose the exact proportion, various descriptions (such as Figure 4f) imply that this subset comprises approximately 60% of all neurons. While excluding uncertain labels is justifiable, the authors highlight the high accuracy achieved on this subset without clearly clarifying that the reported performance pertains only to neurons that are relatively easy to identify. Furthermore, they do not report what fraction of the total neuron population can be accurately identified using their methods-an omission of critical importance for prospective users.

      The reviewer raises two points here: (1) whether AutoCellLabeler accuracy is impacted by ease of human labeling; and (2) what fraction of total neurons are identified. We address them one at a time.

      Regarding (1), we believe that the reviewer overlooked an important analysis in our study. Indeed, to assess its performance, one can only compare AutoCellLabeler’s output against accurate human labels – there is simply no way around it. However, we noted that AutoCellLabeler was identifying some neurons with high confidence even when humans had low confidence or had not even tried to label the neurons (Fig. 4F). To test whether these were in fact accurate labels, we asked additional human labelers to spend extra time trying to label a random subset of these neurons (they were of course blinded to the AutoCellLabeler label). We then assessed the accuracy of AutoCellLabeler against these new human labels and found that they were highly accurate (Fig. 4H). This suggests that AutoCellLabeler has strong performance even when some human labelers find it challenging to label a neuron. However, we agree that we have not yet been able to quantify AutoCellLabeler performance on the small set of neuron classes that humans are unable to identify across datasets.

      Regarding (2), we agree that knowing how many neurons are labeled by AutoCellLabeler is critical. For example, labeling only 3 neurons per animal with 100% accuracy isn’t very helpful. We wish to emphasize that we did not omit this information: we reported the number of neurons labeled for every network that we characterized in the study, alongside the accuracy of those labels (please see Figures 4I, 5A, and 6G; Figure 4I also shows the number of human labels per dataset, which the reviewer requested). We also showed curves depicting the tradeoff between accuracy and number of neurons labeled, which fully captures how we balanced accuracy and number of neurons labeled (Figures 5D and S4A). It sounds like the reviewer also wanted to know the total number of recorded neurons. The typical number of recorded neurons per dataset can also be found in the paper in Fig. 2E.

    1. Reviewer #1 (Public review):

      Summary:

      This study focuses on characterizing the EEG correlates of item-specific proportion congruency effects. In particular, two types of learned associations are characterized. One being associations between stimulus features and control states (SC), and the other being stimulus features and responses (SR). Decoding methods are used to identify SC and SR correlates and to determine whether they have similar topographies and dynamics.

      The results suggest SC and SR associations are simultaneously coactivated and have shared topographies, with the inference being that these associations may share a common generator.

      Strengths:

      Fearless, creative use of EEG decoding to test tricky hypotheses regarding latent associations.

      Nice idea to orthogonalize the ISPC condition (MC/MI) from stimulus features.

      Weaknesses:

      (1) I'm relatively concerned that these results may be spurious. I hope to be proven wrong, but I would suggest taking another look at a few things.

      While a nice idea in principle, the ISPC manipulation seems to be quite confounded with the trial number. E.g., color-red is MI only during phase 2, and is MC primarily only during Phase 3 (since phase 1 is so sparsely represented). In my experience, EEG noise is highly structured across a session and easily exploited by decoders. Plus, behavior seems quite different between Phase 2 and Phase 3. So, it seems likely that the classes you are asking the decoder to separate are highly confounded with temporally structured noise.

      I suggest thinking of how to handle this concern in a rigorous way. A compelling way to address this would be to perform "cross-phase" decoding, however I am not sure if that is possible given the design.

      The time courses also seem concerning. What are we to make of the SR and SC timecourses, which have aggregate decoding dynamics that look to be <1Hz?

      Some sanity checks would be one place to start. Time courses were baselined, but this is often not necessary with decoding; it can cause bias (10.1016/j.jneumeth.2021.109080), and can mask deeper issues. What do things look like when not baselined? Can variables be decoded when they should not be decoded? What does cross-temporal decoding look like - everything stable across all times, etc.?

      (2) The nature of the shared features between SR and SC subspaces is unclear.

      The simulation is framed in terms of the amount of overlap, revealing the number of shared dimensions between subspaces. In reality, it seems like it's closer to 'proportion of volume shared', i.e., a small number of dominant dimensions could drive a large degree of alignment between subspaces.

      What features drive the similarity? What features drive the distinctions between SR and SC? Aside from the temporal confounds I mentioned above, is it possible that some low-dimensional feature, like EEG congruency effect (e.g., low-D ERPs associated with conflict), or RT dynamics, drives discriminability among these classes? It seems plausible to me - all one would need is non-homogeneity in the size of the congruency effect across different items (subject-level idiosyncracies could contribute: 10.1016/j.neuroimage.2013.03.039).

      (3) The time-resolved within-trial correlation of RSA betas is a cool idea, but I am concerned it is biased. Estimating correlations among different coefficients from the same GLM design matrix is, in general, biased, i.e., when the regressors are non-orthogonal. This bias comes from the expected covariance of the betas and is discussed in detail here (10.1371/journal.pcbi.1006299). In short, correlations could be inflated due to a combination of the design matrix and the structure of the noise. The most established solution, to cross-validate across different GLM estimations, is unfortunately not available here. I would suggest that the authors think of ways to handle this issue.

      (4) Are results robust to running response-locked analyses? Especially the EEG-behavior correlation. Could this be driven by different RTs across trials & trial-types? I.e., at 400 ms post-stim onset, some trials would be near or at RT/action execution, while others may not be nearly as close, and so EEG features would differ & "predict" RT.

      (5) I suggest providing more explanation about the logic of the subspace decoding method - what trialtypes exactly constitute the different classes, why we would expect this method to capture something useful regarding ISPC, & what this something might be. I felt that the first paragraph of the results breezes by a lot of important logic.

      In general, this paper does not seem to be written for readers who are unfamiliar with this particular topic area. If authors think this is undesirable, I would suggest altering the text.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank the reviewers for providing thoughtful and constructive feedback, which will help us improve the clarity and rigor of the paper. On balance, the reviews were positive. Reviewer 1 mentioned that “This is a strong manuscript with few problems and all important findings well justified, indeed this is a nicely polished…..high-quality manuscript,” and that “this paper makes a major breakthrough, showing that cell autonomous defects in hTSCs are very likely at the heart of the pathology observed in GIN-prone murine mutants.” Reviewer 3 stated that “The study is well designed, and the manuscript is very well written. The conclusions are supported by the evidence presented.” Reviewer 2 was less enthusiastic, with main concerns being that “The paper is mostly descriptive and often quite confusing leaving one not much closer to understanding the mechanistic basis for the interesting sex-biased semi-lethal phenotype.” and felt that figure titles/section headers overstated the results, and finally recommended to improve some technical aspects and tempering conclusions. The proposed edits we think address most issues raised by the reviewers either with re-writing or adding data as described below.

      In response to reviewer #1 comments:

      Major comments:

      • I am confused as to the basis of the sex-skewing phenomenon? Is the problem that lack of maternally loaded WT Mcm4 worsens the phenotype, or is the issue that Mcm4C3/C3 dams are less able to retain pregnancies, perhaps being a more inflammatory environment? Also, while there quite consistent evidence for reduced viability of Mcm4C3/C3McmGt/+ progeny, especially for female progeny, how confident can we be that the genotype of the dam vs. sire is important? Notably on a Ddx58 background, the progeny of the Mcm4C3/C3 sire included seven live male Mcm4C3/C3McmGt/+ but no female.

      Regarding the first point (sex skewing only when female is C3/C3), we also suspected either: 1) the maternal uterine environment, or 2) reduced oocyte quality. Although not reported in this manuscript, we tested #1 by performing embryo transfer experiments. Transferring 2-cell stage embryos from sex-skewing mating to WT females did not rescue the sex-bias. We then examined oocytes from C3/C3 females. We found evidence for compromised mitochondria and transcriptome disruption. However, we are not sure why this happens (poor follicle support? Oocyte intrinsic phenomenon?). We are reserving these results and additional experiments for another paper, especially since this one mainly deals with GIN and placenta development. If the reviewers feel strongly that the embryo transfer data is crucial, we can include it.

      Regarding how confident we are that the genotype of the dam vs. sire is important, this stems from our previous paper by McNairn et al 2019 (the percentage of female C3/C3 M2/+ from sex-skewing mating is 20% compared to 60% from the reciprocal mating), which was quite dramatic. Consistent with this, MCM levels were significantly reduced in the placentae only when the dam was C3/C3 and the sire C3/+ M2/+, but not in the reciprocal cross. The reviewer makes a good observation about the Ddx58 cross; we can only hypothesize that the mutation somehow sensitizes females in this scenario and will make mention of it in the revision. We also realize that we neglected to write in Methods that the Ddx58 allele was coisogenic in the C3H background.

      • I'm not sure what Supplementary Figure 6 is showing (faster differentiation of C3 but less TGC?). Regardless, it's hard to draw too much conclusion from one not-very-pretty Western blot. This figure requires both additional replicates and a better explanation of how it fits with the other conclusions of the paper..

      We hypothesized that the JZ defect observed in the semi-lethal genotype placentas could arise either from impaired maintenance of the progenitor pool or from reduced capacity of mutant trophoblast progenitors to differentiate into the JZ lineage. The blot in Supplementary Figure 6 was intended as a qualitative demonstration that mutant trophoblast stem cells can differentiate into JZ lineages. We recognize that the figure is not definitive and will revise the text to clarify its purpose. A replicate(s) of the Western will be performed as suggested.

      • Supplementary Figure 7F-G is puzzling. Half of the mESCs have gamma-H2AX at all times, including most in S or G2 phase? In Figure S7E, do the quadrants correspond to being negative or positive for gamma-H2AX? At very least, IF images showing clear gamma-H2AX foci would be much more convincing.

      The gates for γH2AX FACS analysis were established using negative controls lacking primary antibody. As reported previously, embryonic stem cells display high basal levels of γH2AX staining (Chuykin et al., Cell Cycle 2008; Turinetto et al., Stem Cells 2012; Ahuja et al., Nat Comm 2016), which likely explains the broad signal observed across cell cycle phases. Regardless, we will provide immunofluorescence staining of γH2Ax and foci count in our revision.

      • The methods section is well detailed, but it would be ideal to clarify how many replicates each Western Blot or flow cytometry experiment is representative of.

      Thanks for the suggestion. We will update this for Fig4 and Fig5.

      Minor comments:

      • Is it possible that cGAS-STING and RIG pathways act redundantly to cause inflammation and lethality, or that other innate immune components are involved? I don't expect the authors to make compound mutants to test this but at least this possibility should be discussed textually.

      We appreciate the reviewer’s point, and had the same suspicion. Supporting this, we will add new RNA-seq analysis of Tmem173 KO placentas revealed elevated inflammatory gene expression compared to C3/C3 M2/+ controls, consistent with potential redundancy or feedback regulation. We will update in supplementary figures to reflect this.

      In response to reviewer #2 comments:

      Major comments:

      A major concern throughout the paper is that conclusions are often overstating their data. The title of figure 2 is "placentae with replication stress have smaller junctional and labyrinth zones". However, there is no measure of replication stress in this figure, just a histological evaluation of the placentae from the different mutants. The title of figure 3 is "Impact of GIN on LZ is less than JZ," but there is no measure of GIN, but instead measurement of number of cells in cell cycle and some bulk RNA-seq analysis. Title of figure 4 is "TSCs with increased genomic instability exhibit abnormal phenotypes." Again there is no measure of GIN, but instead staining of derived TSCs for proliferation, cell death, and a TSC marker. Title of figure 5 is "DNA damage responses and G2/M checkpoint activation drive premature TSC differentiation." However, there does not appear to be a difference in gH2AX between the two mutant genotypes. Checkpoint proteins might be up, but need quantification and reproduction. > 4C is the only marker of differentiation. Importantly, all the analyses here are associations, not connections, so cannot use the word "drive". Similar issues can be raised with a number of the supplementary figures.

      The Chaos3 (chromosome aberrations occurring spontaneously 3) model is a well-established system of intrinsic chronic replication stress and GIN. It is characterized by ~20 fold elevation of blood micronuclei (Shima et al., Nature 2007), a hallmark of GIN (Soxena et al., Mol Cell 2022); a destabilized MCM2-7 helicase prone to replication fork collapse (Bai et al., PLoS Genet 2016); and increased mitotic chromosome abnormalities and decreased dormant origins (Kawabata et al., Mol Cell 2011; Chuang et al., Nucleic Acid Res 2012) that are known to cause GIN and replication stress (Ibarra et al., PNAS 2008 ). Also, in our previous work (McNairn et al Nature 2019), we showed that placentae from C3/C3 dams exhibit significantly elevated γH2Ax as well as reduced MCM2 and MCM4 protein levels. In our current study, we also observe elevated γH2Ax in mutant TSCs (C3/C3 and C3/C3 M2/+), consistent with genomic instability. Nevertheless, we acknowledge that in TSCs, we did not formally demonstrate replications stress(RS), so where appropriate, we will advise figure titles, for example to say that “cells/placentae with a GIN or RS genotype.”

      We acknowledge the reviewers concern regarding western blots. We will provide quantification and statistics in our revision.

      1) A deeper analysis of the cell lines is likely to be the most fruitful path to reveal interesting mechanisms. It is very surprising that there is no phenotype in ESCs. Authors should check for increased apoptosis. Maybe the phenotypic cells are lost. Or do ESCs use different MCMs/mechanisms of DNA replication or are they better able to handle replication stress and GIN? How many passages were the TSCs and ESCs cultured for? Does GIN (i.e. aneuploidy, CNVs) develop in TSCs and ESCs with passaging? How do the MCM mutations impact the molecular identity of the ESC and TSC cells including their heterogeneity in the population.

      We assessed apoptosis using cleaved caspase 3 flow cytometry in mutant ESCs and observed no difference compared to controls (we will add this data as Supplementary Fig. 7).

      We believe there are intrinsic differences in TSCs and ESCs in their ability to respond to and counteract replication stress and DNA damage. ESCs are known to license more replication origins than somatic cells at a higher rate, which protects them from short G1-induced replication stress (Ahuja et al., Nat Comm 2016; Ge et al., Stem Cell Rep 2015; Matson et al., eLife 2017). Human placental cells physiologically exhibit high levels of mutation rate and chromosomal instability in vivo (Coorens et al., Nature 2021). Supporting this, Wang, D., et al (Nat Comm 2025) reported that several cell cycle and DDR regulators are differentially expressed in human TSCs vs human pluripotent stem cells. Whether such transcriptional differences directly contribute to functional outcomes remains to be determined.

      All experiments in this study were conducted using early-passage ESCs and TSCs (i.e. Finally, we showed that close to 90% mutant ESCs are KLF4+ (a naive pluripotency marker) whereas EOMES+ cells were significantly reduced in TSCs carrying the GIN genotype (Fig. 4E–F and Supplementary Fig. 7), highlighting lineage-specific differences.

      Minor Comments:

      1) There is a lack of quantification and repeats for all Westerns. At minimum there should be three repeats for each experiment, quantification including normalization to a reference protein, and stats confirming any proposed differences between conditions.

      We will update our revision with quantification and statistics for western blots.

      2) I would recommend moving the results in supp table 1 to figure 1. While negative, they are the newer results. The results shown in current figure 1 are essentially a reproduction of their previous work.

      The placental observations presented in Fig.1 are new. In particular, the placental and embryonic weight measurements graphed in Fig1B and C have not been published by our group. Fig1A reproduces our previous observation on embryo viability in GIN mutants (McNairn et al., Nature 2019), while the schematic was provided for better flow and readability given the complex mating schemes. We are agnostic on the Suppl Table 1. It could be changed to a new Table 1 in the main section depending on the journal.

      In response to reviewer #3 comments:

      Major Comments

      While the inclusion of bulk RNAseq data of whole placental tissue is appreciated, the interpretation of the results is somewhat problematic, as it is acknowledged that the cell type composition of the placentas is drastically different between groups. Making conclusions based upon GSEA analysis of two different groups with drastically different cell type composition is somewhat misleading, as based on the results, it is a direct reflection of the cell types present. It would be more helpful to perform cell type deconvolution of the RNAseq data to estimate the proportion of each cell type within the bulk samples and compare that to what is seen histologically and not dive too deeply into the pathways since the results could just be a reflection of the cell types e.g. angiogenesis pathways from more endothelial cells. Additionally, the RNAseq data can be leveraged to look at expression of inflammatory genes by sex, which may show interesting patterns based on the other results.

      We agree that the representation of cell types in the placenta is problematic especially for underrepresented genes. We propose to use the BayesPrism tool (Chu et al., Nat Cancer 2022) to deconvolute bulk RNA-seq for better representation of transcriptional changes in the placenta.

      Section: GIN impairs trophoblast stem cell establishment and maintenance. To support the assertion in the first paragraph, beyond measuring apoptosis, it would be helpful at this stage to look at RNA expression levels indicative of the activation of DNA damage checkpoint genes

      We have performed RNA-seq on mutant ESC and TSCs and are in the process of data analysis. We will update these results in the revision.

      Please include additional methodological details in the methods section on the statistical analysis done for differential expression analysis. Specifically, what type of normalization was used, if lowly expressed genes were filtered out and at what cutoff, what statistical model was used (did you include covariates?), what comparisons were made? Did you stratify by sex? What cutoff was used for statistical significance? Did you perform multiple testing correction?

      We will update RNA-Seq data analysis methods in our full revision.

      2. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1 comments:

      • Supplementary Table 1. would be enhanced greatly showing comparable tables for Mcm4C3/C3 x Mcm4C3/+McmGt/+ in mice without the Tmem173 or Ddx58 mutations. It is fine to recycle data from McNairn 2019 here, as long as the source is indicated, but a comparison is needed.

      Thanks for pointing this out. We have updated this suggestion in Supp table 1.

      • In Figure S3E-F, is the box above each graph supposed to show the genotype of the dam?

      Yes. Thanks for pointing this out. We have added a description in the figure legend to make it clear.

      • "Indeed, the placenta and embryo weights of E13.5 Mcm4C3/C3 Mcm2Gt/+ Mcm3Gt/+ animals were significantly improved vs. Mcm4C3/C3 Mcm2Gt/+ animals, rendering them similar to Mcm4C3/C3 littermates (Fig. 6A-C). The JZ (but not LZ) area in Mcm4C3/C3 Mcm2Gt/+ Mcm3Gt/+ placentae also increased to the level of Mcm4C3/C3 littermates (Fig. 6D-H)." There are two problems here. First, the figure calls are wrong. Second, the description of the data is not quite right, it looks like the C3/C3 and C3/C3 M2/+ M3/+ LZs are a similar size to each and are statistically indistinguishable.

      Thanks for catching this. We have updated these in the main text.

      *Reviewer #2 comments: *

      Minor comment

      • Need to review citations to figures. For example, no citations are made to figure 4a and 4c.

      Thanks for catching this. We have updated the text.

      Reviewer #3 comments:

      Define the first use of >4C DNA content to help readers understand this potentially unfamiliar term.

      We have edited this part to indicate cells with more than 4C DNA content for better clarity.

      iDEP tool - please include citation to manuscript instead of link

      We have updated this citation.

      Check citations. Some citations to BioRxiv that are now published e.g. 13.

      We have updated this citation.

      3. Description of analyses that authors prefer not to carry out

      Reviewer 2

      2) Along similar lines, most of the in vivo phenotypic analyses are performed at E13.5, long after defects are likely beginning to express themselves especially given that they see phenotypes in the TSCs, which represent the polar TE of a E4.5. To understand the primary defects of the in vivo phenotype, they should be looking much earlier. Supplemental figure 5 is a start but represents a rather superficial analysis.

      The peri-implantation period, namely E4.5, represents a “black box” of embryonic development given that this is a critical stage for implantation. Aside from being an extremely difficult stage to analyze technically, we don’t think it is essential to the conclusions (or doable in a timely manner), especially given the use of TSCs. If we complete EdU studies on E6.5 embryos, we will include them.

      3) Fig. 6 would benefit from evidence that MCM3 mutant is rescuing MCM4 levels in the chromatin fraction of cells and the DNA damage phenotype.

      The genetic evidence presented is strong, and although we didn’t do the suggested experiment, we feel that our previous studies (McNairn et al., Nature 2019 and Chuang et al., PLoS Genet 2010) on the effects of MCM3 as a nuclear export factor (as it is in yeast (Liku et al., Mol Biol Cell 2005)) are a reasonable basis for not repeating such experiments. Furthermore, we are no longer maintaining the Mcm3 line and it would take over a year to reconstitute and rebreed triple mutants.

    1. Reviewer #3 (Public review):

      Summary:

      Lmx1a is an orthologue of apterous in flies, which is important for dorsal-ventral border formation in the wing disc. Previously, this research group has described the importance of the chicken Lmx1b in establishing the boundary between sensory and non-sensory domains in the chicken inner ear. Here, the authors described a series of cellular changes during border formation in the chicken inner ear, including alignment of cells at the apical border and concomitant constriction basally. The authors extended these observations to the mouse inner ear and showed that these morphological changes occurred at the border of Lmx1a positive and negative regions, and these changes failed to develop in Lmx1a mutants. Furthermore, the authors demonstrated that the ROCK-dependent actomyosin contractility is important for this border formation and blocking ROCK function affected epithelial basal constriction and border formation in both in vitro and in vivo systems.

      Strengths:

      The morphological changes described during border formation in the developing inner ear are interesting. Linking these changes to the function of Lmx1a and ROCK dependent actomyosin contractile function are provocative.

      Weaknesses:

      There are several outstanding issues that need to be clarified before one can pin the morphological changes observed being causal to border formation and that Lmx1a and ROCK are involved.

      Comments on the latest version:

      The revised manuscript has provided clarity of their results on some levels, but unfortunately, the basal restriction during border formation remains unclear and the study did not advance the understanding of role of Lmx1a in boundary formation. Overall comments are indicated below:

      (1) The authors states in the rebuttal, "we do not think that ROCK activity is required for the formation or maintenance of the basal constriction at the interface of Lmx1a-expressing and non-expressing cells"<br /> If the above is the sentiment of the authors, then the manuscript is not written to support this sentiment clearly, starting with this misleading sentence in the Abstract, "The boundary domain is absent in Lmx1a-deficient mice, which exhibit defects in sensory organ segregation, and is disrupted by the inhibition of ROCK-dependent actomyosin contractility."

      (2) As acknowledged by the authors, the data as they currently stand could be explained by Lmx1a functioning in specifying the non-sensory fate and may not function directly in boundary formation. With this caveat in mind, the role of Lmx1a in boundary formation remains unclear.

      (3) I feel like the word "orchestrate" in the title is an overstatement.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, lacks quantification. This includes the mass spectrometry data , along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.

      • We have uploaded the MS data and added a summary table with the number of peptides and coverage.

      • We have added statistics to the comparisons of DAPI body counts.

      • We have provided additional images of the change in HIM-5 localization

      • We have quantified the overlap (or lack thereof) between XND-1 and HIM-17 and the DNA axis

      Reviewer #2 (Public Review):

      Summary:

      Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.

      In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematodespecific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.

      Weaknesses:

      This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested, and cataloging Y2H interactions does not yield much more insight.

      We appreciate that the reviewer recognized the value of our IP data, but we beg to differ that we rely too heavily on the Y2H. We also provide genetic analysis on bivalent formation to support the physical interaction data. We do acknowledge that there are caveats with Y2H, however, including that a subset of the interactions can only be examined with proteins in one orientation due to auto-activation. While we acknowledge that it would be nice to have IP data for all of the proteins using CRISPR-tagged, functional alleles, these strains are not all feasible (e.g. no functional rec-1 tag has been made) and are beyond the scope of the current work.

      Moreover, most experiments lack rigor, which raises serious concerns about whether the data convincingly supports the conclusions of this paper. For instance, the XND-1 antibody appears to detect a band in the control IP; however, there was no mention of the specificity of this antibody.

      We previously showed the specificity of this antibody in its original publication showing lack of staining in the xnd-1 mutant by IF (Wagner et al., 2010). To further address this, however, we have now included a new supplementary figure (Figure S1) demonstrating the specificity of the XND-1 antibody by Western blot. The antibody detects a distinct band in extracts from wild-type (N2) worms, but this band is absent in two independent xnd-1 mutant strains. This confirms that the antibody specifically recognizes XND-1, supporting the validity of the IP results shown in the main figures.

      Additionally, epistasis analysis of various genetic mutants is based on the quantification of DAPI bodies in diakinesis oocytes, but the comparisons were made without statistical analyses.

      We have added statistical analysis to all datasets where quantification was possible, strengthening the rigor and interpretation of our findings.

      For cytological data, a single representative nucleus was shown without quantification and rigorous analysis. The rationale for some experiments is also questionable (e.g. the rescue by dsb-2 mutants by him-5 transgenes in Figure 2), making the interpretation of the data unclear. Overall, while this paper claims to present "the first comprehensive model of DSB regulation in a metazoan", cataloging Y2H and genetic interactions did not yield any new insights into DSB formation without rigorous testing of their significance in vivo. The model proposed in Figure 4 is also highly speculative.

      Regarding the cytology, we provide new images and quantification of HIM-17 and XND-1 overlap with the DNA axes. We also added full germ line images showing HIM-5 localization in wild type and dsb-1 mutants, to provide a more complete and representative view of the observed phenotype. To further support our findings, we’ve also included images demonstrating that this phenotype is consistently observed with both in live worm with the the him-5::GFP transgene and in fixed worms with an endogenously tagged version of HIM-5.

      Reviewer #3 (Public Review):

      During meiosis in sexually reproducing organisms, double-strand breaks are induced by a topoisomerase-related enzyme, Spo11, which is essential for homologous recombination, which in turn is required for accurate chromosome segregation. Additional factors control the number and genome-wide distribution of breaks, but the mechanisms that determine both the frequency and preferred location of meiotic DSBs remain only partially understood in any organism.

      The manuscript presents a variety of different analyses that include variable subsets of putative DSB factors. It would be much easier to follow if the analyses had been more systematically applied. It is perplexing that several factors known to be essential for DSB formation (e.g., cohesins, HORMA proteins) are excluded from this analysis, while it includes several others that probably do not directly contribute to DSB formation (XND-1, HIM-17, CEP-1, and PARG-1).

      We respectfully disagree with the reviewer’s statement regarding the selection of factors included in our analysis. In this work, our focus was specifically on SPO-11 accessory factors — proteins that directly interact with or regulate SPO-11 activity during doublestrand break formation. Cohesins and chromosome axis proteins (such as the HORMA domain proteins) are essential for establishing the correct chromosome architecture that supports DSB formation, but there is no evidence that they are direct accessory factors of SPO-11. Therefore, they were intentionally excluded from this study to maintain a clear and focused scope on proteins that more directly modulate SPO-11 function.

      Conversely, XND-1, HIM-17, CEP-1, and PARG-1 have all been implicated in regulating aspects of SPO-11-mediated DSB formation or its immediate environment. Although their contributions mayinvolve broader chromatin or DNA damage response regulation, prior literature supports their inclusion as relevant modulators of SPO-11 activity, justifying their analysis within the context of this work.

      The strongest claims seem to be that "HIM-5 is the determinant of X-chromosome-specific crossovers" and "HIM-5 coordinates the actions of the different accessory factors subgroups." Prior work had already shown that mutations in him-5 preferentially reduce meiotic DSBs on the X chromosome. While it is possible that HIM-5 plays a direct role in DSB induction on the X chromosome, the evidence presented here does not strongly support this conclusion. It is also difficult to reconcile this idea with evidence from prior studies that him-5 mutations predominantly prevent DSB formation on the sex chromosomes, while the protein localizes to autosomes.

      HIM-5 is not the only protein that is autosomally enriched but preferentially affects the X chromosome: MES-4 and MRG-1 are both autosomally-enriched but influence silencing of the X chromosome. While HIM-5 appears autosomally-enriched, it does not appear to be autosomal-exclusive. While we would ideally perform ChIP to determine its localization on chromatin, this method for assaying DSB sites is likely insufficient to identify DSB sites which differ in each nucleus and for which there are no known hotspots in the worm.

      him-5 mutants confer an ~50% reduction in total number of breaks and a very profound change in break dynamics (seen by RAD-51 foci (Meneely et al., 2012)). Since the autosomes receives sufficient breaks in this context to attain a crossover in >98% of nuclei, this indicates that the autosomes are much less profoundly impacted by loss of DSB functions than is the X chromosome. Indeed, prior data from co-author, Monica Colaiacovo, showed that fewer breaks occur on the X (Gao, 2015) likely resulting from differences in the chromatin composition of the X and autosome resulting from X chromosome silencing.

      The conclusion that HIM-5 must be required for breaks on the X comes from the examination of DSB levels and their localization in different mutants that impair but do not completely abrogate breaks. In any situation where HIM-5 protein expression is affected (xnd-1, him-17, and him-5 null alleles), breaks on the X are reduced/ eliminated. By contrast, in dsb-2 mutants, where HIM-5 expression is unaffected, both X and autosomal breaks are impacted equally. As discussed above, in the absence of HIM-5 function, there are ~15 breaks/ nucleus. The Ppie1::him-5 transgene is expressed to lower levels than Phim-5::him-5, but in the best case, the ectopic expression of this protein should give a maximum of ~15 breaks (the total # of breaks is thought to be ~30/nucleus). By these estimates, Ppie-1::him-5; him-17 and him-5 null mutants have the same number of breaks. Yet, in the former case, breaks occur on the X; whereas in the latter they do not. The best explanation for this discrepancy is that HIM-5 is sufficient to recruits the DSB machinery to the X chromosome.

      The one experiment that seems to elicit the conclusion that HIM-5 expression is sufficient for breaks on the X chromosome is flawed (see below). The conclusion that HIM-5 "coordinates the activities of the different accessory sub-groups" is not supported by data presented here or elsewhere.

      We have reorganized the discussion to more directly address the reviewers’ concerns. We raise the possibility that HIM-5 has an important role in bringing together the SPO-11 and its interacting components (DSB-1/2/3) with the other DSB inducing factors, including those factors that regulating DSB timing (XND-1), coordination with the cell cycle (REC-1), association with the chromosome axis (PARG-1, MRE-11), and coupling to downstream resection and repair (MRE-11, CEP-1).  

      This raises a natural question: if HIM-5 has such a central role, why are the phenotypes of HIM-5 so mild? We propose that while the loss of DSBs on the X appears mild, more profound effects are seen in the total number, timing, and placement of the DSBs across the genome- all of which are diminished or altered in the absence of HIM-5. The phenotypes of him-5 loss reminiscent of those observed in Prdm9-/- in mice where breaks are relocated to transcriptional start sites and show significant delay in formation. As with PRDM9, the comparatively subtle phenotypes of HIM-5 loss do not diminish its critical role in promoting proper DSB formation in most mammals.

      Like most other studies that have examined DSB formation in C. elegans, this work relies on indirect assays, here limited to the cytological appearance of RAD-51 foci and bivalent chromosomes, as evidence of break formation or lack thereof. Unfortunately, neither of these assays has the power to reveal the genome-wide distribution or number of breaks. These assays have additional caveats, due to the fact that RAD-51 association with recombination intermediates and successful crossover formation both require multiple steps downstream of DSB induction, some of which are likely impaired in some of the mutants analyzed here. This severely limits the conclusions that can be drawn. Given that the goal of the work is to understand the effects of individual factors on DSB induction, direct physical assays for DSBs should be applied; many such assays have been developed and used successfully in other organisms.

      We appreciate the reviewer’s thoughtful comments. We agree that RAD-51 foci are an indirect readout of DSB formation and that their dynamics can be influenced by defects in downstream repair processes. However, in C. elegans, the available methods for directly detecting DSBs are limited. Unlike other organisms, C. elegans lacks γH2AX, eliminating the possibility of using γH2AX as a DSB marker. TUNEL assays, while conceptually appealing, have proven unreliable and poorly reproducible in the germline context. Similarly, RPA foci do not consistently correlate with the number of DSBs and are influenced by additional processing steps.

      Given these limitations, RAD-51 foci remain the most widely accepted surrogate for monitoring DSB formation in C. elegans. While we fully acknowledge the caveats associated with this approach — particularly the potential effects of downstream repair defects — RAD-51 analysis continues to provide valuable insight into DSB dynamics and regulation, especially when interpreted in combination with other phenotypic assessments.

      Throughout the manuscript, the writing conflates the roles played by different factors that affect DSB formation in very different ways. XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes, including genes encoding proteins that directly promote DSBs. Mutations in either xnd-1 or him-17 result in dysregulation of germline gene expression and pleiotropic defects in meiosis and fertility, including changes in chromatin structure, dysregulation of meiotic progression, and (for xnd-1) progressive loss of germline immortality. It is thus misleading to refer to HIM-17 and XND-1 as DSB "accessory factors" or to lump their activities with those of other proteins that are likely to play more direct roles in DSB induction.

      It is clear that we will not reach agreement about the direct vs indirect roles here of chromatin remodelers/transcription factors in break formation. In yeast, there is a precedent for SPP1 and in mouse for Prdm9, both of which could be described as transcription factors as well, as having roles in break formation by creating an open chromatin environment for the break machinery. We envision that these proteins function in the same fashion. The changes in histone acetylation in the xnd-1 mutants supports such a claim.

      We do not know what the reviewer is referring to in statement that “XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes.” While the Carelli et al paper indeed shows a role for HIM-17 in expression of many germline genes, there is only one reference to XND-1 in this manuscript (Figure S3A) which shows that half of XND-1 binding sites overlap with the co-opted germline promoters. There is no transcriptional data at all on xnd-1 mutants, save our studies (referenced herein) that XND-1 regulates him-5 expression.

      For example, statements such as the following sentence in the Introduction should be omitted or explained more clearly: "xnd-1 is also unique among the accessory factors in influencing the timing of DSBs; in the absence of xnd-1, there is precocious and rapid accumulation of DSBs as monitored by the accumulation of the HR strand-exchange protein RAD-51.

      We are not sure what is confusing here. The distribution of RAD-51 foci is significantly altered in xnd-1 mutants and peak levels of breaks are achieved as nuclei leave the transition zone (Wagner et al., 2010; McClendon et al., 2016). There is no other mutation that causes this type of change in RAD-51 distribution.

      "The evidence that HIM-17 promotes the expression of him-5 presented here corroborates data from other publications, notably the recent work of Carelli et al. (2022), but this conclusion should not be presented as novel here.

      We have clarified this in the text. We note that this paper showed alterations in him-5 levels by RNA-Seq but they did not validate these results with quantitative RT-PCR. Thus, our studies do provide an important validation of their prior results.

      The other factors also fall into several different functional classes, some of which are relatively well understood, based largely on studies in other organisms. The roles of RAD50 and MRE-11 in DSB induction have been investigated in yeast and other organisms as well as in several prior studies in C. elegans. DSB-1, DSB-2, and DSB-3 are homologs of relatively well-studied meiotic proteins in other organisms (Rec114 and Mei4) that directly promote the activity of Spo11, although the mechanism by which they do so is still unclear.

      Whilst we agree that we understand some of the functions of the homologs, there are clearly examples in other processes of conserved proteins adopting unique regulatory function. We should not presume evolutionary conservation until proven. Indeed the comparison between the Mer2 proteins becomes particularly relevant here. For example, the RMM complex in plants does not contain PRD3, although this protein is thought to have function in DSB formation and repair (Lambing et al, 2022; Vrielynck et al., 2021; Thangavel et al., 2023). In Sordaria, as well, the Mer2 homolog has distinct functions (Tesse et al., 2017).  

      Mutations in PARG-1 (a Poly-ADP ribose glycohydrolase) likely affect the regulation of polyADP-ribose addition and removal at sites of DSBs, which in turn are thought to regulate chromatin structure and recruitment of repair factors; however, there is no convincing evidence that PARG-1 directly affects break formation.

      Our prior collaborative studies on PARG-1 showed that is has a non-catalytic function that promote DSBs that is independent of accumulation of PAR (Janisiw et al., 2020; Trivedi et al., 2022)

      CEP-1 is a homolog of p53 and is involved in the DNA damage response in the germline, but again is unlikely to directly contribute to DSB induction.

      We respectfully disagree with the reviewer’s statement. While CEP-1 is indeed a homolog of p53 and plays a major role in the DNA damage response, prior work from Brent Derry’s lab and from our group (Mateo et al., 2016) demonstrated that specific cep-1 separationof-function alleles affect DSB induction and/or repair pathway choice independently of canonical DNA damage checkpoint activation. In particular, defects in DSB formation observed in certain cep-1 mutants can be rescued by exogenous irradiation, supporting a direct or closely linked role in promoting DSB formation rather than merely responding to damage. Thus, based on these functional data, we considered CEP-1 a relevant factor to include in our analysis. We have now clarified this rationale in the revised manuscript.

      HIM-5 and REC-1 do not have apparent homologs in other organisms and play poorly understood roles in promoting DSB induction. A mechanistic understanding of their functions would be of value to the field, but the current work does not shed light on this. A previous paper (Chung et al. G&D 2015) concluded that HIM-5 and REC-1 are paralogs arising from a recent gene duplication, based on genetic evidence for a partially overlapping role in DSB induction, as well as an argument based on the genomic location of these genes in different species; however, these proteins lack any detectable sequence homology and their predicted structures are also dissimilar (both are largely unstructured but REC-1 contains a predicted helical bundle lacking in HIM-5). Moreover, the data presented here do not reveal overlapping sets of genetic or physical interactions for the two genes/proteins. Thus, this earlier conclusion was likely incorrect, and this idea should not be restated uncritically here or used as a basis to interpret phenotypes.

      Actually, there is quite good bioinformatic analysis that the rec-1 and him-5 loci evolved from a gene duplication and that each share features of the ancestral protein (Chung et al., 2015). We are sorry if the reviewer casts aspersions on the prior literature and analyses. The homology between these genes with the ancestral protein is near the same degree as dsb-1, dsb-2, or dsb-3 to their ancestral homologs (<17%).

      DSB-1 was previously reported to be strictly required for all DSB and CO formation in C. elegans. Here the authors test whether the expression of HIM-5 from the pie-1 promoter can rescue DSB formation in dsb-1 mutants, and claim to see some rescue, based on an increase in the number of nuclei with one apparent bivalent (Figure 2C). This result seems to be the basis for the claim that HIM-5 coordinates the activities of other DSB proteins. However, this assay is not informative, and the conclusion is almost certainly incorrect. Notably, a substantial number of nuclei in the dsb-1 mutant (without Ppie-1::him-5) are reported as displaying a single bivalent (11 DAPI staining bodies) despite prior evidence that DSBs are absent in dsb-1 mutants; this suggests that the way the assay was performed resulted in false positives (bivalents that are not actually bivalents), likely due to inclusion of nuclei in which univalents could not be unambiguously resolved in the microscope. A slightly higher level of nuclei with a single unresolved pair of chromosomes in the dsb-1; Ppie-1::him-5 strain is thus not convincing evidence for rescue of DSBs/CO formation, and no evidence is presented that these putative COs are X-specific. The authors should provide additional experimental evidence - e.g., detection of RAD-51 and/or COSA-1 foci or genetic evidence of recombination - or remove this claim. The evidence that expression of Ppie-1::him-5 may partially rescue DSB abundance in dsb-2 mutants is hard to interpret since it is currently unknown why C. elegans expresses 2 paralogs of Rec114 (DSB-1 and DSB-2), and the age-dependent reduction of DSBs in dsb-2 mutants is not understood.

      We have removed this claim in part because we have been unable to create the triple mutants strains to analyze COSA-1 foci.

      To the point about 11 vs 12 DAPI bodies: the literature is actually replete with examples of 11 DAPI bodies vs 12 in mutants with no breaks:

      Hinman al., 2021: null allele of dsb-3 has an average of 11.6 +/- 0.6 breaks;

      Stamper et al, 2013, show just over 60% of dsb-1 nuclei with 12 DAPI bodies and 5-10% with 10 DAPI bodies. (Figure 1);

      In addition, we also previously showed (Machovina et al., 2016) that a subset of meiotic nuclei have a single RAD-51 focus and can achieve a crossover. RAD-51 foci in spo-11 were also reported in Colaiacovo et al., 2003.

      Several of the factors analyzed here, including XND-1, HIM-17, HIM-5, DSB-1, DSB-2, and DSB-3, have been shown to localize broadly to chromatin in meiotic cells. Coimmunoprecipitation of pairs of these factors, even following benzonase digestion, is not strong evidence to support a direct physical interaction between proteins.

      Similarly, the super-resolution analysis of XND-1 and HIM-17 (Figure 1EF) does not reveal whether these proteins physically interact with each other, and does not add to our understanding of these proteins functions, since they are already known to bind to many of the same promoters. Promoters are also likely to be located in chromatin loops away from the chromosome axis, so in this respect, the localization data are also confirmatory rather than novel.

      While the binding to promoters would be expected to be on DNA loops, that has not been definitively shown in the worm germ line. The supplemental data of the Carelli paper suggests that there are ~250 binding sites for each protein at these coopted promoters. This could not account for crossover map seen in C. elegans.

      The reviewer states correct that we do not reveal that these proteins interact, but we have shown that the two proteins co-IP and have a Y2H interaction. This interaction is supporedt by a recent publication (Blazickova et al., 2025) corroborating this conclusion and identifies XND-1 in HIM-17 co-IPs also in the presence of benzonase. We do now show, however, by immuno-localization that the two proteins appear to be adjacent, but nonoverlapping. As now described in the text, AlphaFold 3 modeling and structural analysis suggests that the two proteins do interact directly and that the tagged 5’ end of HIM-17 used in our studies is likely to be at least 200nm from the putative XND-1 binding interface, a distance that is consistent with our confocal images showing frequent juxtaposition of the two proteins.

      The phenotypic analysis of double mutant combinations does not seem informative. A major problem is that these different strains were only assayed for bivalent formation, which (as mentioned above) requires several steps downstream of DSB induction. Additionally, the basis for many of the single mutant phenotypes is not well understood, making it particularly challenging to interpret the effects of double mutants. Further, some of the interactions described as "synergistic" appear to be additive, not synergistic. While additive effects can be used as evidence that two genes work in different pathways, this can also be very misleading, especially when the function of individual proteins is unknown. I find that the classification of genes into "epistastasis groups" based on this analysis does not shed light on their functions and indeed seems in some cases to contradict what is known about their functions. ‘

      As described above, each of the proteins analyzed is thought to have a direct role in regulating meiotic DSB formation and single mutant phenotypes are consistent with this interpretation. In almost all-if not all- of these cases, IR induced breaks suppress univalent phenotypes (or uncover a downstream repair defect (e.g. in mre-11)) supporting this conclusion. We have changed the terminology from “epistasis groups” since this is not strict epistasis, but rather, “functional groups”.  

      The yeast two-hybrid (Y2H) data are only presented as a single colony. While it is understandable to use a 'representative' colony, it is ideal to include a dilution series for the various interactions, which is how Y2H data are typically shown.

      The Y2H data are presented as spots on a plate and are from three to four individual transformants per interaction tested, and are not individual colonies. The experiment was repeated in triplicate from different transformations. We have now made this clearer in the materials and methods section. This approach has been successfully used to examine protein interactions in our prior manuscripts of yeast and human proteins [Gaines et al (2015) Nat. Comms 6:7834; Kondrashova et al (2017) Cancer Discovery 7:984; Garcin et al (2019) PLoS Genetics 15:e1008355; Bonilla et al (2021) eLife 1: e68080) Prakash et al (2022) PNAS 119: e2202727119, etc]

      Additional (relatively minor) concerns about these data:

      (1) Several interactions reported here seem to be detected in only one direction - e.g., MRE-11-AD/HIM-5-BD, REC-1-AD/XND-1-BD, and XND-1-AD/HIM-17-BD - while no interactions are seen with the reciprocal pairs of fusion proteins. I'm not sure if some of this is due to pasting "positive" colony images into the wrong position in the grid, but this should be addressed.

      The asymmetry in the interactions observed is due to the well-known phenomenon in yeast two-hybrid (Y2H) assays where certain plasmids exhibit self-activation when fused in one orientation, making interpretation of reciprocal interactions challenging. In our experiment, some of the plasmids indeed showed self-activation in one direction, which likely accounts for the lack of interaction seen with the reciprocal pairs of fusion proteins. We have clarified this point in the Methods.

      (2) DSB-3 was only assayed in pairwise combinations with a subset of other proteins; this should be explained; it is also unclear why the interaction grids are not symmetrical about the diagonal.

      We have now completed the analysis by adding the interactions of DSB-3 with the remaining proteins that were missing from the initial set.

      (3) I don't understand why the graphic summaries of Y2H data are split among 3 different figures (1, 2, and 3).

      We chose to split the graphic summaries of the Y2H data across Figures 1, 2, and 3 because we felt this organization better aligns with the flow of the results presented in each figure. Each set of interactions is shown in the context of the specific experiments and findings discussed in those sections, which we believe helps provide a clearer and more logical presentation of the data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: B) The IP is difficult to interpret - there is a band of the corresponding size to XND-1 in the control lane calling into question the specificity of the IP/Western.

      We added a supplemental figure with the specificity of the antibody showing that there is a background non-specific band.

      C) More information about the mass spectrometry should be included. No indication of the number of times a peptide was identified, or the overall coverage of the identified proteins.

      Done

      This is important as in the results section (line 114) the authors indicate that there was "strong" interaction yet there is no way to assess this.

      D) Why wasn't hatching measured in the him-5p::him-5; him-17(ok424) strain?

      Great question. I guess we need to do this while back out for review. If anyone has suggestions of what to say here. Clearly we overlooked this point but do have the strain.

      E) Quantification of the cytology should be included.

      We have now quantified overlap between XND-1 and HIM-17

      Figure 2: C) Statistics should be included.

      Done

      E) Quantification should be included for the cytology. I recommend changing the eals15 to HIM-5.

      We included better images showing whole gonads instead of one or two nuclei. We were not sure what the reviewers want us to quantify here since the relocalization of the protein to the cytoplasm is very clear.

      I have a general issue with the use of the term epistasis - this is used to order gene function based on different mutant phenotypes, usually with null alleles. While I think the authors have valid points with how they group the different SPO-11 accessory proteins, I do not think they should use the word epistasis, but rather genetic interactions.

      We appreciate the reviewers thoughts on this matter and have removed the term epistasis and use functional groups or genetic interactions throughout the text.

      Figure 4 and the nature of the X chromosome: First, I think it would help the non-C. elegans reader to include a little more information on the X chromosome with respect to its differences compared to the autosomes. I also think that, if possible, it would be beneficial to include a model of the X in Figure 4.

      We have added more about X/autosome differences in the intro and during the discussion of HIM-5 function and have added a figure showing difference in the behavior of the X/autosomes during DSB/crossover formation.

      Minor points:

      Abstract: Given the findings of Silva and Smolikove on SPO-11 breaks, I recommend removing "early" from line 28 in the Abstract.

      Done

      Introduction (line 93): I think "biochemical studies" is a stretch here - I recommend "interaction studies".

      Done

      Results: (lines 160-161): mutations are not required for breaks. Line 172, there is a problem with the sentence.

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) Figure 1B- The signal for XND-1 seems to appear both in the control and him-17::HA IP. Do the authors have tested the specificity of the XND-1 antibody?

      We included a supplementary figure demonstrating the specificity of the XND-1 antibody by Western blot. This was also previously published (Wagner et al., 2010)

      (2) Figure 1D - can the authors provide an explanation why the him-5p::him-5 transgene that drives a higher expression than pie-1p::him-5 fails to suppress the Him phenotype seen in him-17? What are the HIM-5 levels like in these two strains compared to N2 and him-17 null mutants? Can this information provide explanation for the differential effect of the him-5 transgenes?

      We previously reported that him-5p::him-5 drives higher expression than pie-1p::him-5 (McClendon et al, 2016).

      The reason that him-5p::him-5 does not rescue, despite higher wild type expression is that HIM-17 directly regulates expression of him-5. Since HIM-17 does not regulate the pie-1 promoter, the pie-1p::him-5 construct can at least partially suppress the him-17 mutation.

      We have (hopefully) explained this better in the text.  

      (3) Line 102- the subheading "HIM-5 is the essential factor for meiotic breaks in the Xchromosome" may not be appropriate for this section. This is what has previously been known. However, the results in Figure 1 demonstrate that a him-5 transgene can partially rescue the him-17 and ¬xnd-1 phenotype, but not that it is essential for meiotic DSB formation on X chromosomes.

      We think some of the concern here is sematic and have changed the phraseology to say that HIM-5 is SUFFICIENT for DSBs on the X… which had not previously been shown.

      Vis-à-vis the X chromosome, in all genetic backgrounds examined, the absence of HIM-5 consistently results in a complete lack of DSBs on the X. For instance, in dsb-2 mutants— where HIM-5 is still expressed—DSBs are reduced genome-wide, but the X chromosome occasionally retains breaks. In contrast, even a weak allele of him-17 results specifically in the loss of X chromosome breaks, underscoring a unique requirement for HIM-5 in promoting DSBs on the X. While Figure 1 shows that a him-5 transgene can partially rescue him-17 and xnd-1 phenotypes, the consistent observation that X breaks are absent without HIM-5 supports its classification as sufficient for DSB formation on the X chromosome.

      (4) Figure 1E - please consider enlarging the images and showing multiple examples.

      Done.

      I also suggest that the authors perform a more rigorous analysis to support the conclusion that XND-1 and HIM-17 localize away from the axis by quantifying multiple images and doing line-scan analysis.

      Provided. New images are provided in both, the main and supplemental figures, and quantification is included. There is no detectable overlap of the two protein with one another or the DNA axes (see quantification of overlap in Fig. 1).

      (5) Line 162 - This is the first mention of DSB-1, DSB-2, and DSB-3 in the paper. DSB-1 and DSB-2 are Rec114 homologs in C. elegans (Tesse et al., 2017), while DSB-3 is a homolog of Mei4 (Hinman et al., 2021). These proteins should be properly introduced in the introduction with appropriate citations.

      Done. We appreciate the reviewer pointing out that this was the first reference to these genes.

      (6) Line 169 - the rationale for this experiment is unclear. Why did the Y2H interaction between HIM-5 and DSB-1 prompt the authors to test the rescue of dsb-1 or dsb-2 phenotypes by the ectopic expression of him-5? Do the authors have evidence that HIM-5 level is reduced in dsb-1 or dsb-2 mutants?

      We have reorganized this section to better explain the motivation for looking at these interactions. We did see a difference in the localization in HIM-5 in the dsb-1 mutant animals and we did have a sense that HIM-5 was critical for breaks on the X. We reasoned that it could have independent functions in promoting breaks that were not yet appreciated so wanted to do this experiment.

      (7) Line 172 - "very slightly reduced". This claim requires statistical analysis.

      We added statistical analysis, but we also removed this claim.

      (8) Figures 2C and 2D - Can the authors provide an explanation why the pie-1p::him-5 transgene fails to suppress the phenotypes in dsb-1, while the him-5p::him-5 trasgene can? Again, the rationale for these experiments is unclear. Because of this, the interpretation is also unclear.

      The difference in rescue between the pie-1p::him-5 and him-5p::him-5 transgenes likely reflects differences in expression levels. As previously shown (McClendon et al., 2016), the him-5p::him-5 construct results in significantly higher expression of HIM-5 protein compared to pie-1p::him-5. This elevated expression likely explains its ability to partially rescue the dsb-1 phenotype. In contrast, the lower expression driven by the pie-1 promoter is insufficient to compensate for the absence of dsb-1 function. We have clarified the rationale and interpretation of these experiments in the revised manuscript to better reflect this point.

      (9) Lines 184-185 - the data for endogenously tagged HIM-5::3xHA are not shown anywhere in the paper. This must be shown.

      We have added this in the supplemental figures.

      (10) Figure 2D and 2E - what does the localization of pie-1p::him-5::GFP (eaIs15) and him5p::him-5::GFP (eaIs4) look like in wild-type and dsb-1 mutants? Are the cytoplasmic aggregates caused by increased levels of HIM-5 expression? Can the differential behavior of him-5 transgenes provide explanation for differential rescues?

      We now show both live and fixed images of Phim-5::him-5::gfp transgenes, as well as the localization of the endogenously HA-tagged HIM-5 locus (Figure 2 and S3). In all cases, the protein is initially nuclear and then absent from meiotic nuclei with similar timing. The Ppie1::him-5 transgene was very difficult to image due to low expression (even in wild type) so it not shown here. We presume it is the slightly elevated level of expression of the Phim5::him-5::gfp that can explain the differential rescue.

      (11) Lines 221-222, where are the results shown? Please refer to Figure S3.

      Done

      (12) Figure S3 - these need statistical analyses.

      Done

      (13) Lines 230-231 - what about the rec-1; parg-1; cep-1 triple mutant?

      This is an excellent suggestion and not one we have not yet pursued. Given the lack of strong phenotypes in all combination of double mutants, we prioritized other experiments . However, we agree that examining the rec-1; parg-1; cep-1 triple mutant would provide a valuable test of whether these factors act in the same pathway, and we appreciate the reviewer highlighting this potential future direction.

      (14) Line 298 - I suggest the authors take a look at the Alphafold prediction of DSB-1/DSB-2/DSB-3 and the comparison to human and budding yeast Rec114/Mei4 complex in Guo et al., 2022 eLife, which could provide insights into the Y2H results.

      We thank the reviewer for these comments and have indeed used these interactions and predicted homologies to zero in a region of interaction between these proteins that resembles what is seen in humans and yeast with a dimer of REC114 like proteins wraps stabilizing a central Mei4 helix . This is now shown in Figure 3H, I. Satisfyingly, this modeling predicts that a trimer comprised of 2 DSB-1 proteins with DSB-3 is more stable than a DSB1-DSB-2-DSB-3 trimer. This might explain why DSB-2 is not required in young adults and only becomes essential as DSB-1 levels drop in older animals (Rosu et al., 2013)

      (15) Can the authors introduce mutations within the DSB-1 interfaces that disrupt the interaction to either SPO-11 or DSB-2?

      We have begun to address this question by introducing targeted mutations within DSB-1. As shown in Figure 3E and 3F, mutations in the C-terminal region of DSB-1—which includes a core of four α-helices—disrupt its interaction with DSB-2 and DSB-3, but not with SPO-11. These findings suggest that the C-terminus mediates interactions specifically with DSB2 and DSB-3

      (16) Line 323 - The him-5 phenotypes are too weak to support the idea that it serves as the linchpin for the whole DSB complex. Do the authors have an explanation for why him-5 mutants exhibit X-chromosome-specific DSB defects?

      In response to the reviewer, above, and in the text, we have included a more detailed explanation of why we think HIM-5 has a key role in coordinating meiotic break formation. Although, identified for its role on the X, the phenotypes associated with DSB formation in the mutant are really quite pleiotropic and severe.

      (17) Line 436 - C. elegans lacks DSB hotspots.

      Removed

      Minor comments:

      (1) Figure 1A - please show the raw data for the yeast two-hybrid.

      We show representative yeast colonies in Figure S3.

      (2) It looks like the labeling for Figure 1B and 1C are switched.

      Fixed.

      (3) Figure 1B - what does the red box indicate? Please explain it in the legend.

      It indicates the XND-1 band. We added that information in the legend.

      (4) Figure 1C - in the legend, it was noted that the results are from GFP pulldowns of HIM17::GFP. However, the method for Figure 1B and the method section noted that HIM-17 was tagged with 3xHA, and the pull-down was performed using anti-HA affinity matrix. Please reconcile this discrepancy.

      That’s because they were done in two different sets of experiments. For the IPs we used a HIM-17::HA strain and for the MS, a HIM-17::GFP strain.

      (5) Also in Figure 1C - please call Table S2 in the main text when discussing the mass spec results. Also, it is not clear what HIM-17 and GFP indicate in the table. What makes CKU80 different from the other proteins listed under GFP? Please explain more clearly in the legend.

      We have move the table to supplemental data where we have included all of the peptide counts and gene coverage. We have included in the revised method rationale for inclusion in this table which explains why CKU-80 differs.

      (6) Line 527 - it is unclear what experiment was done for HIM-17. Please revise it to indicate that this is for "HIM-17 immunoprecipitation". Also please indicate the strain used for HIM17 pull-down (AV280?).

      (7) Line 113- please be specific about how the HIM-17 IP was performed. Which epitope and strains are used for pull-downs?

      This indeed was AV280. This has been added to the text and methods.

      (8) Figure 1D- What does ND mean? In the text, it was stated that there was only a minor suppression of hatching rates. The hatching rate for him-5p::him-5; him-17 must have been measured, and the data must be presented.

      ND does mean not determined. We have removed the statement about “minor suppression”. We only tested the overall population dynamics in the Phim-5::him-5;him17(ok424) and the DAPI body counts. The failure to suppress the latter suggests there would be no enect on hatching rates, although we did not test this directly. Since we had done this for the Ppie-1::him-5;him-17 strain, we provided this information to further support the claims of genetic rescue by ectopic expression.

      (9) Line 151 - please specify that STED was used.

      We have removed the STED images, and just show the confocal images with Lightning Processing.

      (10) Figure 1E- the authors suggested that HIM-17 and XND-1 mainly localize to autosomes but not the X chromosome. However, there is not enough evidence that the chromosome excluded from HIM-17 staining is indeed an X chromosome.

      (11) Figure 1E (Line 154) - what are the active chromatin markers examined? Where are the data?

      We have previously shown that the chromosome lacking XND-1 staining is the X (Wagner et al., 2010). The X is heterochromatic and chromatin marks associated with active transcription, including H3K4me3 and HTZ-1 (a variant H2A), preferentially localize to autosomes, effectively anti-marking the X chromosome. As shown in the new Figure 1E, a single chromosome has very little XND-1 and HIM-17 associated proteins. This is the X chromosome.

      (12) Line 172 - It should be a comma instead of the period after "In dsb-1 mutants".

      Fixed

      (13) Figure S3H-K - I suggest the authors indicate the alleles of mre-11 (null vs. iow1) on the graph, similarly to him-5(e1490) to avoid confusion.

      Done

      (14) Lines 294 and 600 - Guo et al. 2022 is now published in eLife. The authors must cite the published paper, not the preprint.

      Fixed

      (15) Line 407 - the reference Carelli et al., 2022 is missing.

      Added

      (16) Line 766 - please remove "is" before nuclear.

      Done

      Reviewer #3 (Recommendations For The Authors):

      Major issues:

      In my view, the most interesting mechanistic finding in the paper is the evidence that HIM-5 may not bind to chromatin in the absence of DSB-1. If validated, this would suggest that HIM-5 is likely to be directly involved in a process that promotes break formation, in contrast to factors such as HIM-17 and XND-1. It does not, however, support the idea that HIM-5 is at the top of a hierarchy of DSB factors, as it is interpreted here. More importantly, the data supporting this claim are unconvincing; only a single image of an unfixed gonad from an animal expressing HIM-5::GFP is shown. Immunofluorescence should be performed and the results must be quantified.

      We have provided additional images of the HIM-5 relocalization to show that we observed this in both fixed and live worms with two different tagged strains. The exclusion from the nucleus is seen in all scenarios. Whether the protein now accumulates exclusively in the cytoplasm/ is destabilized is challenging to address with the fixed images due to the arbitrariness of defining “background” staining.

      More generally, this type of analysis, looking at the interdependence of different factors for their association with chromosomes, is much more informative than the genetic interaction data presented in the paper, which does not seem to provide any mechanistic insights into the functions of the factors analyzed. The paper could potentially be greatly improved through a more extensive, systematic analysis of the interdependence of DSBpromoting factors for their localization to chromosomes.

      We have at least added this for XND-1 and HIM-17 and show they are not interdependent for chromosome association. We also provide for the first time data on the localization of HIM-5 in the dsb-1 mutant. Many of the other interactions have already been shown in the literature and/or were not warranted base on the lack of genetic interaction we present here.

      Minor issues:

      The title is vague and inconclusive. A more concrete title summarizing the major findings would help readers to assess whether the work is of interest.

      We have discussed the title extensively with all authors and all would like to keep the current title.

      The authors claim that the expression of HIM-5 from a different promoter (Ppie-1::him-5) but not its endogenous promoter (Phim-5::him-5) can partially rescue the DSB defect in him-17 mutants. To support this claim, they should really quantify the germline expression of HIM-5 in wild-type, him-17, him-17; Ppie-1::him-5, and Phim-5::him-5; him-17.

      We had previously reported the expression in the N2 background of both transgenes (McClendon et al., 2016)

      Panel O appears to be missing from Figure S3.

      Fixed

      The evidence for chromosome fusions in cep-1; mre-11 mutants shown in S4D is not convincing and the claim should be removed unless stronger evidence can be obtained.

      A clearer image has been added

      The basis of the following statement is unclear: "Furthermore, rec-1;him-5 double mutants give an age-dependent severe loss of DSBs (like dsb-2 mutants) suggesting that the ancestral function of the protein may have a more profound effect on break formation." The manuscript does not seem to include data regarding age-dependent loss of DSBs and no other publication is cited to support this claim. The interpretation is also perplexing; I think that it may be predicated on the idea that REC-1 and HIM-5 are paralogs, but as stated above, this claim is not well supported and is likely specious.

      We have added the reference. This was shown in Chung et al., 2013 – the paper that presented the cloning of the rec-1 locus.

  3. Sep 2025
    1. Author response:

      Joint Public Review

      This manuscript puts forward the provocative idea that a posttranslational feedback loop regulates daily and ultradian rhythms in neuronal excitability. The authors used in vivo long-term tip recordings of the long trichoid sensilla of male hawkmoths to analyze spontaneous spiking activity indicative of the ORNs' endogenous membrane potential oscillations. This firing pattern was disrupted by pharmacological blockade of the Orco receptor. They then use these recordings together with computational modeling to predict that Orco receptor neuron (ORN) activity is required for circadian, not ultradian, firing patterns. Orco did not show a circadian expression pattern in a qPCR experiment, and its conductance was proposed to be regulated by cyclic nucleotide levels. This evidence led the authors to conclude that a post-translational feedback loop (PTFL) clockwork, associated with the ORN plasma membrane, allows for temporal control of pheromone detection via the generation of multi-scale endogenous membrane potential oscillations. The findings will interest researchers in neurophysiology, circadian rhythms, and sensory biology. However, the manuscript has limited experimental evidence to support its central hypothesis and is undermined by several questionable assumptions that underlie their data analysis and model builds, as well as insufficient biological data, including critical controls to validate and/or fully justify the model the authors are proposing.

      We thank the reviewers for their thorough and thoughtful comments and believe that the manuscript will be much stronger once we incorporate the requested changes.

      Please note that we used ORN as acronym for “olfactory receptor neuron” throughout the manuscript. ORNs contain odorant receptors (ORs), and in insects these ORs have to associate with the olfactory receptor co-receptor (Orco) in the cilium of the neuron to form functional OR-Orco complexes for odorant detection. Besides this chaperone function, Orco can form homomers with the potential to act as ionic pacemaker channels; a role which we explore in this study.

      Strengths:

      The study is notable for its combination of long-term in vivo tip recordings with computational modeling, which is technically challenging and adds weight to the authors' claims. The link between Orco, cyclic nucleotides, and circadian regulation is potentially important for sensory neuroscience, and the modeling framework itself - a stochastic Hodgkin-Huxley formulation that explicitly incorporates channel noise - is a solid and forward-looking contribution. Together, these elements make the study conceptually bold and of clear interest to circadian and olfactory biologists.

      Major weaknesses:

      At the same time, several limitations temper the conclusions. The pharmacological evidence relies on a single antagonist and concentration, without key controls. The circadian analysis is based on relatively small numbers of neurons, with rhythms detected only in subsets, and the alignment procedure used in constant darkness raises concerns of bias. The molecular evidence is sparse, with only three qPCR timepoints, and the model, while creative, rests on assumptions that are not yet fully supported by in vivo data.

      Please see our responses to the detailed comments.

      Detailed comments are provided below:

      (1) The role for Orco proposed in the authors' model largely stems from the effects seen following the administration of (a single dose) of the Orco antagonist, OLC15. However, this hypothesis is undercut by the lack of adequate pharmacological controls, including a basic multipoint OLC15 dose-response series in addition to the administration of blockers for the other channels that are embedded in their model, but which were ruled out as being involved in the modulation of biological rhythms. In addition, these studies would (ideally) also benefit from the inclusion of the same concentration (series) of an inactive OLC15 analog to better control for off-target effects.

      The Orco agonist VUAA1 (Jones et al., 2011) binds directly to Orco and increases the channel open time probability. In M. sexta hawkmoths, we have already published that VUAA 1 increases the low spontaneous activity of ORNs in a dose-dependent fashion (Nolte et al., 2016). Chen and Luetje (2012) systematically varied the chemical structure of VUAA1 to identify new Orco ligands and discovered 22 Orco Ligand Candidates (OLC) that either activated or inhibited Orco. In their heterologous expression system, Orco was most sensitive to inhibition by OLC15. Based on these results, we published a dose-response curve of OLC15 inhibition (1-100 µM) using in vivo tip recordings of pheromone-sensitive long trichoid sensilla of M. sexta (Nolte et al., 2016). In that study, we could also demonstrate that OLC15 antagonizes the VUAA1 activation of Orco.

      Furthermore, we tested other published Orco antagonists in in vivo assays in intact hawkmoths, focusing on amiloride-derived antagonists, because we previously identified an amiloride-sensitive cation channel in hawkmoth ORNs. We found that, in contrast to OLC15, the amilorides HMA and MIA were not Orco-specific but instead affected different targets depending on time-of-day (Nolte et al., 2016). Based on those experiments and the dose-response curves we determined that the Orco agonist VUAA1 (Jones et al., 2011) and the Orco antagonist OLC15 (Chen and Luetje, 2012) worked best in hawkmoth ORNs to target Orco pharmacologically. Based on comparative tests with other published Orco antagonists we settled since then in all further experiments on a dose of 50 µM OLC15.

      We will clarify the Methods section accordingly.

      (2) The expression pattern of Orco was assessed using qPCR at only three timepoints. Rhythmic transcripts can easily be missed with such sparse sampling (Hughes et al., 2017). A minimum of six evenly spaced timepoints across a 24-hour cycle would be required to confidently rule out circadian transcriptional regulation. In addition, the use of the timeless mRNA control from another study is not acceptable. Furthermore, qPCR analysis measures transcript abundance, not transcription, as the authors repeatedly state. Transcriptional studies would require nuclear run-off or, more recently, can be done with snRNAseq analysis. Taken together, these concerns undermine the authors' desire to rule out TTFL-based control that directly led them to implicate a PTTF-based model.

      We agree with the referees that more time points and a direct comparison between timeless and Orco mRNA levels should be included in this manuscript. We will include these additional qPCR experiments and edit the manuscript to make clear that we measure transcript abundance, but we will not perform snRNAseq analysis due to time- and financial constraints. We are currently working on the transcriptional control of Orco, both during ontogeny and throughout the day but this work in progress is beyond the scope of this manuscript.

      (3) The modelling presented is based on Orco as a ZT-dependent conductance tied to the cAMP oscillations that were reported by this group in the cockroach and from the presence and functionality in Manduca of homomeric Orco complexes that are devoid of tuning ORs. While these complexes have been generated in cell culture and other heterologous expression systems, as well as presumably exist in vivo in the Drosophila empty neuron and other tuning OR mutants, there is no evidence that these complexes exist in wild-type Manduca ORNs. While this doesn't necessarily undermine every aspect of their models, the authors should note the presence of Orco/OR complexes rather than Orco homomeric complexes.

      Our ELISAs found circadian oscillations in cAMP levels not only in antennae of the Madeira cockroach (Schendzielorz et al., 2014, 2012), but also in hawkmoth antennae (Schendzielorz et al., 2015). We will add the 2015 citation to the Modeling chapter in the Methods section to clarify this.

      We agree with the referees that we cannot distinguish between Orco homo- and heteromers in the different compartments of our hawkmoth ORNs. Thus, as the referee suggests, we will add text regarding the presence and localization of OR-Orco heteromers. However, we have indications that Orco homomers could indeed be present in the hawkmoth ORNs. In a heterologous expression system, MsexOrco expression alone was sufficient to increase intracellular Ca<sup>2+</sup> levels in response to VUAA1 application (Nolte et al., 2013). In differentiating primary cell cultures of hawkmoth antennae, Orco expression started during a developmental time window where ORNs did not yet express pheromone receptors, and Orco affected spontaneous activity (Nolte et al., 2016). Thus, Orco homomers are present in developing hawkmoth ORNs during a time window where ORNs already express spontaneous activity but cannot heteromerize with pheromone receptors. However, we do not know whether and in what ratio homo- and heteromers of Orco and ORs are present in the respective sensillum compartments of adult hawkmoths (Nolte et al., 2013; Stengl, 1994; Stengl and Hildebrand, 1990).

      We will clarify our manuscript accordingly.

      (4) Some aspects of the authors' models, most notably the decision to phase align/optimize their DD and OLC15 recordings, are likely to bias their interpretations.

      It is consensus that insects display daily and circadian rhythms in pheromone-dependent mating, odor-gated feeding, and egg-laying behavior that phase-locks to environmental rhythms, corresponding with daily/circadian rhythms of sensory neuron physiology (e.g., Merlin et al., 2007; Rymer et al., 2007; Schendzielorz et al., 2015, 2012). However, circadian rhythms can be easily masked by stress, like the disturbances during a very challenging long-term recording experiment over several days. In addition, we observed in our animal raising facility that in LD 17:7 light-dark cycles the originally nocturnal hawkmoths M. sexta distribute their activity patterns over the course of the day, finding nocturnal as well as diurnal hawkmoths. Thus, light-dark cycles were not enough to ensure phase-synchronized behavioral rhythms, and it is very likely that the nocturnal hawkmoths rely heavily on pheromone/odor dependent synchronization as also found in other moth species (Ghosh et al., 2024). Here, we used isolated males that were never exposed to the female pheromones so that their circadian activity patterns readily disperse. Therefore, it became necessary in free-running conditions to first determine the respective behavioral rhythm for each animal, and then to phase-align their activity patterns to allow for statistical analysis. Otherwise, circadian differences would average out in a free-running population. As requested by the referees in point (7), we will use additional tests for rhythmicity in each of our recordings and revise the manuscript accordingly.

      Assuming that hawkmoths need pheromone presence as additional Zeitgeber, we are currently working on a new set of experiments where we attempt to improve synchronization by exposure to LD cycles and pheromone before DD and OLC15 recordings. We will add these experiments to the manuscript.

      (5) The tip recordings from long trichoid sensilla are critical aspects of this study. These recordings were carried out on upper sensillar tips located on the distal-most second annulus. Since there are approximately 80 annuli on the Manduca antennae, it is unclear whether the recordings are representative of the antennal response.

      We think the reviewers might have misinterpreted our description of the recording site. In the Methods, we state that we clip off the 20 most distal annuli (leaving a stump of about 60 annuli) and insert the reference electrode into the flagellum up to the second annulus from the cut end, i.e., the recording site is located at 2/3 – 3/4 of the antenna length as seen from the head of the animal. We will make this more clear in the Methods section.

      In addition, our lab did show with antibody stainings against Orco that apparently all ORNs that innervate long and short trichoid sensilla along the whole flagellum express the same staining pattern (Nolte et al., 2016). Furthermore, our patch clamp recordings of primary cell cultures of whole male antennae found largely overlapping ion channel populations across ORNs. This would indicate that all ORNs, whether they express pheromone- or general odorant receptors, could potentially share the same Orco-dependent spontaneous activity rhythms. In our lab, different experimenters from different years that recorded from long trichoid sensilla on different annuli did not detect obvious differences in neither the spontaneous activity nor the pheromone responses (c.f., Dolzer et al., 2003; Gawalek and Stengl, 2018; Schneider et al., 2025). Thus, it is very likely that we are reporting a general encoding mechanism that is not locally restricted along the antennal flagellum.

      (5.1) The authors do not provide any data in support of their cAMP/cGMP-based Orco gating…

      There are publications supporting cyclic nucleotide gating of Orco in Drosophila, but only after previous phosphorylation via protein kinase C (PKC; review: (Wicher and Miazzi, 2021)). Since Orco is very conserved among insect species, it is likely that these PKC and cGMP/cAMP-dependent regulations are present in other insect species. We are currently running thorough tip-recording experiments on the regulation of Orco gating, which are beyond the scope of this manuscript. However, we will add a set of experiments to this manuscript that demonstrates cAMP gating of Orco.

      (5.2)… and the PTTF model proposed is somewhat disappointing.

      For a detailed introduction of our PTFL membrane clock hypothesis please see our opinion paper (Stengl and Schneider, 2024).

      (5.3) The model seems to be influenced by their long-held proposal that insect olfactory signaling has a critical metabotropic component involving cyclic nucleotides, PKC, etc, a view that may be influenced by the use of Orco homomeric complexes generated in HEK cells.

      Indeed, we propose a metabotropic pheromone-transduction cascade, which in moths and cockroaches is based on G-protein-mediated activation of phospholipase C but not on adenylyl cyclase activation. Our hypothesis is not influenced by HEK cell heterologous expression studies of Orco but is supported by our own work comparing in vivo tip recordings of intact hawkmoths with patch clamp experiments on hawkmoth primary cell cultures of olfactory receptor neurons, which are able to respond to their species-specific pheromones in vitro ((Schneider et al., 2025; Stengl, 2010; Stengl and Funk, 2013; Wicher and Miazzi, 2021). In addition, a multitude of publications by other laboratories with in vivo and in vitro studies using physiological, genetic, and immunocytochemical assays all support a metabotropic signal transduction cascade in insect olfaction (reviews: Stengl, 2010; Stengl and Funk, 2013; Wicher and Miazzi, 2021). In contrast, the hypothesis suggesting a solely ionotropic pheromone- and general odor-dependent transduction cascade for all insect species is based on very sparse experimental evidence, based primarily on heterologous expression studies such as HEK cells that lack the insect’s WT molecular surroundings, and thus, cannot predict OR-Orco function in vivo. Furthermore, the ionotropic hypothesis is heavily based upon the argument that an inverse 7TM receptor cannot couple to G-proteins, which lacks careful backup via biochemical and structural studies. In addition, the ionotropic hypothesis lacks support via carefully performed physiological in vivo studies in different insect species that paid attention to analysis of the distinct kinetic components of ORN´s odor/pheromone responses and that employ physiological concentrations and durations of odor/pheromone stimuli (please see our most recent publication by Schneider et al. (2025)).

      (5.4) Nevertheless, structural studies on Orco do not support a cyclic nucleotide binding site, although PKC-based phosphorylation has been implicated in the fine-tuning/adaptation of olfactory signaling.

      While structural studies did not find evidence for conserved known cyclic nucleotide binding sites on Orco, this does not exclude the presence of so far unknown binding sites, or via sites that fold out only after a specific sequence of previous phosphorylations of the many phosphorylation sites on Orco. Indeed, physiological studies in Drosophila presented evidence for cyclic nucleotide dependence of Orco after previous PKC-dependent phosphorylation (Getahun et al., 2013). Our ongoing in vivo experiments in hawkmoths further corroborate a PKC- and cAMP-dependent modulation of Orco. These studies will be published in a follow-up publication.

      (6) Because only 5/11 LD and 7/10 DD animals showed daily rhythms, with averages lacking clear daily modulation, the methods are not sufficiently reliable enough to reveal novel underlying mechanisms of circadian rhythm generation. The reported results are therefore not yet reliable or quantifiable. To quantify their results, the authors should apply tests for circadian rhythmicity using methods such as RAIN, JTK CYCLE, MetaCycle, or Echo. The use of FFT and Wavelet is applauded, but these methods do not have tests of significance for rhythms and can be biased when analyzing data in which there could only be 1-3 circadian cycles. Because the conclusions appear to be based on 11-12 neurons that were recorded for 2-4 days, the reader is concerned that the methods are not yet perfected to provide strong evidence for circadian regulation of spontaneous firing of ORNs. The average data (e.g., Figure 3Bii and 3Cii) highlight the apparent lack of daily rhythms. In summary, the results would be more compelling if more than 50% of the recordings had significant circadian amplitudes and with similar periods and phases.

      The long-term tip-recordings of intact hawkmoths are very challenging and take a very long time to accomplish, thus, we are very happy that we succeeded in obtaining so many of them (N=34). Since 5/11 LD recordings and 7/10 DD recordings revealed daily/circadian rhythmicity and since many other physiological recordings at different ZTs of different members of our laboratory all revealed ZT-dependent pheromone-transduction we can be certain that the physiology of hawkmoth antennae is under strict circadian control. Please see also our response to (4) above commenting the phase-dispersal of activity rhythms observed in our experiments, as well as in the behavior of hawkmoth males in the mating cage.

      Nevertheless, we will follow the advice of the referees to apply additional tests for significance of rhythms in spontaneous activity, and we are thankful for the tests suggested that we were not aware of.

      (7) The statement that circadian patterns of ORN firing are lost with the Orco antagonist (OLC15) is not strongly supported. The manuscript should be revised to quantify how Orco changed circadian amplitude in the 12 recorded neurons. Measures of circadian amplitude can avoid confusing/vague statements like Line 394 “low and high frequency bands appeared to merge during the activity phase around ZT 0 in the animals that showed clear circadian rhythms (N = 5 of 11 in LD)”. The conclusion that Orco blocks circadian firing appears to be contradicted by Figure 6, which indicates that ~6 of these neurons had circadian periods detected by wavelet. The manuscript would be strengthened with details about the specificity and reproducibility of the Orco antagonist. The authors quantify the gradual decrease in firing with the slope of a linear fit to estimate how the “effectiveness [of OLC15] increased over time.” They conclude that the drug “obliterated circadian rhythms and attenuated the spontaneous activity in several, but not all experiments (N = 8 of 12).” The report would be greatly strengthened with corroborating data from additional Orco antagonists and additional doses of OLC15 (the authors use only 50 uM OLC15).

      We will revise our data analysis, according to the valuable suggestions of the referees.

      However, based upon our previous studies with other Orco antagonists and different doses of OLC15 (Nolte et al., 2016) we found that 50 µM OLC15 is the best Orco antagonist dose in M. sexta to target Orco-dependent modulation of spontaneous action potential activity of hawkmoth olfactory receptor neurons. Please see also our response to (1).

      (8) The manuscript includes several statements that are more speculation than conclusion. For example, there is no evidence for tuning or plasticity in this report. Statements like the following should be removed or addressed with experiments that show changes in odor response specificity or sensitivity: "ORN signalosomes are highly plastic endogenous PTFL clocks comprising receptors for circadian and ultradian Zeitgebers that allow to tune into internal physiological and external environmental rhythms as basis for active sensing." (Discussion Line 622). The paper concludes that (line 380) "mean frequency of spontaneous spiking and the frequency of bursting expressed daily modulation, and are both most likely controlled via a circadian clock that targets the leak channel Orco." This is too bold given the available results.

      We will revise the discussion accordingly and clarify which statements are supported via published evidence and which are predictions based upon our novel hypothesis published in our opinion paper (Stengl and Schneider, 2024).

      (9.1) Because Orco conductance is modulated by cyclic nucleotides, it remains highly plausible that circadian regulation occurs upstream at the level of signaling pathways (e.g., calcium, calcium-binding proteins, GPCRs, cyclases, phosphodiesterases).

      We agree with the referees that it is very likely that there are multiple layers of interconnected feedback cycles that control Orco localization and activity. Our novel hypothesis suggests interlocked TTFL and PTFL control of physiological circadian rhythms, not strictly hierarchical TTFL control, which would require a daily turnover of membrane proteins and transcriptional control via the established TTFL clock in insect ORNs. We currently search for TTFL control at all levels of odor/pheromone transduction using ZT-dependent transcriptomics in combination with qPCR and single nuclear transcriptomics, involving also all the molecules suggested by the referees. These studies are ongoing, are very time- and money-consuming, and are beyond the scope of this manuscript.

      (9.2) The possibility that circadian oscillations of cyclic nucleotides are generated by the canonical TTFL mechanism has not been excluded. In fact, extensive work in Drosophila has demonstrated that the TTFL-based molecular clock proteins are required for circadian rhythms in olfaction.

      Our experiments that test circadian TTFL control at different levels of the cAMP transduction cascade in hawkmoth antennae are on the way and are part of another publication. We will revise our discussion accordingly.

      The experiments published for TTFL dependent control of Drosophila olfaction that we are aware of (Krishnan et al., 1999; Tanoue et al., 2004) do not exclude interlinked PTFL and TTFL clocks. Krishnan et al. (1999) demonstrate that the TTFL clock in antennal olfactory receptor neurons correlates with circadian rhythms in odor responses measured in electroantennogram (EAG) recordings, not in single sensillum recordings as in our experiments. EAG recordings comprise not only voltage responses of the olfactory sensory neurons but also voltage changes generated in non-neuronal antennal cells such as trichogen and tormogen cells that built the transepithelial potential gradient via vATPases that generates the high K<sup>+</sup> concentration in the sensillum lymph (Jain et al., 2024; Klein, 1992; Thurm and Küppers, 1980). In addition, EAG recordings most likely contain responses of afferent neurons originating from somata in the brain that maintain central control of the antennae. Thus, EAG recordings are difficult to interpret.

      (11) A defining feature of circadian oscillators is the feedback mechanism that generates a time delay (e.g., PERIOD/TIMELESS repressing their own transcription). While the authors describe how cyclic nucleotides can regulate Orco conductance, they do not provide a convincing explanation of how Orco activity could, in turn, feed back into the proposed PTFL to sustain oscillations. For these reasons, the authors should consider:

      a) Providing a broader discussion of non-TTFL models of circadian rhythms (e.g., redox cycles, post-translational modifications).

      We will revise the discussion accordingly.

      b) Reassessing Orco expression using a higher-resolution temporal sampling ({greater than or equal to}6 timepoints per 24 h).

      We will add those experiments to the revised version of the manuscript (see our response to (2)).

      c) Clarifying or revising the PTFL model to explicitly address how feedback would be achieved. Alternatively, the data may be more consistent with Orco conductance rhythms being regulated by post-translational mechanisms downstream of the canonical TTFL oscillator, as suggested by the Drosophila olfactory system literature.

      We will revise the manuscript accordingly.

      Minor weaknesses:

      (1) The authors should compare the firing patterns of ORN neurons to the bursts, clusters, and packets of retinal efferent spikes reported in Liu JS and Passaglia CL (2011; JBR). By comparing measures in moths to measures in Limulus, the authors might be able to address the question: Is the daily firing pattern of ORN neurons likely a conserved feature of circadian control of sensory sensitivity?

      We will revise the discussion accordingly.

      (2) The methods need further details. For example, it is unclear if or how single neuron activity was discriminated and whether the results were compromised by the relatively large environmental fluctuations in temperature (21-27oC), humidity (35-60%), or other cues known to modulate spontaneous firing.

      We will clarify the Methods section.

      References

      Chen S, Luetje CW. 2012. Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit. PLOS ONE 7:e36784. doi:10.1371/journal.pone.0036784

      Dolzer J, Fischer K, Stengl M. 2003. Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J Exp Biol 206:1575–1588. doi:10.1242/jeb.00302

      Gawalek P, Stengl M. 2018. The Diacylglycerol Analogs OAG and DOG Differentially Affect Primary Events of Pheromone Transduction in the Hawkmoth Manduca sexta in a Zeitgebertime-Dependent Manner Apparently Targeting TRP Channels. Front Cell Neurosci 12:218. doi:10.3389/fncel.2018.00218

      Getahun MN, Olsson SB, Lavista-Llanos S, Hansson BS, Wicher D. 2013. Insect Odorant Response Sensitivity Is Tuned by Metabotropically Autoregulated Olfactory Receptors. PLOS ONE 8:e58889. doi:10.1371/journal.pone.0058889

      Ghosh S, Suray C, Bozzolan F, Palazzo A, Monsempès C, Lecouvreur F, Chatterjee A. 2024. Pheromone-mediated command from the female to male clock induces and synchronizes circadian rhythms of the moth Spodoptera littoralis. Curr Biol 34:1414-1425.e5. doi:10.1016/j.cub.2024.02.042

      Jain K, Prelic S, Hansson BS, Wicher D. 2024. Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells. Insects 15:1016. doi:10.3390/insects15121016

      Jones PL, Pask GM, Rinker DC, Zwiebel LJ. 2011. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci 108:8821–8825. doi:10.1073/pnas.1102425108

      Klein U. 1992. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J Exp Biol 172:345–354. doi:10.1242/jeb.172.1.345

      Krishnan B, Dryer SE, Hardin PE. 1999. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400:375–378. doi:10.1038/22566

      Merlin C, Lucas P, Rochat D, François M-C, Maïbèche-Coisne M, Jacquin-Joly E. 2007. An Antennal Circadian Clock and Circadian Rhythms in Peripheral Pheromone Reception in the Moth Spodoptera littoralis. J Biol Rhythms 22:502–514. doi:10.1177/0748730407307737

      Nolte A, Funk NW, Mukunda L, Gawalek P, Werckenthin A, Hansson BS, Wicher D, Stengl M. 2013. In situ Tip-Recordings Found No Evidence for an Orco-Based Ionotropic Mechanism of Pheromone-Transduction in Manduca sexta. PLOS ONE 8:e62648. doi:10.1371/journal.pone.0062648

      Nolte A, Gawalek P, Koerte S, Wei H, Schumann R, Werckenthin A, Krieger J, Stengl M. 2016. No Evidence for Ionotropic Pheromone Transduction in the Hawkmoth Manduca sexta. PLOS ONE 11:e0166060. doi:10.1371/journal.pone.0166060

      Rymer J, Bauernfeind AL, Brown S, Page TL. 2007. Circadian rhythms in the mating behavior of the cockroach, Leucophaea maderae. J Biol Rhythms 22:43–57. doi:10.1177/0748730406295462

      Schendzielorz J, Schendzielorz T, Arendt A, Stengl M. 2014. Bimodal Oscillations of Cyclic Nucleotide Concentrations in the Circadian System of the Madeira Cockroach Rhyparobia maderae. J Biol Rhythms 29:318–331. doi:10.1177/0748730414546133

      Schendzielorz T, Peters W, Boekhoff I, Stengl M. 2012. Time of Day Changes in Cyclic Nucleotides Are Modified via Octopamine and Pheromone in Antennae of the Madeira Cockroach. J Biol Rhythms 27:388–397. doi:10.1177/0748730412456265

      Schendzielorz T, Schirmer K, Stolte P, Stengl M. 2015. Octopamine Regulates Antennal Sensory Neurons via Daytime-Dependent Changes in cAMP and IP3 Levels in the Hawkmoth Manduca sexta. PLOS ONE 10:e0121230. doi:10.1371/journal.pone.0121230

      Schneider AC, Schröder K, Chang Y, Nolte A, Gawalek P, Stengl M. 2025. Hawkmoth Pheromone Transduction Involves G-Protein–Dependent Phospholipase Cβ Signaling. eNeuro 12:ENEURO.0376-24.2024. doi:10.1523/ENEURO.0376-24.2024

      Stengl M. 2010. Pheromone Transduction in Moths. Front Cell Neurosci 4:133. doi:10.3389/fncel.2010.00133

      Stengl M. 1994. Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol A 174:187–194. doi:10.1007/BF00193785

      Stengl M, Funk NW. 2013. The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199:897–909. doi:10.1007/s00359-013-0837-3

      Stengl M, Hildebrand JG. 1990. Insect olfactory neurons in vitro: morphological and immunocytochemical characterization of male-specific antennal receptor cells from developing antennae of male Manduca sexta. J Neurosci 10:837–847. doi:10.1523/JNEUROSCI.10-03-00837.1990

      Stengl M, Schneider AC. 2024. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 14:1243455. doi:10.3389/fphys.2023.1243455

      Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE. 2004. Circadian Clocks in Antennal Neurons Are Necessary and Sufficient for Olfaction Rhythms in Drosophila. Curr Biol 14:638–649. doi:10.1016/j.cub.2004.04.009

      Thurm U, Küppers J. 1980. Epithelial physiology of insect sensilla In: Locke M, Smith DS, editors. Insect Biology in the Future. Academic Press. pp. 735–763. doi:10.1016/B978-0-12-454340-9.50039-2

      Wicher D, Miazzi F. 2021. Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors. Cell Tissue Res 383:7–19. doi:10.1007/s00441-020-03363-x

    1. Botryllus schlosseri (Tunicata) is a colonial chordate that has long been studied for its multiple developmental pathways and regenerative abilities and its genetically determined allorecognition system based on a polymorphic locus that controls chimerism and cell parasitism. We present the first chromosome-level genome assembly from an isogenic colony of B. schlosseri clade A1 using a mix of long and short reads scaf-folded using Hi-C. This haploid assembly spans 533 Mb, of which 96% are found in 16 chromosome-scale scaffolds. With a BUSCO completeness of 91.2%, this complete and contiguous B. schlosseri genome assembly provides a valuable genomic resource for the scientific community and lays the foundation for future investigations into the molecular mechanisms underlying coloniality, regeneration, histocompatibility, and the immune system in tunicates.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf097), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 3: Cristian Canestro

      TO THE AUTHORS

      In this MS entitled 'First chromosome-level genome assembly of the colonial chordate model Botryllus schlosseri (Tunicata)', Olivier De Thier and colleagues report the first chromosome-scale assembly of this colonial ascidian specie, paying special attention to differences with previous published assemblies and importantly between haplotypes. The MS is very well written, very easy and pleasant to read. This provides data of great quality and very relevant not only for the ascidian/tunicate community, but to the field of genome structural evolution. I firmly recommend it for publication, although I think that the authors could discuss it in deeper detail. Specially, I miss for instance a more elaborate discussion of the results in our understanding of the similarities and differences between clades that have been published in the last years (I have not been able to find some relevant articles in this regard cited in the bibliography). I also feel that a deeper analysis of the differences between haplotypes could be very interesting, unless they are artifactual effects of the assemblies. As mentioned below, unless this is part of a longer story for a different MS beyond the scope of this one, I encourage the authors to validate some of the differences they find between haplotypes, and try to correlate the structural variations, with differences in gene counts between haplotypes, and to explore whether these differences could be correlated with aspects of biological relevance. I miss, for instance, Venn diagrams with gene contents between previous assemblies, and the haplotypes/haploid genome here reported. In any case, I firmly recommend this MS for publications, since most of my suggestions are not intended to interrogate the results of the MS, but to improve it, but I also understand that some may go beyond the scope of this MS.

      Minor points: Introduction Page 1: "the basic body plan of adult tunicates is highly conserved across the entire subphylum [3]". This sentence, which could be OK for ascidians, probably provides a highly simplified vision of Tunicate adult morphologies, specially comparing the divergent morphologies of Thaliaceans and Appendicularians. Please, elaborate the sentence.

      To understand the comparisons between the data of this MS and previously reported genomes, it seems crucial to understand well the meaning of the "clades and subclades". Please, include in the introduction (or where needed), how are defined those clades, which are their origins and biological/geographical differences, … and all the critical information that will specially help non-tunicate readers to understand the results.

      Results: The authors refer to the presence of large-scale genomic palindromes in Bs1 and Bs3. But it is unclear what are these structures. I suggest to please provide some more detailed explanation about the palindromic nature of these regions.

      The data of haplotype-resolved assemblies is very interesting. I wonder if it is possible to somehow measure the amount of heterozygosity between haplotype 1 and 2, and those versus the previous versions of the genome, to better understand intra and inter-variation between subclades? The differences of the size of some regions between Colombera and this study, and even between haplotypes 1 and 2, are very interesting. I would find more informative to merge the three graphs of Figure S9 into one single graph, so we can also easily compare the different in sizes of the haplotypes with the haploid. If some of those differences are actually due to deletions, that would deserve further analysis. If this analysis is not part of another ongoing project that will be published somewhere else, I suggest identifying with a dot-plot some of those differences, specially between haplotypes, and validate with long-reads crossing those regions whether some of the deletions are real or artifactual. Please, include the dotplot graph together with the two haplotypes in figure S10. In those cases that could be real, it would be very interesting what genes are gone, and if those are not placed somewhere else in the genome as result of translocations, or those genes are actually gone and could explain some of the differences reported in the gen count between haplotypes.

      The authors mentioned the presence of multiple structural variations, although some of which could be artifactual of miss-assemblies. Interestingly, the plot of the synteny blocks between the two haplotypes in figure S11 shows some of those structural variations, including cases of: - deletions: for instance, there are "blank" regions in Bs1A and Bs3A with no lines, which may reflect areas that are not present in the haplotype B. - duplications and translocations within chromosomes or between chromosomes of different haplotypes. Just looking to this plot, I wonder how the distribution of chromosomes between haplotypes is done. For instance, I see that Bs7B shares a duplicated synteny block with chromosomes Bs10B and Bs14B, but not with Bs10A and Bs10B, which means that the duplications are intra-haplotype present in B but not in A. But I wonder if it is possible that Bs10B and Bs14B could be in fact switched to haplotype A, and therefore there would be no duplication nor deletion in one of the haplotypes, just a simple translocation. I may be wrong in the interpretation, but I'm curious to understand the graph. In any case, again, as mentioned above, it would be worthy to validate some of those variations with long reads, which could illuminate the biological relevance between the haplotypes and discard potential artifactual errors of the assemblies.

      I notice that in figures 7 and S13, some lines are thicker than others. Is this because many "thin" lines are overlapped, and they look like a "thick" line. Otherwise, the visual effect of different thicknesses could be misleading. Please, clarify.

      In the analysis of the Hox cluster the authors say "[…] our new assembly revealed that B. schlosseri's Hox genes are not scattered. Instead, eight of them were clustered on the second largest scaffold (Bs2), whereas two other ones are found on the 15th largest scaffold (Bs15)." Generally, the description of the Hox gene in a cluster refers to the fact they are in the vicinity, with near not many other genes in between Hox genes. Therefore, I would not describe that eight Hox genes are clustered by the simple fact that they are in the same chromosome (maybe even in different arms).

    1. AbstractBackground Reference genomes for the entire sea turtle clade have the potential to reveal the genetic basis of traits driving the ecological and phenotypic diversity in these ancient and iconic marine species. Furthermore, these genomic resources can support conservation efforts and deepen our understanding of their unique evolution.Results We present haplotype-resolved, chromosome-level reference genomes and high-quality gene annotations for five sea turtle species. This completes the catalog of reference genomes of the entire sea turtle clade when combined with our previously published reference genomes. Our analysis reveals remarkable genome synteny and collinearity across all species, despite the clade’s origin dating back more than 60 million years. Regions of high interspecific genetic distance and intraspecific genetic diversity are consistently clustered in genomic hotspots, which are enriched with genes coding for immune response proteins, olfactory receptors, zinc fingers, and G-protein-coupled receptors. These hotspot regions may offer insights into the genetic mechanisms driving phenotypic divergence among species, and represent areas of significant adaptive potential. Ancient demographic analysis revealed a synchronous population expansion among sea turtle species during the Pleistocene, with varying magnitudes of demographic change, likely shaped by their diverse ecological adaptations, and biogeographic contexts.Conclusions Our work provides genomic resources for exploring genetic diversity, evolutionary adaptations, and demographic histories of sea turtles. We outline genomic regions with increased diversity, linked to immune response, sensory evolution, and adaptation to varying environments that have historically been subject to strong diversifying selection, and likely will underpin sea turtle’s responses to future environmental change. These reference genomes can assist conservation by providing insights into the demographic and evolutionary processes that sustain and threaten these iconic species.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf105), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 2: Brendan Reid

      The authors of this work provide a fantastic addition to the genomic resources currently available for marine turtles with five new, apparently high-quality reference genomes. These new resources enable a number of interesting cross-species analyses in this group, including phylogenetic reconstruction, inference of demographic history, and identification of hotspots of diversity and divergence. I though this paper was quite clearly written and easy to read overall, and I have one major and a few more minor comments/suggestions.

      Major comment: there is an extensive literature on hybridization among marine turtle lineages (see Vilaca et al. 2021, https://doi.org/10.1111/mec.16113, for a recent genomic example), with lots of evidence for ancient gene flow after initial lineage divergence as well as recent hybridization. The authors do not really mention this phenomenon at all, and since I think it has a lot of bearing on all of the results it would make sense to re-think your findings in light of the fact that some level of gene flow has occurred. Would extensive synteny/lack of genomic rearrangements potentially enable hybridization? Is overall low divergence among lineages potentially a function of gene flow? Are regions of high divergence the result of selection (as you suggest), or could these regions potentially be resistant to gene flow? I believe that IQtree assumes a strictly bifurcating tree, and gene flow can influence PSMC inferences (see Mazet et al. 2016, https://doi.org/10.1038/hdy.2015.104) - how would gene flow among lineages affect your inference of divergence dates and demographic histories?

      MInor commentsL [note - line numbers would have been helpful for providing comments on specific items! I will refer to the lower-left page numbers and paragraph instead]:

      page 3, paragraph 2: Some of the applications you refer to here don't seem terribly germane to the relevance of "genomic resources" in management and conservation per se, and several are just methods using some kind of genetic data ... e.g., "abundance"/close-kin mark recapture doesn't require full genomes (and the reference you cite used microsat data), and the "community"/eDNA applications don't generally rely on genomes but instead on databases of a few (usually mitochondrial) genes. Either include methods that truly benefit from the development of high-quality reference genomes or broaden this to something like "growth in molecular ecology techniques".

      page 4, paragraph 2: last sentence is a bit of a run-on, could break this up a bit.

      page 10, paragraph 3: for me, the ROH methods need some additional explanation and interpretation. The more detailed methods indicate that the ROH were identified on the basis of lower-than-average heterozygosity rather than true homozygosity - I can understand why this might have been done (since the baseline level of heterozygosity varies across species) but it still seems a bit arbitrary and could risk mistaking stretches with simply low variation for IBD tracts. I wonder if a ROH-detection method like ROHan that explicitly incorporates baseline genomic heterozygosity into its model would be more appropriate for comparing results across species and could give different results. I also question a bit the interpretation of these low-diversity tracts as evidence of inbreeding per se. The authors do not comment much on the length distributions of these ROH - given that many of them are quite short I would expect that if there was mating between close kin it probably happened far back in the past and the IBD tracts have been broken up by recombination.

      page 11, paragraph 2: for PSMC analyses it is important to note the method assumes that differences in coalescence time/Ne across the genome result from demography alone. If portions of the genome are under balancing/diversifying selection (such as the areas of high diversity that you detect in this study), the local Ne for inferred these regions would be expected to be larger than the rest of the genome, which could lead to the spurious detection of population expansion or contraction (more likely a contraction for balancing selection). See Boitard et al. 2022 (https://doi.org/10.1093/genetics/iyac008) for a more detailed treatement. I would try excluding the regions putatively under diversifying selection and re-run PSMC to see if your inferences change.

    1. AbstractThe vast majority of cancers exhibit Somatic Copy Number Alterations (SCNAs)—gains and losses of variable regions of DNA. SCNAs can shape the phenotype of cancer cells, e.g. by increasing their proliferation rates, removing tumor suppressor genes, or immortalizing cells. While many SCNAs are unique to a patient, certain recurring patterns emerge as a result of shared selectional constraints or common mutational processes. To discover such patterns in a robust way, the size of the dataset is essential, which necessitates combining SCNA profiles from different cohorts, a non-trivial task.To achieve this, we developed CNSistent, a Python package for imputation, filtering, consistent segmentation, feature extraction, and visualization of cancer copy number profiles from heterogeneous datasets. We demonstrate the utility of CNSistent by applying it to the publicly available TCGA, PCAWG, and TRACERx cohorts. We compare different segmentation and aggregation strategies on cancer type and subtype classification tasks using deep convolutional neural networks. We demonstrate an increase in accuracy over training on individual cohorts and efficient transfer learning between cohorts. Using integrated gradients we investigate lung cancer classification results, highlighting SOX2 amplifications as the dominant copy number alteration in lung squamous cell carcinoma.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf104), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 2: Ellen Visscher

      The paper introduces a python package for imputation, filtering, segmentation, feature extraction and visualisation of CNA profiles. It explains some of the elements of the package, and then demonstrates how data from multiple cohorts can be processed and combined using the package preprocessing pipeline. The authors then use processed data from 3 different cohorts to perform cancer type prediction using a CNN. From this, they get an interesting result to find a biomarker that differentiates two different lung cancers. Throughout, they show visualisations using their package. The package itself seems well documented and designed to be used. There is some clarification required in the methods section specifically around the CNN training and the models therein. There is also one major question of whether all the preprocessing steps are actually required for the downstream CNN analysis. Overall, however, this is a well written manuscript, providing a useful software tool for further analysis of CNA data.

      Major comments: - CNN section- how are the segments decided- is it based on all the training data, or just data in a batch? - Throughout the results pertaining to figure 3A-C, you call it test accuracy- to be clear is this is based on your CV hold outs? This should be reworded everywhere to reflect this. As cross validation indicates, this is not a test set and is a validation set- which is also the way you use it. - Regarding the above, you have a comment saying: "the best test accuracy without cross-validation was 92.34%". Could you please clarify what you mean by this. Only in the CNN section do you describe your training approach, which does not mention a test or separate validation set. - It reads slightly unclearly- you have a section called "model transfer", but are you training 3 different models- one per dataset? You only have one figure for training results which suggests one dataset, but then you have this section called model transfer? - Re all the above, please dedicate a small subsection in methods making this clearer. Are there dedicated test sets? If your main results are for aggregated data, then what are you testing on to ensure generalisability? What is the point of training the 3 different models on 3 different datasets? Perhaps it would make more sense to hold one dataset out as your test set. In some ways, that is what the model transfer is showing, but it would be less confusing to clarify that aim instead of suddenly introducing 3 models. - If the CNN architecture is essentially the same as in Attique et. al., the performance is basically the same and they use only CNs a gene locations- how does this demonstrate that the preprocessing from CNSistent is necessary or advantageous for this task? Maybe having a result which combines CN calls naively over gene locations and comparing to this across the aggregate datasets would be a good way of comparing? I.e showing that preproccessing does offer an advantage when combining different datasets together? Also because this is what you argue in your abstract. For this analysis you would have to make sure you also compare across the same samples to differentiate between filtering/other preprocessing steps. - In Figure 3I, you say "notice the similarity of chromosome 3 pattern for the correctly classified LUSC samples (red) and the misclassified ones (orange)". This is confusing because the orange and red are not similar. In fact for this whole section, it seems that figure 3I does not align with what you are saying?

      Minor comments/errors: - Clarification on why CNSistent needs a reference genome if it's dealing with segments? How is this information used- is it just for the known gaps? - Your caption of Supplementary Figure 1 has a typo about a breakpoint at 16 instead of 14. - You do not explain how you use the knee pt to filter (i.e is it samples above/below the knee pt.) - Your CNN graphic is difficult to interpret and non-standard. - CNN section should clarify at the beginning what the input is and what the output is (i.e a prediction that a sample belongs to a particular cancer type) before explaining the architectural details. - Even though you control for class imbalance, some cancer types are so poorly represented it is unlikely a CNN could learn that, you do kind of mention this in the discussion, but maybe some sort of minimum threshold for inclusion would make sense. - For Fig2D you refer to it as GND, but the axes/title says hemizygosity-are these things equivalent? E.g could have 3-3, low hemizygosity but not diploid? Or if it's aggregated across the whole genome its assumed equivalent? - There is a grammatical error "Runtimes decreased in a near-linearly with the number of compute cores" - You make a comment that "We therefore suspect some TCGA lung cancers might be cases of co-occurring adeno and squamous carcinomas." This is a possibility but given pleiotropy of many phenotypes- it may also be that the biomarker is not always unique to squamous carcinomas.

      Suggestions/Nice to haves: - Maybe make it clearer inside the paper what visualisations come with CNSistent. Looking at the software documentation, there's obviously a lot of useful visualisations that come with that- and some of them you have used in Figure 3 for e.g. - Given there are more total CN callers, maybe good to mention somewhere how CNSistent would work for total CNs only. - You remove profiles that you say are uninformative, could you not include this and then just show how accuracy correlates with no. of break-pts (for e.g). In some ways one might think that there could be useful information in few alteration profiles- because those alterations might be more upstream/causal. - The aggregation step could maybe affect downstream analysis. I.e taking the average could introduce CNs that were never called. Even using min/max- this implies a constant copy number in that region, which may lose information- e.g if it is a functional region having two diff CNs across gene might imply non-functionality. Did you explore the effect of aggregation step? Perhaps taking a small enough resolution of segment types would account for this anyway.

    1. AbstractPolyadenylation is a dynamic process which is important in cellular physiology. Oxford Nanopore Technologies direct RNA-sequencing provides a strategy for sequencing the full-length RNA molecule and analysis of the transcriptome and epi-transcriptome. There are currently several tools available for poly(A) tail-length estimation, including well-established tools such as tailfindr and nanopolish, as well as two more recent deep learning models: Dorado and BoostNano. However, there has been limited benchmarking of the accuracy of these tools against gold-standard datasets. In this paper we evaluate four poly(A) estimation tools using synthetic RNA standards (Sequins), which have known poly(A) tail-lengths and provide a valuable approach to measuring the accuracy of poly(A) tail-length estimation. All four tools generate mean tail-length estimates which lie within 12% of the correct value. Overall, Dorado is recommended as the preferred approach due to its relatively fast run times, low coefficient of variation and ease of use with integration with base-calling.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf098), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Christoph Dieterich

      In this manuscript, the authors present a benchmark to assess the performance of different tools designed for estimation of polyA tail length from Nanopore direct RNA-sequencing data. These tools include tailfindr, nanopolish, Dorado and Boost Nano. Benchmarks on tools and algorithms to analyze Nanopore data, both third party tools and official ONT releases, are of utmost importance for the field. The use of synthetic constructs with known ground truth is recommended as well. Consequently, this study has the potential to provide a significant contribution to the field.

      In the current form, I can however not recommend it for publication in GigaScience. My major concerns are: a) Use of only RNA002 data. This chemistry is outdated and thus the Benchmark is only relevant for old, possibly already published data. A comprehensive Benchmark should also include RNA004 and available tools there (at least Dorado). b) The current data set only contains two polyA tail length, which are relatively short and do not cover longer polyA tails that are common e.g. in mammalian cells. A proper Benchmark should show the performance of the analyzed tools over a range of polyA tail lengths.

      Minor comments: 1) Abstract: "All four tools generate mean tail-length estimates which lie within 13% of the correct value." The value of 13% is given in the Abstract from the submission system, wherease the abstract in the Main text says 12%. Which value is correct? 2) Background, first paragraph: the role of the polyA tail in RNA circularization, which is required for efficient translation of cellular mRNAs is not mentioned. Reference is missing for "is increasingly recognised as a dynamic process which influences timing and degree of protein production." 3) Background, second paragraph: Chiron seems to be a relatively old basecaller (no models for new chemistries). It should be mentioned here that it is required for BoostNano. 4) Mis-priming of internal polyA sites may an important confounding (and currently overlooked) source of errors in Nanopore sequencing. This should be quantified properly and analyzed in more detail (length of these stretches, influence of other nucleotides within the A-rich stretch, etc.). Should be done as well on whole transcriptome data with more possible mispriming sites. 5) Why do the authors think that the poly(T) stretch of the RTA might be truncated? This is composed of DNA oligos, which should be quite stable 6) What are the parameters for filtering used by Dorado and BoostNano? Can the authors explain, why the filtered reads differ? 7) Dorado seems to systematically underestimate polyA tail length. Is this true also for data generated with RNA004 chemistry and longer polyA tails?

    1. AbstractThe ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various microbial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential pathogens from metagenomic analysis. While established viability-resolved genomic approaches are labor-intensive as well as biased and lacking in sensitivity, we here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of UV-induced Escherichia cell death. The application of explainable AI tools then allows us to pinpoint the signal patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate intracellular Chlamydia, where traditional culture-based methods suffer from inherently high false negative rates. This application shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across taxonomic boundaries. We finally show the limits of our model’s generalizability through antibiotic exposure of a simple mock microbial community, where a new model specific to the killing method had to be trained to obtain accurate viability predictions. While the potential of our computational framework’s generalizability and applicability to metagenomic studies needs to be assessed in more detail, we here demonstrate for the first time the analysis of freely available nanopore signal data to infer the viability of microorganisms, with many potential applications in environmental, veterinary, and clinical settings.Author summary Metagenomics investigates the entirety of DNA isolated from an environment or a sample to holistically understand microbial diversity in terms of known and newly discovered microorganisms and their ecosystem functions. Unlike traditional culturing of microorganisms, genomic approaches are not able to differentiate between viable and dead microorganisms since DNA might persist under different environmental circumstances. The viability of microorganisms is, however, of importance when making inferences about a microorganism’s metabolic potential, a pathogen’s virulence, or an entire microbiome’s impact on its environment. As existing viability-resolved genomic approaches are labor-intensive, expensive, and lack sensitivity, we here investigate our hypothesis if freely available nanopore sequencing signal dat that captures DNA molecule information beyond the DNA sequence might be leveraged to infer such viability. This hypothesis assumes that DNA from dead microorganisms accumulates certain damage signatures that reflect microbial viability and can be read from nanopore signal data using fully computational frameworks. We here show first evidence that such a computational framework might be feasible by training a deep model on controlled experimental data to predict viability at high accuracy, exploring what the model has learned, and using it in a real-world application by application to a bacterial species of veterinary relevance. We finally show that a specific model has to be trained to accurately predict viability after antibiotic exposure of a mock microbial community. While the generalizability of our computational framework therefore needs to be assessed in much more detail, we here demonstrate that freely available data might be usable for relevant viability inferences in environmental, veterinary, and clinical settings.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf100), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Finlay Maguire

      In this paper the authors train a ResNet-based model to predict whether individual 10,000 sample chunks of nanopore signal data originate from live or killed bacterial isolate cultures. From live and UV-killed (at exponential phase) E. coli K-12 cultures DNA was extracted and sequenced using separate R10.4.1 flowcells on a MinION. Signal data from each read in the live and dead extractions were then processed by discarding the first 1,500 samples and dividing the remaining signals into 10,000 sample chunks. These were then split into a balanced 60:20:20 train, test, and validation datasets with the constraint that no two chunks from the same read would end up in the same dataset (e.g., chunk 1 and chunk 2 of 1st read in the killed culture would hypothetically be separated into train and test). During this they also explored/compared the impact of chunk size, model architecture, and performance of a sequence based model using the E. coli data. With a nicely performed class-activation map and masking approach they then identified the signal regions most strongly associated with dead-predictions (such as twisting/kinking/pore blockage of DNA around pyrimidine dimers). Finally, they applied their trained model to a live and heat-killed Chlamydia abortus culture and compared their results to stained microscopy and propidium monoazide PCR measures of viability. They found equivalent performance on the C. abortus data to their E. coli data (despite a different killing-method and taxa).

      The manuscript is well written and the methods are clearly described (including well documented code and deposited data). The authors explainability methodology is excellent although it would have been nice to see a bit more in-depth interpretation of those results. The authors have also presented a convincing case that nanopore signal data does contain information that can be used to distinguish signal chunks from live and dead bacterial monocultures. This methods has the potential to be useful in clinical and environmental genomics if it can be extended to more heterogeneous metagenomic samples. However, despite the title and framing of this manuscript (i.e., "metagenomics"), their analyses do not involve any metagenomic data and their results so far do not demonstrate if this is fesible. Currently, the overall framing (and title) of the manuscript is not appropriate given the work performed at this point. Similarly, given that both E. coli and C. abortus "dead" cultures resulted in median read length less than half the live cultures, the authors do not fully make the case that the signal and ResNet approach is actually required relative to simpler baseline models. Finally, although they did evaluate performance on a complete separate dataset, the authors should at least explore/quantify the correlation of live/dead prediction across chunks of the same read given the default expectation of non-independence of signal chunks from the same read.

      Major - Although the title and framing of the paper suggest that the authors are classifying live and dead bacteria in metagenomic datasets, the actual experiments and method developed are entirely based around sequencing of cultured clonal bacterial isolates. Metagenomic datasets are going to have considerably more heterogeneity in viability, species composition, and DNA signal characteristics. Given this, the paper's title, introduction, and parts of the discussion are a bit of an oversell and inappropriate. This manuscript should be revised to more clearly reflect the work actually performed.

      • This paper doesn't establish whether a ResNet + Signal approach actually outperforms a much simpler baseline. For example, given there is a clear extraction and median read-length differences between live and dead samples, it is possible that a much simpler logistic model using basic features such as read length and/or translocation could perform equivalently.

      • Although the C. abortus analysis demonstrates limited impact of leakage, I'm still a bit concerned that the potential non-independence of chunks from the same read (i.e., chunk 1 and chunk 3 of the same read are more likely to share similar live/dead signal characteristics than Chunk 1 and 3 of different reads). By not having multiple chunks of the same read in the training, validation, or test datasets the authors may have avoided issues with longer-reads being more represented in their datasets. However, this has the potential to introduce data leakage between train and test set (which may impact generalisability when they attempt to extend this method to metagenomics). I think this paper would be improved by some exploration of the correlation of live/dead prediction across chunks of the same read. How often do different chunks of the same read disagree? How does this impact the overall performance of the model? Does taking the average prediction across chunks of the same read improve or degrade performance? Would this problem be better suited to a multiple instance learning approach (i.e., a live/dead label applied to all chunks from a single read) especially in more heterogeneous datasets? To what degree do longer reads with more chunks contribute disproportionately to the overall performance in the C. abortus dataset?

      Minor

      • SRA records don't seem to be live yet (https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=1123127)

      • Are the actual pod5 files available?

      • Read-level performance should be analysed and reported.

      • Figure 1B: the test subplot numbers are almost too small to read - they may benefit from being its own panel.

      • Plot axes labels are not always clear (e.g., Figure 3) percentage of what? Chunks? or Reads? It would be nice to see consistent capitalisation of labels and legends.

      • Predictions on viable E. coli and viable C. abortus seems surprisingly similar (91.44% vs 91.34% viable and 8.56% vs 8.66% dead) despite different taxa, potentially underlying viable cell proportion, and output probability densities. This would benefit from further discussion/analysis - do misclassified chunks have any common characteristics? Would you expect the E. coli to have similar microscopy/PCR measured viability percentage as the C. abortus.

      • Would be good to see a bit more discussion/exploration of impact of mixed live/dead cells given ~37.6% viability measure in the C. abortus sample (e.g., how well do models perform with different ratios of live/dead reads) - could potentially be achieved using in-silico spike ins).

    1. There is a third kind of answer that, without competing with the previous two, demonstrates the value of philosophy, even (perhaps, especially) for students like our imagined protagonist: philosophy is the antidote to the uncritical acceptance of the world and ourselves as we are.

      I like the phrase "antidote to the uncritical acceptance" quite a lot. At first, you may think that an "uncritical acceptance" isn't necessarily a bad thing. However, thinking about it more, do you really want to just blindly accept the world around you? Looking critically at yourself and the world allows you to make changes and work to improve the lives of yourself and others, among many other things, simply because you dared to question.

    2. The deep underlying idea is that if we have to choose a social and political arrangement without knowing the position that we may occupy in society, we will choose fair principles to govern our social and political institutions. My teacher had our class re-enact a scenario very much like this one in class. We discussed the principles that would govern our imagined society before we picked our fate out of a hat. Until that point in my young life, I had never thought about justice in that way

      This is a very interesting way to think about justice. The author introduces this method to imagine a fair society with no bias. The reason this works so well is because not knowing what ur position in society will be, allows you to genuinely try ur best to make society as fair and enjoyable as possible for every individual

    3. Therefore, the first step in this kind of philosophical education is to shake students out of a complacent and uncritical acceptance of the world as it is.

      I think this is one of the most important reasons why we need to study philosophy. When we repeat our daily routines and become accustomed to them, we tend to overlook the injustices within them or we may not even recognize them as injustices. Philosophy enables us to think more critically about the society we live in, its institutions, and the impact they have on us.

    4. When students take this imaginative exercise seriously, they start to feel as discomfited as Descartes himself must have. The ground starts shaking under them. It is at this moment that philosophy starts its work.

      By asking so many bizarre questions that one normally does not consider on a day-to-day basis, it pushes us outside of our comfort zone and forces us to take a step into the unknown. This encourages our brains to work in different ways that it may normally not think, ask questions beyond our general scope of thinking, and create new connects and ideas that we may normally have not considered. I think this kind of emphasizes the importance of philosophy because it teaches us how to react when we are pushed outside of our comfort zone and how to think beyond our normal flow of consciousness.

    5. Many philosophers have persuasively criticized Rawls’ use of the original position as an argumentative tool. But we often forget, I think, how successfully it harnesses the power of the imagination to construct an alternative vision of what society could be like.

      We are so used to the life we live that we in ways we become comfortable in it. When imagining a different reality, one in which they may be less high up/wealthy, it becomes difficult for some to acknowledge just the amount of privilege they once had. The "Theory of Justice" gives people a different perspective on life and how different each and every person's life is from one another.

    6. The deep underlying idea is that if we have to choose a social and political arrangement without knowing the position that we may occupy in society, we will choose fair principles to govern our social and political institutions. My teacher had our class re-enact a scenario very much like this one in class. We discussed the principles that would govern our imagined society before we picked our fate out of a hat. Until that point in my young life, I had never thought about justice in that way. The power of this exercise contributed in no small way to my becoming a philosopher. I have recreated a similar activity in various classes I have taught. The discussion it generates among students is reliably superb, but the best moment is when students discover their fate – whether they end up being a doctor or a garbage truck driver or a poor young mother – and have to reckon (at least for that class period) with their principles. Many philosophers have persuasively criticized Rawls’ use of the original position as an argumentative tool. But we often forget, I think, how successfully it harnesses the power of the imagination to construct an alternative vision of what society could be like.

      Though it was a little difficult for me to picture this in real life as it is not realistic that society is completely unaware of ones capabilities before choosing their position in the social hierarchy, I think that this is fascinating to imagine. We often forget that we may not be as secure in our social status or career as we think we are so it is important to be aware of those of lower status around you and not take your position for granted.

    7. Now, ask yourself: what could philosophy do for you?

      I think this is a very interesting start to this article! It puts us into the shoes of someone in a difficult position, in which they must tirelessly work away to simply have a shot at a decent, livable lifestyle. I feel that this scenario they painted for us so vividly is really powerful when leading into this question, because I think people in the current climate of the world tend to underestimate the importance of philosophy, or don't really think about it at all. While maybe a lot of us don't completely relate to the situation of the young mother, a lot of us DO have our own struggles and might find ourselves lost in the grueling work that may come with everyday life. And when simply going through with our daily lives is hard enough, why should we bother with philosophy? Personally, I don't really think about the idea of philosophy at all, and I never really thought it would be relevant to me based on what I want to do in life. And when people don't think something is relevant, why bother with it, right? Life is busy enough as it is. But really, it probably has a lot more relevancy in my life than I think, and I believe that this idea is somewhat being conveyed in this part. That's just how I saw this paragraph, but I thought it was a strong opening!

    8. The deep underlying idea is that if we have to choose a social and political arrangement without knowing the position that we may occupy in society, we will choose fair principles to govern our social and political institutions. My teacher had our class re-enact a scenario very much like this one in class. We discussed the principles that would govern our imagined society before we picked our fate out of a hat. Until that point in my young life, I had never thought about justice in that way. The power of this exercise contributed in no small way to my becoming a philosopher. I have recreated a similar activity in various classes I have taught. The discussion it generates among students is reliably superb, but the best moment is when students discover their fate – whether they end up being a doctor or a garbage truck driver or a poor young mother – and have to reckon (at least for that class period) with their principles. Many philosophers have persuasively criticized Rawls’ use of the original position as an argumentative tool. But we often forget, I think, how successfully it harnesses the power of the imagination to construct an alternative vision of what society could be like.

      This is a brilliant way to describe others lived experiences and how what might not affect you, could affect someone else. Using philosophical teachings can reveal the privileges of some and the shortcomings of others and hopefully create a better understanding of everyones blindspots in day to day life. Truly a very powerful and humbling exercise that can help create common ground and allow others to empathize with eachother and hopefully create a more just society.

    9. The deep underlying idea is that if we have to choose a social and political arrangement without knowing the position that we may occupy in society, we will choose fair principles to govern our social and political institutions. My teacher had our class re-enact a scenario very much like this one in class. We discussed the principles that would govern our imagined society before we picked our fate out of a hat. Until that point in my young life, I had never thought about justice in that way. The power of this exercise contributed in no small way to my becoming a philosopher. I have recreated a similar activity in various classes I have taught. The discussion it generates among students is reliably superb, but the best moment is when students discover their fate – whether they end up being a doctor or a garbage truck driver or a poor young mother – and have to reckon (at least for that class period) with their principles. Many philosophers have persuasively criticized Rawls’ use of the original position as an argumentative tool. But we often forget, I think, how successfully it harnesses the power of the imagination to construct an alternative vision of what society could be like.

      This idea that we must get rid of the idea of "safety" within our lives and experiences can be imagined as a vision of the future that we as people, don't want to imagine. Being a "poor mother" or a "garbage truck driver" can be thought of as a disappointing fate to many who attend college, it can even be a fate so poor in the minds of students, that it serves as motivation in their eyes ; to not be like "them" , its a phrase that sticks with many who hold themselves to a high idea of success. But I believe and resonate with this idea of harnessing imagination as it broadness our perspective on education and life, because no matter how safe we feel behind a wall of education or wealth, there can always be a force of society that challenges our goals.

    1. AbstractWater buffalo is a cornerstone livestock species in many low- and middle-income countries, yet major gaps persist in its genomic characterization—complicated by the divergent karyotypes of its two sub-species (swamp and river). Such genomic complexity makes water buffalo a particularly good candidate for the use of graph genomics, which can capture variation missed by linear reference approaches. However, the utility of this approach to improve water buffalo has been largely unexplored.We present a comprehensive pangenome that integrates four newly generated, highly contiguous assemblies of Pakistani river buffalo with available assemblies from both sub- species. This doubles the number of accessible high-quality river buffalo genomes and provides the most contiguous assemblies for the sub-species to date. Using the pangenome to assay variation across 711 global samples, we uncovered extensive genomic diversity, including thousands of large structural variants absent from the reference genome, spanning over 140 Mb of additional sequence. We demonstrate the utility of these data by identifying putative functional indels and structural variants linked to selective sweeps in key genes involved in productivity and immune response across 26 populations.This study represents one of the first successful applications of graph genomics in water buffalo and offers valuable insights into how integrating assemblies can transform analyses of water buffalo and other species with complex evolutionary histories. We anticipate that these assemblies, and the pangenome and putative functional structural variants we have released, will accelerate efforts to unlock water buffalo’s genetic potential, improving productivity and resilience in this economically important species.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf099), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 4: Wai Yee Low

      Review of "A comprehensive water buffalo pangenome reveals extensive structural variation linked to population specific signatures of selection". This is an impressive work at the frontier of buffalo genomics. I truly enjoy reading the work and my questions/comments are aimed at improving it further. My detailed comments are below: Line 30: I think it is better you include the actual number of publicly available assemblies used to create the pangenome graph. Line 71: There is now a swamp buffalo reference genome with annotation too (NCBI accession: PCC_UOA_SB_1v2). Perhaps consider to cite the swamp buffalo ref https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giae053/7753516 and rewrite the sentence to say a pangenome can be used for both swamp and river, but a single linear ref from either subspecies for read mapping is not good enough. Line 79: "highlighted" Line 82: What do you mean by "higher quality"? The assemblies have been discussed in this review: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.629861/full Line 105: Technically, the graph method for bovine species, which includes water buffalo, is being investigated by the Bovine Pangenome Consortium (BPC). However, nothing useful has been published on the buffalo graph but perhaps consider citing the BPC since your paper overlaps with it (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02975-0). Line 165: It will be good if you add a bit more context of the PanGenie method here as the researchers in buffalo community are not used to this. Additionally, it will be great if all code is made available on GitHub or as Supplementary Info. Line 170: To produce phase pangenome graph, don't you need all input assemblies to be phased? All are input assemblies phased? The UOA_WB_1 is locally phased, not phased throughout the genome. Line 235: "a list of 403 unrelated individuals." What does this translate to in terms that geneticists can understand? Do you mean siblings have been removed? Or individuals sharing the same grandparents were removed? Line 246: Can you please explain how did you get the coordinates to match between the GATK and PanGenie method? You'll need matching coordinates for concordance analysis. As I understand it, the GATK was based on UOA_WB_1? Line 254: Why these 3 chromosomes? Line 257: If you had not filtered for relatedness, how will it impact the selective sweep work? I think including some context will help the readers. Line 259: do you mean at least six samples per group? If yes, is 6 samples enough? Line 261: genotype quality less than 25 according to bcftools? Since you only used biallelic variants, please provide the breakdown between biallelic and multiallelic. Line 281: "… we first PacBio HiFi sequenced one female" Please rewrite this. Line 282: How common are these two breeds in percentage? Line 291: Is this already known? Perhaps cite the literature to show the agreement with previous studies? Fig 1D: This is a bit too small to see especially the SV distribution at the bottom. I can hardly see the median? Line 310: Why did you choose UOA_WB_1 as the reference? Line 311: the ~32.8 mil variants are comprised of SNPs as well? Fig 2: This is probably a panel of a figure but should not be the entire figure. The size of the circle indicates sample size but there should be a legend on the plot for this to say the sizes, right? Darker colour should be used to highlight the countries with samples instead of white? Maybe this could be a Supp figure too. Line 356: S Figure 4 and 5 should be main figures? You will need to annotate the abbreviation of sample-country in the legend of S Figure 5. Line 360: "To enable reuse we have made this dataset available …" The dataset should be made available to reviewers? Line 368: "76% of SNVs were called by both callers" 76% seem low. Also, called does not mean concordant. What is the concordance among called SNVs in both? Did the pangenome approach called most of the variants found in GATK? If not, what might be the reasons? Fig 3B: It is not immediately clear what the difference is, between non repetitive and repetitive regions. The overlapping text in the x-axes makes it hard to read. Line 390: "Analyses such as the study of selective sweeps or genome-wide association studies where low frequency variants are often filtered out will benefit less from the advantages of GATK, particularly given its longer run time." From here on, in this paragraph, it's Discussion, not Results. Line 418: Why human? Could you use cattle? Line 427: I tried the browser and not sure what I can learn from it. It will be helpful if there is a README with some examples on what can be explored. Line 450: How large before you considered it as larger variant? Is this ability to study larger variants still hold despite using only ~10 assemblies in the graph? The use of short reads for selective sweep study will still benefit from being able to incorporate these larger variants? As I understand it, the larger variants were found only from graph, not from the short reads. As such, the selective sweep may not be associated with any larger variants? Line 470: Fig S8 should be a main figure? Line 513: Instead of uniprot link, perhaps consider including this as Supplementary info or text. The info in the link may change in the future. Line 551: However, without scaffolding, the assemblies of Pakistani river buffalo may not be good enough to function as reference genomes for river buffalo? Line 552: When considering new bases, did you do this for each assembly independently or the new bases were discovered cumulatively? Line 581: Some of my questions at Line 450 can be discussed here. Line 586: Perhaps consider discussing the limitations of the small number of assemblies used to create the graph. As such, many SVs are likely still missing and we are still unable to properly assess allele frequency of these larger SVs. Additionally, while some SVs may not be considered as large in this work, it does not mean they have no impact.

    1. AbstractBackground Influenza A virus (IAV) poses a significant threat to animal health globally, with its ability to overcome species barriers and cause pandemics. Rapid and accurate IAV subtypes and host source prediction is crucial for effective surveillance and pandemic preparedness. Deep learning has emerged as a powerful tool for analyzing viral genomic sequences, offering new ways to uncover hidden patterns associated with viral characteristics and host adaptation.Findings We introduce WaveSeekerNet, a novel deep learning model for accurate and rapid prediction of IAV subtypes and host source. The model leverages attention-based mechanisms and efficient token mixing schemes, including the Fourier Transform and the Wavelet Transform, to capture intricate patterns within viral RNA and protein sequences. Extensive experiments on diverse datasets demonstrate WaveSeekerNet’s superior performance to existing models that use the traditional self-attention mechanism. Notably, WaveSeekerNet rivals VADR (Viral Annotation DefineR) in subtype prediction using the high-quality RNA sequences, achieving the maximum score of 1.0 on metrics including the Balanced Accuracy, F1-score (Macro Average), and Matthews Correlation Coefficient (MCC). Our approach to subtype and host source prediction also exceeds the pre-trained ESM-2 (Evolutionary Scale Modeling) models with respect to generalization performance and computational cost. Furthermore, WaveSeekerNet exhibits remarkable accuracy in distinguishing between human, avian, and other mammalian hosts. The ability of WaveSeekerNet to flag potential cross-species transmission events underscores its significant value for real-time surveillance and proactive pandemic preparedness efforts.Conclusions WaveSeekerNet’s superior performance, efficiency, and ability to flag potential cross-species transmission events highlight its potential for real-time surveillance and pandemic preparedness. This model represents a significant advancement in applying deep learning for IAV classification and holds promise for future epidemiological, veterinary studies, and public health interventions.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf089), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1:Will Dampier

      The manuscript presented by Nguyen et al. is well written, well researched, and well executed. The use of this new "wavelet style" neural network shows both an increased training efficiency and improved accuracy at detecting influenza subtypes for surveillance. However, I think their comparison to a 'plain' Transformer model does not take advantage of the improvements in pre-training and transfer-learning that have become standard practice in deep-learning. I have also included some stylistic suggestions to improve the figures as presented. After addressing these comments, I believe that this will become a very strong manuscript.

      Major Comments:

      The authors present a comparison between their new wavelet architecture and a standard transformer architecture using a one-hot encoded vector of amino-acids. I believe that this is the correct 'null model' to compare your wavelet architecture to, however, it does not represent the 'state of the art' in utilizing transformers for sequence analysis. As I'm sure the authors are aware, the disadvantage of transformers is that they take an extensive amount of training (they note the transformer only models take 2-4X more training epochs to converge). However, the advantage they bring is that they can be extensively trained for one task and then transfer that learning to another related task. A number of models have been pre-trained on giant collections of proteins Asgari et al, https://doi.org/10.1371/journal.pone.0141287 and Rives et al https://doi.org/10.1073/pnas.2016239118 which then allow one to transfer that knowledge to different domains with fewer examples such as demonstrated in Dampier et al https://doi.org/10.3389/fviro.2022.880618. It would be interesting to see whether your wavelet model defeats these pre-trained models with transfer learning. If you showed that, you could argue that there is no need for the extensive expense of 'foundational models'.

      The authors discuss that there is a significant imbalance in the training set and they used up-sampling and limiting to balance out the class representation. Since the classes are not equally represented, the model may not be equally able to predict each class. And the high metrics may only be a representation of its ability to predict the popular classes correctly. The authors should include an additional set of figures (supplemental is fine) that show the metrics broken out by Subtype. It would also be interesting to see a graph of the class-size (before up-sampling) vs F1-score (or another metric) on that class. This could provide lower-bounds for how many samples are needed to train the model.

      Minor Comments:

      Figures 3, 4, and 5: These would benefit from a linked y-axis. It is hard to compare across A/B/C/D when the axes have different y-limits.

    1. Author response:

      We thank both reviewers for their valuable comments. We have prepared a point-by-point response below.

      Reviewer #1 (Public review):

      Weaknesses:

      (1) The conclusions regarding the links between neural and behavioral mechanisms are mostly well supported by the data. However, what is less convincing is the authors' argument that their study offers evidence of 'priming'. An important hallmark of priming, at least as is commonly understood by cognitive scientists, is that it is stimulus specific: i.e., a repeated stimulus facilitates response times (repetition priming), or a repeated but previously ignored stimulus increases response times (negative priming). That is, it is an effect on a subsequent repeated stimulus, not ANY subsequent stimulus. Because (prime or target) stimuli are not repeated in the current experiments, the conditions necessary for demonstrating priming effects are not present. Instead, a different phenomenon seems to be demonstrated here, and one that might be more akin to approach/avoidance behavior to a novel or salient stimulus following an appetitive/aversive stimulus, respectively.

      (2) On a similar note, the authors' claim that 'priming' per se has not been well studied in non-human animals is not quite correct and would need to be revised. Priming effects have been demonstrated in several animal types, although perhaps not always described as such. For example, the neural underpinnings of priming effects on behavior have been very well characterized in human and non-human primates, in studies more commonly described as investigations of 'response suppression'.

      We thank the reviewer for these critical comments. After careful consideration of both reviews, we agree that “priming” may not be the most accurate term to describe the behavioral phenomenon. We plan to revise our terminology throughout the manuscript accordingly to better capture the generalized nature of the effect we observe.

      (3) The outcome measure - i.e., difference scores between the two odors or odor and non-odor (i.e., the number of flies choosing to approach the novel odor versus the number approaching the non-odor (air)) - appears to be reasonable to account for a natural preference for odors in the mock-trained group. However, it does not provide sufficient clarification of the results. The findings would be more convincing if these relative scores were unpacked - that is, instead of analyzing difference scores, the results of the interaction between group and odor preference (e.g., novel or air) (or even within the pre- and post-training conditions with the same animals) would provide greater clarity. This more detailed account may also better support the argument that the results are not due to conditioning of the US with pure air.

      We use the PI score as a standard metric to quantify all the odor preference in behavioral assays because it allows for robust comparison across different genetic or treatment groups under the same experimental setting. In T-maze, real time tracking of fly trajectories is technically difficult. With olfactory arenas, we showed some examples of fly distribution in quadrants over the entire odor choice test period (Figure 2—figure supplement 2) for both pre-trained and post-trained groups and discussed the trajectories in Discussion. We will ensure this point is clarified in the revised text.                       

      Reviewer #2 (Public review):

      […] They finally recorded from different mushroom body output neurons, including the one (MBON-γ4γ5) likely affected by the increased activity of the corresponding γ4 reward dopaminergic neurons after shock preexposure. They recorded odour-evoked responses from these neurons before and after shock preexposure, but did not find any plasticity, while they found a logical effect during spaced cycles of aversive training.

      We thank the reviewer for the summary. We would like to clarify that we did, in fact, observe plasticity in MBON-γ4γ5 following shock exposure, as shown in Figure 4B.

      Overall, the study is very interesting with a substantial amount of behavioural analysis and in vivo 2-photon calcium imaging data, but some major (and some minor) issues have to be resolved to strengthen their conclusions.

      (1) According to neuropsychological work (Henson, Encyclopedia of Neuroscience (2009), vol. 7, pp. 1055-1063), « Priming refers to a change in behavioral response to a stimulus, following prior exposure to the same, or a related, stimulus. Examples include faster reaction times to make a decision about the stimulus, a bias to produce that stimulus when generating responses, or the more accurate identification of a degraded version of the stimulus". Or "Repetition priming refers to a change in behavioural response to a stimulus following re-exposure" (PMID: 18328508). I therefore do not think that the effects observed by the authors are really the investigation of the neural mechanisms of priming. To me, the effect they observed seems more related to sensitisation, especially for the activation of sweet-sensing neurons. For the shock effect, it could be a safety phenomenon, as in Jacob and Waddell, 2020, involving (as for sugar reward) different subsets for short-term and long-term safety.

      As noted in our response to Reviewer #1, we plan to revise our use of the term “priming” in the manuscript to more accurately interpret the behavioral phenomenon.

      (2) The author missed the paper from Thomas Preat, The Journal of Neuroscience, October 15, 1998, 18(20):8534-8538 (Decreased Odor Avoidance after Electric Shock in Drosophila Mutants Biases Learning and Memory Tests). In this paper, one of the effects observed by the authors has already been described, and the molecular requirement of memory-related genes is investigated. This paper should be mentioned and discussed.

      We thank the reviewer for bringing this important reference to our attention. We will cite the Preat (1998) paper and discuss its relevant findings in relation to our own in the revised manuscript.

      (3) Overall, the bidirectional effect they observed is interesting; however, their results are not always clear, and the use of a delta PI is sometimes misleading. The authors have mentioned that shocks induced attraction to the novel odour, while they should stick to the increase or decrease in preference/avoidance.

      The ΔPI is calculated either as (trained PI – mock PI) for different animals or as (post PI – pre PI) for the same animals, with the specific calculation clarified in each figure legend. A positive ΔPI signifies an increase in preference for the odor, which is equivalent to a relative attraction or a decrease in avoidance.

      As not all experiments are done in parallel logic, it is not always easy to understand which protocol the authors are using. For example, only optogenetics is used in the appetitive preexposure. Does exposing flies to sugar or activating reward dopaminergic neurons also increase odour avoidance? The observed increased odour avoidance after optogenetic activation of sweet-sensing neurons involve reward (e.g., decreased response) and/or punishment (e.g., increased response) to increase odour avoidance?  

      We used different behavioral assays (T-maze or arena), stimuli (real shock or optogenetics), and protocols (different or same animal groups) to robustly demonstrate the phenomenon across platforms. We explained each protocol in the figures or texts, and we’ll make them clearer to follow in the revised version. We focused on activating a clean set of sugar sensing neurons because this optogenetic stimulus is an effective and efficient substitute to real sugar. We agree that testing reward dopaminergic neuron activation is a logical extension and will consider adding these experiments in the revised work.

      The author should always statistically test the fly behavioural performances against 0 to have an idea of random choice or a clear preference toward an odour.

      Our primary focus is on the change in preference induced by training, rather than the innate odor preference itself, which can be highly variable due to physiological and environmental factors. Statistical testing against 0 for innate preference scores is not standard practice in this specific paradigm, as the critical question is whether a treatment alters behavior relative to a control.

      On the appetitive side, the internal hunger state would play an important role. The author should test it or at least discuss it.

      For appetitive experiments, we always starve the flies on 1% agar for two days prior to behavioral tests to standardize their hunger state. We will consider adding fed flies as control groups in the revised work.

      (4) The authors found a discrepancy between genetic backgrounds; sometimes the same odour can be attractive or aversive.

      We observed minor discrepancies in innate odor preferences across genetic backgrounds, which is a known and common occurrence. Different genotypes and temperatures can result in different baseline PI scores. However, the key finding is that the relative change in odor preference following an aversive stimulus is consistent: it increases the relative preference for an odor compared to air. This sometimes reverses valence (aversion to attraction) and other times simply reduces aversion. Our analysis focuses on this consistent, relative change.

      Different effects between the T-maze and the olfactory arena are found. The authors proposed that: "Punishment priming effect was still not detected, probably due to the insensitivity of the optogenetic arena". This is unclear to me, considering all prior work using this arena. The author should discuss it more clearly.

      The punishment effect with CS+ present was reliably detected in the T-maze (Figure 1A) but was not significant in the olfactory arena (Figure 2—figure supplement 1B-C). We hypothesize that the olfactory arena assay is less sensitive than the T-maze for detecting such subtle behavioral changes. This is evidenced by the fact that even classical odor-shock conditioning yields lower PI in the arena (typically ~0.4) than in the T-maze (~0.8), likely due to the greater distance flies must explore and travel. The higher variance in the arena may therefore mask more modest effects. Here the effect under investigation was induced by optogenetically activating only a small subset of aversive dopaminergic neurons, a stimulus that is likely weaker than full electric shock. This reduced stimulus strength may have contributed to the challenge of detecting a significant effect in the less sensitive arena paradigm.

      They mentioned that flies could not be conditioned with air and electric shock. However, flies could be conditioned with the context + shock, which is changing in the T-maze and not in the optogenetic area.

      While flies can be conditioned to context, during the optogenetic stimulation period in the arena, the light is delivered uniformly across all four quadrants. Therefore, any potential context conditioning would be equivalent across the entire chamber and should not bias the final distribution of flies between the odor and air quadrants during the test, nor affect the calculated PI score.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors revealed the cellular heterogeneity of companion cells (CCs) and demonstrated that the florigen gene FT is highly expressed in a specific subpopulation of these CCs in Arabidopsis. Through a thorough characterization of this subpopulation, they further identified NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. Overall, these findings are intriguing and valuable, contributing significantly to our understanding of florigen and the photoperiodic flowering pathway. However, there is still room for improvement in the quality of the data and the depth of the analysis. I have several comments that may be beneficial for the authors. 

      Strengths: 

      The usage of snRNA-seq to characterize the FT-expressing companion cells (CCs) is very interesting and important. Two findings are novel: 1) Expression of FT in CCs is not uniform. Only a subcluster of CCs exhibits high expression level of FT. 2) Based on consensus binding motifs enriched in this subcluster, they further identify NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. 

      We are pleased to hear that reviewer 1 noted the novelty and importance of our work. As reviewer 1 mentioned, we are also excited about the identification of a subcluster of companion cells with very high FT expression. We believe that this work is an initial step to describe the molecular characteristics of these FT-expressing cells. We are also excited to share our new findings on NIGT1s as potential FT regulators. We believe this finding will attract a broader audience, as the molecular factor coordinating plant nutrition status with flowering time remains largely unknown despite its well-known phenomenon.

      Weaknesses: 

      (1) Title: "A florigen-expressing subpopulation of companion cells". It is a bit misleading. The conclusion here is that only a subset of companion cells exhibit high expression of FT, but this does not imply that other companion cells do not express it at all. 

      We agree with this comment, as it was not our intention to sound like that FT is not produced in other companion cells than the subpopulation we identified. We revised the title to more accurately reflect the point. The new title is “Companion cells with high florigen production express other small proteins and reveal a nitrogen-sensitive FT repressor.”

      (2) Data quality: Authors opted for fluorescence-activated nuclei sorting (FANS) instead of traditional cell sorting method. What is the rationale behind this decision? Readers may wonder, especially given that RNA abundance in single nuclei is generally lower than that in single cells. This concern also applies to snRNA-seq data. Specifically, the number of genes captured was quite low, with a median of only 149 genes per nucleus. Additionally, the total number of nuclei analyzed was limited (1,173 for the pFT:NTF and 3,650 for the pSUC2:NTF). These factors suggest that the quality of the snRNA-seq data presented in this study is quite low. In this context, it becomes challenging for the reviewer to accurately assess whether this will impact the subsequent conclusions of the paper. Would it be possible to repeat this experiment and get more nuclei?

      We appreciate this comment; we noticed that we did not clearly explain the rationale for using single-nucleus RNA sequencing (snRNA-seq) instead of single-cell RNA-seq (scRNA-seq). As reviewer 1 mentioned, RNA abundance in scRNA-seq is higher than in snRNA-seq. To conduct scRNA-seq using plant cells, protoplasting is the necessary step. However, in our study, protoplasting has many drawbacks in isolating our target cells from the phloem. First, it is technically challenging to efficiently isolate protoplasts from highly embedded phloem companion cells from plant tissues. Typically, at least several hours of enzymatic incubation are required to obtain protoplasts from companion cells (often using semi-isolated vasculatures), and the efficiency of protoplasting vasculature cells remains low. Secondly, for our analysis, restoring the time information within a day is also crucial. Therefore, we employed a more rapid isolation method. In the revision, we will explain our rationale for choosing snRNA-seq due to the technical limitations. In the revised manuscripts, we added four new sentences in the Introduction section to clearly explain these points.

      Reviewer 1 also raised a concern about the quality of our snRNA-seq data, referring to the relatively low readcounts per nucleus. Although we believe that shallow reads do not necessarily indicate low quality and are confident in the accuracy of our snRNA-seq data, as supported by the detailed follow-up experiments (e.g., imaging analysis in Fig. 4B), we agree that it is important to address this point in the revision and alleviate readers’ concerns regarding the data quality. 

      We believe the primary reason for the low readcounts per cell is the small amount of RNA present in each Arabidopsis vascular cell nucleus that we isolated. For bulk nuclei RNAseq, we collected 15,000 nuclei. However, the total RNA amount was approximately 3 ng. It indicates that each nucleus isolated contains a very limited amount of RNA (by the simple calculation, 3,000 pg / 15,000 nuclei = 0.2 pg/nucleus). It appears that the size of cells and nuclei was still small in 2-week-old seedlings; thus, each nucleus may contain lower levels of RNA. During the optimization process, we also tried to fix the tissues that we hoped to restore nuclear retained RNA, but unfortunately, in our hands, we encountered the technical issue of nuclei aggregation that hindered the sorting process, which is not suitable for single-nucleus RNA-seq.

      Reviewer 1 suggested that we repeat the same snRNA-seq experiment. We agree that having more cells increases the reliability of data. However, to our knowledge, higher cell numbers enhance the confidence of clustering, but not readcounts per cell. In our snRNAseq data, our target, FT-expressing cells, were observed in cluster 7, which projected at an obvious distance from other cell clusters. Therefore, we think that having more nuclei does not significantly help in separating high FT-expressing cluster 7 cells and different types of cells, although we may obtain more DEGs from the cluster 7 cells. Considering the costs and time required for additional snRNA-seq experiments, we think that adding more followup molecular biology experiment data would be more practical. We clearly stated the limitations of our approach in the Discussion section. “A drawback of our snRNA-seq analysis was shallow reads per nucleus. It appears mainly due to the low abundance of mRNA in nuclei from 2-week-old leaves. Based on our calculation, the average mRNA level per nucleus is approximately 0.2 pg (3,000 pg mRNA from 15,000 sorted nuclei). Future technological advance is needed to improve the data quality“

      In this revised version of the manuscript, we silenced FT gene expression using an amiRNA against FT driven by tissue-specific promoters [pROXY10, cluster 7; pSUC2, companion cells; pPIP2.6, cluster 4 (for the spatial expression pattern of PIP2.6, please see the new data shown in Fig. S8F); pGC1, guard cells]. Given that both FT and ROXY10 were highly expressed in cluster 7 of our snRNA-seq dataset, we anticipated the late flowering phenotype of pROXY10:amiRNA-ft. As we expected, pROXY10:amiR-ft but not pPIP2.6:amiR-ft lines showed delayed flowering phenotypes (Fig. S14A), supporting the validity of our snRNA-seq approach. We are also now more confident in the resolution of our snRNA-seq analysis, since cluster 4-specific PIP2.6 did not cause late flowering despite its higher basal expression than ROXY10 (Fig. S14B).

      (3) Another disappointment is that the authors did not utilize reporter genes to identify the specific locations of the FT-high expressing cells (cluster 7 cells) within the CC population in vivo. Are there any discernible patterns that can be observed? 

      In the original manuscript, as we showed only limited spatial images of overlap between FT and other cluster 7 genes in Fig. 4B, this comment is totally understandable. To respond to it, we added whole leaf images showing the spatial expression of FT and other cluster 7 genes (Fig. S12). These data indicate that cluster 7 genes including FT are expressed highly in minor veins in the distal part of the leaf but weakly in the main vein. We also added enlarged images of spatial expression of FT and cluster 7 genes (FLP1 and ROXY10) to note that those genes do not overlap completely (Fig. S13).

      In contrast to cluster 7 genes, genes highly expressed in cluster 4, such as LTP1 and MLP28, are reportedly highly expressed in the main leaf vein. To further confirm it, we established a transgenic line that expresses a GFP-fusion protein controlled by the promoter of a cluster 4-specific gene PIP2.6 (Fig. S8F). It also showed strong GFP signals in the main vein, consistent with previous observations of LTP1 and MLP28.   In summary, FT-expressing cells (cluster 7 cells) are enriched in companion cells in the minor vein, and their expression patterns show a clear distinction from genes expressed in the main vein (e.g., cluster 4-specific genes). 

      (4) The final disappointment is that the authors only compared FT expression between the nigtQ mutants and the wild type. Does this imply that the mutant does not have a flowering time defect particularly under high nitrogen conditions? 

      We agree with reviewer 1 that more experiments are required to conclude the role of NIGT1 on FT regulation, in addition to our Y1H data, flowering time data of NIGT1 overexpressors, and FT expression in NIGT1 overexpressors and nigtQ mutant.

      First, to test the direct regulation of NIGT1s on FT transcription, we conducted a transient luciferase (LUC) assay in tobacco leaves using effectors (p35S:NIGT1.2, p35S:NIGT1.4, and p35S:GFP) and reporters [pFT:LUC (FT promoter fused with LUC) and pFTm:LUC (the same FT promoter with mutations in NIGT1-binding sites fused with LUC)]. Our result showed that NIGT1.2 and NIGT1.4, but not GFP, decreased the activity of pFT:LUC but not pFTm:LUC (Fig. 5C). This indicates that NIGT1s directly repress the FT gene.

      Second, to address reviewer 1’s suggestion about the effect of of nigtQ mutation on flowering time, we have grown WT and nigtQ plants on 20 mM and 2 mM NH<sub>4</sub>NO<sub>3</sub>. Under 20 mM NH<sub>4</sub>NO<sub>3</sub>, the nigtQ line bolted at earlier days than WT; under 2 mM NH<sub>4</sub>NO<sub>3</sub>, nigtQ and WT bolted at almost same timing (Fig. S17D and E). This result suggests that the nigtQ mutation affects flowering timing depending on nitrogen nutrient status. However, leaf numbers of bolted plants were not different between WT and nigtQ lines (Fig. S17E). Therefore, it appears that nigtQ mutation also accelerated overall growth of plants rather than flowering promotion. We also have measured flowering time by counting leaf numbers of the nigtQ and WT plants at bolting on nitrogen-rich soil. The mutant generated slightly more leaves than WT when they flowered (Fig. S17G). These results suggest that the NIGT-derived fine-tuning of FT regulation is conditional on higher nitrogen conditions. 

      Minor: 

      (1) Abstract: "Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and in true leaves differed transcriptionally.". This sentence is not informative. What exactly is the difference in FT-expressing cells between cotyledons and true leaves? 

      We modified the sentence to clarify the differences between cotyledons and true leaves. “Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and true leaves showed differences especially in FT repressor genes.”

      (2) As a standard practice, to support the direct regulation of FT by NIGT1, the authors should provide EMSA and ChIP-seq data. Ideally, they should also generate promoter constructs with deletions or mutations in the NIGT1 binding sites. 

      To test direct interaction of NIGT1 to the FT promoter sequences, we performed the transient reporter assay using FT promoter driven luciferase reporter (Fig. 5C). NIGT1.2 and NIGT1.4 repressed the FT promoter activity; however, with NIGT1 binding site mutations, this repression was not observed, indicating that NIGT1 binds to the ciselements in the FT promoter to repress its transcription.

      (3) Sorting: Did the authors fix the samples before preparing the nuclei suspension? If not, could this be the reason the authors observed the JA-responsive clusters (Fig. 2J)? Please provide more details related to nuclei sorting in the Methods section. 

      We added a new subsection in the Materials and Methods section to explain a detail of the nuclei sorting procedure. We did not include a sample fixation step. We have tried formaldehyde fixation; however, it clumped nuclei, which was not suitable for snRNA-seq. Moreover, fixation steps generally reduce readcounts of single-cell RNA-seq according to the 10X Genomics’ guideline.

      We agree that JA responses were triggered during the FANS nuclei isolation. Therefore, we added the following sentence. “Since our FANS protocol did not include a sample fixation step to avoid clumping, these cells likely triggered wounding responses during the chopping and sorting process (Fig. S1B).  

      Reviewer #2 (Public review): 

      This manuscript submitted by Takagi et al. details the molecular characterization of the FTexpressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4. 

      Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time. 

      We are grateful that reviewer 2 recognizes the importance of transcriptome profiling of FTexpressing cells at the single-cell level.

      Here are my comments on how to improve this manuscript. 

      (1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section. 

      We agree with reviewer 2 that the spatial expression patterns of NIGT1.2 and cluster 7 genes do not overlap much, and some discussion should be provided in the manuscript. Although we do not have a concrete answer for this phenomenon, we obtained the new data showing that NIGT1.2 and NIGT1.4 directly repress the FT gene in planta (Fig. 5C).  As NIGT1.2/1.4 are negative regulators of FT, it is plausible that NIGT1.2/1.4 may suppress FT gene expression in non-cluster 7 cells to prevent the misexpression of FT. We added this point in the Results section.

      (2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of constructs the authors used to make the transformants.

      As reviewer 2 pointed out, we lacked a clear explanation of why we used NTF in this study. NTF is the fusion protein that consists of a nuclear envelope targeting WPP domain, GFP, and a biotin acceptor peptide. It was initially designed for the INTACT (isolation of nuclei tagged in specific cell types) method, which enables us to isolate bulk nuclei from specific tissues. Although our original intention was to profile the bulk transcriptome of mRNAs that exist in nuclei of the FT-expressing cells using INTACT, we utilized our NTF transgenic lines for snRNA-seq analysis. To explain what NTF is to readers, we included a schematic diagram of NTF (Fig. S1A) and more explanation about NTF in the Results section.

      Again, we appreciate all reviewers’ careful and constructive comments. With these changes, we hope our revised manuscript is now satisfactory.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments. 

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      We thank the reviewer for the comments and for raising additional interpretations of our results. We agree that determining the relative number of D1- versus D2-SPN starter cells would allow a more accurate estimate of connectivity. However, due to current technical limitations, achieving this level of precision remains challenging. As the reviewer also noted, differences in the number of cortical neurons targeting D1- versus D2-SPNs could introduce additional complexity to the functional effects observed in the behavioral experiments. Moreover, functional heterogeneity is likely to exist not only among cortical neurons projecting to striatal D1- or D2-SPNs, but also within the striatal D1- and D2-SPN populations themselves. Addressing these questions at the single-neuron level will require more refined viral tools in combination with improved recording and manipulation techniques. Despite these limitations, our results suggest that a subpopulation of cortical neurons selectively targets striatal D1-SPNs, supporting a functional dichotomy of pathway-specific corticostriatal subcircuits in the control of behavior.   

      Reviewer #2 (Public review): 

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum. This study adds to our understanding of the logic of corticostriatal connections, suggesting a previously unappreciated structure. 

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not. 

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. The authors indicate they are patching from mCherry-negative neurons within the region of the mCherry-positive neurons, but since the mCherry population will include both true starter cells and monosynaptically connected cells, this is not perfectly precise. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021). 

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 453–459:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls, although a different control (with light delivered in M1) is provided in Supplementary Figure 3. Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement. This study may have given different results due to subtly different experimental parameters, including fiber optic placement and NA.

      We appreciate the reviewer’s thoughtful evaluation and comments. We have added a short discussion of Cui et al.’s study on optogenetic stimulation of D1-SPNs in the DLS (lines 341-343), which reports findings that contrast with ours and those of other studies.

      Reviewer #3 (Public review): 

      Review of resubmission: The authors provided a response to the reviews from myself and other reviewers. While some points were made satisfactorily, particularly in clarification of the innervation of cortex to striatum and the effects of input stimulation, many of my points remain unaddressed. In several cases, the authors chose to explain their rationale rather than address the issues at hand. A number of these issues (in fact, the majority) could be addressed simply by toning done the confidence in conclusions, so it was disappointing to see that the authors by and large did not do this. I repeat my concerns below and note whether I find them to have been satisfactorily addressed or not. 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity, and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points. 

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below. 

      Major: 

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results. 

      This is still an issue. The authors point out why they chose various vectors. I can understand why the authors chose the fluorophores etc. that they did, yet the issues I raised previously are still valid. The discussion should mention that this is a potential issue. It does not necessarily invalidate results, but it is an issue. Furthermore, it is possible (in all systems) that rabies replicates better/more efficiently in some cells than others. This is one possible interpretation that has not really been explored in any study. I don't suggest the authors attempt to do that, but it should be raised as a potential interpretation. If the rabies results could mean several different things, the authors owe it to the readership to state all possible interpretations of data.

      We thank the reviewer for the comments and suggestions. Because the same fluorophore (mCherry) was used in both TVA- and ChR2-expressing viruses, it was not possible to distinguish true starter SPNs from TVA-only SPNs or monosynaptically labeled SPNs. This limitation makes it difficult to precisely assess the efficiency of rabies labeling and retrograde tracing in our experimental setup. Moreover, differences in rabies replication efficiency between D1- and D2-SPNs could potentially lead to an apparent lower connection probability from D1-projecting cortical neurons to D2-SPNs than from D2-projecting cortical neurons to D1-SPNs. We have added this clarification to the Discussion (lines 280-297).

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. Health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included. 

      This issue remains unaddressed. I did not request clarity about experimental design, but rather, raised issues about the potential effects of toxicity. I believe this to be a valid concern that needs to be discussed in the manuscript, especially given what look visually like potential differences in S2. 

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Although we performed the in vivo optogenetic behavioral experiments during a period when rabies-infected cells are generally considered relatively healthy, some deficits in starter cells may still occur and could contribute to the observed effects of optogenetic cortical stimulation. We have added this clarification to the Discussion (lines 298-306).

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity. This issue has not been addressed. Viral strain is irrelevant. The quality of the specific preparations used is what matters.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down. 

      The authors added text to the discussion to address this point. While it largely does what is intended, based on the one study cited, I disagree with the authors' conclusions that it is "clear" that potential contamination from other sites does not play a role. The simplest interpretation is the one the authors state, and there is some supporting evidence to back up that assertion, but to me that falls short of making the point "clear" that there are no other interpretations. 

      The statements about specificity of connectivity are not well founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      Again, the goal here would be to make a statement about this in the discussion to clarify limitations of the study. I don't expect the authors to re-do all of these experiments, but since they are discussing the corticostriatal circuits, which have multiple subdomains, this remains a relevant point. It has not been addressed. 

      The results in Figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret. 

      I think that the caveat of showing no clear effects of inputs to D2 stimulation should be pointed out. Yes, I understand that the viruses appeared to express etc., but again it remains possible that the results are driven by a lack of e.g., sufficient ChR2 expression. Aside from a full quantification of the number of cells expressing ChR2, overlap in fiber placement and ChR2 expression (which I don't suggest), this remains a possibility and should be pointed out, as it remains a possibility. 

      In the light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in Figure 4 - the inputs and putative downstream cells do not have the same effects. Given potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments. 

      The explanation the authors provide in their rebuttal makes sense, however this should be included in the discussion of the manuscript, as it is interesting and relevant. 

      We thank the reviewer for the valuable comments and suggestions. In line with the reviewer’s recommendation, we have incorporated these explanations into the Discussion (lines 242–279) to help interpret the complex behavioral outcomes of optogenetic stimulation of cortical neurons projecting to D1- or D2-SPNs.

      Reviewer #2 (Recommendations for the authors): 

      I appreciate the authors' responses, which helped clarify some experimental choices. I appreciate that the experiment in Fig S3 serves as a reasonable light control for optogenetics experiments. The careful comparison with methods in Cui et al (2021) is useful, although not added to the main manuscript. Some of the other citations here don't really address the controversy, e.g. Kravitz at al is in DMS, but perhaps fully addressing this issue is outside the scope of the current manuscript and awaits further experiments. I also appreciate the clarification for recording locations that "This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry." However, the statement in the reviewer response does not seem to be added to the manuscript's methods, which I think would be helpful. The criteria for choosing recorded cells are still a bit fuzzy without a map of recording locations and histology. There is also a problem that mCherry-positive cells could be starter cells or could be monosynaptically traced cells, so it is hard to know the area of the starter cell population in these experiments for sure. My evaluation of the manuscript remains largely the same as the original. However, I have adjusted my public review a bit to incorporate the authors' responses. I still think this paper has valuable information, suggesting an interesting and previously unappreciated structure of corticostriatal inputs that I hope this group and others will continue to investigate and incorporate into models of basal ganglia function.

      We thank the reviewer for the valuable suggestions. We have now included a comparison with Cui et al. in the Discussion. In addition, we have added the criteria for selecting recorded cells to the Methods section: ‘This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.’

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary: 

      This paper applies methods for segmentation, annotation, and visualization of acoustic analysis to zebra finch song. The paper shows that these methods can be used to predict the stage of song development and to quantify acoustic similarity. The methods are solid and are likely to provide a useful tool for scientists aiming to label large datasets of zebra finch vocalizations. The paper has two main parts: 1) establishing a pipeline/ package for analyzing zebra finch birdsong and 2) a method for measuring song imitation. 

      Strengths: 

      It is useful to see existing methods for syllable segmentation compared to new datasets.

      It is useful, but not surprising, that these methods can be used to predict developmental stage, which is strongly associated with syllable temporal structure.

      It is useful to confirm that these methods can identify abnormalities in deafened and isolated songs. 

      Weaknesses: 

      For the first part, the implementation seems to be a wrapper on existing techniques. For instance, the first section talks about syllable segmentation; they made a comparison between whisperseg (Gu et al, 2024), tweetynet (Cohen et al, 2022), and amplitude thresholding. They found that whisperseg performed the best, and they included it in the pipeline. They then used whisperseg to analyze syllable duration distributions and rhythm of birds of different ages and confirmed past findings on this developmental process (e.g. Aronov et al, 2011). Next, based on the segmentation, they assign labels by performing UMAP and HDBScan on the spectrogram (nothing new; that's what people have been doing). Then, based on the labels, they claimed they developed a 'new' visualization - syntax raster ( line 180 ). That was done by Sainburg et. al. 2020 in Figure 12E and also in Cohen et al, 2020 - so the claim to have developed 'a new song syntax visualization' is confusing. The rest of the paper is about analyzing the finch data based on AVN features (which are essentially acoustic features already in the classic literature). 

      First, we would like to thank this reviewer for their kind comments and feedback on this manuscript. It is true that many of the components of this song analysis pipeline are not entirely novel in isolation. Our real contribution here is bringing them together in a way that allows other researchers to seamlessly apply automated syllable segmentation, clustering, and downstream analyses to their data. That said, our approach to training TweetyNet for syllable segmentation is novel. We trained TweetyNet to recognize vocalizations vs. silence across multiple birds, such that it can generalize to new individual birds, whereas Tweetynet had only ever been used to annotate song syllables from birds included in its training set previously. Our validation of TweetyNet and WhisperSeg in combination with UMAP and HDBSCAN clustering is also novel, providing valuable information about how these systems interact, and how reliable the completely automatically generated labels are for downstream analysis. We have added a couple sentences to the introduction to emphasize the novelty of this approach and validation.

      Our syntax raster visualization does resemble Figure 12E in Sainburg et al. 2020, however it differs in a few important ways, which we believe warrant its consideration as a novel visualization method. First, Sainburg et al. represent the labels across bouts in real time; their position along the x axis reflects the time at which each syllable is produced relative to the start of the bout. By contrast, our visualization considers only the index of syllables within a bout (ie. First syllable vs. second syllable etc) without consideration of the true durations of each syllable or the silent gaps between them. This makes it much easier to detect syntax patterns across bouts, as the added variability of syllable timing is removed. Considering only the sequence of syllables rather than their timing also allows us to more easily align bouts according to the first syllable of a motif, further emphasizing the presence or absence of repeating syllable sequences without interference from the more variable introductory notes at the start of a motif. Finally, instead of plotting all bouts in the order in which they were produced, our visualization orders bouts such that bouts with the same sequence of syllables will be plotted together, which again serves to emphasize the most common syllable sequences that the bird produces. These additional processing steps mean that our syntax raster plot has much starker contrast between birds with stereotyped syntax and birds with more variable syntax, as compared to the more minimally processed visualization in Sainburg et al. 2020. There doesn’t appear to be any similar visualizations in Cohen et al. 2020. 

      The second part may be something new, but there are opportunities to improve the benchmarking. It is about the pupil-tutor imitation analysis. They introduce a convolutional neural network that takes triplets as an input (each tripled is essentially 3 images stacked together such that you have (anchor, positive, negative), Anchor is a reference spectrogram from, say finch A; positive means a different spectrogram with the same label as anchor from finch A, and negative means a spectrogram not related to A or different syllable label from A. The network is then trained to produce a low-dimensional embedding by ensuring the embedding distance between anchor and positive is less than anchor and negative by a certain margin. Based on the embedding, they then made use of earth mover distance to quantify the similarity in the syllable distribution among finches. They then compared their approach performance with that of sound analysis pro (SAP) and a variant of SAP. A more natural comparison, which they didn't include, is with the VAE approach by Goffinet et al. In this paper (https://doi.org/10.7554/eLife.67855, Fig 7), they also attempted to perform an analysis on the tutor pupil song.  

      We thank the reviewer for this suggestion. We have included a comparison of our triplet loss embedding model to the VAE model proposed in Goffinet et al. 2021. We also included comparisons of similarity scoring using each of these embedding models combined with either earth mover’s distance (EMD) or maximum mean discrepancy (MMD) to calculate the similarity of the embeddings, as was done in Goffinet et al. 2021. As discussed in the updated results section of the paper and shown in the new Figure 6–figure supplement 1, the Triplet loss model with MMD performs best for evaluating song learning on new birds, not included in model training. We’ve updated the main text of the paper to reflect this switch from EMD to MMD for the primary similarity scoring approach.

      Reviewer #2 (Public Review):

      Summary: 

      In this work, the authors present a new Python software package, Avian Vocalization Network (AVN) aimed at facilitating the analysis of birdsong, especially the song of the zebra finch, the most common songbird model in neuroscience. The package handles some of the most common (and some more advanced) song analyses, including segmentation, syllable classification, featurization of song, calculation of tutor-pupil similarity, and age prediction, with a view toward making the entire process friendlier to experimentalists working in the field.

      For many years, Sound Analysis Pro has served as a standard in the songbird field, the first package to extensively automate songbird analysis and facilitate the computation of acoustic features that have helped define the field. More recently, the increasing popularity of Python as a language, along with the emergence of new machine learning methods, has resulted in a number of new software tools, including the vocalpy ecosystem for audio processing, TweetyNet (for segmentation), t-SNE and UMAP (for visualization), and autoencoder-based approaches for embedding.

      Strengths: 

      The AVN package overlaps several of these earlier efforts, albeit with a focus on more traditional featurization that many experimentalists may find more interpretable than deep learning-based approaches. Among the strengths of the paper are its clarity in explaining the several analyses it facilitates, along with high-quality experiments across multiple public datasets collected from different research groups. As a software package, it is open source, installable via the pip Python package manager, and features high-quality documentation, as well as tutorials. For experimentalists who wish to replicate any of the analyses from the paper, the package is likely to be a useful time saver.

      Weaknesses: 

      I think the potential limitations of the work are predominantly on the software end, with one or two quibbles about the methods.

      First, the software: it's important to note that the package is trying to do many things, of which it is likely to do several well and few comprehensively. Rather than a package that presents a number of new analyses or a new analysis framework, it is more a codification of recipes, some of which are reimplementations of existing work (SAP features), some of which are essentially wrappers around other work (interfacing with WhisperSeg segmentations), and some of which are new (similarity scoring). All of this has value, but in my estimation, it has less value as part of a standalone package and potentially much more as part of an ecosystem like vocalpy that is undergoing continuous development and has long-term support. 

      We appreciate this reviewer’s comments and concerns about the structure of the AVN package and its long-term maintenance. We have considered incorporating AVN into the VocalPy ecosystem but have chosen not to for a few key reasons. (1) AVN was designed with ease of use for experimenters with limited coding experience top of mind. VocalPy provides excellent resources for researchers with some familiarity with object-oriented programming to manage and analyze their datasets; however, we believe it may be challenging for users without such experience to adopt VocalPy quickly. AVN’s ‘recipe’ approach, as you put it, is very easily accessible to new users, and allows users with intermediate coding experience to easily navigate the source code to gain a deeper understanding of the methodology. AVN also consistently outputs processed data in familiar formats (tables in .csv files which can be opened in excel), in an effort to make it more accessible to new users, something which would be challenging to reconcile with VocalPy’s emphasis on their `dataset`classes. (2) AVN and VocalPy differ in their underlying goals and philosophies when it comes to flexibility vs. standardization of analysis pipelines. VocalPy is designed to facilitate mixing-and-matching of different spectrogram generation, segmentation, annotation etc. approaches, so that researchers can design and implement their own custom analysis pipelines. This flexibility is useful in many cases. For instance, it could allow researchers who have very different noise filtering and annotation needs, like those working with field recordings versus acoustic chamber recordings, to analyze their data using this platform. However, when it comes to comparisons across zebra finch research labs, this flexibility comes at the expense of direct comparison and integration of song features across research groups. This is the context in which AVN is most useful. It presents a single approach to song segmentation, labeling, and featurization that has been shown to generalize well across research groups, and which allows direct comparisons of the resulting features. AVN’s single, extensively validated, standard pipeline approach is fundamentally incompatible with VocalPy’s emphasis on flexibility. We are excited to see how VocalPy continues to evolve in the future, and recognize the value that both AVN and VocalPy bring to the songbird research community, each with their own distinct strengths, weaknesses, and ideal use cases. 

      While the code is well-documented, including web-based documentation for both the core package and the GUI, the latter is available only on Windows, which might limit the scope of adoption. 

      We thank the reviewer for their kind words about AVN’s documentation. We recognize that the GUI’s exclusive availability on Windows is a limitation, and we would be happy to collaborate with other researchers and developers in the future to build a Mac compatible version, should the demand present itself. That said, the python package works on all operating systems, so non-Windows users still have the ability to use AVN that way.

      That is to say, whether AVN is adopted by the field in the medium term will have much more to do with the quality of its maintenance and responsiveness to users than any particular feature, but I believe that many of the analysis recipes that the authors have carefully worked out may find their way into other code and workflows. 

      Second, two notes about new analysis approaches:

      (1) The authors propose a new means of measuring tutor-pupil similarity based on first learning a latent space of syllables via a self-supervised learning (SSL) scheme and then using the earth mover's distance (EMD) to calculate transport costs between the distributions of tutors' and pupils' syllables. While to my knowledge this exact method has not previously been proposed in birdsong, I suspect it is unlikely to differ substantially from the approach of autoencoding followed by MMD used in the Goffinet et al. paper. That is, SSL, like the autoencoder, is a latent space learning approach, and EMD, like MMD, is an integral probability metric that measures discrepancies between two distributions. (Indeed, the two are very closely related: https://stats.stackexchange.com/questions/400180/earth-movers-distance-andmaximum-mean-discrepency.) Without further experiments, it is hard to tell whether these two approaches differ meaningfully. Likewise, while the authors have trained on a large corpus of syllables to define their latent space in a way that generalizes to new birds, it is unclear why such an approach would not work with other latent space learning methods.  

      We recognize the similarities between these approaches and have included comparisons of the VAE and MMD as in the Goffinet paper to our triplet loss model and EMD.  As discussed in the updated results section of the paper and shown in the new Figure 6–figure supplement 1, the Triplet loss model with MMD performs best for evaluating song learning on new birds, not included in model training. We’ve updated the main text of the paper to reflect this switch from EMD to MMD for the primary similarity scoring approach. 

      (2) The authors propose a new method for maturity scoring by training a model (a generalized additive model) to predict the age of the bird based on a selected subset of acoustic features. This is distinct from the "predicted age" approach of Brudner, Pearson, and Mooney, which predicts based on a latent representation rather than specific features, and the GAM nicely segregates the contribution of each. As such, this approach may be preferred by many users who appreciate its interpretability.  

      In summary, my view is that this is a nice paper detailing a well-executed piece of software whose future impact will be determined by the degree of support and maintenance it receives from others over the near and medium term.

      Reviewer #3 (Public Review):

      Summary: 

      The authors invent song and syllable discrimination tasks they use to train deep networks. These networks they then use as a basis for routine song analysis and song evaluation tasks. For the analysis, they consider both data from their own colony and from another colony the network has not seen during training. They validate the analysis scores of the network against expert human annotators, achieving a correlation of 80-90%. 

      Strengths: 

      (1) Robust Validation and Generalizability: The authors demonstrate a good performance of the AVN across various datasets, including individuals exhibiting deviant behavior. This extensive validation underscores the system's usefulness and broad applicability to zebra finch song analysis, establishing it as a potentially valuable tool for researchers in the field.

      (2) Comprehensive and Standardized Feature Analysis: AVN integrates a comprehensive set of interpretable features commonly used in the study of bird songs. By standardizing the feature extraction method, the AVN facilitates comparative research, allowing for consistent interpretation and comparison of vocal behavior across studies.

      (3) Automation and Ease of Use. By being fully automated, the method is straightforward to apply and should introduce barely an adoption threshold to other labs.

      (4) Human experts were recruited to perform extensive annotations (of vocal segments and of song similarity scores). These annotations released as public datasets are potentially very valuable. 

      Weaknesses: 

      (1) Poorly motivated tasks. The approach is poorly motivated and many assumptions come across as arbitrary. For example, the authors implicitly assume that the task of birdsong comparison is best achieved by a system that optimally discriminates between typical, deaf, and isolated songs. Similarly, the authors assume that song development is best tracked using a system that optimally estimates the age of a bird given its song. My issue is that these are fake tasks since clearly, researchers will know whether a bird is an isolated or a deaf bird, and they will also know the age of a bird, so no machine learning is needed to solve these tasks. Yet, the authors imagine that solving these placeholder tasks will somehow help with measuring important aspects of vocal behavior.  

      We appreciate this reviewer’s concerns and apologize for not providing sufficiently clear rationale for the inclusion of our phenotype classifier and age regression models in the original manuscript. These tasks are not intended to be taken as a final, ultimate culmination of the AVN pipeline. Rather, we consider the carefully engineered 55-interpretable feature set to be AVN’s final output, and these analyses serve merely as examples of how that feature set can be applied. That said, each of these models do have valid experimental use cases that we believe are important and would like to bring to the attention of the reviewer.

      For one, we showed how the LDA model that can discriminate between typical, deaf, and isolate birds’ songs not only allows us to evaluate which features are most important for discriminating between these groups, but also allows comparison of the FoxP1 knock-down (FP1 KD) birds to each of these phenotypes. Based on previous work (Garcia-Oscos et al. 2021), we hypothesized that FP1 KD in these birds specifically impaired tutor song memory formation while sparing a bird’s ability to refine their own vocalizations through auditory feedback. Thus, we would expect their songs to resemble those of isolate birds, who lack a tutor song memory, but not to resemble deaf birds who lack a tutor song memory and auditory feedback of their own vocalizations to guide learning. The LDA model allowed us to make this comparison quantitatively for the first time and confirm our hypothesis that FP1 KD birds’ songs are indeed most like isolates’. In the future, as more research groups publish their birds’ AVN feature sets, we hope to be able to make even more fine-grained comparisons between different groups of birds, either using LDA or other similar interpretable classifiers. 

      The age prediction model also has valid real-world use cases. For instance, one might imagine an experimental manipulation that is hypothesized to accelerate or slow song maturation in juvenile birds. This age prediction model could be applied to the AVN feature sets of birds having undergone such a manipulation to determine whether their predicted ages systematically lead or lag their true biological ages, and which song features are most responsible for this difference. We didn’t have access to data for any such birds for inclusion in this paper, but we hope that others in the future will be able to take inspiration from our methodology and use this or a similar age regression model with AVN features in their research. We have added a couple lines to the ‘Comparing Song Disruptions with AVN Features’ and ‘Tracking Song Development with AVN Features’ sections of the results to make this more clear. 

      Along similar lines, authors assume that a good measure of similarity is one that optimally performs repeated syllable detection (i.e. to discriminate same syllable pairs from different pairs). The authors need to explain why they think these placeholder tasks are good and why no better task can be defined that more closely captures what researchers want to measure. Note: the standard tasks for self-supervised learning are next word or masked word prediction, why are these not used here? 

      This reviewer appears to have misunderstood our similarity scoring embedding model and our rationale for using it. We will explain it in more depth here and have added a paragraph to the ‘Measuring Song Imitation’ section of the results explaining this rationale more briefly.

      First, nowhere are we training a model to discriminate between same and different syllable pairs. The triplet loss network is trained to embed syllables in an 8-dimensional space such that syllables with the same label are closer together than syllables with different labels. The loss function is related to the relative distance between embeddings of syllables with the same or different labels, not the classification of syllables as same or different. This approach was chosen because it has repeatedly been shown to be a useful data compression step (Schorff et al. 2015, Thakur et al. 2019) before further downstream tasks are applied on its output, particularly in contexts where there is little data per class (syllable label). For example, Schorff et al. 2015 trained a deep convolutional neural network with triplet loss to embed images of human faces from the same individual closer together than images of different individuals in a 128dimensional space. They then used this model to compute 128-dimensional representations of additional face images, not included in training, which were used for individual facial recognition (this is a same vs. different category classifier), and facial clustering, achieving better performance than the previous state of the art. The triplet loss function results in a model that can generate useful embeddings of previously unseen categories, like new individuals’ faces, or new zebra finches’ syllables, which can then be used in downstream analyses. This meaningful, lower dimensional space allows comparisons of distributions of syllables across birds, as in Brainard and Mets 2008, and Goffinet et al. 2021. 

      Next word and masked word prediction are indeed common self-supervised learning tasks for models working with text data, or other data with meaningful sequential organization. That is not the case for our zebra finch syllables, where every bird’s syllable sequence depends only on its tutor’s sequence, and there is no evidence for strong universal syllable sequencing rules (James et al. 2020). Rather, our embedding model is an example of a computer vision task, as it deals with sets of two-dimensional images (spectrograms), not sequences of categorical variables (like text). It is also not, strictly speaking, a selfsupervised learning task, as it does require syllable labels to generate the triplets. A common selfsupervised approach for dimensionality reduction in a computer vision task such as this one would be to train an autoencoder to compress images to a lower dimensional space, then faithfully reconstruct them from the compressed representation.  This has been done using a variational autoencoder trained on zebra finch syllables in Goffinet et al. 2021. In keeping with the suggestions from reviewers #1 and #2, we have included a comparison of our triplet loss model with the Goffinet et al. VAE approach in the revised manuscript. 

      (2) The machine learning methodology lacks rigor. The aims of the machine learning pipeline are extremely vague and keep changing like a moving target. Mainly, the deep networks are trained on some tasks but then authors evaluate their performance on different, disconnected tasks. For example, they train both the birdsong comparison method (L263+) and the song similarity method (L318+) on classification tasks. However, they evaluate the former method (LDA) on classification accuracy, but the latter (8-dim embeddings) using a contrast index. In machine learning, usually, a useful task is first defined, then the system is trained on it and then tested on a held-out dataset. If the sensitivity index is important, why does it not serve as a cost function for training?

      Again, this reviewer seems not to understand our similarity scoring methodology. Our similarity scoring model is not trained on a classification task, but rather on an embedding task. It learns to embed spectrograms of syllables in an 8-dimensional space such that syllables with the same label are closer together than syllables with different labels. We could report the loss values for this embedding task on our training and validation datasets, but these wouldn’t have any clear relevance to the downstream task of syllable distribution comparison where we are using the model’s embeddings. We report the contrast index as this has direct relevance to the actual application of the model and allows comparisons to other similarity scoring methods, something that the triplet loss values wouldn’t allow. 

      The triplet loss method was chosen because it has been shown to yield useful low-dimensional representations of data, even in cases where there is limited labeled training data (Thakur et al. 2019). While we have one of the largest manually annotated datasets of zebra finch songs, it is still quite small by industry deep learning standards, which is why we chose a method that would perform well given the size of our dataset. Training a model on a contrast index directly would be extremely computationally intensive and require many more pairs of birds with known relationships than we currently have access to. It could be an interesting approach to take in the future, but one that would be unlikely to perform well with a dataset size typical to songbird research. 

      Also, usually, in solid machine learning work, diverse methods are compared against each other to identify their relative strengths. The paper contains almost none of this, e.g. authors examined only one clustering method (HDBSCAN).  

      We did compare multiple methods for syllable segmentation (WhisperSeg, TweetyNet, and Amplitude thresholding) as this hadn’t been done previously. We chose not to perform extensive comparison of different clustering methods as Sainburg et al. 2020 already did so and we felt no need to reduplicate this effort. We encourage this reviewer to refer to Sainburg et al.’s excellent work for comparisons of multiple clustering methods applied to zebra finch song syllables.

      (3) Performance issues. The authors want to 'simplify large-scale behavioral analysis' but it seems they want to do that at a high cost. (Gu et al 2023) achieved syllable scores above 0.99 for adults, which is much larger than the average score of 0.88 achieved here (L121). Similarly, the syllable scores in (Cohen et al 2022) are above 94% (their error rates are below 6%, albeit in Bengalese finches, not zebra finches), which is also better than here. Why is the performance of AVN so low? The low scores of AVN argue in favor of some human labeling and training on each bird.  

      Firstly, the syllable error rate scores reported in Cohen et al. 2022 are calculated very differently than the F1 scores we report here and are based on a model trained with data from the same bird as was used in testing, unlike our more general segmentation approach where the model was tested on different birds than were used in training. Thus, the scores reported in Cohen et al. and the F1 scores that we report cannot be compared. 

      The discrepancy between the F1<sub>seg</sub> scores reported in Gu et al. 2023 and the segmentation F1 scores that we report are likely due to differences in the underlying datasets. Our UTSW recordings tend to have higher levels of both stationary and non-stationary background noise, which make segmentation more challenging. The recordings from Rockefeller were less contaminated by background noise, and they resulted in slightly higher F1 scores. That said, we believe that the primary factor accounting for this difference in scores with Gu et al. 2023 is the granularity of our ‘ground truth’ syllable segments. In our case, if there was never any ambiguity as to whether vocal elements should be segmented into two short syllables with a very short gap between them or merged into a single longer syllable, we chose to split them. WhisperSeg had a strong tendency to merge the vocal elements in ambiguous cases such as these. This results in a higher rate of false negative syllable onset detections, reflected in the low recall scores achieved by WhisperSeg (see Figure 2–figure supplement 1b), but still very high precision scores (Figure 2–figure supplement 1a). While WhisperSeg did frequently merge these syllables in a way that differed from our ground truth segmentation, it did so consistently, meaning it had little impact on downstream measures of syntax entropy (Figure 3c) or syllable duration entropy (Figure 3–figure supplement 2a). It is for that reason that, despite a lower F1 score, we still consider AVN’s automatically generated annotations to be sufficiently accurate for downstream analyses. 

      Should researchers require a higher degree of accuracy and precision with their annotations (for example, to detect very subtle changes in song before and after an acute manipulation) we suggest they turn toward one of the existing tools for supervised song annotation, such as TweetyNet.

      (4) Texas bias. It is true that comparability across datasets is enhanced when everyone uses the same code. However, the authors' proposal essentially is to replace the bias between labs with a bias towards birds in Texas. The comparison with Rockefeller birds is nice, but it amounts to merely N=1. If birds in Japanese or European labs have evolved different song repertoires, the AVN might not capture the associated song features in these labs well.  

      We appreciate the author’s concern about a bias toward birds from the UTSW colony. However, this paper shows that despite training (for the similarity scoring) and hyperparameter fitting (for the HDBSCAN clustering) on the UTSW birds, AVN performs as well if not better on birds from Rockefeller than from UTSW. To our knowledge, there are no publicly available datasets of annotated zebra finch songs from labs in Europe or in Asia but we would be happy to validate AVN on such datasets, should they become available. Furthermore, there is no evidence to suggest that there is dramatic drift in zebra finch vocal repertoire between continents which would necessitate such additional validation. While we didn’t have manual annotations for this dataset (which would allow validation of our segmentation and labeling methods), we did apply AVN to recordings shared with us by the Wada lab in Japan, where visual inspection of the resulting annotations suggested comparable accuracy to the UTSW and Rockefeller datasets. 

      (5) The paper lacks an analysis of the balance between labor requirement, generalizability, and optimal performance. For tasks such as segmentation and labeling, fine-tuning for each new dataset could potentially enhance the model's accuracy and performance without compromising comparability. E.g. How many hours does it take to annotate hundred song motifs? How much would the performance of AVN increase if the network were to be retrained on these? The paper should be written in more neutral terms, letting researchers reach their own conclusions about how much manual labor they want to put into their data.  

      With standardization and ease of use in mind, we designed AVN specifically to perform fully automated syllable annotation and downstream feature calculations. We believe that we have demonstrated in this manuscript that our fully automated approach is sufficiently reliable for downstream analyses across multiple zebra finch colonies. That said, if researchers require an even higher degree of annotation precision and accuracy, they can turn toward one of the existing methods for supervised song annotation, such as TweetyNet. Incorporating human annotations for each bird processed by AVN is likely to improve its performance, but this would require significant changes to AVN’s methodology, and is outside the scope of our current efforts.

      (6) Full automation may not be everyone's wish. For example, given the highly stereotyped zebra finch songs, it is conceivable that some syllables are consistently mis-segmented or misclassified. Researchers may want to be able to correct such errors, which essentially amounts to fine-tuning AVN. Conceivably, researchers may want to retrain a network like the AVN on their own birds, to obtain a more fine-grained discriminative method.  

      Other methods exist for supervised or human-in-the-loop annotation of zebra finch songs, such as TweetyNet and DAN (Alam et al. 2023). We invite researchers who require a higher degree of accuracy than AVN can provide to explore these alternative approaches for song annotation. Incorporating human feedback into AVN was never the goal of our pipeline, would require significant changes to AVN’s design and is outside the scope of this manuscript.

      (7) The analysis is restricted to song syllables and fails to include calls. No rationale is given for the omission of calls. Also, it is not clear how the analysis deals with repeated syllables in a motif, whether they are treated as two-syllable types or one.  

      It is true that we don’t currently have any dedicated features to describe calls. This could be a useful addition to AVN in the future. 

      What a human expert inspecting a spectrogram would typically call ‘repeated syllables’ in a bout are almost always assigned the same syllable label by the UMAP+HDBSCAN clustering. The syntax analysis module includes features examining the rate of syllable repetitions across syllable types, as mentioned in lines 222-226 of the revised manuscript. See https://avn.readthedocs.io/en/latest/syntax_analysis_demo.html#Syllable-Repetitions for further details.

      (8) It seems not all human annotations have been released and the instruction sets given to experts (how to segment syllables and score songs) are not disclosed. It may well be that the differences in performance between (Gu et al 2023) and (Cohen et al 2022) are due to differences in segmentation tasks, which is why these tasks given to experts need to be clearly spelled out. Also, the downloadable files contain merely labels but no identifier of the expert. The data should be released in such a way that lets other labs adopt their labeling method and cross-check their own labeling accuracy.  

      All human annotations used in this manuscript have indeed been released as part of the accompanying dataset. Syllable annotations are not provided for all pupils and tutors used to validate the similarity scoring, as annotations are not necessary for similarity comparisons. We have expanded our description of our annotation guidelines in the methods section of the revised manuscript. All the annotations were generated by one of two annotators. The second annotator always consulted with the first annotator in cases of ambiguous syllable segmentation or labeling, to ensure that they had consistent annotation styles. Unfortunately, we haven’t retained records about which birds were annotated by which of the two annotators, so we cannot share this information along with the dataset. The data is currently available in a format that should allow other research groups to use our annotations either to train their own annotation systems or check the performance of their existing systems on our annotations.  

      (9) The failure modes are not described. What segmentation errors did they encounter, and what syllable classification errors? It is important to describe the errors to be expected when using the method. 

      As we discussed in our response to this reviewer’s point (3), WhisperSeg has a tendency to merge syllables when the gap between them is very short, which explains its lower recall score compared to its precision on our dataset (Figure 2–figure supplement 1). In rare cases, WhisperSeg also fails to recognize syllables entirely, again impacting its precision score. TweetyNet hardly ever completely ignores syllables, but it does tend to occasionally merge syllables together or over-segment them. Whereas WhisperSeg does this very consistently for the same syllable types within the same bird, TweetyNet merges or splits syllables more inconsistently. This inconsistent merging and splitting has a larger effect on syllable labeling, as manifested in the lower clustering v-measure scores we obtain with TweetyNet compared to WhisperSeg segmentations. TweetyNet also has much lower precision than WhisperSeg, largely because TweetyNet often recognizes background noises (like wing flaps or hopping) as syllables whereas WhisperSeg hardly ever segments non-vocal sounds. 

      Many errors in syllable labeling stem from differences in syllable segmentation. For example, if two syllables with labels ‘a’ and ‘b’ in the manual annotation are sometimes segmented as two syllables, but sometimes merged into a single syllable, the clustering is likely to find 3 different syllable types; one corresponding to ‘a’, one corresponding to ‘b’ and one corresponding to ‘ab’ merged. Because of how we align syllables across segmentation schemes for the v-measure calculation, this will look like syllable ‘b’ always has a consistent cluster label (or is missing a label entirely), but syllable ‘a’ can carry two different cluster labels, depending on the segmentation. In certain cases, even in the absence of segmentation errors, a group of syllables bearing the same manual annotation label may be split into 2 or 3 clusters (it is extremely rare for a single manual annotation group to be split into more than 3 clusters). In these cases, it is difficult to conclusively say whether the clustering represents an error, or if it actually captured some meaningful systematic difference between syllables that was missed by the annotator. Finally, sometimes rare syllable types with their own distinct labels in the manual annotation are merged into a single cluster. Most labeling errors can be explained by this kind of merging or splitting of groups relative to the manual annotation, not to occasional mis-classifications of one manual label type as another.

      For examples of these types of errors, we encourage this reviewer and readers to refer to the example confusion matrices in figure 2f and Figure 2–figure supplement 3b&e. We also added two paragraphs to the end of the ‘Accurate, fully unsupervised syllable labeling’ section of the Results in the revised manuscript. 

      (10) Usage of Different Dimensionality Reduction Methods: The pipeline uses two different dimensionality reduction techniques for labeling and similarity comparison - both based on the understanding of the distribution of data in lower-dimensional spaces. However, the reasons for choosing different methods for different tasks are not articulated, nor is there a comparison of their efficacy.  

      We apologize for not making this distinction sufficiently clear in the manuscript and have added a paragraph to the ‘Measuring Song Imitation’ section of the Results explaining the rational for using an embedding model for similarity scoring. 

      We chose to use UMAP for syllable labeling because it is a common embedding methodology to precede hierarchical clustering and has been shown to result in reliable syllable labels for birdsong in the past (Sainburg et al. 2020). However, it is not appropriate for similarity scoring, because comparing EMD or MMD scores between birds requires that all the birds’ syllable distributions exist within the same shared embedding space. This can be achieved by using the same triplet loss-trained neural network model to embed syllables from all birds. This cannot be achieved with UMAP because all birds whose scores are being compared would need to be embedded in the same UMAP space, as distances between points cannot be compared across UMAPs. In practice, this would mean that every time a new tutor-pupil pair needs to be scored, their syllables would need to be added to a matrix with all previously compared birds’ syllables, a new UMAP would need to be computed, and new EMD or MMD scores between all bird pairs would need to be calculated using their new UMAP embeddings. This is very computationally expensive and quickly becomes unfeasible without dedicated high power computing infrastructure. It also means that similarity scores couldn’t be compared across papers without recomputing everything each time, whereas EMD and MMD scores obtained with triplet loss embeddings can be compared, provided they use the same trained model (which we provide as part of AVN) to embed their syllables in a common latent space. 

      (11) Reproducibility: are the measurements reproducible? Systems like UMAP always find a new embedding given some fixed input, so the output tends to fluctuate.

      There is indeed a stochastic element to UMAP embeddings which will result in different embeddings and therefore different syllable labels across repeated runs with the same input. We observed that v-measures scores were quite consistent within birds across repeated runs of the UMAP, and have added an additional supplementary figure to the revised manuscript showing this (Figure 2–figure supplement 4).

      Reviewer #1 (Recommendations For The Authors):

      (1) Benchmark their similarity score to the method used by Goffinet et al, 2021 from the Pearson group. Such a comparison would be really interesting and useful.  

      This has been added to the paper. 

      (2) Please clarify exactly what is new and what is applied from existing methods to help the reader see the novelty of the paper.  

      We have added more emphasis on the novel aspects of our pipeline to the paper’s introduction. 

      Minor:

      It's unclear if AVN is appropriate as the paper deals only with zebra finch song - the scope is more limited than advertised.

      We assume this is in reference to ‘Birdsong’ in the paper’s title and ‘Avian’ in Avian Vocalization Network. There is a brief discussion of how these methods are likely to perform on other commonly studied songbird species at the end of the discussion section.

      Reviewer #2 (Recommendations For The Authors):

      A few points for the authors to consider that might strengthen or inform the paper:

      (1) In the public review, I detailed some ways in which the SSL+EMD approach is unlikely to be appreciably distinct from the VAE+MMD approach -- in fact, one could mix and match here. It would strengthen the authors' claim if they showed via experiments that their method outperforms VAE+MMD, but in the absence of that, a discussion of the relation between the two is probably warranted.  

      This comparison has been added to the paper.

      (2) ll. 305-310: This loss of accuracy near the edge is expected on general Bayesian grounds. Any regression approach should learn to estimate the conditional mean of the age distribution given the data, so ages estimated from data will be pulled inward toward the location of most training data. This bias is somewhat mitigated in the Brudner paper by a more flexible model, but it's a general (and expected) feature of the approach.

      (3) While the online AVA documentation looks good, it might benefit from a page on design philosophy that lays out how the various modules fit together - something between the tutorials and the nitty-gritty API. That way, users would be able to get a sense of where they should look if they want to harness pieces of functionality beyond the tutorials.

      Thank you for this suggestion. We will add a page on AVN’s design philosophy to the online documentation. 

      (4) While the manuscript does compare AVN to packages like TweetyNet and AVA that share some functionality, it doesn't really mention what's been going on with the vocalpy ecosystem, where the maintainers have been doing a lot to standardize data processing, integrate tools, etc. I would suggest a few words about how AVN might integrate with these efforts.

      We thank the reviewer for this suggestion.

      (5) ll. 333-336: It would be helpful to provide a citation to some of the self-supervised learning literature this procedure is based on. Some citations are provided in methods, but the general approach is worth citing, in my opinion. 

      We have added a paragraph to the results section with more background on self-supervised learning for dimensionality reduction, particularly in the context of similarity scoring.

      (6) One software concern for medium-term maintenance: AVN docs say to use Python 3.8, and GitHub says the package is 3.9 compatible. I also saw in the toml file that 3.10 and above are not supported. It's worth noting that Python 3.9 reaches its end of life in October 2025, so some dependencies may have to be altered or changed for the package to be viable going forward.  

      Thank you for this comment. We will continue to maintain AVN and update its dependencies as needed.

      Minor points:

      (1) It might be good to note that WhisperSeg is a different install from AVN. May be hard for novice users, though there's a web interface that's available. 

      We’ve added a line to the methods section making this clear. 

      (2) Figure 6b: Some text in the y-axis labels is overlapping here. 

      This has been fixed. Thank you for bringing it to our attention. 

      (3) The name of the Python language is always capitalized.  

      We’ve fixed this capitalization error throughout the manuscript. Thank you.

      Reviewer #3 (Recommendations For The Authors):

      (1) I recommend that the authors improve the motivation of the chosen tasks and data or choose new tasks that more clearly speak to the optimizations they want to perform. 

      We have included more details about the motivation for our LDA classification analysis, age prediction model and embedding model for similarity scoring in the results of the revised manuscript, as discussed in more detail in the above responses to this reviewer. Thank you for these suggestions. 

      (2) They need to rigorously report the (classification) scores on the test datasets: these are the scores associated with the cost function used during training.  

      Based on this reviewer’s ‘Weaknesses: 3’ comment in the public reviews, we believe that they are referring to a classification score for the triplet loss model. As we explained in response to that comment, this is not a classification task, therefor there is no classification score to report. The loss function used to train the model was a triplet loss function. While we could report these values, they are not informative for how well this approach would perform in a similarity scoring context, as explained above. As such, we prefer to include contrast index and tutor contrast index scores to compare the models’ performance for similarity score, as these are directly relevant to the task and are established in the field for said task.

      (3) They need to explain the reasons for the poor performance (or report on the inconsistencies with previous work) and why they prefer a fully automated system rather than one that needs some fine-tuning on bird-specific data.

      We’ve addressed this comment in the public response to this reviewer’s weakness points 3, 5, and 6. 

      (4) They should consider applying their method to data from Japanese and European labs.  

      We’ve addressed this comment in the public response to this reviewer’s weakness point 4.

      (5) The need to document the failure modes and report all details about the human annotations.  

      We’ve added additional description of the failure modes for our segmentation and labeling approaches in the results section of the revised manuscript.

      Details: 

      The introduction is very vague, it fails to make a clear case of what the problem is and what the approach is. It reads a bit like an advertisement for machine learning: we are given a hammer and are looking for a nail.  

      We thank the reviewer for this viewpoint; however, we disagree and have decided to keep our Introduction largely unchanged. 

      L46 That interpretability is needed to maximize the benefits of machine learning is wrong, see self-driving cars and chat GPT.  

      This line states that ‘To truly maximize the benefits of machine learning and deep learning methods for behavior analysis, their power must be balanced with interpretability and generalizability’. We firmly believe that interpretability is critically important when using machine learning tools to gain a deeper scientific understanding of data, including animal behavior data in a neuroscience context. We believe that the introduction and discussion of this paper already provide strong evidence for this claim. 

      L64 What about zebra finches that repeat a syllable in the motif, how are repetitions dealt with by AVN?  

      This is already described in the results section in lines 222-226, and in the methods in the ‘Syntax Features: Repetition Bouts’ section.

      L107 Say a bit more here, what exactly has been annotated?  

      We’ve added a sentence in the introduction to clarify this. Line 113-115. 

      L112 Define spectrogram frames. Do these always fully or sometimes partially contain a vocalization? 

      Spectrogram frames are individual time bins used to compute the spectrogram using a short-term Fourier transform. As described in the ‘Methods; Labeling : UMAP Dimensionality Reduction” section, our spectrograms are computed using ‘The short term Fourier transform of the normalized audio for each syllable […] with a window length of 512 samples and a hop length of 128 samples’. Given that the song files have a standard sampling rate of 44.1kHz, this means each time bin represents 11.6ms of song data, with successive frames advancing in time by 2.9ms. These contain only a small fraction of a vocalization. 

      L122 The reported TweetyNet score of 0.824 is lower than the one reported in Figure 2a.  

      The center line in the box plot in Figure 2a represents the median of the distribution of TweetyNet vmeasure scores. Given that there are a couple outlying birds with very low scores, the mean (0.824 as reported in the text of the results section) is lower than the median. This is not an error.

      L155 Some of the differences in performance are very small, reporting of the P value might be necessary. 

      These methods are unlikely to statistically significantly differ in their validation scores. This doesn’t mean that we cannot use the mean/median values reported to justify favoring one method over another. This is why we’ve chosen not to report p-values here.

      L161 The authors have not really tested more than a single clustering method, failing to show a serious attempt to achieve good performance.  

      We’ve addressed this comment in the public response to this reviewer’s weakness point 2.

      L186 Did isolate birds produce stereotyped syllables that can be clustered? 

      Yes, they did. The validation for clustering of isolate bird songs can be found in Figure 2–figure supplement 4. 

      Fig. 3e: How were the multiple bouts aligned?

      This is described in lines 857-876 in the ‘Methods: Song Timing Features: Rhythm Spectrograms” section of the paper.

      L199 There is a space missing in front of (n=8).  

      Thank you for bringing this to our attention. It’s been corrected in the updated manuscript. 

      L268 Define classification accuracy.  

      We’ve added a sentence in lines 953-954 of the methods section defining classification accuracy. 

      L325 How many motifs need to be identified, why does this need to be done manually? There are semiautomated methods that can allow scaling, these should be  cited here. Also, the mention of bias here should be removed in favor of a more extensive discussion on the experimenter bias (traditionally vs Texas bias (in this paper).  

      All of the methods cited in this line have graphical user interfaces that require users to select a file containing song and manually highlight the start and end each motif to be compared. The exact number of motifs required varies depending on the specific context (e.g. more examples are needed to detect more subtle differences or changes in song similarity) but it is fairly standard for reviewers to score 30 – 100 pairs of motifs. 

      We’ve discussed the tradeoffs between full automation and supervised or human-in-the loop methods in response to this reviewer’s public comment ‘weakness #5 and 6’. Briefly, AVN’s aim is to standardize song analysis, to allow direct comparisons between song features and similarity scores across research groups. We believe, as explained in the paper, that this can be best achieve by having different research groups use the same deep learning models, which perform consistently well across those groups. Introducing semi-automated methods would defeat this benefit of AVN. 

      We’ve also addressed the question of ‘Texas bias’ in response to their reviewer’s public comment ‘Weakness #4’. 

      L340 How is EMD applied? Syllables are points in 8-dim space, but now suddenly authors talk about distributions without explaining how they got from points to distributions. Same in L925.  

      We apologize for the confusion here. The syllable points in the 8-d space are collectively an empirical distribution, not a probability distribution. We referred to them simply as ‘distributions’ to limit technical jargon in the results of the paper, but have changed this to more precise language in the revised manuscript.

      L351 Why do authors now use 'contrast index' to measure performance and no longer 'classification accuracy'?  

      We’ve addressed this comment in the public response to this reviewer’s weakness points 1 and 2.

      Figure 6 What is the confusion matrix, i.e. how well can the model identify pupil-pupil pairings from pupiltutor and from pupil-unrelated pairings? I guess that would amount to something like classification accuracy.  

      There is no model classifying comparisons as pupil-pupil vs. pupil-tutor etc. These comparisons exist only to show the behavior of the similarity scoring approach, which consists of a dissimilarity measure (MMD or EMD) applied to low dimensional representations of syllable generated by the triplet loss model or VAE. This was clarified further in our public response to this reviewer’s weakness points 1 and 2. 

      L487 What are 'song files', and what do they contain?   

      ‘Song files’ are .wav files containing recordings of zebra finch song. They typically contain a single song bout, but they can include multiple song bouts if they are produced close together, or incomplete song bouts if the introductory notes were very soft or the bouts were very long (>30s from the start of the file). Details of these recordings are provided in the ‘Methods: Data Acquisition: UTSW Dataset’ section of the manuscript.

      L497 Calls were only labelled for tweetynet but not for other tasks.  

      That is correct. The rationale for this is provided in the ‘Methods: Manual Song Annotation’ section of the manuscript. 

      L637 There is a contradiction (can something be assigned to the 'own manual annotation category' when the same sentence states that this is done 'without manual annotation'?) 

      We believe there is confusion here between automated annotation and validation. Any bird can be automatically annotated without the need for any existing manual annotations for that individual bird. However, manual labels are required to compare automatically generated annotations against for validation of the method.

      L970 Spectograms of what? (what is the beginning of a song bout, L972). 

      The beginning of a song bout is the first introductory note produced by a bird after a period without vocalizations. This is standard.

    1. Reviewer #3 (Public review):

      Summary:

      The aim of this study was to investigate the temporal progression of the neural response to event boundaries in relation to uncertainty and error. Specifically, the authors asked (1) how neural activity changes before and after event boundaries, (2) if uncertainty and error both contribute to explaining the occurrence of event boundaries, and (3) if uncertainty and error have unique contributions to explaining the temporal progression of neural activity.

      Strengths:

      One strength of this paper is that it builds on an already validated computational model. It relies on straightforward and interpretable analysis techniques to answer the main question, with a smart combination of pattern similarity metrics and FIR. This combination of methods may also be an inspiration to other researchers in the field working on similar questions. The paper is well written and easy to follow. The paper convincingly shows that (1) there is a temporal progression of neural activity change before and after an event boundary, and (2) event boundaries are predicted best by the combination of uncertainty and error signals.

      Weaknesses:

      Regarding question 3, I am less convinced by the results. They show that overlapping but somewhat distinct sets of brain regions relate to uncertainty and error boundaries over time. And that some regions show distinct patterns of temporal progressions in pattern change with both types of boundaries. However, most of the effects they observe in this analysis may still be driven by shared variance, as suggested by the results in Figure 6 and the high correlation between the two boundary time series. More specific comments are provided below.

      Impact:

      If these comments can be addressed sufficiently, I expect that this work will impact the field in its thinking on what drives event boundaries and spur interest in understanding the mechanisms behind the temporal progression of neural activity around these boundaries.

      Comments

      (1) The current analysis of the neural data does not convincingly show that uncertainty and prediction error both contribute to the neural responses. As both terms are modelled in separate FIR models, it may be that the responses we see for both are mostly driven by shared variance. Given that the correlation between the two is very high (r=0.49), this seems likely. The strong overlap in the neural responses elicited by both, as shown in Figure 6, also suggests that what we see may mainly be shared variance. To improve the interpretability of these effects, I think it is essential to know whether uncertainty and error explain similar or unique parts of the variance. The observation that they have distinct temporal profiles is suggestive of some dissociation, but not as convincing as adding them both to a single model.

      (2) The results for uncertainty and error show that uncertainty has strong effects before or at boundary onset, while error is related to more stabilization after boundary onset. This makes me wonder about the temporal contribution of each of these. Could it be the case that increases in uncertainty are early indicators of a boundary, and errors tend to occur later?

      (3) Given that there is a 24-second period during which the neural responses are shaped by event boundaries, it would be important to know more about the average distance between boundaries and the variability of this distance. This will help establish whether the FIR model can properly capture a return to baseline.

      (4) Given that there is an early onset and long-lasting response of the brain to these event boundaries, I wonder what causes this. Is it the case that uncertainty or errors already increase at 12 seconds before the boundaries occur? Or if there are other makers in the movie that the brain can use to foreshadow an event boundary? And if uncertainty or errors do increase already 12 seconds before an event boundary, do you see a similar neural response at moments with similar levels of error or uncertainty, which are not followed by a boundary? This would reveal whether the neural activity patterns are specific to event boundaries or whether these are general markers of error and uncertainty.

      (5) It is known that different brain regions have different delays of their BOLD response. Could these delays contribute to the propagation of the neural activity across different brain areas in this study?

      (6) In the FIR plots, timepoints -12, 0, and 12 are shown. These long intervals preclude an understanding of the full temporal progression of these effects.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This study investigates how collective navigation improvements arise in homing pigeons. Building on the Sasaki & Biro (2017) experiment on homing pigeons, the authors use simulations to test seven candidate social learning strategies of varying cognitive complexity, ranging from simple route averaging to potentially cognitively demanding selective propagation of superior routes. They show that only the simplest strategy-equal route averaging-quantitatively matches the experimental data in both route efficiency and social weighting. More complex strategies, while potentially more effective, fail to align with the observed data. The authors also introduce the concept of "effective group size," showing that the chaining design leads to a strong dilution of earlier individuals' contributions. Overall, they conclude that cognitive simplicity rather than cumulative cultural evolution explains collective route improvements in pigeons.

      Strengths:

      The manuscript addresses an important question and provides a compelling argument that a simpler hypothesis is necessary and sufficient to explain findings of a recent influential study on pigeon route improvements, via a rigorous systematic comparison of seven alternative hypotheses. The authors should be commended for their willingness to critically re-examine established interpretations. The introduction and discussion are broad and link pigeon navigation to general debates on social learning, wisdom of crowds, and CCE.

      We thank the reviewer for their positive comments.

      Weaknesses:

      The lack of availability of codes and data for this manuscript, especially given that it critically examines and proposes alternative hypotheses for an important published work.

      We thank the reviewer for their comment. The code and data for our manuscript are an important aspect of the study, and we had intended to make them publicly available upon publication. The link to our code and data on figshare can be found here: (https://doi.org/10.6084/m9.figshare.28950032.v1). We will further add this link to the Data Availability Statement of our revised version.  

      Reviewer #2 (Public review):

      Summary:

      The manuscript investigates which social navigation mechanisms, with different cognitive demands, can explain experimental data collected from homing pigeons. Interestingly, the results indicate that the simplest strategy - route averaging - aligns best with the experimental data, while the most demanding strategy - selectively propagating the best route - offers no advantage. Further, the results suggest that a mixed strategy of weighted averaging may provide significant improvements.

      The manuscript addresses the important problem of identifying possible mechanisms that could explain observed animal behavior by systematically comparing different candidate models. A core aspect of the study is the calculation of collective routes from individual bird routes using different models that were hypothesized to be employed by the animals, but which differ in their cognitive demands.

      The manuscript is well-written, with high-quality figures supporting both the description of the approach taken and the presentation of results. The results should be of interest to a broad community of researchers investigating (collective) animal behavior, ranging from experiment to theory. The general approach and mathematical methods appear reasonable and show no obvious flaws. The statistical methods also appear.

      Strengths:

      The main strength of the manuscript is the systematic comparison of different meta-mechanisms for social navigation by modeling social trajectories from solitary trajectories and directly comparing them with experimental results on social navigation. The results show that the experimentally observed behavior could, in principle, arise from simple route averaging without the need to identify "knowledgeable" individuals. Another strength of the work is the establishment of a connection between social navigation behavior and the broader literature on the wisdom of crowds through the concept of effective group size.

      We thank the reviewer for their positive comments.

      Weaknesses:

      However, there are two main weaknesses that should be addressed:

      (1) The first concerns the definition of "mechanism" as used by the authors, for example, when writing "navigation mechanism." Intuitively, one might assume that what is meant is a behavioral mechanism in the sense of how behavior is generated as a dynamic process. However, here it is used at a more abstract (meta) level, referring to high-level categories such as "averaging" versus "leader-follower" dynamics. It is not used in the sense of how an individual makes decisions while moving, where the actual route followed in a social context emerges from individuals navigating while simultaneously interacting with conspecifics in space and time. In the presented work, the approach is to directly combine (global) route data of solitary birds according to the considered "meta-mechanisms" to generate social trajectories. Of course, this is not how pigeon social navigation actually works-they do not sit together before the flight and say, "This is my route, this is your route, let's combine them in this way." A mechanistic modeling approach would instead be some form of agent-based model that describes how agents move and interact in space and time. Such a "bottom-up" approach, however, has its drawbacks, including many unknown parameters and often strongly simplifying (implicit) assumptions. I do not expect the authors to conduct agent-based modeling, but at the very least, they should clearly discuss what they mean by "mechanism" and clarify that while their approach has advantages-such as naturally accounting for the statistical features of solitary routes and allowing a direct comparison of different meta-mechanisms is also limited, as it does not address how behavior is actually generated. For example, the approach lacks any explicit modeling of errors, uncertainty, or stochasticity more broadly (e.g., due to environmental influences). Thus, while the presented study yields some interesting results, it can only be considered an intermediate step toward understanding actual behavioral mechanisms.

      We thank the reviewer for their comment and thoughtful suggestions. We agree that the inherent behavioral mechanisms and the biological basis of these mechanisms cannot be determined just through the navigational data alone. For instance, it remains unexplored if pigeons are adapting their behavior based only on social cues from their partners or using other navigational features such as landmarks or roads, location of the sun, geomagnetic cues or prior learnt routes. However, we do agree (as also pointed by the reviewer) that these behavioral rules generate an emergent ‘meta-mechanism’ where the bird pairs are behaving as if their preferred routes are averaged during a flight. It will be important in future work to explore the biological basis of these mechanisms, but our current approach allows us to only describe the mechanisms in a meta sense with any confidence. Considering this, we believe that our analysis is a more top-down approach towards describing the outcomes of these underlying mechanisms in an abstract sense. We would also like to point the reviewer to Dalmaijer, 2024 [1] who used a bottom up approach, using naive agents and showed that cumulative route improvements emerged in the absence of any sophisticated communication in the same dataset, in agreement with our approach. Considering these points, we will make changes in our revised version to clearly elaborate on what the definition of ‘mechanism’ should include in line with the reviewer’s feedback.

      (2) While the presented study raises important questions about the applicability and viability of cumulative cultural evolution (CCE) in explaining certain animal behaviors such as social navigation, I find that it falls short in discussing them. What are the implications regarding the applicability of CCE to animal data and to previously claimed experimental evidence for CCE? Should these experiments be re-analyzed or critically reassessed? If not, why? What are good examples from animal behavior where CCE should not be doubted? Furthermore, what about the cited definitions and criteria of CCE? Are they potentially too restrictive? Should they be revised-and if so, how? Conversely, if the definitions become too general, is CCE still a useful concept for studying certain classes of animal behavior? I think these are some of the very important questions that could be addressed or at least raised in the discussion to initiate a broader debate within the community.

      We thank the reviewer for their comments and interesting questions regarding our study. We agree with the reviewer that our study opens up new avenues for critically analysing the criteria previous studies have used for providing evidence of CCE in non-human animals. According to our literature review, we found that the field has been usually motivated in thinking about CCE in a ‘process’ focused manner (Reindl et al. [2]) in regards to individuals being able to compare strategies and selecting ones resulting in higher individual fitness. This preferential selection of strategies – termed innovations — allows for the stereotypical ratcheting effect seen in CCE. In our study, we propose that in the case of homing pigeons, the ratcheting effect is more of a statistical outcome rather than deliberate individual judgement. We believe that this strategy is also amenable to certain task types (which in our study was homing route choice) and may change for others (for example solving a puzzle box) and the task also needs to be sufficiently complex for animals to benefit from the use of social information (Caldwell et al. 2008 [3]). Thus, we recommend future work to address what classes of problems would fit well within the definition of “emergent” CCE and which ones don’t. Keeping this framework in mind, studies should clearly state what definition of CCE they are using and should be critically evaluated for their underlying task type and cognitive mechanisms to deem them as CCE. Considering these points we will expand our discussion to highlight these key questions that could be critical to think upon for future research.

      References:

      (1) Dalmaijer ES (2024) Cumulative route improvements spontaneously emerge in artificial navigators even in the absence of sophisticated communication or thought. PLoS Biol. 22:e3002644.

      (2) Reindl, E., Gwilliams, A.L., Dean, L.G. et al. (2020) Skills and motivations underlying children’s cumulative cultural learning: case not closed. Palgrave Commun 6, 106.

      (3) Caldwell CA, Millen AE (2008) Studying cumulative cultural evolution in the laboratory. Phil. Trans. R. Soc. B 363:3529-3539.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this manuscript by Lopez-Blanch and colleagues, 21 microexons are selected for a deep analysis of their impacts on behavior, development, and gene expression. The authors begin with a systematic analysis of microexon inclusion and conservation in zebrafish and use these data to select 21 microexons for further study. The behavioral, transcriptomic, and morphological data presented are for the most part convincing. Furthermore, the discussion of the potential explanations for the subtle impacts of individual microexon deletions versus lossof-function in srrm3 and/or srrm4 is quite comprehensive and thoughtful. One major weakness: data presentation, methods, and jargon at times affect readability / might lead to overstated conclusions. However, overall this manuscript is well-written, easy to follow, and the results are of broad interest.

      We thank the Reviewer for their positive comments on our manuscript. In the revised version, we will try to improve readability, reduce jargon and avoid overstatements.  

      Strengths:

      (1) The study uses a wide variety of techniques to assess the impacts of microexon deletion, ranging from assays of protein function to regulation of behavior and development.

      (2) The authors provide comprehensive analyses of the molecular impact of their microexon deletions, including examining how host-gene and paralog expression is affected.

      Weaknesses:

      Major Points:

      (1) According to the methods, it seems that srrm3 social behavior is tested by pairing a 3mpf srrm3 mutant with a 30dpf srrm3 het. Is this correct? The methods seem to indicate that this decision was made to account for a slower growth rate of homozygous srrm3 mutant fish. However, the difference in age is potentially a major confound that could impact the way that srrm3 mutants interact with hets and the way that srrm3 mutants interact with one another (lower spread for the ratio of neighbour in front value, higher distance to neighbour value). This reviewer suggests testing het-het behavior at 3 months to provide age-matched comparisons for del-del, testing age-matched rather than size-matched het-del behavior, and also suggests mentioning this in the main text / within the figure itself so that readers are aware of the potential confound.

      Thank you for bringing up this point. For the tests shown in Figure 5, we indeed decided to match the pairs involving srrm3 mutant fish by fish size since we reasoned this would be more comparable to the other lines, both biologically and methodologically (in terms of video tracking, etc.). However, we are confident the results would be very similar if matched by age, since the differences in social interactions between the srrm3 homozygous mutants and their control siblings are very dramatic at any age. As an example, this can be appreciated, in line with the Reviewer's suggestion, in Videos S2 and S3, which show groups of five 5 mpf fish that are either srrm3 mutant or wild type. It can be observed that the behavior of 5 mpf WT fish (Video S3) is very similar to those of 1 mpf WT fish pairs, with very small interindividual distances, while the difference with repect to the srrm3 mutant group (Video S2) is dramatic. We nonetheless agree that this decision on the experimental design should be clearly stated in the main text and figure legend and we have done so in the revised version.

      (2) Referring to srrm3+/+; srrm4-/- controls for double mutant behavior as "WT for simplicity" is somewhat misleading. Why do the authors not refer to these as srrm4 single mutants?

      This comment applies to Figure 4 as well as the associated figure supplements. We reasoned that this made the understanding of plots easier, but the Reviewer is correct that it can be misleading. As a middle ground, we have now changed Figure 4 to follow the nomenclature of Figure 3D (WD, HD, DD), which is further explained in the legend, but kept the original format in the figure supplements for consistency with the (many) other plots in those figures.

      (3) It's not completely clear how "neurally regulated" microexons are defined / how they are different from "neural microexons"? Are these terms interchangeable?

      Yes, they are interchangeable. We have now double checked the wording to avoid confusion and for consistency.

      (4) Overexpression experiments driving srrm3 / srrm4 in HEK293 cells are not described in the methods.

      We apologized for this omission. We now briefly describe the data and asscoiated methods in more detail in the revised version; however, please note that the data was obtained from a previous publication (Torres-Mendez et al, 2019), where the detailed methodology is reported.

      (5) Suggest including more information on how neurite length was calculated. In representative images, it appears difficult to determine which neurites arise from which soma, as they cross extensively. How was this addressed in the quantification?

      We have added further details to the revised version. With regards to the specific question, we would like to mention that this has not been a very common issue for the time points used in the manuscript (10 hap and 24 hap). At those stages, it was nearly always evident how to track each individual neurite. Dubious cases were simply ignored and not measured, as we aimed for 100 neurites per well. Of course, such complex cases become much more common at later time points (48 and 72 hap), which were not used in this study.

      Reviewer #2 (Public review):

      Summary:

      This manuscript explores in zebrafish the impact of genetic manipulation of individual microexons and two regulators of microexon inclusion (Srrm3 and Srrm4). The authors compare molecular, anatomical, and behavioral phenotypes in larvae and juvenile fish. The authors test the hypothesis that phenotypes resulting from Srrm3 and 4 mutations might in part be attributable to individual microexon deletions in target genes.

      The authors uncover substantial alterations in in vitro neurite growth, locomotion, and social behavior in Srrm mutants but not any of the individual microexon deletion mutants. The individual mutations are accompanied by broader transcript level changes which may resemble compensatory changes. Ultimately, the authors conclude that the severe Srrm3/4 phenotypes result from additive and/or synergistic effects due to the de-regulation of multiple microexons.

      Strengths:

      The work is carefully planned, well-described, and beautifully displayed in clear, intuitive figures. The overall scope is extensive with a large number of individual mutant strains examined. The analysis bridges from molecular to anatomical and behavioral read-outs. Analysis appears rigorous and most conclusions are well-supported by the data.

      Overall, addressing the function of microexons in an in vivo system is an important and timely question.

      Weaknesses:

      The main weakness of the work is the interpretation of the social behavior phenotypes in the Srrm mutants. It is difficult to conclude that the mutations indeed impact social behavior rather than sensory processing and/or vision which precipitates apparent social alterations as a secondary consequence. Interpreting the phenotypes as "autism-like" is not supported by the data presented.

      The Reviewer is absolutely right. It was not our intention to imply that these social defects should be interpreted simply as autistic-like. It is indeed very likely that the main reason for the social alterations displayed by the srrm3 mutants is their impaired vision. We have now added this discussion point explicitly in the revised version. 

      Reviewer #3 (Public review):

      Summary:

      Microexons are highly conserved alternative splice variants, the individual functions of which have thus far remained mostly elusive. The inclusion of microexons in mature mRNAs increases during development, specifically in neural tissues, and is regulated by SRRM proteins. Investigation of individual microexon function is a vital avenue of research since microexon inclusion is disrupted in diseases like autism. This study provides one of the first rigorous screens (using zebrafish larvae) of the functions of individual microexons in neurodevelopment and behavioural control. The authors precisely excise 21 microexons from the genome of zebrafish using CRISPR-Cas9 and assay the downstream impacts on neurite outgrowth, larvae motility, and sociality. A small number of mild phenotypes were observed, which contrasts with the more dramatic phenotypes observed when microexon master regulators SRRM3/4 are disrupted. Importantly, this study attempts to address the reasons why mild/few phenotypes are observed and identify transcriptomic changes in microexon mutants that suggest potential compensatory gene regulatory mechanisms.

      Strengths:

      (1) The manuscript is well written with excellent presentation of the data in the figures.

      (2) The experimental design is rigorous and explained in sufficient detail.

      (3) The identification of a potential microexon compensatory mechanism by transcriptional alterations represents a valued attempt to begin to explain complex genetic interactions.

      (4) Overall this is a study with a robust experimental design that addresses a gap in knowledge of the role of microexons in neurodevelopment.

      Thank you very much for your positive comments to our manuscript.

      Reviewer #1 (Recommendations for the authors):

      Minor Suggestions

      (1) Axes are often scaled differently even between panels in the same figure. For example in Figure 5 - supplement 10, the srrm3_17 y axis scales from 0-20, while the neighboring panels scale from ~1-2.5. This somewhat underrepresents the finding that srrm3 mutants have much larger inter-individual distances. Similarly, in the panel above (src_1), the y-axis is scaled to include a single point around 17cm. As a result, it appears at first glance that the src_1 trials resulted in much lower inter-individual distance. Suggest scaling all of these the same to improve readability.

      While the Reviewer is certainly correct, after careful consideration we decided to have autoscaled axis to prioritize within-plot visualization (i.e. among genotypes within an experiment) than across plots (i.e. among experiments and lines).

      (2) Attention to italicizing gene names.

      Thanks.

      (3) In many points in the methods, we are instructed to "see below." Suggest directing the reader to a particular section heading.

      We found only one such instance, and we directed the reader to the specific section, as suggested.

      (4) In Methods, remove "in the corpus callosum." This is not an accurate descriptor for the site at which Mauthner axons cross.

      This is absolutely correct, apologies for this mistake.

      Clarify:

      (1) In the results section, "tissue-specific regulation was validated..." - suggest mentioning that this was performed in adult tissues / describe dissection in the methods.

      Added.

      (2) In the results section, the meaning of "no event ortholog" is not clear. Does this mean that a microexon does not have a human homolog? If so, suggest stating more clearly.

      Correct. We have added addition information.

      (3) In the results, the authors state that 78% of microexons are affected by srrm3/4 loss-offunction. Suggest stating the method used here (e.g. RNA-seq in mutants as compared to siblings)

      Added.

      (4) It is not clear what "siblings for the main founders means" for example in 3D. Is this effectively the analysis of microexon knockouts across multiple independent lines? Are the lines pooled for stats, for example in 3C?

      The main founder correspond to that listed as _1 and as default for experiments when only one found is used. We now explicitely state this.  

      For 3C, the lines are not pooled for stats; the stats correspond only to the main founder for each line. However, for each main founder line, multiple experiments are usually analyzed together and the stats are done taking their data structure into account (i.e. not simply pooling the values).

      (5) The purpose and a general description of NanoBRET assays should be included in the results.

      We added the main purpose of the NanoBRET assays (testing protein-protein interactions).

      (6) Specify that baseline behavior is analyzed in the light.

      Added.

      (7) In Figure 4A, adult fish are schematized being placed into a 96-well plate. Suggest using the larval diagram as in Figure 6 for accuracy.

      Done.

      (8) In Figure 4, plot titles could be made more accessible, especially in 4 F. Suggest removing extraneous information / italicizing gene names, etc. In G, suggest writing out Baseline, Dark, and Light to make it more accessible. Same in 4B.

      We have implemented some of the suggestions. In particular, italics were not used, since we are referring to the founder line, not the gene.

      (9) Figure 6 legend B - after (barplots), suggest inserting the word "and", to make clear that barplots indicate host gene *and* closely related paralogs are indicated by dots.

      Done.

      (10) In methods: "To better capture all microexons..." This sentence is difficult to understand. Suggested edit: "we excluded *from our calculation?* tissues with known or expected partial overlap... from comparison (for example, ...).

      Done.

      (11) In the methods, "which were defined with similar parameters but -min_rep 2." Suggest spelling this out, e.g. "with similar parameters, but requiring sufficient read coverage in at least n=2 samples per valid tissue group, whereas we only required one.".

      Done.

      (12) RNA was extracted for event and knockout validations. What does event mean here?

      Event refers to the validation of the exon regulatory pattern in WT tissues. We added this information.

      Provide definitions for abbreviations:

      (1) (Figure 6) Delta corrected VST Expression.

      Done.

      (2) "Mic-hosting genes" paralogs.

      Done.

      (3) In Figure 1F, "emic" is not defined.

      Done.

      Misspellings:

      All corrected.

      (1) Figure 6B (percentile is spelled percentil).

      (2) Figure 6B legend (bottom or top decile*).

      (3) Figure 6D - Schizophrenia* genes.

      (4) In Zebrafish husbandry and genotyping: suggest "srrm3 mutants grew more slowly.".

      (5) In results, "reduced body size at 90pdf" > 90dpf.

      Reviewer #2 (Recommendations for the authors):

      (1) Characterization of microexon mutants (Figure 2): The semi-quantitative PCR with flanking primers (Figure 2, supplement1) is well-suited to assess successful deletion of the exon and enables detection of potential mis-splicing around the alternative segment. However, it does not quantify the impact on total transcript levels. The authors should complement those experiments with qPCR measures of the transcript levels - otherwise, it is difficult to link mutant phenotypes to isoforms (as opposed to alterations in the level of gene expression). This point is somewhat addressed in Figure 6 by the RNA Seq analysis but it might help to add data specifically in Figure 2.

      As the Reviewer says, this point is explicitely addressed in Figure 6, where were show the change in the host gene's expression that follows the the removal of some microexons. We prefer to keep this in Figure 6, for consistency, as we believe this is not a direct (regulatory) consequence of the removal, but more likely a compensation effect.

      (2) Social behavior alterations in juvenile fish: The authors report "increased leadership" in Srrm3 mutant fish. However, these fish have impaired vision. Thus, "increased leadership" may simply reflect the fact that they do not perceive their conspecifics and, thus, do not follow them. The heterozygous conspecific will then mostly follow the Srrm3 mutant which appears as the mutant exhibiting an increase in leadership. Figure 5D suggests that Srrm3 del and het fish have the same ratio of "neighbor in front" which would be consistent with the hypothesis that the change in this metric is a consequence of a loss of following behavior due to a loss of vision. The authors should either adjust the discussion of this point or assess with additional experiments whether this is indeed a "social phenotype" or rather a secondary consequence of a loss of vision.

      The Reviewer is absolutely correct, and we have thus modified the short discussion directly related to these patterns.

      (3) The discussion centers on potential reasons why only mild phenotypes are observed in the single microexon mutants. One caveat of the phenotypic analysis provided in the manuscript is that it does not very deeply explore the phenotypic space of neuronal morphologies or circuit function. The behavioral and anatomical read-outs are rather coarse. There are no experiments exploring fine-structure of neuronal projections in vivo or synapse number, morphology, or function. Moreover, no attempts are made to explore which cell types normally express the microexons to potentially focus the loss-of-function analysis to these specific cell types. Of course, such analysis would substantially expand the scope of a study that already covers a large number of mutant alleles. However, the authors may want to add a discussion of these limitations in the manuscript.

      The Reviewer is correct. We aimed at covering this when referring to "(i) we may not be assessing the traits that these microexons are impacting, (ii) we may not have the sensitivity to robustly measure the magnitude of the changes caused by microexon removal". We have now added some of the specific points raised by the Reviewer as examples.

      (4) Note typos in Figure 6D: "schizoFrenia", "WNT signIalling"

      Done.

      Reviewer #3 (Recommendations for the authors):

      I only have a few minor suggestions for the authors.

      (1) It is interesting that a not insignificant number of microexon deletions (3/21) result in cryptic inclusions of intron fragments, and perhaps alludes to an as yet unreported molecular function of microexons in the regulation of host gene expression. Is it possible that microexon inclusion in these 3 genes could be important for expression? I think this requires some further discussion, as (if I'm not mistaken) microexons have thus far only been hypothesised to act as modulators of protein function, not as gene regulatory units.

      While we see that microexon removal can impact expression of the host gene (Figure 6), this is likely a compensatory mechanism (or so we suggest). We do not think these three cases are related to a putative physiological regulation, since the cryptic exons appear only in the deletion line. On the contrary, we think these are "regulatory artifacts" that originate in the nonWT mutated context. I.e. we removed the exon but some splicing signals remained in the intron, which are then recoginized by the spliceosome that incorrectly includes a different piece of the intron.

      (2) The flow of the text accompanying the molecular investigation of microexon function for evi5b and vav in Figure 3 could be improved. The text currently fades out with a speculative explanation for the lack of evi5b interaction phenotype. This final sentence could be moved to the discussion and replaced with a more general summary of the data.

      We have now swapped the order in which these results are described and leave out the discussion about evi5b's microexon function.

      (3) Is this a co-submission with Calhoun et al? If so, both papers should reference each other in the discussion and discuss the relative contributions of each.

      Done

      (4) "1 × 104 cells" in methods Nanobret paragraph should be superscript.

      Done

    1. Cyrus conquered Babylon bloodlessly and became a sort of patron of the Jews. This relationship may have enhanced the influence of Cyrus' religion, Zoroastrianism, on the development of Jewish monotheism, as we will discuss shortly. Cyrus also planned and began building infrastructure like the Royal Road.

      Cyrus is such a fascinating leader! He conquered Babylon without bloodshed, supported the Jews, and even started building amazing projects like the Royal Road. It’s wild to think how his actions might have even influenced the development of Jewish monotheism!

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      SUMMARY

      In this study, Fernandes and colleagues addressed the question of the role of micro-RNAs in regulating the coupling between organ growth and developmental timing. Using Drosophila, they identified the conserved micro-RNA miR-184 as a regulator of the developmental transition between juvenile larval stages and metamorphosis. This transition is under the control of the steroid hormone Ecdysone, and has been shown to be modulated in case of abnormal tissue growth to adjust the duration of larval growth in response to developmental perturbations. The relaxin-like hormone Dilp8 has been identified as a key secreted factor involved in this coupling. Here, the authors show that miR-184 is involved in the regulation of Dilp8 expression both in physiological conditions and upon growth perturbation. They propose that this function is carried out in imaginal tissues, where miR-184 levels are modulated by tissue stress. While several factors have already been involved in triggering sharp dilp8 induction at the transcriptional level, this study adds another level of complexity to the regulation of Dilp8 by proposing that its expression is fine-tunned post-transcriptionally through repression by miR-184.

      __MAJOR COMMENTS______

      Overall, the manuscript is well organized, and the logics of the experimental plan well presented. The results are clear, and I appreciate the quality of the pupariation curves. However, I believe that two main conclusions of the paper are not fully supported by the results presented in the figures: the direct regulation of dilp8 3'UTR by miR-184, and the specificity of this regulation in imaginal discs. Here I develop in more details these two aspects.

      Comment 1) The strategy of the 3'UTR sensor is not fully optimized. Indeed, in most experiments, qRT-PCR is used to assess dilp8 expression levels, although it reflects both transcriptional and post-transcriptional. Importantly, to show that post-transcriptional regulation is involved in the response to tissue damage, the levels of the 3'UTR sensor should be analyzed in discs expressing RAcs (showing at the same time that the response is cell-autonomous in the discs). The expected upregulation of the sensor should be prevented by simultaneous expression of miR-184. This approach would shed light on the relative contribution of transcriptional versus post-transcriptional regulation of dilp8 in response to growth perturbation.

      Response: We thank the reviewer for this comment. We agree that qRT-PCRs do not distinguish between transcriptional and post-transcriptional changes of dilp8 levels, in response to changes in miR-184 levels and tissue damage. In addition to the qRT-PCR data we have looked at dilp8-3’UTR-GFP reporter in response to overexpression of miR-184 in the wingdisc using patched-Gal4 driver, which show downregulation of the GFP reporter in the ptc domain (Fig 4C-D’). This suggests that dilp8 mRNA is a direct target of miR-184 by post-transcriptional regulation through its 3’UTR. Further, to confirm the specificity of the effect of miR-184 on dilp8-3’UTR, we generated a dilp8-3’UTR mutant in which the single target site for miR-184 was mutated. We show that the mutated dilp8-3’UTR reporter doesn’t show any regulation in response to miR-184 overexpression in the ptc domain of the wingdisc (Fig. 4E, E’, F, F’). This experiment confirms the specificity of the dilp8-3’UTR regulation by miR-184.

      As suggested by the reviewer we analysed dilp8-3’UTR-GFP reporter expression by overexpressing RicinA using ptcGAL4 driver in the wing imaginal disc (Fig. S6F-G’). We observed a slight but consistent increase in the dilp8-3’UTR-GFP reporter expression, indicating post-transcriptional regulation of dilp8 expression in response to tissue damage. However, the increase of reporter GFP levels observed in this experiment in response to tissue damage is mild (Fig. S6F-G’) than expected based on the qRT-PCR results (Fig S6A and B). We have added this new data to the manuscript (Fig. S6F-G’).

      We propose the following reasons to explain this result:

      a) both transcriptional and post-transcriptional regulation of dilp8 mRNA in response to developmental perturbations

      b) the data on 3’UTR reporter GFP is specifically from the ptc domain expression of RicinA, whereas for dilp8 transcript levels we have expressed RicinA in all larval imaginal tissues, or in the entire wing imaginal disc, which could be one of the reasons for the stronger effect seen on dilp8 mRNA levels

      c) we are not certain if the tubulin-promoter driven dilp8-3’UTR GFP reporter reflects post-transcriptional regulation of dilp8 by miR-184 efficiently in comparison to qRT-PCR. This is especially as the reporter-GFP-3’UTR will be expressed at very high levels due to the tubulin promoter, a majority of this reporter-GFP mRNA may not be relieved from degradation due to the moderate suppression of miR-184 in response to RicinA overexpression.

      Thus, our experiments suggest that dilp8 levels are regulated post-transcriptionally by miR-184 which contributes to pupariation delays in response to tissue damage. In support of this, we could rescue pupariation delays and dilp8 induction caused by RicinA expression using overexpression of miR-184 (Figs 5B, C). Thus, we confirm that the effect of post-transcriptional regulation by miR-184 during developmental perturbations also contributes to dilp8 induction and pupariation delays. Unfortunately, due to experimental limitations we could not perform simultaneous expression of RicinA and miR-184 to evaluate the rescue of dilp8-3’UTR-GFP sensor expression. The levels of dilp8-3’UTR sensor GFP is reduced efficiently by miR-184 overexpression (Fig 4D), which prevented us from attempting the rescue of the moderate increase of dilp8-3’UTR GFP levels in response to RicinA.

      Comment 2) In my opinion, the use of a 3'UTR sensor is not sufficient to conclude that the regulation by miR-184 is direct, as miR-184 could also regulate an intermediate factor that acts on dilp8 post-transcriptional regulation. To solve this issue, a common strategy is to generate a 3'UTR sensor with mutated binding sites that should abolish the regulation by miR-184. This mutated 3'UTR might also respond differently to tissue damage, which would strongly support the conclusions of the study.

      Response: We couldn’t agree more with the reviewer, this comment is addressed in the response to comment 1. We have confirmed the specificity of regulation of dilp8-3’UTR by miR-184 using target site mutated dilp8-3’UTR (new figures added to the manuscript Fig. 4E, E’, F, F’). We tested if the changes in dilp8 mRNA levels in response to tissue damage is post-transcriptional mediated by miR-184. We observe that there is a slight, but consistent increase of dilp8-3’UTR GFP reporter levels in the ptc domain of wingdisc in response to RicinA expression, suggesting a role for miR-184 mediated post-translational regulation of dilp8. However, we have not yet tested the mutated dilp8-3’UTR GFP reporter in response to tissue damage.

      Comment 3) Concerning the tissue-specific regulation of Dilp8 by miR-184, these results need to be strengthened. Indeed, this comes mostly from phenotypes observed with rn-GAL4. Although this is a classical tool for driving expression in imaginal discs, rn-GAL4 also drives strong expression in other tissues that could contribute to triggering a delay, such as the CNS and part of the gut (proventriculus). In our hands, some growth phenotypes in the wing obtained with rn-GAL4 could be fully reverted by blocking GAL4 in the CNS indicating that the phenotype was not wing-specific. Importantly, miR-184 seems to be highly expressed in the CNS according to FlyBase, reinforcing the possibility that it plays a role in this organ. Here I propose approaches to confirm that miR-184 mediated regulation of dilp8 and developmental timing indeed occur in the discs:

      - Another driver with less secondary expression sites could be used (pdmR11F02-GAL4), or rn-GAL4 could be combined with an elav-GAL80 to prevent expression in most neurons. - The authors could identify the source of Dilp8 upregulation in miR-184 mutants using tissue-specific qRT-PCR instead of whole larvae expression like in Fig 4A-B. - This tissue-specific upregulation could be functionally tested using a rescue experiment, in which the delay observed in miR-184 mutants could be rescued by disc-specific downregulation of Dilp8 (using pdm2-GAL4 for instance).

      Response: We are thankful to the reviewer, and agree that it is important to show that the effects that we see using rn-Gal4 are specific to imaginal discs, and not due to an effect in CNS. We tested this by expressing miR-184 sponge in the CNS. Though miR-184 is highly expressed in the larval CNS, downregulation of miR-184 specifically in the pan-neuronal background using elav-GAL4 led to no effects on pupariation timepoint. We have added this as supplementary data Figure S4. Therefore, we believe that the miR-184 downregulation phenotype in the rnGAL4 background can be mainly attributed to its role in the imaginal discs. In addition, as suggested by the reviewer we have also demonstrated that downregulation of miR-184 in the imaginal discs using rnGAL4 driver leads to an increase in dilp8 expression (Fig S5B). Thus confirming that dilp8 mRNA is enhanced in the imaginal discs by blocking miR-184.

      OPTIONAL: Because it is known that dilp8 is strongly regulated at the transcriptional level, the relative input from post-transcriptional upregulation is an important question arising from this study. Although it might be a more long-term approach, I believe that generating a Dilp8 mutant lacking its 3'UTR or, even better, with mutated miR-184 binding sites, would shed light on the role of this regulation for the response to growth perturbation and/or developmental stability (fluctuating asymmetry).

      Response: We thank the reviewer for the suggestion. This would have been an interesting experiment to carry out especially in the context of fluctuating asymmetry.

      MINOR COMMENTS

      1. __ I think that a number of results could be moved to SI as they are either controls, or reproduce published data without bringing novelty. For instance, results in Fig 5A-D are similar to data published by Sanchez et al, as stated in the text. Fig6A as well.__

      __Response: __We thank the reviewer for this suggestion, Fig. 5A-D, and F has been moved to Fig. S6A-E. We have also moved data from Fig. 6 to Fig. 5, as a result Fig 6 A-D has become Fig. 5 B-D.

      __ Fig 6D is quite mysterious, as it suggests that basal JNK activation regulates miR-184, which is different from a context of tissue damage. I think that this result could be removed. Alternatively, if the authors want to dig in that direction, more experiments should be provided, such as bskDN expression in an RAcs context and the effects on miR-184 levels and the 3'UTR sensor (since transcript levels are already published).__

      Response: We would like to clarify that our experiments suggest that endogenous JNK signalling negatively regulates miR-184, as blocking basal JNK signalling using bskDN increased the levels of miR-184 (changed to Fig 5D). Enhanced JNK signalling has been reported to be involved in tissue damage responses, and we propose that RicinA mediated increase in JNK signalling leads to the reduction of miR-184 (changed to Fig 5A, S6D-E). However, we are not strongly implying this as we did not co-express RicinA and bskDN to show that JNK signalling is responsible for the drop in miR-184 levels in response to tissue damage. We thank the reviewer for seeking this explanation, we have rewritten the results section to improve clarity.

      __ The references related to Dilp8 should be checked more in detail in the intro and discussion. About Dilp8 and developmental stability: remove the ref to Colombani et al 2012, instead put Boone et al 2016 and add Blanco-Obregon et al 2022 (in addition to Garelli et al 2012 who initially identified this phenotype. About Lgr3 as the receptor for Dilp8: add Colombani et al, Current Biology 2015, and cite here Vallejo et al 2015, Garelli et al 2015. Among the important transcriptional regulators of Dilp8, Xrp1 could be mentioned (Boulan et al 2019, Destefanis et al 2022) as it plays a complementary function to JNK depending on the type of tissue stress.__

      __Response: __We are really sorry for the glaring errors in citing appropriate references. We thank the reviewer for correcting this for us. We have made necessary changes to the text.

      Significance

      GENERAL ASSESSMENT This study provides convincing data showing that the conserved microRNA miR-184 plays a role in regulating developmental timing in Drosophila through modulating the levels of Dilp8, a key factor in the coupling between tissue growth and developmental transitions. The results are convincing, but the general conclusions of the paper need to be strengthened regarding the direct regulation of dilp8 by miR-184 and the tissue-specificity of this interaction.

      ADVANCE Dilp8 is a key factor that modulates growth and timing in response to developmental perturbations and contributes to developmental precision in physiological conditions. As such, its regulation has been studied by different groups in the last decade, leading to the identification of several inputs for its transcriptional regulation. Here, the authors uncover a post-transcriptional regulation by miR-184, adding another level of regulation of Dilp8 that contribute to ensuring proper regulation of developmental timing, and opening the possibility that miR-184 might play similar roles in other species.

      AUDIENCE This study is of interest for researchers in the field of basic science, with a focus on developmental timing, tissue damage and biological function of microRNAs.

      REVIEWER EXPERTISE Drosophila, growth control, developmental timing, Dilp8.

      Reviewer #2

      Evidence, reproducibility and clarity

      Drosophila has helped to characterize the mechanisms that coordinate tissue growth with developmental timing. The insulin/relaxin-like peptide Dilp8 has been identified as a key factor that communicates the abnormal growth status of larval imaginal discs to neuroendocrine neurons responsible for regulating the timing of metamorphosis. Dilp8, derived from imaginal discs, targets four Lgr3-positive neurons in the central nervous system, activating cyclic-AMP signaling in an Lgr3-dependent manner. This signaling pathway reduces the production of the molting hormone, ecdysone, delaying the onset of metamorphosis. Simultaneously, the growth rates of healthy imaginal tissues slow down, enabling the development of proportionate individuals.

      In this manuscript "miR-184 modulates dilp8 to control developmental timing during normal growth conditions and in response to developmental perturbations" by Dr. Varghese and colleagues, the authors identify a new post transcriptional regulator of Dilp8. The authors show that miR-184 plays a pivotal role in tissue damage responses by inducing dilp8 expression, which in turn delays pupariation to allow sufficient time for damage repair mechanisms to take effect.

      Major points:

      Comment 1) In most of the experiments for percentage of pupariation, the 50% pupariation in control is around 110 hours AED in figures 1, 2 and 3. In figures 5 and 6 using the UAS Ricin, the controls are more around 90 hours AED. Why this discrepancy?

      Response: We thank the reviewer for asking for this clarification. The former experiments for Figs 1-3 were carried out at 25oC while the latter experiments with a cold sensitive version of RicinA (UAS-RAcs), Figs 5 and 6 (now changed to Figs. 5 and S6 as suggested by reviewer #1) were carried out at 29oC (permissive temperature). This difference in temperature has led to alterations in pupariation timing. We apologise for not having mentioned this in the text, now we have made necessary corrections to the methods section clearly indicating this.

      Comment 2) What is the mechanism behind the expression of miR-184 in stress conditions? Is miR-184 also implicated in other conditions giving rise to a developmental delay (X-rays irradiation or animal bearing rasV12, scrib-/- tumors)?

      Response: We thank the reviewer for these questions.

      a) In response to developmental perturbations by RicinA, we believe that activation of JNK signalling controls miR-184 expression. We propose this as our experiments show that imaginal disc damage leads to enhancement of JNK signalling and increase in dilp8 mRNA levels (as reported earlier by Colombani et al 2012; Sánchez et al 2019), and a simultaneous reduction of miR-184 (Figs. S6A, D, E). We also have performed new experiments to show that in response to RicinA expression in the wingdisc there is moderate increase in the dilp8-3’UTR-GFP sensor expression (Figs. S6F-G’), indicating a post-transcriptional regulation of dilp8 expression in response to tissue stress. We also show that RicinA induced dilp8 expression and pupariation delay can be rescued by increasing miR-184 levels (Fig 5B and C), suggesting that the reduction of miR-184 in response to tissue damage contributes to the damage responses. In a separate experiment we show that blocking the endogenous JNK pathway by the expression of bskDN enhances miR-184 levels, suggesting that miR-184 is under the regulation of JNK signalling (Fig 5D). Hence, we speculate that during tissue stress, activation of JNK signalling leads to a reduction of miR-184 levels which contributes to regulating the levels of dilp8 post-transcriptionally and resulting in pupariation delays. The text has been modified to explain this better.

      b) In a previous paper by Shu et al., 2017 (https://doi.org/10.18632/oncotarget.22226) decreased expression of miR-184 was observed in a lglRNAi; RasV12 tumor background. Apart from this various studies have shown that dilp8 levels increase in response to tumour, radiation stress, apoptosis, and tissue damage (Yeom et al 2021, Ray et al 2019, Demay et al 2014, Katsuyama et al 2015, Colombani et al 2012, Garelli et al 2012). Whether the regulation of dilp8 by miR-184, occurs in these backgrounds is yet to be tested. We have now discussed this possibility in the manuscript.

      Comment 3) dilp8 mutant animals have also been shown to be more resistant to starvation or desiccation (https://doi.org/10.3389/fendo.2020.00461). Is miR-184 implicated in this answer?

      Response: We thank the reviewer for this question. In our earlier experiments miR-184 has been demonstrated to be regulated by nutrition in the larval stages and lack of miR-184 led to enhanced larval death in response to diet restriction (Fernandes et al., 2022). miR-184 was also demonstrated to play a role in the insulin producing cells (IPCs) in regulating lifespan (Fernandes & Varghese., 2022). In the current work, we propose miR-184 to act upstream of dilp8 in response to stress stimuli. Hence, it is possible that miR-184 might be involved in responses to starvation and desiccation stress in the adult female flies, by regulating dilp8 levels post-transcriptionally. However, it has not been tested yet if the miR-184 regulation of dilp8 plays a role in resistance to starvation or desiccation in adult females, as this was not within the scope of the current study. We have now added this reference in the discussion section.

      Comment 4) dilp8 expression has been also shown to be regulated by Xrp1 in response to ribosome stress (https://doi.org/10.1016/j.devcel.2019.03.016). This paper should be included in the manuscript. Is it possible that the expression levels of miR184 are regulated by Xrp1?

      Response: We thank the reviewer for the suggestion and have incorporated the reference into the paper. During ribosome stress in the larval imaginal discs the stress-response transcription factor Xrp1 acts through dilp8 in regulating systemic growth. We agree with the reviewer, it is possible that expression of miR-184 is regulated by Xrp1. Currently we have not explored this possibility. We have now added this to the discussion section.

      Minor points:

      1. __ Does the overexpression of miR184 induce an increased fluctuating asymmetry?__

      Response: We thank the reviewer for asking this question. The role of dilp8 in the fluctuation asymmetry is only observed in the dilp8 hypomorphic mutant background. To replicate this we would have to overexpress miR-184 in either the whole larvae or in the wing discs. Unfortunately overexpression of miR-184 in the wing discs (using rnGAL4) leads to pupal lethality while as overexpression of miR-184 in the whole larvae leads to embryonic lethality and therefore we were not be able to conclude from our experiments if miR-184 overexpression induces increased fluctuating asymmetry.

      2. There are 2 references Colombani et al. (2012 for Dilp8 and 2015 for Lgr3). Can you double check that they are used accordingly

      Response: We thank the reviewer for pointing these errors out and we have incorporated these changes into the paper.

      Significance

      Altogether, the paper present compiling lines of evidence supporting the proposed model. The experiments are well designed and are convincing. The papers is interesting and relevant for a broad audience.

      __Reviewer #3 __

      Evidence, reproducibility and clarity (Required):

      This is an interesting study demonstrating an interaction between miR-184 and the Drosophila insulin-like peptide 8 (dilp8) in the tissue damage response. The authors show that Dilp8 activity is negatively regulated by miR-184, apparently through direct interaction between miR-184 and the dilp8-3'UTR, which leads to lower dilp8 mRNA transcript levels, via an undetermined mechanism, supposedly its degradation? Furthermore, the authors show that during aberrant tissue growth, miR-184 levels are very slightly downregulated (see comment below), and based on other experiments, imply causation of this with the increased dilp8 mRNA levels that occur in these tissues, again via an unclear mechanism: upregulation or stabilization of dilp8 mRNA. The authors present evidence that the JNK pathway, which had been known to be critical for dilp8 mRNA upregulation upon tissue damage, does so via miR-184.

      Major Comments:

      __Comment 1: The data showing the direct regulation of dilp8-3'UTR by miR-184 are not very strong and would require more controls to strengthen the claim, as described below. __

      Response: We have performed new experiments to validate that dilp8-3’UTR is regulated by miR-184. Please see the detailed responses to comments 10-12 below.

      __Comment 2: The miR-184 effects are also very small (less than 2-fold reduction with tissue damage; or less than 2-fold induction with JNK-pathway inhibition via bskDN). These two points are the weakest part of the manuscript and model. __

      Response: We agree with the reviewers on this point. The reduction in miR-184 levels in response to RicinA expression is modest (25–30%), and the induction of miR-184 in response to bskDN expression is less than two-fold (Figs. 5A and D). In contrast, dilp8 transcript levels increase several-fold in response to RicinA expression (Fig. 5C, S6A and B). Since we measure dilp8 transcript levels by qPCR, we detect both transcriptional and post-transcriptional contributions to dilp8 regulation. In addition, we have performed a new experiment to check the post-transcriptional regulation of dilp8, in response to tissue damage. Though the change in the dilp8-3′UTR GFP reporter upon RicinA expression in the ptc domain of the wingdisc is mild (Figs. S6F-G’), this strongly suggests a post-transcriptional outcome of the reduction of miR-184 levels on dilp8. Hence, we propose that tissue damage induces strong transcriptional activation of dilp8, while the reduction of miR-184, despite its smaller magnitude, contributes to dilp8 upregulation via post-transcriptional regulation. In support of this, our experiments demonstrate direct regulation of the dilp8-3′UTR by miR-184 (Figs. 4C-F’), and show strong dilp8 mRNA upregulation in miR-184 deficient conditions (Fig. 4A and B), suggesting the role of miR-184 in maintaining dilp8 levels. We also show that RicinA induced effects on dilp8 and pupariation delay are reversed by co-expression of miR-184 (Fig. 5C). We do not claim that regulation by miR-184 is the sole mechanism for driving dilp8 induction during tissue damage, but suggest that miR-184-mediated post-transcriptional regulation acts in a complementary manner to transcriptional responses. Furthermore, we believe that the mild effect of JNK signaling on miR-184 (as shown by the bskDN experiment) is sufficient for the moderate reduction of miR-184 in response to tissue damage.

      Comment 3: ____Regarding the expression levels, it does not help that the authors show bar graphs with standard errors of the mean instead of the actual data points to allow reliable appreciation of the data dispersion.

      Response: We have modified our figures and have performed statistical analysis according to the suggestions of the reviewers, please see responses to comments 1-9, and 13-19.

      Comment 4: It is difficult to understand how minute changes in miR-184 levels can lead to over an order of magnitude differences (in some cases) in dilp8 mRNA levels considering that it is a stoichiometric relationship. Maybe ?miR-184-Dicer1? complexes are highly stable and re-used for multiple dilp8 transcripts - the authors could discuss how they understand this occurring in their manuscript.

      On the same line, discussion is also rather weak on what regards the mechanism of control of dilp8 mRNA levels by miR-184. Please discuss eg, the evidence for mRNA degradation induction by microRNAs with this UTR binding profile (imperfect UTR binding Fig S4) and-if appropriate-how other possible regulatory models (direct and indirect) could explain the findings.

      Response: We accept the reviewers comment that 25-30% reduction of miR-184 is low in comparison to the many fold increase in dilp8 levels. We believe that both post-transcriptional and transcriptional changes are responsible for the induction of dilp8 in response to tissue damage. However, our experiments suggest the role of post-transcriptional regulation by miR-184, as pupariation delay is rescued by miR-184 overexpression (also please see the response to the previous comment). We are not ruling out the possibility of transcriptional regulation of dilp8 mRNA, rather we are suggesting the possibility that both transcriptional and post-transcriptional means are responsible for changes in dilp8. Moreover, we have not performed absolute measurement of miR-184 in the imaginal discs (what we show is a comparison between control and RicinA expression), hence we do not have an exact estimate of how many miR-184 molecules are reduced and if they would be greatly equal or more in comparison to the dilp8 mRNA molecules that are upregulated, as again while measuring dilp8 mRNA we are not checking how many molecules of dilp8 exactly are increased. As the reviewer suggests, it is possible that miR-184-RISC could be stable to handle multiple dilp8 molecules one after the other, hence it is not a 1:1 relationship between miR-184:dilp8. We have included this in the manuscript. It is also known that imperfect 3’UTR binding as seen in most animal microRNAs leads to translational repression and mRNA deadenylation, which eventually results in mRNA degradation.

      Comment 5: ____We suggest the authors carefully revise their citations to cite appropriate work that supports the claims, and also to avoid missing the seminal studies that report the claims they cite.

      Response: We are really apologetic for the errors citing the key references. We are grateful to the reviewers for correcting this for us. We have made changes to the text to include and correct the references.

      We have the suggestions below which we hope will help the authors improve their manuscript. If the authors address these points raised above, we believe the manuscript should be a valuable contribution to the field, and help in the understanding of how tissues respond to growth aberrations and the regulation of transcript levels by microRNAs.

      Detailed Comments:

      Comment 1. Results 1st paragraph: please describe the screen in more detail. As written, one only discovers it was a miRNA loss-of-function screen when reading the legend of Table S1. Please show the original data of the screen - with dispersion if possible.

      Response: We thank the reviewers for these suggestions, we have now included the data from the screen with SEM, and p-values.

      Comment 2. Results 1st paragraph, Fourth line, "While several miRNAs caused delays in pupariation by 12 hours or more..". Please correct, as actually loss of miRNAs caused delays.

      Response: We thank the reviewer for pointing out this error, we have corrected the text accordingly.

      Comment 3. ____Results (Figure 1) - It says that data from three independent experiments are shown. However there is no dispersion in the data. Could the authors please explain this? Are the results of the three experiments summed and presented as one? or is this one of the three?

      Response: We thank the reviewers for these suggestions and have plotted data with the SEM values.

      Comment 4. It is reported in the legend of Figure S2 that LogRank test was performed to determine statistical significance. However, no statistical data is presented. Please show the results.

      __Response: __We thank the reviewers for these suggestions to improve the data presentation, we have incorporated the p-value as suggested.

      Comment 5. Fig2A and B. Please show the data points in the bar graphs (as in Figure. 2C), or choose another data representation. ____Please consider redoing statistical analysis with a simple t-test. ____It is not clear to me why ANOVA was used to compare two samples. Please state that data are normalized also to control (tub-GAL4>UAS-scramble). Please ____state____ the h post-hatching from which the RNA samples were collected (as in Fig 2C for 20HE quantification).

      __Response: __We thank the reviewers for these suggestions to improve the data presentation, we have incorporated all changes as suggested. Similar changes have been incorporated to the rest of the figures of the manuscript as well. Hours post-hatching information for each figure is now added to the figure legends. __ __

      Comment 6. Fig2C. Fig legend states the bar graphs are "absolute values". Please specify if the bar represents the average, median or something else.

      Response: We thank the reviewer for pointing this out, we have made the suggested changes.

      Comment 7. Throughout the manuscript: please use GAL4 in capital letters or at least standardize it throughout the ms. Currently there are GAL4s and Gal4s.. eg compare Fig 2 and 3 legends.

      Response: We thank the reviewer for pointing this out, we have incorporated all changes as recommended.

      Comment 8. FigS3A and B. Please revise as Fig2A and B above. and apply the same criteria in the respective figure legend.

      __Response: __We thank the reviewer for pointing this out, we have made the changes as recommended.

      Comment 9. Fig. 4 - please indicate on the figures what is whole larvae and what is wing imaginal discs. This will facilitate understanding of the figure.

      __Response: __We thank the reviewers for these suggestions and have included this information in all the figures.

      Comment 10. Fig 4 - Data - Authors do not show that rn-GAL4>miR-184-sponge causes up regulation of dilp8 mRNA levels, hence the model is weakened. Doing this experiment would significantly strengthen the study whatever the result is.

      Response: We thank the reviewer for pointing this out and we have included this in the manuscript (Fig S5B).

      Comment 11. The dilp8-3'UTR experiment is weak especially because its generation is not sufficiently well described in the manuscript. "The dilp8 3'UTR-GFP reporter line was created as described in (Vargheese & Cohen, 2007)" is not sufficient. Please describe the construct generation in sufficient detail so that the experiments can be reproduced by others.

      Response: We thank the reviewer for pointing this out and we have elaborated in the methods section on how we generated the dilp8 3'UTR-GFP reporter and dilp8 3'UTR mutant GFP reporter lines. The plasmid was originally created in Steve Cohen’s lab at EMBL, by modifying pCasper4 plasmid, by introducing a tubulin promoter, EGFP and a multiple cloning site, which allows one to clone 3’UTRs of target genes into this plasmid. Not1 and Xho1 sites were used to clone the dilp8-3’UTR and mut-3’UTR. We hope this explains our strategy sufficiently.

      Comment 12. Making assumptions, if the construct is as described in Vargheese & Cohen, 2007 and contains all of the dilp8 3'UTR - it should be a Tubulin-driven GFP gene with a dilp8-3'UTR "Tub-GFP-(dilp8 3'UTR)". In this case the authors need to rule out the alternative interpretation of the result in Fig. 4D by showing that the expression of miR-184 does not down regulate Tub-GFP expression itself. The best scenario would be to have a mutated dilp8 3'UTR for the miR-184 recognition site. This experiment would significantly strengthen the study and model.

      Response: We thank the reviewer for pointing this out. We agree with the reviewers that this experiment is needed to prove direct regulation of the dilp8-3’UTR by miR-184. We have mutated the sequences complementary to the seed region of miR-184 in the dilp8-3’UTR, and demonstrated that overexpression of miR-184 does not regulate the mutated tub-GFP-(dilp8 3'UTR) expression. This confirms that the dilp8 gene is a direct target of miR-184. This data is added to the manuscript as Figs 4E-F’.

      Comment 13. Figure 4C-D please separate dilp8 from 3'UTR with a space or hyphen.

      Response: We thank the reviewer for pointing this out and have separated dilp8 from 3’UTR with a hyphen.

      Comment 14. Figure 4E. Please name the dilp8 allele as MI00727 as it is not a KO, but rather a hypomorphic mutation (fully WT dilp8 transcripts are still generated, albeit at a much lower level).

      Response: We thank the reviewer for pointing this out and we have made the necessary changes.

      Comment ____15. Figure 6D: please add UAS to bskDN/+. All figures have rn-GAL4 alone or with UAS-GFP as control. This finding would be strengthened with this other control, especially because the size effect is small.____ This being said a general comment for all experiments is that hemi-controls are generally missing for all figures. eg, in Fig 3. One would typically include controls such as A. Phm>+ and +>miR.184; B. aug21>+ and +>miR.184; C. ptth>+ and +>miR.184; D. rn>+ and +>miR.184

      Response: We thank the reviewer for pointing this out. We have added UAS to bskDN, now Fig 5D and have also added the rnGAL4/+ control. We have also performed various hemi-control experiments as suggested by the reviewer to our best capabilities. We have added a separate graph with the hemicontrols in the as a Reviewer Response Figure 1.

      Comment 16. Figure 7: Are IPCs necessary for the model? If not, I suggest removing them and placing the Lgr3 neuron cell bodies much more anterior in this scheme. Their cell bodies are as anterior and rostral as it gets, approximately where the IPCs are depicted in this type of view of the CNS.

      Response: We thank the reviewer for pointing this out and have removed IPCs from the figure, this figure is now labelled as Fig. 6.

      Comment ____17. Table S1- It would be preferable to see the data of these experiments, but if the authors prefer to show this data in a table, please at least add the dispersion analyses (eg standard deviation.. OR median+-quartiles OR Confidence intervals..), N of animals analysed, and statistics against controls.

      Response: We thank the reviewer for pointing this out, we have added the number of larvae analysed, SEM values and statistics against the control condition.

      Comment ____18. In all figures with pupariation time: please also indicate significant findings in the graphs (with an asterisk, for instance) and adjust figure legends accordingly. This could facilitate understanding the data.

      __Response: __Thanks for the suggestion. We have incorporated this information into figure legends.

      Comment ____19. Please revise Figure legends for punctuation.

      __Response: __We have rectified all the errors in punctuation. We thank the reviewers for suggesting this.

      __Comment ____20. __

      a) Abstract:

      Line 10: What is the evidence to call Dilp8 a "paracrine" factor?

      Response: We thank the reviewer for pointing this out, we have changed the text to ‘secreted factor’.

      b) Introduction:

      4th paragraph, 3rd sentence " Dilp8... buffers developmental noise and delays pupariation..." Buffering of developmental noise was first shown in Garelli et al., Science 2012, so this publication should be cited. ____4th paragraph, 5th sentence: please include Jaszczak et al., Genetics 2016. This paper was published together with the 2015 papers, just a matter of timing that it got a 2016 date. Moreover, I do not think Katsuyama et al., 2015 is well cited to back up the statement in this sentence, hence I recommend removing that citation in this sentence.

      Response: We thank the reviewer for pointing this out and have made necessary changes.

      c) 6th paragraph: 5th line "targeting dilp8" : please specify if you mean the gene or the mRNA, or both. Same for line 7.

      Response: We thank the reviewer for pointing this out and have made necessary changes.

      d) Results Page 10, 1st paragraph, 1st sentence: the works cited are not the appropriate studies that demonstrated what is being stated. This was shown in Garelli et al., Science 2012 and Colombani et al., Science 2012. Results Page 10, 1st paragraph, line 11: Please also cite Colombani et al., Science 2012, who first showed that JNK is required for dilp8 regulation.

      Response: We thank the reviewer for pointing this out and are extremely apologetic for this oversight. We have made necessary changes to the manuscript.

      e) Discussion, 2nd paragraph, line 4: again, please indicate the rationale for using "paracrine" to describe Dilp8's activities. The current widely accepted model is that Dilp8 acts on interneurons in the brain ____(eg, reviewed in Juarez-Carreno et al., Cell Stress, 2018; Gontijo and Garelli, Mech Dev, 2018; Mirth and Shingleton, Front Cell Dev Biol, 2019; Texada et al., Genetics 2020; Boulan and Leopold, 2021).____ In order to reach the brain, Dilp8 has to be secreted from the discs and travel to the brain. This is as an endocrine mechanism as it gets for a small larva, considering that some discs can be on the opposite side of the larva (eg, genital discs). While this does not exclude that Dilp8 could also act paracrinally, the only evidence that I am aware of comes from other contexts such as during transdetermination (where Dilp8 has been proposed to work in an autocrine or paracrine fashion, via Drl in imaginal discs (Nemoto et al., Genes to Cells, 2023), however, this is not cited appropriately in this manuscript and is less related to the Lgr3-dependent pathway being studied here.

      Response: We totally agree with the reviewer and appreciate clarifying this for us. We have made necessary changes to the text.

      f) Discussion Page 13, 1st paragraph, This claim is supported by data presented in Garelli et al., Science 2012, not the other two papers. Garelli et al., 2015 shows that the Lgr3 receptor also participates in buffering developmental noise. Other studies have corroborated the Garelli et al., 2012 finding: eg, Colombani et al., Curr Biol 2015; Boone et al., Nat Commun 2016; Blanco-Obregon et al., Nat Commun 2022). Many other studies have shown that Dilp8 promotes developmental stability under tissue stress and challenges.

      Discussion Page 12, 3rd paragraph, 2nd sentence: "The Lgr3 neurons directly interact with ... PTTH ...and insulin-producing neurons" Please cite Colombani et al., 2015 and Vallejo et al., Science 2015. Vallejo et al., propose that circuit with insulin-producing neurons. In the 3rd sentence, only Jaszczak et al., 2016 is cited, whereas this claim/model comes from many studies, such as Halme et al., Curr Biol, 2010; Hackney et al., PLoS One 2012; Garelli et al. Science 2012; Colombani et al., Science, 2012; and the Lgr3 papers from 2015). Jaszczak et al., actually propose that Lgr3 is also required in the ring gland in addition to neurons.

      Discussion page 14 last paragraph,10 line, "In Aedes aegypti ....regulates ilp8 (Ling et al., 2017)". As far as I understand mosquitoes do not have a dilp8 orthologue (see for instance Gontijo and Gontijo, Mech Dev 2018; and Jan Veenstra's work). ilp nomenclature (numbering) does not follow that of Drosophila, so ilp8 is probably a typical Insulin/IGF-like peptide and is NOT an orthologue of Dilp8, a relaxin, so this citation needs to be removed or placed into the broader context of microRNA regulation of ilps.

      Response: We are really sorry for the numerous glaring errors in the references. We thank the reviewers for correcting this for us. We have made necessary changes to the text.

      Thank you for the opportunity to review your interesting work,

      Alisson Gontijo and Rebeca Zanini

      Reviewer #3 (Significance (Required)):

      If the authors address these points raised above, we believe the manuscript should be a valuable contribution to the field, and help in the understanding of how tissues respond to growth aberrations and the regulation of transcript levels by microRNAs.

      __Author’s concluding response: __

      We thank all the reviewers for the overall positive comments and suggestions that we believe have helped us to improve our manuscript. We have incorporated all the changes suggested, especially regarding errors in citing key references. We have performed most of the experimental suggestions. Also, we have modified the way in which graphs are presented, including statistical tests as suggested by the reviewers. Several controls have been performed to strengthen the manuscript further. We believe that this review process aided in significantly improving this manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank the reviewer for their positive comments regarding the research article titled "The Ketogenic Diet Metabolite 1 β-Hydroxybutyrate Promotes Mitochondrial Elongation via Deacetylation and Improves Autism-like Behaviour in Zebrafish" by Uddin GM and colleagues. We appreciate your input, and we will address these comments as indicated below with specific responses to each point raised by reviewers.

      The main changes in the updated manuscript are as follows:

      We have revised the introduction to now incorporate additional background information on mitochondria, NAD, and mitochondrial dynamics and function. This addition aims to provide readers with a broader understanding of the mitochondrial context in relation to our study.

      Furthermore, we recognize that previous studies have explored mitochondrial function in the context of the ketogenic diet. While our specific investigation centered on mitochondrial morphology, we acknowledge the importance of comprehensively investigating mitochondrial function. To this end, we have added new data showing how BHB impacts mitochondrial oxidative phosphorylation in HeLa cells (Sup Fig 2), and how both BHB and NMN impact oxygen consumption/glycolysis in zebrafish (Fig 7).

      We have also added new behaviour analysis of the zebrafish (Fig 6), and have re-framed the discussion around neurodevelopment generally, rather than ASD specifically.

      Finally, we have now included a section in our manuscript that discusses the limitations of our study. These limitations can be further investigated to explore and characterize the full mechanistic potential behind the effects of the ketogenic diet and/or NMN on mitochondrial dynamics.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Uddin GM and colleagues presented a research article entitled 'The Ketogenic Diet Metabolite 1 β-Hydroxybutyrate Promotes Mitochondrial Elongation via Deacetylation and Improves Autism-like Behaviour in Zebrafish'. Roles of ketogenic diet (KD) and NAD+ precursors in health promotion and longevity, as well as on the alleviation of a broad range of diseases are evident. However, their roles in autism are not well done, which is the novelty of the current study. Addressing below questions will improve the quality of the paper.

      Major concerns 1. In the introduction section, a broad overview of the roles of ketogenic diet (KD) in neurodegenerative disease (and ageing, if possible) should be provided. E.g., the authors should summarize exciting progress on the use of KD to treat Alzheimer's disease in animal models (PMID: 23276384). *

      Response: Thank you for your valuable suggestion. While it is true that the KD appears to be beneficial in neurodegenerative (and other disease) models, our focus in this paper is looking at neurodevelopment, rather than all potential benefits of the KD. Nonetheless, we have addressed this comment by incorporating a brief overview of the roles of the KD in neurodegenerative diseases, including Alzheimer's disease (AD), in the introduction section of the manuscript. Specifically, we have summarized the exciting progress made in utilizing KD to treat AD in animal models, as highlighted in the suggested study. This addition helps to provide a better overview of the potential therapeutic effects of KD in neurodegenerative diseases and strengthens the introduction section of the manuscript.

      • Roles of high fat diet to treat diseases could be extended to rare premature ageing diseases. In such scenario, high fat and NAD+ boosting shared some joint mechanisms (PMID: 25440059 ). *

      Response: This information and the reference are now added to the discussion.

      *In the introduction, a more detailed introduction of NAD+ and its roles in mitochondrial homeostasis (especially mitophagy and the mitochondrial fusion-fission balance) should be included (PMID: 24813611; PMID: 30742114; PMID: 31577933). *

      Response: Although our paper focused primarily on mitochondrial fission and fusion, we have incorporated a new paragraph in the introduction to provide a more detailed introduction detailing NAD+ and its roles in mitochondrial homeostasis, specifically highlighting mitophagy. We have included the suggested references.

      • In regarding to the statement of KD increases NAD+, was it due to increased generation (to check protein levels and activities of different NAD+ synthetic enzymes, such as iNAMPT, NMNAT1-3, and NRK) and/or reduced consumption (in addition to reduced glycolysis, does KD inhibit the activities of CD38 and PARPs? In this paper, Sirtuins' activities is (are increased)). Detailed exploration of the activities of these proteins will unveil a clear molecular mechanisms on how KD affects/regulates NAD+. *

      Response: Thank you for the comment. We agree that exploring the detailed mechanism of how the ketogenic diet (KD) affects NAD+ is an interesting question that will have important implications once answered. However, fully elucidating the mechanism of action would require a more comprehensive investigation, which is beyond the scope of this current project. We have now added this as a future direction in the manuscript.

      *Fig. 1: in the NAD+ field, the normal used NR/NMN concentrations are normally high like to use 500 µM to 2-5 mM (as the NAD+ levels in cells are high). In addition to use 50 µM, the authors are strongly to have a dose-dependent study (50 µM, 500µM, 1, 2, 5 mM), and see changes of mitochondrial funciton and parameters. In this condition, NAD+ levels should be also checked. *

      Response: We have added new supplemental data showing the initial dose response of the effects of BHB and NMN on mitochondrial morphology, which led us to choosing the relevant doses for the remainder of the paper. Our objective was not to investigate the broad impacts of different NMN concentrations on mitochondrial function and parameters, or NAD+ levels. As such, we have only focused on doses where we see effects on mitochondrial morphology.

      *Fig. 2: a comprehensive characterization of mitochondrial fusion-fission should be performed. In addition to the protein evaluated, changes on other key fusion-fission proteins, like Bax, Bak, Mfn-1, Mfn-2, etc should be performed (PMID: 17035996; PMID: 24813611). *

      Response: We agree that looking at other key proteins involved in mediating mitochondrial fission and fusion could provide additional insight. Indeed, given the changes in global acetylation that we see, it is expected that some other proteins may also be regulated in this way. However, there are at least a dozen proteins involved in mediating mitochondrial fusion and fission, not to mention many more proteins that regulate these proteins. Unfortunately, it is not feasible to analyze all the proteins involved in mitochondrial fusion-fission. Moreover, looking only at protein levels, doesn't necessarily inform about the activity of any protein. Instead, we concentrated in this paper on investigating known links between protein acetylation and mitochondrial dynamics, particularly focusing on the proteins that have known links to acetylation (i.e., DRP1, OPA1, MFNs). We have added a note in the discussion acknowledging that other means of regulation could also be occurring in parallel.

      *Figs. 1-5 were focused on mitochondrial morphology, whether KD and NMN changed mitochondrial funciton should be explored, such as to use seahorse to check ECR and OCR. *

      Response: Although our question was focused on morphology, we agree that mitochondrial function is important. We have added new data showing that BHB increases basal oxygen consumption in HeLa cells (Sup Fig 2), as well as new data showing that BHB and NMN influence oxygen consumption and glycolysis in our zebrafish model (Fig 7)

      • Fig. 6: NR/NMN used in animal studies (via gavage or in drinking water in mice, and on plate for worms and flies) are normally high (e.g., in drinking water for mice could be 4-12 mM; for worms and flies are normally 1-5 mM); for zebrafish, while they are swimming in water, this reviewer concerned whether it was true that 50 µM of NMN was sufficient to show the benefit presented.*

      Response: Our data show that these doses are indeed sufficient. We did look at some higher doses for NMN, but these were toxic, leading to poor survival and were not studied further.

      *Minor concerns 1. Line 26: For 'a growing list of neurological disorders, including autism spectrum disorder (ASD)', please add AD in. *

      Response: Line 26 is part of the abstract, which we feel should be focused more on the main message of the paper, which does not involve AD. As addressed above, we have added AD as an example in the introduction.

      *Line 57: For 'with side effects such as gastrointestinal disturbances, nausea/vomiting, diarrhea, constipation, and hypertriglyceridemia being reported', rate of frequency shall be provided if any. *

      Response: We have modified the statement to indicate the relative percent of patients suffering the various side effects.

      *Reviewer #1 (Significance (Required)):

      The novelty of the current study was to investigate effects of KD and NAD+ on autism. This investigation was not performed before and thus is the novelty.

      Weakness, effects of KD and NAD+/NMN on mitochondrial function were not well-investigated and should be done. Introduction was not well done, many key information in the fields were not provided which may mislead the readers an over-evaluation of the novelty of the current study.*

      Response: As outlined above, we have edited the introduction to include additional information requested by the reviewer. Moreover, our focus in this manuscript was to look at the mechanisms underlying changes in mitochondrial morphology, not mitochondrial function per se, though this is clearly important and related. Nonetheless, as discussed above, we have also added new data showing how BHB impacts mitochondrial function.

      *My expertise lies in NAD+, mitochondria, and brain health.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The study examined the effect of beta-hydroxybutyrate and nicotinamide nucleotide on mitochondrial morphology and the molecular pathways which mitigate this effect as well as the effect of these treatments on behavior in zebrafish. The study is well done and well written. The only thing I think that could be improved are the bar in the graph some the significant comparisons. It is sometimes difficult to see which groups are being compared.*

      Response: We're happy to adjust how the data is displayed in the relevant bar graphs, but it is not clear exactly what changes the reviewer would like. To some degree this will depend on the specific guideline of the final journal where we hope the manuscript will be published. As such, we have not made changes at this point.

      ***Referees cross-commenting**

      The other reviewers do have some fair comments. Multiple doses would be helpful and showing bioenergetic data would complement the morphological measurements. Additionally, behavioral assays showing changes in social behavior in the Zebrafish would provide a stronger link to ASD. *

      Response: As discussed above, we have added new information on doses and mitochondrial bioenergetics. With respect to behaviour, we have added thigmotaxis data and reworked the discussion around behaviour and neurodevelopment so that it is less specific to ASD.

      *Reviewer #2 (Significance (Required)):

      As beta-hydroxybutyrate is an important substrate for the ketogenic diet, this study helps explain the potential mechanisms in which the ketogenic diet may enhance mitochondrial function.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this paper, Uddin and colleagues have investigated components of the ketogenic diet to understand changes in both mitochondrial morphology and protein expression, and zebrafish locomotor behaviour. They investigate whether beta-hydroxybutyrate (BHB) or nicotinamide nucleotide (NMN) application can later human mitochondria in HeLA cell lines, and also recue a locomotion defect in shank3b+/- zebrafish larvae that have previously been proposed as a model for autism. This study is strengthened by showing data from two species; however the link between the HeLA cell line data and larval zebrafish is not strong. The study would be improved by assessing zebrafish mitochondrial changes after drug application, and testing more than one concentration of BH and NMN in the behavioural assay. This is an interesting study, and it is nicely written and presented. I have made some comments to strengthen the study below.

      Major comments My expertise is in modelling some aspects of autism in zebrafish. To this end I have focussed on the zebrafish part of this manuscript more fully. I have several comments related to the zebrafish experiments. 1. The changes in mitochondrial morphology, peroxisome number and mitochondrial protein levels were measured in HeLA cells and not comparable data is shown for zebrafish. The same experiments should be repeated using larval zebrafish or a zebrafish cell line. *

      Response: We chose to use HeLa cells for the mechanistic studies due to practical reasons. Cell lines offer a controlled and well-established system for investigating cellular processes and molecular mechanisms. Measuring these parameters in tissues is significantly more challenging and requires different reagents (e.g., antibodies) and methodology (electron microscopy) that are not feasible in the current study.

      On the other hand, zebrafish larvae were employed for the behavior studies, which cannot be conducted using cell lines. By utilizing zebrafish, we were able to examine the effects of beta-hydroxybutyrate (BHB) and nicotinamide nucleotide (NMN) on locomotor behavior, providing valuable insights into potential therapeutic implications for autism.

      While we acknowledge the limitations of not directly measuring mitochondrial morphology, peroxisome number, and mitochondrial protein levels in zebrafish, we believe that our study provides significant contributions to understanding the effects of BHB and NMN in zebrafish behavior. Future studies could certainly consider incorporating zebrafish-specific experiments to complement the findings in HeLa cells.

      • How did you choose the concentration of BHB and NMN to use in behavioural experiments? And the timing of application - I don't really understand why you waited 3 days after drug application to measure locomotion. *

      Response: These doses chosen initially as they were similar the doses that induced mitochondrial elongation in HeLa cells and were tolerated by the fish larvae. As we saw promising effects at these initial doses, we decided to explore them in more detail. While we agree that it would be worth comparing the effects of additional doses, as well as looking at their effects at other timepoints, such work would be a major endeavour and is beyond the scope of our initial investigations, which we feel are worth reporting in their current state.

      With respect to the treatment paradigm, fish larvae were treated 10-48 hours post fertilization, as this is a critical neurogenic developmental timepoint that is often used for exposure studies. Fish do not fully hatch until 3-4 days post fertilization, and display only minimal movement before 5 days, which is why we waited until 5 days to look at movement.

      • Do the shank3b+/- larvae show any morphological deficits? Their decrease in locomotion is striking. Is the morphology also rescued by drug application? Can you tie this to the mitochondrial changes that you observed in HeLA cells?*

      Response: We do not observe any gross changes in fish morphology that might explain a decrease in locomotion. Unfortunately, it is not feasible to look at mitochondrial morphology in the fish at this time. However, based on previous published work showing that the ketogenic diet promotes mitochondrial elongation in mouse brains (PMID:32380723), we would expect mitochondrial morphology also to be changed in the fish. Nonetheless, as we have not examined this directly in fish, we are not making this specific claim in this manuscript.

      • In figure 6A you use time spent swimming as a readout of distance. This doesn't really make sense, because without also showing speed of swimming it is not possible to know whether time and distance correlate in the same way across genotypes. This figure could be improved by showing more detail - speed of swimming, time spent immobile etc. This can easily be extracted from the films that you have already made using the ViewPoint software. *

      Response: As requested, we have reanalyzed the zebrafish movement data for a more refined analysis. In the revised version (Fig 6), we include analysis of both speed and distance travelled within a defined time. Importantly, these findings still support differences between WT and shank3b+/- fish that are restored by BHB and NMN to varying degrees.

      • Showing a change in locomotion is not enough to claim that a model is autism-like. At a minimum I think that you need to show changes in social behaviour - likely using older fish (more than three weeks) that interact with each other. Changes in locomotion can be caused by so many factors, many of which are not indicative of autism. It is important that as a field we do not simply claim that locomotion can be used as a proxy for more complex disease phenotypes. This recent review may help you with this point:* https://www.frontiersin.org/articles/10.3389/fnmol.2020.575575/full.

      Response: The reviewer makes an important point that the movement behaviour phenotypes that we see do not necessarily represent classic ASD phenotypes (i.e., repetitive behaviour, reduced sociability, and reduced communication). To begin to address this issue, we analyzed thigmotaxis, which can be a measure of anxiety. Notably, we also see differences that are reversed by BHB and NMN. However, we cannot model all ASD behaviours in a fish model, and we are not set up to look at social behaviour, especially in the young fish that we were studying. As such, even though Shank3 is a recognized ASD gene, and the shank3b+/- model we are studying is a validated ASD model (PMID: 29619162), we have re-phrased the manuscript in the context of neurodevelopment generally, rather than with respect to ASD specifically. As such, we ascribe the movement and thigmotaxis phenotypes as neurodevelopmental phenotypes that are improved by BHB and NMN.

      *For the statistics, as far as I can tell, all of the data should be analysed by ANOVA or the non-parametric equivalent followed by a post-hoc test. Please check this and add information about normality in. *

      Response: As requested, we have clarified our statistical methodology throughout the manuscript.

      For the mechanistic data, we used t-tests for direct comparisons between two groups (e.g., vehicle vs. treatment). While multiple conditions such as vehicles, NMN, BHB, or etomoxir were tested, statistical comparisons were only conducted comparisons between the vehicle and each treatment group individually. As we are not also making comparisons between treatments this is not a multiple comparison, and ANOVA is not applicable in this context. We have clarified this rationale in the manuscript to avoid any confusion.

      For the zebrafish study, where multiple factors were involved (e.g., treatments across different time points or conditions), we performed a two-way ANOVA followed by Tukey's post-hoc test to identify specific group differences. This approach was appropriate for analyzing these datasets and ensures robust conclusion.

      With respect to normality testing, all datasets were assessed for normality using the Shapiro-Wilk test, and no violations of normality were observed. The updated text now includes these details.

      *Minor comments

      1. Make sure that you refer to the fish line as shank3b+/- throughout - see abstract.*

      This has bee corrected.

      • Please add a space between all numbers and units (e.g. 5 Mm). *

      This has bee corrected.

      • There is a spelling error on line 340 page 16: finings instead of findings. *

      This has bee corrected.

      • In figure 1, if each dot represents a different sample, then there appear to be many fewer samples analysed in 1D compared to 1B. Can you comment upon this please*

      __Response: __A total of 80-150 cells were counted per condition, and the analyses were performed on 3 independent replicates with 2 independent technical replicates for each treatment condition. The quantification of mean mitochondrial branch length in Figure 1B was measured using Image-J and the MiNA plugin. The measurements were taken from three independent replicates using a standard region of interest (ROI) and randomly selected areas from each image.

      In Figure 1D, NAD+ levels were measured 24 hours after treatment of vehicle, βHB, NMN, or Eto+βHB in HeLa cells (n=3-6/group). Each sample lysate represents an independent experimental dish from which coverslips were collected for image analysis.

      The difference in sample numbers between Figure 1B and 1D arises because image analysis involves individual cells fixed and stained on coverslips, whereas the NAD assay requires the whole lysate from the entire cell culture dish. Therefore, the higher cell count in Figure 1B represents the number of cells analyzed on coverslips, while Figure 1D represents NAD levels from the lysate normalized to the protein concentration.

      *Reviewer #3 (Significance (Required)):

      I think that this will be interesting to autism researchers and it could lead to more investigation of the ketogenic diet. Some more work is needed, likely in other model organisms, before this research can be translated to human patients. *

      __Response: __We agree that the findings of our study could be of interest to autism researchers and have implications for further investigation of the ketogenic diet (KD). It is important to note that further work, including studies in other model organisms, would be beneficial before translating this research to human patients.

      Our study aimed to provide mechanistic insights into the effects of the KD on mitochondrial morphology and behavior. We recognize that the translation of research findings to human patients requires rigorous investigation, including preclinical and clinical studies. Our study contributes to the understanding of the underlying mechanisms involved in the KD's effects, laying the groundwork for future research and potential therapeutic avenues.

      We appreciate your perspective and emphasize that our intention is to provide valuable insights into the mechanisms underlying the KD's effects rather than suggesting immediate translation to human patients. Further investigation and validation in diverse models and clinical settings will be necessary before considering clinical applications.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this paper, Uddin and colleagues have investigated components of the ketogenic diet to understand changes in both mitochondrial morphology and protein expression, and zebrafish locomotor behaviour. They investigate whether beta-hydroxybutyrate (BHB) or nicotinamide nucleotide (NMN) application can later human mitochondria in HeLA cell lines, and also recue a locomotion defect in shank3b+/- zebrafish larvae that have previously been proposed as a model for autism. This study is strengthened by showing data from two species; however the link between the HeLA cell line data and larval zebrafish is not strong. The study would be improved by assessing zebrafish mitochondrial changes after drug application, and testing more than one concentration of BH and NMN in the behavioural assay.

      This is an interesting study, and it is nicely written and presented. I have made some comments to strengthen the study below.

      Major comments

      My expertise is in modelling some aspects of autism in zebrafish. To this end I have focussed on the zebrafish part of this manuscript more fully. I have several comments related to the zebrafish experiments.

      1. The changes in mitochondrial morphology, peroxisome number and mitochondrial protein levels were measured in HeLA cells and not comparable data is shown for zebrafish. The same experiments should be repeated using larval zebrafish or a zebrafish cell line.
      2. How did you choose the concentration of BHB and NMN to use in behavioural experiments? And the timing of application - I don't really understand why you waited 3 days after drug application to measure locomotion.
      3. Do the shank3b+/- larvae show any morphological deficits? Their decrease in locomotion is striking. Is the morphology also rescued by drug application? Can you tie this to the mitochondrial changes that you observed in HeLA cells?
      4. In figure 6A you use time spent swimming as a readout of distance. This doesn't really make sense, because without also showing speed of swimming it is not possible to know whether time and distance correlate in the same way across genotypes. This figure could be improved by showing more detail - speed of swimming, time spent immobile etc. This can easily be extracted from the films that you have already made using the ViewPoint software.
      5. Showing a change in locomotion is not enough to claim that a model is autism-like. At a minimum I think that you need to show changes in social behaviour - likely using older fish (more than three weeks) that interact with each other. Changes in locomotion can be caused by so many factors, many of which are not indicative of autism. It is important that as a field we do not simply claim that locomotion can be used as a proxy for more complex disease phenotypes. This recent review may help you with this point: https://www.frontiersin.org/articles/10.3389/fnmol.2020.575575/full.
      6. For the statistics, as far as I can tell, all of the data should be analysed by ANOVA or the non-parametric equivalent followed by a post-hoc test. Please check this and add information about normality in.

      Minor comments

      1. Make sure that you refer to the fish line as shank3b+/- throughout - see abstract.
      2. Please add a space between all numbers and units (e.g. 5 Mm).
      3. There is a spelling error on line 340 page 16: finings instead of findings.
      4. In figure 1, if each dot represents a different sample, then there appear to be many fewer samples analysed in 1D compared to 1B. Can you comment upon this please?

      Significance

      I think that this will be interesting to autism researchers and it could lead to more investigation of the ketogenic diet. Some more work is needed, likely in other model organisms, before this research can be translated to human patients.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      The weaknesses are in the clarity and resolution of the data that forms the basis of the model. In addition to whole embryo morphology that is used as evidence for convergent extension (CE) defects, two forms of data are presented, co-expression and IP, as well as a strong reliance on IF of exogenously expressed proteins. Thus, it is critical that both forms of evidence be very strong and clear, and this is where there are deficiencies; 1) For vast majority of experiments general morphology and LWR was used as evidence of effects on convergent extension movements rather than Keller explants or actual cell movements in the embryo. 2) The study would benefit from high or super resolution microscopy, since in many cases the differences in protein localization are not very pronounced. 3) The IP and Western analysis data often show subtle differences, and not apparent in some cases. 4) It is not clear how many biological repeats were performed or how and whether statistical analyses were performed. 

      (1) To more objectively assess the convergent extension phenotypes, we developed a Fiji macro to automatically quantify the LWR in various injected Xenopus embryos, as detailed in the Methods section. We acknowledge that a limitation in the current manuscript is how to link our mechanistic model at the molecular level with the actual cellular behavior during convergent extension, and we plan to perform cell biological studies in the future to elucidate the link;

      (2) We have repeated some of the imaging experiments in DMZ explants using a Zeiss LSM 900 confocal equipped with Airyscan2 detector that can increase the resolution to ~100 nm. The new data are in Suppl. Fig. 4, 9, 11, 16;

      (3) We have repeated all IP and western blots at least three times and provided quantification and statistical analyses;

      (4) We have added the information on biological repeats and statistical analyses in all figures and figure legends.

      Reviewer #2 (Public Review):

      The protein localization experiments in animal cap assays are for the most part convincing, but with the caveat that the authors assume that the proteins are acting within the same cell. As Fzd and Vangl2 are thought to localize to opposite cell ends in many contexts, can the authors be sure that the effects they observe are not due to trans interactions? 

      In our previous publication, we provided evidence that Vangl is necessary and sufficient to recruit Dvl to the plasma membrane within the same cell (Figure 3 in 10.1093/hmg/ddx095). In a more recent publication ( 10.1038/s41467-025-57658-0 ), we further elucidated a mechanism through which Dvl oligomerization switches its binding from Vangl to Fz, and determined that Dvl binding to Vangl and Fz are differentially mediated by its PDZ and DEP domain, respectively. In the current manuscript, we also performed co-IP experiment under various conditions to demonstrate binding between Dvl and Vangl. We feel that these evidences together provide a strong argument for our model where Vangl2 acts within the same cell to sequester Dvl from Fz.

      In regards to the Dvl patches induced by Wnt11 (Fig. 3 and Suppl. Fig. 9), we performed separate injection of EGFP- and mSc-tagged Dvl into adjacent blastomeres, and demonstrated that the Wnt11-induced patches arise from symmetrical accumulation of Dvl at contact of two neighboring cells (Suppl. Fig. 9a-c’). This scenario is different from epithelial PCP where Fz/Dvl and Vangl/Pk are asymmetrically accumulated at the contact between two adjacent cells.

      The authors propose a model whereby Vangl2 acts as an adaptor between Dvl and Ror, to first prevent ectopic activation of signaling, and then to relay Dvl to Fzd upon Wnt stimulation. This is based on the observation that Ror2 can be co-IPed with Vangl2 but not Dvl; and secondly that the distribution of Ror2 in membrane patches after Wnt11 stimulation is broader than that of Fzd7/Dvl, while Vangl2 localizes to the edges of these patches. The data for both these points is not wholly convincing. The co-IP of Ror2 and Vangl2 is very weak, and the input of Dvl into the same experiment is very low, so any direct interaction could have been missed. Secondly, the broader distribution of Ror2 in membrane patches is very subtle, and further analysis would be needed to firm up this conclusion. 

      (1) We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b). Whereas this data confirms our previous conclusion, we acknowledge that a negative data does not fully exclude the possibility for direct biding between Ror and Dvl.

      (2) We re-analyzed the signal intensity of Dvl and Ror in Wnt11-induced patches. By quantifying the intensity ratio between Ror and Dvl along the patches, we found an increase over two folds at the border of the patches (Fig. 7j, bottom panel). We interpret this data to suggest that Ror is accumulated to a higher level than Dvl at the patch borders.     

      A final caveat to these experiments is that in the animal cap assays, loss of function and gain of function both cause convergence and extension defects, so any genetic interactions need to be treated with caution i.e. two injected factors enhancing a phenotype does not imply they act in the same direction in a pathway, in particular as there are both cis/trans and positive/negative feedbacks between the PCP proteins. 

      We agree with the reviewer that a difficulty in studying PCP/ non-canonical signaling is that both loss and gain of function of any its components can cause convergence and extension defects. Genetic interactions, especially synergistic interactions, should be interpreted with caution. But we do want to point out that, in a number of case, we were also able to demonstrate epistasis. For instance, we found that Dvl2 over-expression induced CE defects can be rescued by Pk over-expression (Fig. 1e and f), whereas Vangl/ Pk co-injection induced severe CE defects can be reciprocally rescued by Dvl2 over-expression (Fig. 1g). Likewise, we showed that Fz2/ Dvl2 co-injection induced CE defects can be rescued by wild-type Vangl2 but not Vangl2 RH mutant (Suppl. Fig. 6b), and Ror2 can rescue Vangl2 overexpression induced CE defect (Suppl. Fig. 14). Collectively, these functional interaction data consistently demonstrate an antagonism between Dvl/ Fz/ Ror2 and Vangl2/ Pk, which is correlated with our imaging and biochemical studies.

      As you can see from the reviews, the referees generally agree that your paper is a potentially valuable contribution to the field. Your observations are important because of the novel model based on the inhibitory feedback regulation between planar cell polarity (PCP) protein complexes. However, the reviewers also stated that the model is only partly supported by data because of insufficient clarity and missing controls in several experiments supporting the proposed model. The paper would be significantly improved if your conclusions are backed up by additional experimentation. Specifically, the referees wanted to see the reproducibility of the results shown in Figures 3, 4, 8, S3, S7, S12. 

      We hope that you are able to revise the paper along the lines suggested by the referees to increase the impact of your study on the current understanding of PCP signaling mechanisms. 

      We thank the reviewers for careful reading of our manuscript and for their constructive critiques and suggestions. We have repeated the animal cap studies in original Figures 3, 4, 8 and S3 with DMZ explants, and the new data are in Supplementary Fig. 9, 11, 16 and 4, respectively. We also repeated the biochemical studies in original Figure S 7and 12, and the new data are in Supplementary Fig. 8 and 15.

      Reviewer #1 (Recommendations For The Authors):

      Major points:(1) The author conducted an analysis of the subcellular localization of PCP core proteins, including Vangl2, Pk, Fz, and Dvl, within animal cap explants (ectodermal explants). To validate the model proposing that 'non-canonical Wnt induces Dvl to transition from Vangl to Fz, while PK inhibits this transition, and they function synergistically with Vangl to suppress Dvl during Convergent Extension (CE),' it is crucial to assess the subcellular localization of PCP core proteins in dorsal marginal zone (DMZ) cells, which are known to undergo CE. Notably, the overexpression of Wnt11 alone, as employed by the author, does not induce animal cap elongation. Therefore, the use of animal cap explants may not be sufficient to substantiate the model during Convergent Extension (CE). Indeed, previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants. However, the results presented in this manuscript appear to differ from this established understanding. Consequently, to provide more robust support for the proposed model, it is advisable to replicate the key experiments (Figures 3, 4, 8, and Figure S3) using DMZ explants. 

      We repeated the experiments in Figure 3, 4, 8 and Figure S3 with DMZ explant and the new data are in new Supplementary Fig. 9, 11, 16 and 4, respectively.In regards to “previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants”, we are aware Vangl/ Pk localization to the anterior cell cortex in neural epithelium from the studies by the Sokol and Wallingford labs, but are not aware of similar reports in DMZ explants. When we examined the localization of small amount of injected EGFP-mPk2 (0.1 ng mRNA) in DMZ explants, we saw a somewhat uniform distribution on the plasma membrane (Suppl. Fig. 4). In addition, in a related recent publication, we examined endogenous XVangl2 protein localization in activin induced animal cap explants that do undergo CE. What we observed was that whereas low level injected Dvl2 and Fz form clusters on the plasma member, endogenous XVangl2 remains uniformly distributed on the plasma membrane (Suppl. Fig. 3S-Z in 10.1038/s41467-025-57658-0 ). These observations may suggest potential differences of PCP protein localization during neural vs. mesodermal convergence and extension.

      (2) The author suggests that 'Vangl2 and Pk together synergistically disrupt Fz7-Dvl2 patches.' As shown in Figure 4 (panels J' to I'), it is evident that the co-expression of Pk and Vangl2 increases Fz7 endocytosis. Nevertheless, a significant amount of Fz7 still co-localizes with Dvl2. To strengthen the author's hypothesis, additional clear assay is required such as Fluorescence resonance energy transfer (FRET) assay. 

      We appreciate this valuable advice. Since none of the tagged Fz/ Dvl/ Vangl proteins we had were suitable for FRET, we made proteins tagged with mClover and mRuby2, which were reported as optimized FRET pairs. But in our hands mRuby2 seems to require very long time (~2 days) to mature and become detectable at room temperature, and is not suitable for our Xenopus experiments. We are in the process of establishing a luciferase based NanoBiT system to detect Fz-Dvl and Dvl-Vangl interactions in live cells and cell lysates, and will use it in future studies to investigate their interaction dynamics.

      For the current manuscript, we reason that a substantial reduction of Fz7-Dvl2 clusters with Vangl2/ Pk co-injection would still support our idea that Vangl2 and Pk act synergistically to sequester Dvl from Fz to prevent their clustering in response to non-canonical Wnt ligands.

      (3) The IP data is less clear and evident. A couple of examples are: a) Fig 2g where the authors report that the Vangl2 R177H variant reduced Vangl2 interaction with Pk and recruitment of Pk to the plasma membrane, but it appears that the variant interacts slightly better than WT Vangl2 with Pk. In Fig. S7a, the authors state that Pk overexpression can indeed significantly reduce Wnt11-induced dissociation of EGFP-Vangl2 and Flag-Dvl2 in the DMZ. However, there is a minimal impact when compared to the Wnt11 absent control. Based on the results presented in Fig S12a the authors indicate that Wnt11 reduces the association between Vangl2 and Dvl2, which can be discerned, but loss of Ror2 does not change this in any obvious way - but the authors indicate it does. In S12b, the authors have suggested that Ror and Dvl do not form a direct binding interaction. However, the interpretation of Figure S12b is not entirely convincing due to several issues. Notably, the expression levels of each protein appear inconsistent, the bands are not sufficiently clear, and there is the detection of three different tag proteins on a single blot. To strengthen the validity of these findings, it is advisable to repeat this experiment with improved quality. 

      We repeated all the co-IP and western blot analyses pointed out by the reviewer, and performed quantification and statistical analyses.

      Fig 2g had a mistake in the labeling and is replaced with new Figure 2g;

      Fig. S7a is replaced by new data in Supplementary Figure 8a and b;

      Fig. S12a and 12b are replaced by new data in Supplementary Figure 15a, a’ and b, respectively. In 15a and a’, we noticed a consistent decrease of Dvl2-Vangl2 co-IP in Xror2 morphant. The reason for this is not yet clear and will need further study in the future.

      Minor points: (1) In all the whole embryo injection assays examining morphology, no Western analysis is performed to show roughly equivalent and appropriate levels of the various proteins are being expressed. Differences will affect the data. 

      Although we did not do western analyses to examine the protein levels in various functional interaction assays, we did examine how co-expression of Vangl2, mPk2 or Dvl2 may impact each other’s protein levels in Supplementary Fig. 2, which did not reveal any significant change when co-injected in different combination.

      (2) The author's prior publication (Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis, Hum Mol Genet. 2017) presented clear evidence of Vangl2 overexpression inducing Dvl2 membrane localization. However, Figure S4 in the current manuscript did not provide clear evidence of membrane localization. To strengthen the hypothesis that Vangl2-RH mutant also induces Dvl2 membrane localization, further comprehensive imaging analysis is needed. 

      We re-analyzed the imaging data and replaced old Figure S4 with a new Supplementary Fig. 5.

      (3) In Supplementary Figure 9, the authors propose that the overexpression of Vangl2/Pk induces Fz7 endocytosis, as indicated by its co-localization with FM4-64. However, it raises a question: how does the Fz7-GFP protein internalize into the cells without endocytosis, as seen in Figures S9a-c'? To enhance readers' understanding, a discussion addressing this point should be included. 

      We think that this might be a technical issue. As detailed in the Method section, we only incubated the embryos transiently with FM4-64 for 30 minutes, and the embryos were subsequently washed and dissected in 0.1X MMR without the dye. Therefore, only the Fz7-GFP protein endocytosed during the 30 minute-incubation would be labeled by FM-64, whereas that endocytosed before or after the incubation would not. Alternatively, the very few Fz7-GFP puncta occasionally observed in the absence of Vangl2/Pk overexpression could be vesicles trafficking to the plasma membrane.

      (4) Statistical analyses are absent for several results, including those in Figure 2f, Figure S4d, and Figure S7b. 

      We repeated these experiments and included statistical analyses. The new data are in Figure 2f, Supplementary Fig. 5d and Supplementary Fig. 8b.

      (5) This manuscript lacks any results regarding Ck1. Therefore, it is advisable to consider removing the discussion or mention of CK1. 

      We agree, and tune down the discussion on CK1 and removed CK1 from our model in Fig. 9.

      Reviewer #2 (Recommendations For The Authors):

      (1) In all the convergence and extension assays, the authors should report n numbers (i.e. number of animals), what statistical test is used, and what the error bars show. Ideally dot-plots would be used instead of bar charts as they give a better insight into the data distribution. It might be useful to give a section on the statistical analyses used in the M&M, including e.g. any power calculations carried out, as now required by many journals. 

      We have follow the advice to use dot-plots for all the quantification analyses in the manuscript. We include in the figure legends the statistical test used and what the error bars show. The number of embryos analyzed were included in each panel in the figures. We also provided more details in the Methods section on how the LWR quantification was carried out.

      (2) I think Figure 2g is wrongly labelled? FLAG bands are in all three lanes in the western blot, but not labelled as such in the schematic. 

      We corrected the schematic labeling in Figure 2g, and thank the reviewer for catching this mistake.

      (3) In Figure S7, the authors show that co-IP of Dvl and Vangl2 is reduced by Wnt11 and the effects of Wnt are blocked by Pk. Does Pk have any effect in the absence of Wnt? 

      We examined the effect of Pk over-expression on Dvl2-Vangl2 co-IP as advised, and did not see a significant impact in the absence of Wnt11 co-injection. The data is included in the new Supplementary Figure 8a. We interpret the data to suggest that “at least under the condition of our co-IP experiment, Pk may not directly impact the steady-state binding between Vangl and Dvl”.

      (4) In Figure 3, the authors show (as published previously) that Wnt11 induces patches of Dvl at the plasma membrane. It would be useful to see Dvl in the absence of Wnt and Vangl2/Dvl in the absence of Wnt. 

      Dvl is widely known as a cytoplasmic protein and its localization has been published by many labs over the past 20-30 years. In our recent publication (10.1038/s41467-025-57658-0 ), we also re-examined Dvl localization when injected at various dosages. So we did not feel it was necessary to show its localization in the absence of Wnt11 again, but included a reference to our prior publication. In regards to Vangl/Dvl distribution in the absence of Wnt11, the readers can see Suppl. Fig. 5b as an example, in addition to our previous publications referenced in the manuscript.

      (5) In the review figures, the difference in Fz7-GFP patch formation in d' and e' (vs e.g. a') is not very clear. Could the images be improved or (better) quantified in some way? 

      We assume that “review figures” refer to Figure 3 or 4? If so, we felt that Fz7-GFP patch formation was clear in Fig. 3d’, e’ or Fig. 4d’, e’. Nevertheless, we repeated these experiments in DMZ explants as advised by Reviewer 1, and additional examples of Fz7-EGFP patch formation can be seen in the new Suppl. Fig. 9d-f’ and Suppl. Fig. 11d-f’.

      (6) In Figure 6d, I'm concerned that the loss of flag-Dvl2 might occur via dephosphorylation in the IP reaction. Also the M&M don't include methodological details about buffers and whether phosphatase inhibitors were used. A compelling control would be anti-FLAG pulldown showing retention of phosphorylation. Also Figure 6f shows a reduced ratio of fast-to-slow migrating bands of Dvl with Vangl2/Pk - unless I have misunderstood, is this ratio the wrong way round? 

      We added co-IP buffer and protease inhibitor information in Methods.

      We agree that the concern about dephosphorylation during IP reaction is valid, and that direct pull down of Dvl to show the phosphorylated form is a compelling control. We therefore note that in Suppl. Fig. 8a and 15b, direct pull down of Flag-Dvl or Myc-Dvl (with anti-Flag or anti-Myc) did show the slower migrating, phosphorylated form. Additional examples in which Vangl only co-IP the faster migrating unphosphorylated Dvl include Suppl. Fig. 15a, and in a related paper we published recently (Fig. 3R and R’ in 10.1038/s41467-025-57658-0 ).

      Finally, we did wrongly label Figure 6f in the last submission, and the ratio should have been “slow/fast”. We have made the correction, and appreaicte the reviewer for the meticulousness in perusing our manuscript.

      (7) In Figure 7, what does Ror2 look like in the absence of Wnt11? 

      We included new Figure 7a-c to show that without Wnt11 co-injection, Ror2 is uniformly distributed on the plasma membrane.

      (8) Also in Figure 7, Ror2 patches are said to be slightly wider than Dvl2 patches "reminiscent of Vangl2" - I wouldn't describe them as being similar. Vangl2 shows a distinct dip in the center of the Dvl patches, Ror2 does not show a dip, and is only (at best) in a slightly wider patch, and I would want to see further examples to be convinced that the localization domain is reproducibly wider. The merge of many samples in 7d may actually be making the distribution harder to see and if the Xror2 and Dvl2 intensities were normalized I'm not sure how different the curves would appear. (i.e. the Xror2 curve looks like a flattened version of the Dvl2 curve). 

      We have added an additional panel in the new Figure 7j to compare the intensity ratio of Ror/ Dvl2 along the patches, and this analysis reveals an over two folds increase of the ratio at the border region. This quantification may make a more convincing argument that at the patch border region, Dvl is diminished whereas Ror2 accumulate with Vangl2. 

      (9) In Figure S12a, the authors suggest Wnt11 induced dissociation of Dvl from Vangl2 (by co-IP), and this is reduced after Ror2 MO. This would be more convincing with replicates and quantitation. 

      We have repeated this experiment with Vangl2 pull down and added quantification. The data is in the new Suppl. Fig. 15a.

      (10) In Figure S12b, the authors suggest Ror2 can co-IP Vangl2 but not Dvl. This is not very convincing, as the Dvl input band is very weak, and the Vangl2 co-IP band is very weak. 

      We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b).

      (11) "Prickle" spelled "Prickel" in the abstract (and abbreviated to "PK" not "Pk" at one place in the abstract and several places in text) 

      We have corrected these typos.

      (12) Quite a lot of interesting observations are in supplemental figures. Normally it might be expected that extra data supporting a conclusion would be in supplemental, but here some of the supplemental data feels like it is more than simply additional evidence. For instance supplemental Figures 2 and 3 feel more than just supplemental (and Supplemental Figure 3 if merged with Figure 2 would make it easier for the reader). Moreover, for example, the description of the results in Figure 2 is punctuated by references to supplemental Figures 4 and 5 that contain key data to support the conclusions, which means the reader has to flick backwards and forwards from place to place in the manuscript to follow the argument. It is of course up to the authors, but in some cases putting supplemental data back into the main figures (for which there is no size or number limit) would increase clarity. 

      These are excellent points; in the resubmitted manuscript we have a total of 24 data figures, and we used 8 as main figures since we felt that they provide the most relevant and conclusive evidence to our model. We will consult the copy editors at eLife on how to arrange the rest as main vs. supporting figures when requesting publication as version of record.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments and overall very supportive feedback.

      Reviewer #1 writes: "The study is very thorough and the experiments contain the appropriate controls. (...) The findings of the study can have relevance for human conditions involving disrupted mitochondrial dynamics, caused for example by mutations in mitofusins." Reviewer #2 writes: "The dataset is rich and the time-resolved approach strong." Reviewer #3 writes: "I admire the philosophy of the research, acknowledging an attempt to control for the many possible confounding influences. (...) This is a powerful and thoughtful study that provides a collection of new mechanistic insights into the link between physical and genetic properties of mitochondria in yeast."

      We address all points below. We have not yet updated our text and figures since we expect substantial additions from new experiments. But we have included Figure R1 with some additional analyses of existing data at the bottom of the manuscript.

      Reviewer1

      1.1 Statistical comparisons are missing throughout the manuscript (with the exception of Fig. 2c). Appropriate statistical tests, along with p-values, should be used and reported where different gorups are compared, for example (but not limited to) Fig. 3d and most panels of Fig. 4.

      We initially decided not to add too many extra labels to the already very busy plots, given that the magnitude of change mostly speaks for itself. However, we will try to find meaningful statistical tests together with a sensible graphical representation for all of the figures. For one example see Figure R1A.

      1.2. I do not agree with the use of Atp6 protein as a direct read-out of mtDNA content. While Atp6 protein levels will decrease with decreasing mtDNA content, the inverse is not necessarily true: decreased Atp6 protein levels do not necessarily indicate decreased mtDNA levels, because they could alternatively or additionally be caused by decreased transcription and/or translation. Therefore, please do not equate Atp6 protein levels to mtDNA levels, and instead rephrase the text referencing the Atp6 experiments in the Results and Discussion sections to measure "mtDNA expression" or "mt-encoded protein" or similar. For example, on p. 14 line 431 should read "mtDNA expression" rather than "decreased synthesis of mtDNA", and line 440 on the same page "mean mtDNA levels" should be "mtDNA expression" or similar.

      All three reviewers agree that using Atp6-NG as a direct proxy for mtDNA requires more validation, or at least rephrasing of the text. We agree that this is the most important point to address. We had previously tried using the mtDNA LacO array (Osman et al. 2015) to directly assess the amount of nucleoids per cell. However, the altered mitochondrial morphology of the Fzo1 depleted cells combined with the LacI-GFP which is still in mitochondria even when mtDNA is gone, increases the noise level to a point that we cannot interpret the signal. However, as this manuscript was in the submission process, the Schmoller lab (co-authors #2 and #7) adapted the HI-NESS system to label mtDNA in live yeast cells(Deng et al. 2025). This system promises much better signal to noise and we expect we can address all concerns regarding the actual count of nucleoids per cell. Should this unexpectedly fail for technical reasons, we will try to calibrate the Atp6-levels with DAPI staining at defined time points and will rephrase the text as the reviewer suggests.

      1.3. In Fig. 3, the authors use the fluorescence intensity of a mitochondrially-targeted mCardinal as a read-out of mitochondrial mass. Please provide evidence that this is not affected by MMP, either with relevant references or by control experiments (e.g. comparing it to N-acridine orange or other MMP-independent dyes or methods).

      Whether or not the import of any mitochondrial protein is dependent on the MMP depends largely on the signal sequence. The preSu9-signaling sequence was previously characterized as largely independent of the MMP compared to other presequences (Martin, Mahlke, and Pfanner 1991), which is why Vowinckel (Vowinckel et al. 2015) and others (Di Bartolomeo et al. 2020; Perić et al. 2016; Ebert et al. 2025) have previously used this as a neutral reference to the strongly MMP-dependent pre-Cox4 signal to estimate MMP. As one control in our own data, we consider that the population-averaged mitochondrial fluorescent signal Figure S3C stays constant in the first few hours, in agreement with the total averaged mitochondrial proteome (Fig R1E). As additional controls, we plan to compare the signal to an MMP independent dye as the reviewer suggests.

      1.4. In Fig. 2e-f, the authors use a promoter reporter with Neongreen to answer whether the reduced levels of the nuclear-encoded mitochondrial proteins Mrps5 and Qcr7 are due to decreased expression or to protein degradation, and find no evidence of degradation of the Neongreen reporter protein. However, subcellular localization might affect the availability of the protein to proteases. Although not absolutely required, it would be relevant to know if the Neongreen fusion protein is found in the same subcellular compartment as Mrps5 and Qcr7 at 0h and 9h after Fzo1 depletion.

      Here, it seems we need to explain the set-up and interpretation of the data better. The key point we are trying to make with the promoter-Neongreen construct is that the regulation is not mainly at the level of transcription. We are showing that the reduction in the levels of the actual protein (orange bars) is not (mainly) explained by a reduction in expression, since the promoter is similarly active at 0 and at 9 hours (grey bars). If expression from the promoter were strongly reduced, the Neongreen would be diluted with growth and would also decrease, but this is not the case. The fluorophore itself is just floating around in the cytosol and is not subject to the same post-translational regulation as Mrps5 and Qcr7, so there is no reason to expect degradation.

      1.5. Fzo1 depletion leads to a very rapid drop in MMP during the first hour of depletion. In the Discussion, can the authors speculate on the possible mechanism of this rapid MMP drop that occurs well before mtDNA or mt-encoded proteins are decreased in level?

      This is indeed an interesting point. We think there are likely three reasons causing this initial drop: Firstly, due to the fragmentation the mixing of mitochondrial content is disturbed and smaller fragments may have suboptimal stoichiometry of components (see also (Khan et al. 2024) who look at this in detail including the Fzo1 deletion); secondly, already fairly early, some mitochondrial fragments may not contain any mtDNA and therefore will be unable to synthesize ETC proteins; thirdly, altered morphological features like changes in the surface-to-volume ratios may play a role. Sadly, mechanistically following up on this is not possible with the tools in our hands and therefore outside of the scope of this manuscript. But we are happy to include these speculations in our discussion.

      1.6. In Fig. 2a, the mtDNA copy number of Fzo1-depleted cells is ca 1.3-fold of the control cells at the 0h timepoint. Why might this be? Is it an impact of one of the inducers? If so, we might be looking at the combination of two different processes when measuring copy number: one that is an induction caused by the inducer(s), and the other a consequence of Fzo1 depletion itself.

      We believe that this 30% increase is within the noise of the experiment rather than an effect of the induction. Since we normalize to t=0 uninduced, the first black data point does not have error bars, emphasizing this difference. None of the protein data suggests that there is an increase in mtDNA encoded proteins (see e.g. 2B, or Atp6 fluorescence data). In the planned HI-NESS experiment, we will see in our single cell data whether there is an actual increase in mtDNA upon TIR induction. Additionally, we will run a qPCR to carefully determine mtDNA levels of untreated wild-type cells, tetracycline treated wild-type cells and tetracycline induced TIR expressing cells to exclude effects of tetracycline as well as the expression of TIR on mtDNA.

      Minor comments:

      1.7. p. 3, line 71: "ten thousands of dividing cells.." should be "tens of thousands of dividing cells".

      Thank you, will correct.

      1.8.-p.4, line 116: please be even more clear with what the "depleted" cells and controls are treated with: are depleted cells treated with both inducers, and controls with neither?

      We will make this more clear. Depleted cells are treated with both inducers, the control cells are not. However, in Figure 1A and in S1 we do controls to show that inducing TIR per se or adding aTC per se does not change growth rate or mitochondrial morphology. We will make this more clear.

      1.9. -p.5, lines 147-148: the authors write "the rate with which the abundance of Cox2 and Var1 proteins decreases was similar to the rate of mtDNA loss" though the actual rate is not shown. Please calculate and show rates for these processes side by side to make comparison possible, or alternatively rephrase the statement.

      Indeed this was not phrased well. We will call it dynamics rather than rates.

      1.10. -Fig. 2d: changing the y-axis numbering to match those in panels a and b would facilitate comparisons.

      Makes sense, we will change this.

      1.11. Fig. 2e: it is recommended to label the western blot panels to indicate what protein is being imaged in each (Neongree,, Mrps5, Qcr7).

      We will adapt the labelling to make it more clear.

      1.12. -p.9, line 262: I suggest referencing Fig. 4e at the end of the first sentence for clarity.

      We will modify the sentence as suggested.

      1.13. -In the sections related to Fig. 3a and Fig. 5a as well as the connected supplemental data, the authors discuss both the median and the mean of mitochondrial mass and Atp6 protein, respectively. For purposes of clarity, I suggest decreasing the focus on the mean (that is provided only in the supplemental data) and focusing the text mainly on the median. The two show differing trends and it is very good that both are shown, but the clarity of the text can be improved by focusing more on the median where possible.

      We will check the phrasing and simplify.

      1.14. -p. 14, line 435: the statement that mt mass is maintained over the first 9h of depletion is only true for the mean mt mass, not for the median. Please make this clear or rephrase.

      We will check phrasing, make it more clear and also point out the extended proteomics data (see Fig R1), which corresponds to the mean of the populations

      1.15.-p.14, line 452: "mitofusions" should be "mitofusins".

      Thanks for catching this.

      Reviewer 2:

      2.1. While inducible TIR is used to reduce background, the manuscript should rigorously exclude auxin/TIR off-targets (growth, mitochondrial phenotypes, gene expression). Please include full matched controls: (plus minus)auxin, (plus minus)TIR, epitope tag alone, and a degron control on an unrelated mitochondrial membrane protein.

      We agree that rigorous controls are crucial for the interpretation of the results. However, we think we have already included most of the controls the reviewer is asking for, but we might have not pointed this out clearly enough. For example, in Fig 1A, we could make it more clear by adding more labels in which samples we added aTC, which is only described in the figure legend.

      Here is a list of all the controls:

      • Each depletion experiment is always matched with an experiment of the same strain without induction. So the genetic background as well as effects such as light exposure, time spent in the microfluidics systems, etc are controlled for.
      • Figure S1D shows that the growth rate is wildtype like in a strain containing either the AID tag or the TIR protein AND upon addition of both chemicals. It also shows that the final genetic background (AID-tag and TIR) also grows like wildtype if the inducers are not added. This conclusively shows that neither the tags/constructs nor the chemicals per se affect growth rate
      • In Figure S1C we show the mitochondrial morphology of the same controls. We will make sure to label them more consistently to match panel D, and include an actual wildtype and a FLAG-AID-Fzo1 strain without TIR treated with both aTC and 5-Ph-IAA as direct comparison
      • In figure 1A we compare the Fzo1 protein levels of a strain with and without TIR. We show that in absence of TIR, adding either aTC or Auxin does not change Fzo1 levels and that the levels are comparable in the strain that is able to deplete Fzo1 directly before addition of 5-Ph-IAA (after 2 h of induction of TIR through addition of tetracycline)
      • Additionally, in Figure S2C we show that two hours after adding aTC, the entire proteome does not change significantly apart from a strong induction of TIR. We can also make this more clear in the figure legend.
      • Additionally, we will run a qPCR to carefully determine mtDNA levels of untreated wild-type cells, tetracycline treated wild-type cells and tetracycline induced TIR expressing cells to exclude effects of tetracycline as well as the expression of TIR on mtDNA. (also in response to 1.6.) In summary, we think we have controlled sufficiently for all confounding parameters and most importantly showed that addition of either aTC or Auxin as well as the FLAG-AID tag per se does not disturb mitochondria or cell growth. We do not see what a degron control on an unrelated protein will tell us. Depending on the nature of the protein, it may or may not have a phenotype that may or may not be related to morphology changes etc.

      2.2. The Mitoloc preSu9 vs Cox4 import ratio is only a proxy of mitochondrial membrane potential (ΔΨm) and itself depends on mitochondrial mass, protein expression, matrix ATP, and import saturation. The authors need to calibrate ΔΨm with orthogonal dyes (TMRE/TMRM) and pharmacologic titrations (FCCP/antimycin/oligomycin) to generate a response curve; show that Mitoloc tracks dye-based ΔΨm across the relevant range and corrects for mass/photobleaching. Report single-cell ΔΨm vs mass residuals.

      We completely agree that the MitoLoc system is only a rough proxy for the actual membrane potential. That is why we make no quantitative claims on the absolute value or absolute difference between groups of cells. We also make very clear in Fig 3B what we are actually measuring and can emphasize again in the text that this is only a proxy. We agree that it is a good idea to compare MitoLoc values to TMRE staining as the reviewer suggests, we will do these experiments in depleted and control cells at different timepoints. Please note though that also dye staining has its caveats, especially in dynamic live cell experiments. TMRM for example is not compatible with the acidic pH 5 medium that is typically used for yeast and subjecting cells to washing steps and higher pH may change both morphology of mitochondria and the MMP, especially in cells that are already “stressed”. We prefer not to complete elaborate pharmacological titration experiments because firstly, this was extensively done in the original MitoLoc paper by the Ralser lab ((Vowinckel et al. 2015), cited 120 times); secondly, the value of the MMP is not the most critical claim of the manuscript. See also 3.12. Please note that in Figure S4D we had already plotted MMP vs mitochondrial concentration.

      2.3. To use Atp6-mNeon as a proxy for mtDNA is an assumption. Interpreting Atp6 intensity as "functional mtDNA" could be confounded by translation, turnover, or assembly. Please (i) report mtDNA copy number time courses (you have qPCR), nucleoid counts (DAPI/PicoGreen or TFAM/Abf2 tagging), and (ii) assess translation (e.g., 35S-labeling or puromycin proxies) and turnover (proteasome/AAA protease inhibition, mitophagy mutants -some data are alluded to- plus mRNA levels for mtDNA-encoded genes). This will support the "reduced synthesis" versus "increased degradation" conclusion.

      We agree with all three reviewers that Atp6 is only a proxy for mtDNA (Jakubke et al. 2021; Roussou et al. 2024) and the correlation should be checked more carefully. We will use the very recently established Hi-NESS system to follow nucleoids/ mtDNA during depletion experiments. See detailed reply to 1.2.

      (ii) in Figure 2C we inhibit mitochondrial translation and show that in this case control and depleted cells have the same level of Cox2, at least suggesting that degradation is not the key mechanism controlling the levels of mtDNA encoded proteins. We cannot do proteasome inhibitor assays since the nature of the AID-TIR systems requires an active proteasome. In figure S5C we show that the Atp6 depletion is similar in an atg32 deletion. This does not completely exclude a contribution of mitophagy to the observed phenotype, but does confirm that mitophagy is not the primary reason for cells becoming petite.

      2.4. The promoter-NeonGreen reporters argue against transcriptional down-regulation of nuclear OXPHOS. Please add mRNA (RT-qPCR/RNA-seq) for representative genes and a pulse-chase or degradation-pathway dependency (e.g., proteasome/mitophagy/autophagy mutants) to firmly assign active degradation. The authors need to normalize proteomics to mitochondrial mass (e.g., citrate synthase/porin) to separate organelle abundance from protein turnover.

      While we are happy to perform qPCR experiments for selected genes, a full RNA-seq experiment seems outside the scope of this study. As explained above, a proteasome inhibitor experiment is not possible in this set-up. Bulk mitophagy/autophagy seems unlikely to be the cause of the decrease of the nuclear-encoded OXPHOS proteins, since most other mitochondrial proteins do not decrease on average on population level in the first hours. This data is now plotted as additional figure (see below) and will be included in the supplementary of the revised manuscript (Fig R1E).

      2.5. Using preSu9-mCardinal intensity as "mitochondrial concentration" is sensitive to expression, import competence, and morphology/segmentation. The authors should provide validation that this metric tracks 3D volume across fragmentation states (e.g., correlation with mito-GFP volumetrics; detergent-free CS activity; TOMM20/Por1 immunoblot per cell).

      We agree that this is an important point and the co-authors discussed this point quite intensively. In figure S3A and B we show (using confocal data) that there is a very strong correlation between the total fluorescence signal and the 3D volume reconstruction. However, the slope of the correlation is different between tubular and fragmented mitochondria (compare panels A and B) and see figure legend. Since we are dealing with diffraction-limited objects it is likely that the 3D reconstruction is sensitive to morphology, especially if mitochondria are “clumping”. We therefore think that the total fluorescence signal is actually a better estimate of mitochondrial mass per cell than the 3D volume reconstruction (especially for our data obtained with a conventional epifluorescence microscope). The mean of the total mitochondrial fluorescence also better matches the population average mitochondrial proteome (Fig R1E). To consolidate this assumption, we will additionally compare our data to a strain with Tom70-Neongreen and to MMP independent dyes.

      Notably, since the morphology is similarly altered in mothers and buds this is of minor impact for our main point – the unequal distribution between mother and buds.

      2.6. The unequal mother-daughter distribution is compelling, but causality remains inferred. Test whether modulating inheritance machinery (actin cables/Myo2, Num1, Mmr1) or altering fission (Dnm1 inhibition) modifies segregation defects and rescues mtDNA/Atp6 decline. Complementation with Fzo1 re-expression at defined times would help order the phenotype cascade.

      We agree that rescue experiments would be very useful. We have some preliminary data for tether experiments, for example with Num1. The general problem is that the fragmented mitochondria clump together. We have not found a method to restore an equal distribution between mother and daughter cells. We will try to optimize the assay, but are not overly confident it will work. Mmr1 deletion aggravates the Fzo1 phenotype, likely also because the distribution becomes even more heterogeneous, but we have not rigorously analyzed this.

      We like the idea of the Fzo1 re-expression and will run such experiments. This will be especially powerful in combination with the new HI-NESS mtDNA reporter. We may be able to track exactly when cells reach the point-of-no return and become petite. This will also help connecting our mathematical model more directly to the data.

      2.7. The model is useful but should include parameter sensitivity (segregation variance, synthesis slopes, initial nucleoid number) and prospective validation (e.g., predict rescue upon partial restoration of synthesis or inheritance, then test experimentally).

      We will refine our model to include the to-be-measured nucleoids/mtDNA values. We will include a parameter sensitivity analysis with the updated model.

      Reviewer 3:

      3.1. About the use of Atp6 as a good proxy for mtDNA content. This is assumed from l285 onwards, based on a previous publication. As the link is fairly central to part of the paper's arguments, and the system in this study is being perturbed in several different ways, a stronger argument or demonstration that this link remains intact (and unchanged, as it is used in comparisons) would seem important.

      We agree, see 1.2.

      3.2. About confounding variables and processes. The study does an admirable job of being transparent and attempting to control for the many different influences involved in the physical-genetic link. But some remain less clearly unpacked, including some I think could be quite important. For example, there is a lot of focus on mito concentration -- but given the phenotypes are changing the sizes of cells, do concentration changes come from volume changes, mito changes, or both? In "ruling out" mitophagy -- a potentially important (and intuitive) influence, the argument is not presented as directly as it could be and it's not completely clear that it can in fact be ruled out in this way. There are a couple of other instances which I've put in the smaller points below.

      Thank you for acknowledging our efforts to show transparent and well-controlled experiments! We address each of the specific points below.

      3.3. full genus name when it first appears

      We will add the full name.

      3.4. I may be wrong here, but I thought the petite phenotype more classically arises from mtDNA deletion mutations, not loss? The way this is phrased implies that mtDNA loss is [always] the cause. Whether I'm wrong on that point or not, the petite phenotype should be described and referenced.

      We can expand the text and cite additional relevant papers. The term “petite” refers to any strain that is respiratory incompetent and leads to small colonies (not necessarily small cells!) (Seel et al. 2023). This can be mutations or gene loss (fragments) on the mtDNA (these are called cytoplasmic petite), or chemically induced loss of mtDNA (e.g. EtBr), or mutations of nuclear genes required for respiration (these are termed nuclear petite; some nuclear petites show loss of mtDNA in addition to the mutation in the nuclear genome) (Contamine and Picard 2000).

      3.5. para starting l59 -- should mention for context that mitochondria in (healthy, wildtype) yeast are generally much more fused than in other organisms

      ok.

      3.6. Fig 1C -- very odd choice of y-axis range! either start at zero or ensure that the data fill as much vertical space of the plot as possible

      True, this was probably some formatting relic. We will adapt the axis to fill the full space. Most of our axes start at 0, but that doesn’t make so much sense here, since we consider the solidity in the control as “baseline”.

      3.7. "wild-type like more tubular mitochondria" reads rather awkwardly. "more tubular mitochondria (as in the wild-type)"?

      Thank you, sounds better.

      3.8. l106 -- imaging artefacts? are mitos fragmenting because of photo stress? -- this is mentioned in l577-8 in the Methods, but the data from the growth rate and MMP comparison isn't given -- an SI figure would be helpful here. It would be reassuring to know that mito morphology wasn't changing in response to phototoxicity too.

      In the methods we just briefly point out that we have done all our “due diligence” controls to check that we do not generate phototoxicity, something that we highlight in the cited review. We do not explicitly have a figure for this, but figure S1A shows that the solidity of the mitochondrial network in control cells stays the same over 9 hours, even though these cells are exposed to the same cultivation and imaging regime as the depleted cells. We will also add a picture of control cells after 9 h. In S1B we show that control cells containing TIR but no AID tag treated with both chemicals imaged over 9 hours also show the same solidity (~mitochondrial morphology) as untreated control. Also, the doubling times of cells grown in our imaging system (Fig R1B) are very similar to the shake flask (Fig R1A). All in all, we are very confident that our imaging settings did not impact our reported phenotypes.

      3.9. para l146 -- so this suggests mtDNA-encoded proteins have a very rapid turnover, O(hours) -- is this known/reasonable?

      Reference (Christiano et al. 2014) suggests that respiratory chain proteins are shorter lived than the average yeast protein. However, based on Figure 2C we think the dynamics mostly speak for a dilution by growth.

      3.10. section l189 -- it's hard to reason fully about these statistics of mitochondrial concentration given that the petite phenotype is fundamentally affecting overall cell volume. can we have details on the cell size distribution in parallel with these results? to put it another way -- how does mitochondrial *amount* per cell change?

      This is a good point. We report mostly on mitochondrial “concentrations” because we think this is what the cell actually cares about (mitochondrial activity in relationship to cytosolic activity). But we will include additional graphs on mitochondrial amount as well as size distributions (Fig R1C, related to Fig 4F). We can already point out that the size distribution of the population does not change much in the first hours. The “petite” phenotype refers to small colonies on growth medium with limited supply of a fermentable carbon source, not to smaller size of single cells.

      3.11. l199 the mean in Fig S3C certainly does change -- it increases, clearly relative both to control and to its initial value. rather than sweeping this under the carpet we should look in more detail to understand it (a consequence of the increased skew of the distribution)?

      This relates somewhat to the previous point. The increase in average concentration is not due to an increased amount in the population, but due to the fact that it is the small buds that get a very high amount of the mitochondria which “exaggerates” the asymmetric/heterogenous distribution. This will be clarified by the figures we mention in the point above.

      3.12. para line 206 -- this doesn't make it clear whether your MMP signal is integrated over all mitochondria in the cell, or normalised by mitochondrial content? this matters quite a lot for the interpretation if the distributions of mitochondrial content are changing. reading on, this is even more important for para line 222. Reading further on, there is an equation on l612 that gives a definition, but it doesn't really clarify (apologies if I'm misunderstanding).

      For each cell, we basically calculate the relative mitochondrial enrichment of the MMP sensitive vs the MMP insensitive pre-sequence.

      So, MMP= (total intensity of mitochondrial pre-Cox4 Neongreen/ total intensity of mitochondrial pre-Su9 Cardinal) / (total cytosolic pre-Cox4 Neongreen/ total cytosolic pre-Su9 Cardinal).

      We calculate this value for each cell, but we do not have the optical resolution to calculate it for individual mitochondrial fragments.

      Both constructs are driven by the same strong promoter, so transcription of the fluorophore should never limit the uptake. Also, in Figure 3D we compare control and depleted cells with similar total mitochondrial concentration, so the difference must be due to a different import of the two fluorophores, see also Fig S4D. The calculated “MMP” value is of course only a crude proxy for the actual membrane potential in millivolts and we do not want to make any claims on absolute values or quantitative differences. But essentially what we are interested in is “mitochondrial health/activity” and we think the system is good at reporting this. See also 2.2.

      3.13. l230 -- a point of personal interest -- low mito concentrations are connected to low "function" (MMP) and give extended division times -- this is interestingly exactly the model needed to reproduce observations in HeLa cells (https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002416). That model went on to predict several aspects of downstream cellular behaviour -- it would be very interesting to see how compatible that picture (parameterised using HeLa observations) is with yeast!

      Thank you for pointing out your interesting paper, which we will include in our discussion. Another recent preprint about fission yeast (Chacko et al. 2025) also fits into this picture. Since you were kind enough to disclose your identity, we would be happy to discuss this further with you in person if we can maybe follow-up on this.

      3.14. l239 "less mitochondria" -- a bit tricky but I'd say "fewer mitochondria" or "less mitochondrial content"

      Thanks, we will think about how to best rephrase this, probably less mitochondrial content.

      3.15. Section l234 So here (and in Fig 4) the focus is on overall distributions of mitochondrial concentration in different cells (mother-to-be, mother, bud; gen 1, gen >1). But we've just seen that one effect of fzo1 is to broader the distribution of mitochondrial concentration across cells. Can't we look in more depth at the implications of this heterogeneity? For example in Fig 4F (which is cool) we look at the distribution of all fzo1 mothers-to-be, mothers, and buds. But this loses information about the provenance. For example, do mothers-to-be with extremely low mito concentrations just push everything to the bud, while mothers-to-be with high mito concentrations distribute things more evenly? It would seem very easy and very interesting to somehow subset the distribution of mothers-to-be by concentration and see how different subsets behave

      This is a good point. When analyzing the data, we pretty much plotted everything against everything and then chose the graphs that we think will best guide the reader through the story-line. We can make additional supplementary plots where we show the starting concentrations/amounts of the mother in relationship to the resulting split ratio at the end of the cycle (Fig R1D).

      3.16. l285 -- experimental design -- do we know that Atp6 will continue to be a good proxy for functional mtDNA in the face of the perturbations provided by Fzo1 depletion? Especially if there is impact on the expression of mitoribosomes, the relationship between mtDNA and Atp6 may look rather different in the mutant?

      This is actually our top-priority experiment now. We will use the HI-NESS system and possibly DAPI staining to make a more direct link to mtDNA/ nucleoid numbers, see 1.2.

      3.17. l290 -- ruled out mitophagy. This message could be much clearer. Comparing Fig S5C and Fig 3A side-by-side is a needlessly difficult task -- put Fig 3A into Fig S5. Then we see that when mitophagy is compromised, the distribution of mitochondrial concentration has a lower median and much lower upper quartile than in the mitophagy-equipped Fzo1 mutant? What is going on here? For a paper motivated by disentangling coupled mechanisms, this should be made clearer!

      Thanks for pointing this out. We can of course easily include the control in the corresponding figure. Compromising mitophagy is likely to generally affect mitochondrial health and turnover a little bit, independent of what is going on with Fzo1. The second evidence that speaks against large-scale mitophagy is the proteomics data: On population level the dynamics of the respiratory chain proteins are very different from those of other (nuclear encoded) mitochondrial proteins. We will add additional supplementary figures to make this more clear, see Fig R1E. Most mitochondrial proteins in the proteomics experiment stay constant in the first few hours, consistent with the imaging data showing that the mean mitochondrial content of the population does not change initially. This again highlights that it is the unequal distribution which is the problem and not massive degradation of mitochondria.

      3.18. With the Atp6 signal, how do we know that fluorescence from different cells is comparable? Buds will be smaller than mother cells for example, potentially leading to less occlusion of the fluorescent signal by other content in the cytoplasm

      This is of course a general problem that anyone faces doing quantitative fluorescence microscopy. From the technical side, we have done the best we could by taking a reasonable amount of z-slices and by choosing fluorophores that are in a range with little cellular background fluorescence (e.g. Neongreen is much better than GFP). From a practical standpoint, we are always comparing to the control, which is subject to the same technical limitations as the depleted cells and the cell sizes are very similar. So, even if we are systematically overestimating the Atp6 concentration in the bud by a few %, the difference to the control would still be qualitatively true. We therefore do not think that any of our conclusions are affected by this.

      3.19. l343 -- maintenance of mtDNA -- here the point about l285 (is the Atp6-mtDNA relationship the same in the Fzo1 mutant) is particularly important, as we're directly tying findings about the protein product to implications about the mtDNA

      We will carefully address this, see above.

      3.20. l367 -- on a first read this description of the model feels like lots of choices have been made without being fully justified. Why a log-normal distribution (when the fit to the data looks rather flawed); why the choice of 5 groups for nucleoid number (why not 3? or 8?); the process used for parameter fitting is very unclear (after reading the methods I think some of these values are read directly from the data, but the shapes of the distributions remain unexplained). l705 -- presumably the ratio was drawn from a log-normal distribution and then the corresponding nucleoid numbers were rounded to integers? the ratio itself wasn't rounded? (also l367) How were the log-normal distributions fitted to experiments (Figs. S7A,B)? Just by eye?

      We will update our model based on measured nucleoid counts and then explain more stringently the choices we make/ parameters we select.

      3.21. l711 by random selection -- just at random? ("selection" could be confusing) Overall, it feels like the model may be too complicated for what it needs to show. Either (a) the model should show qualitatively that unequal inheritance and reduced production leads to rapid loss -- which a much simpler model, probably just involving a couple of lines of algebra, could show. Or (b) the model should quantitatively reproduce the particular numerical observations from the experiments -- it's not totally clear that it does this (do the cell-cycle-based decay timescales in Fig 7 correspond to the hour-based decay timescales in other plots, for example). At the moment the model is at a (b) level of detail but it's only clear that it's reporting the (a) level of results.

      If the HI-NESS and Fzo1 re-addition experiments work as explained above, all parameters will have direct experimental data, and we should get much closer to (a).

      3.22. A lot of the discussion repeats the results; depending on editorial preferences some of this text could probably be pared back to focus on the literature connections and context.

      We will think about streamlining the discussion once some of the additional material alluded to above has been added.

      3.23. Data availability -- it looks like much of the data required to reproduce the results is not going to be made available. Images and proteomic data are promised, but the data associated with mitochondrial concentration and other features are not mentioned. For FAIR purposes all the data (including statistics from analysis of the images) should be published.

      We maybe didn’t phrase this clearly. All data will be made available. Where technically feasible, this will be directly accessible in a repository, otherwise by request to the corresponding author.

      On our OMERO server, we have deposited many TB of raw images as well as all the intermediate steps such as segmentation masks, and the csv files with all the extracted data for each cell (including background corrections etc). Additionally, we can include csvs with the data grouped in a way that we used to generate all the box blots etc. As of now, the OMERO data is unfortunately only available by requesting a personal guest login from our bioinformatics facility, but we were promised that with the next technical update there will be a public link available. The proteomics data and the model are already fully accessible. The raw western blot images with corresponding ponceau staining will be included with the final publication either as additional supplementary material or in whatever format matches the journal requirements.

      3.24 l660 -- can an overview of the EM protocol be given, to avoid having to buy the Mayer 2024 article?

      The cited paper is open access. But we can also include more details in our method section.

      References:

      Chacko, L. A., H. Nakaoka, R. Morris, W. Marshall, and V. Ananthanarayanan. 2025. 'Mitochondrial function regulates cell growth kinetics to actively maintain mitochondrial homeostasis', bioRxiv.

      Christiano, R., N. Nagaraj, F. Frohlich, and T. C. Walther. 2014. 'Global proteome turnover analyses of the Yeasts S. cerevisiae and S. pombe', Cell Rep, 9: 1959-65.

      Contamine, V., and M. Picard. 2000. 'Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast', Microbiol Mol Biol Rev, 64: 281-315.

      Deng, Jingti, Lucy Swift, Mashiat Zaman, Fatemeh Shahhosseini, Abhishek Sharma, Daniela Bureik, Francesco Padovani, Alissa Benedikt, Amit Jaiswal, Craig Brideau, Savraj Grewal, Kurt M. Schmoller, Pina Colarusso, and Timothy E. Shutt. 2025. 'A novel genetic fluorescent reporter to visualize mitochondrial nucleoids', bioRxiv: 2023.10.23.563667.

      Di Bartolomeo, F., C. Malina, K. Campbell, M. Mormino, J. Fuchs, E. Vorontsov, C. M. Gustafsson, and J. Nielsen. 2020. 'Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift', Proc Natl Acad Sci U S A, 117: 7524-35.

      Ebert, A. C., N. L. Hepowit, T. A. Martinez, H. Vollmer, H. L. Singkhek, K. D. Frazier, S. A. Kantejeva, M. R. Patel, and J. A. MacGurn. 2025. 'Sphingolipid metabolism drives mitochondria remodeling during aging and oxidative stress', bioRxiv.

      Jakubke, C., R. Roussou, A. Maiser, C. Schug, F. Thoma, R. Bunk, D. Horl, H. Leonhardt, P. Walter, T. Klecker, and C. Osman. 2021. 'Cristae-dependent quality control of the mitochondrial genome', Sci Adv, 7: eabi8886.

      Khan, Abdul Haseeb, Xuefang Gu, Rutvik J. Patel, Prabha Chuphal, Matheus P. Viana, Aidan I. Brown, Brian M. Zid, and Tatsuhisa Tsuboi. 2024. 'Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence', Nature Communications, 15: 8274.

      Martin, J., K. Mahlke, and N. Pfanner. 1991. 'Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences', J Biol Chem, 266: 18051-7.

      Osman, C., T. R. Noriega, V. Okreglak, J. C. Fung, and P. Walter. 2015. 'Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion', Proc Natl Acad Sci U S A, 112: E947-56.

      Perić, Matea, Peter Bou Dib, Sven Dennerlein, Marina Musa, Marina Rudan, Anita Lovrić, Andrea Nikolić, Ana Šarić, Sandra Sobočanec, Željka Mačak, Nuno Raimundo, and Anita Kriško. 2016. 'Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan', Scientific Reports, 6: 28751.

      Roussou, Rodaria, Dirk Metzler, Francesco Padovani, Felix Thoma, Rebecca Schwarz, Boris Shraiman, Kurt M. Schmoller, and Christof Osman. 2024. 'Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level', The EMBO Journal, 43: 5340-59-59.

      Seel, A., F. Padovani, M. Mayer, A. Finster, D. Bureik, F. Thoma, C. Osman, T. Klecker, and K. M. Schmoller. 2023. 'Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth', Nat Struct Mol Biol, 30: 1549-60.

      Vowinckel, J., J. Hartl, R. Butler, and M. Ralser. 2015. 'MitoLoc: A method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells', Mitochondrion, 24: 77-86.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This article addresses the connection between perturbed mitochondrial structure and genetics in yeast. When mitochondrial fusion is compromised, what is the chain of causality -- the mechanism -- that leads to mtDNA populations becoming depleted? This is a fascinating question, linking physical cell biology to population genetics. I admire the philosophy of the research, acknowledging and attempt to control for the many possible confounding influences. The manuscript describes the context and the research tightly and digestibly; the figures illustrate the results in a clear and natural way.

      For transparency, I am Iain Johnston and I am happy for this review to be treated as public domain. To my eyes my most important shortcoming as a review is my relative lack of familiarity with the yeast fzo1 mutant; while I am familiar with analysis of yeast mito morphology and mtDNA segregation, a reviewer familiar with the nuances of this strain and its culture would be a useful complement.

      I have a few more general points and a collection of smaller points below that I believe might help make the story more robust.

      General points

      1. About the use of Atp6 as a good proxy for mtDNA content. This is assumed from l285 onwards, based on a previous publication. As the link is fairly central to part of the paper's arguments, and the system in this study is being perturbed in several different ways, a stronger argument or demonstration that this link remains intact (and unchanged, as it is used in comparisons) would seem important.
      2. About confounding variables and processes. The study does an admirable job of being transparent and attempting to control for the many different influences involved in the physical-genetic link. But some remain less clearly unpacked, including some I think could be quite important. For example, there is a lot of focus on mito concentration -- but given the phenotypes are changing the sizes of cells, do concentration changes come from volume changes, mito changes, or both? In "ruling out" mitophagy -- a potentially important (and intuitive) influence, the argument is not presented as directly as it could be and it's not completely clear that it can in fact be ruled out in this way. There are a couple of other instances which I've put in the smaller points below.

      Smaller points

      l47 full genus name when it first appears

      l58 I may be wrong here, but I thought the petite phenotype more classically arises from mtDNA deletion mutations, not loss? The way this is phrased implies that mtDNA loss is [always] the cause. Whether I'm wrong on that point or not, the petite phenotype should be described and referenced.

      para starting l59 -- should mention for context that mitochondria in (healthy, wildtype) yeast are generally much more fused than in other organisms

      Fig 1C -- very odd choice of y-axis range! either start at zero or ensure that the data fill as much vertical space of the plot as possible

      l105 "wild-type like more tubular mitochondria" reads rather awkwardly. "more tubular mitochondria (as in the wild-type)"?

      l106 -- imaging artefacts? are mitos fragmenting because of photo stress? -- this is mentioned in l577-8 in the Methods, but the data from the growth rate and MMP comparison isn't given -- an SI figure would be helpful here. It would be reassuring to know that mito morphology wasn't changing in response to phototoxicity too.

      para l146 -- so this suggests mtDNA-encoded proteins have a very rapid turnover, O(hours) -- is this known/reasonable?

      section l189 -- it's hard to reason fully about these statistics of mitochondrial concentration given that the petite phenotype is fundamentally affecting overall cell volume. can we have details on the cell size distribution in parallel with these results? to put it another way -- how does mitochondrial amount per cell change?

      l199 the mean in Fig S3C certainly does change -- it increases, clearly relative both to control and to its initial value. rather than sweeping this under the carpet we should look in more detail to understand it (a consequence of the increased skew of the distribution)?

      para line 206 -- this doesn't make it clear whether your MMP signal is integrated over all mitochondria in the cell, or normalised by mitochondrial content? this matters quite a lot for the intepretation if the distributions of mitochondrial content are changing. reading on, this is even more important for para line 222. Reading further on, there is an equation on l612 that gives a definition, but it doesn't really clarify (apologies if I'm misunderstanding).

      l230 -- a point of personal interest -- low mito concentrations are connected to low "function" (MMP) and give extended division times -- this is interestingly exactly the model needed to reproduce observations in HeLa cells (https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002416). That model went on to predict several aspects of downstream cellular behaviour -- it would be very interesting to see how compatible that picture (parameterised using HeLa observations) is with yeast!

      l239 "less mitochondria" -- a bit tricky but I'd say "fewer mitochondria" or "less mitochondrial content"

      Section l234 So here (and in Fig 4) the focus is on overall distributions of mitochondrial concentration in different cells (mother-to-be, mother, bud; gen 1, gen >1). But we've just seen that one effect of fzo1 is to broader the distribution of mitochondrial concentration across cells. Can't we look in more depth at the implications of this heterogeneity? For example in Fig 4F (which is cool) we look at the distribution of all fzo1 mothers-to-be, mothers, and buds. But this loses information about the provenance. For example, do mothers-to-be with extremely low mito concentrations just push everything to the bud, while mothers-to-be with high mito concentrations distribute things more evenly? It would seem very easy and very interesting to somehow subset the distribution of mothers-to-be by concentration and see how different subsets behave

      l285 -- experimental design -- do we know that Atp6 will continue to be a good proxy for functional mtDNA in the face of the perturbations provided by Fzo1 depletion? Especially if there is impact on the expression of mitoribosomes, the relationship between mtDNA and Atp6 may look rather different in the mutant?

      l290 -- ruled out mitophagy. This message could be much clearer. Comparing Fig S5C and Fig 3A side-by-side is a needlessly difficult task -- put Fig 3A into Fig S5. Then we see that when mitophagy is compromised, the distribution of mitochondrial concentration has a lower median and much lower upper quartile than in the mitophagy-equipped Fzo1 mutant? What is going on here? For a paper motivated by disentagling coupled mechanisms, this should be made clearer!

      With the Atp6 signal, how do we know that fluorescence from different cells is comparable? Buds will be smaller than mother cells for example, potentially leading to less occlusion of the fluorescent signal by other content in the cytoplasm

      l336 -- similar to the Jajoo et al. mechanism in fission yeast -- but are you talking about feedback control of the mtDNA or the protein (or mRNA) product?

      l343 -- maintenance of mtDNA -- here the point about l285 (is the Atp6-mtDNA relationship the same in the Fzo1 mutant) is particularly important, as we're directly tying findings about the protein product to implications about the mtDNA

      l367 -- on a first read this description of the model feels like lots of choices have been made without being fully justified. Why a log-normal distribution (when the fit to the data looks rather flawed); why the choice of 5 groups for nucleoid number (why not 3? or 8?); the process used for parameter fitting is very unclear (after reading the methods I think some of these values are read directly from the data, but the shapes of the distributions remain unexplained). l705 -- presumably the ratio was drawn from a log-normal distribution and then the corresponding nucleoid numbers were rounded to integers? the ratio itself wasn't rounded? (also l367) How were the log-normal distributions fitted to experiments (Figs. S7A,B)? Just by eye? l711 by random selection -- just at random? ("selection" could be confusing) Overall, it feels like the model may be too complicated for what it needs to show. Either (a) the model should show qualitatively that unequal inheritance and reduced production leads to rapid loss -- which a much simpler model, probably just involving a couple of lines of algebra, could show. Or (b) the model should quantitatively reproduce the particular numerical observations from the experiments -- it's not totally clear that it does this (do the cell-cycle-based decay timescales in Fig 7 correspond to the hour-based decay timescales in other plots, for example). At the moment the model is at a (b) level of detail but it's only clear that it's reporting the (a) level of results.

      A lot of the discussion repeats the results; depending on editorial preferences some of this text could probably be pared back to focus on the literature connections and context.

      Data availability -- it looks like much of the data required to reproduce the results is not going to be made available. Images and proteomic data are promised, but the data associated with mitochondrial concentration and other features are not mentioned. For FAIR purposes all the data (including statistics from analysis of the images) should be published.

      l660 -- can an overview of the EM protocol be given, to avoid having to buy the Mayer 2024 article?

      Significance

      This is a powerful and thoughtful study that provides a collection of new mechanistic insights into the link between physical and genetic properties of mitochondria in yeast. Cell biologists, geneticists, and the mitochondrial field will find this of potentially deep interest. Because of the mode and dynamics of inheritance in budding yeast, findings here may not be directly transferrable to other eukaryotes, but these insights are still of interest for researchers outside of yeast for their insight into how this well-studied system manages its mitochondrial populations.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This is a manuscript describing outbreaks of Pseudomonas aeruginosa ST 621 in a facility in the US using genomic data. The authors identified and analysed 254 P. aeruginosa ST 621 isolates collected from a facility from 2011 to 2020. The authors described the relatedness of the isolates across different locations, specimen types (sources), and sampling years. Two concurrently emerged subclones were identified from the 254 isolates. The authors predicted that the most recent common ancestor for the isolates can be dated back to approximately 1999 after the opening of the main building of the facility in 1996. Then the authors grouped the 254 isolates into two categories: 1) patient-to-patient; or 2) environment-to-patient using SNP thresholds and known epidemiological links. Finally, the authors described the changes in resistance gene profiles, virulence genes, cell wall biogenesis, and signaling pathway genes of the isolates over the sampling years.

      Strengths:

      The major strength of this study is the utilisation of genomic data to comprehensively describe the characteristics of a long-term Pseudomonas aeruginosa ST 621 outbreak in a facility. This fills the data gap of a clone that could be clinically important but easily missed from microbiology data alone.

      Weaknesses:

      The work would further benefit from a more detailed discussion on the limitations due to the lack of data on patient clinical information, ward movement, and swabs collected from healthcare workers to verify the transmission of Pseudomonas aeruginosa ST 621, including potential healthcare worker to patient transmission, patient-to-patient transmission, patient-to-environment transmission, and environment-to-patient transmission. For instance, the definition given in the manuscript for patient-to-patient transmission could not rule out the possibility of the existence of a shared contaminated environment. Equally, as patients were not routinely swabbed, unobserved carriers of Pseudomonas aeruginosa ST 621 could not be identified and the possibility of misclassifying the environment-to-patient transmissions could not be ruled out. Moreover, reporting of changes in rates of resistance to imipenem and cefepime could be improved by showing the exact p-values (perhaps with three decimal places) rather than dichotomising the value at 0.05. By doing so, readers could interpret the strength of the evidence of changes.

      Impact of the work:

      First, the work adds to the growing evidence implicating sinks as long-term reservoirs for important MDR pathogens, with direct infection control implications. Moreover, the work could potentially motivate investments in generating and integrating genomic data into routine surveillance. The comprehensive descriptions of the Pseudomonas aeruginosa ST 621 clones outbreak is a great example to demonstrate how genomic data can provide additional information about long-term outbreaks that otherwise could not be detected using microbiology data alone. Moreover, identifying the changes in resistance genes and virulence genes over time would not be possible without genomic data. Finally, this work provided additional evidence for the existence of long-term persistence of Pseudomonas aeruginosa ST 621 clones, which likely occur in other similar settings.

      We thank the reviewer for their thorough evaluation of our work, and for the suggested improvements. A main goal of this study was to show that integrating routine wgs in the clinic was a game changer for infection control efforts. We appreciate this aspect was highlighted as a strength by this reviewer. While some of the weaknesses identified are inherent to the data (or lack thereof) available for this study, we have revised the manuscript to include a detailed discussion on limitations (sampling, thresholds of genetic relatedness, definition and categories etc.) that could influence the genomic inferences. We also provided exact p-values for the changes in rates of resistance, as requested. Finally, we have positively answered all the specific recommendations suggested by the reviewer and modified the manuscript accordingly.

      Reviewer #2 (Public Review):

      Summary:

      The authors present a report of a large Pseudomonas aeruginosa hospital outbreak affecting more than 80 patients with first sampling dates in 2011 that stretched over more than 10 years and was only identified through genomic surveillance in 2020. The outbreak strain was assigned to the sequence type 621, an ST that has been associated with carpabapenem resistance across the globe. Ongoing transmission coincided with both increasing resistance without acquisition of carbapenemase genes as well as the convergence of mutations towards a host-adapted lifestyle.

      Strengths:

      The convincing genomic analyses indicate spread throughout the hospital since the beginning of the century and provide important benchmark findings for future comparison.

      The sampling was based on all organisms sent to the Multidrug-resistant Organism Repository and Surveillance Network across the U.S. Military Health System.

      Using sequencing data from patient and environmental samples for phylogenetic and transmission analyses as well as determining recurring mutations in outbreak isolates allows for insights into the evolution of potentially harmful pathogens with the ultimate aim of reducing their spread in hospitals.

      Weaknesses:

      The epidemiological information was limited and the sampling methodology was inconsistent, thus complicating the inference of exact transmission routes. Epidemiological data relevant to this analysis include information on the reason for sampling, patient admission and discharge data, and underlying frequency of sampling and sampling results in relation to patient turnover.

      We thank the reviewer for their thoughtful feedback on our manuscript and for highlighting the quality of the genomic analyses. We agree that the lack of patient epi data (e.g. date of admission and discharge) and the inconsistent sampling through the years are limitations of this study. We have revised the manuscript to acknowledge these limitations and discuss how not having this data complicates the inference of exact transmission routes. Finally, we have positively answered all the specific recommendations suggested by the reviewer and modified the manuscript accordingly.

      Reviewer #3 (Public Review):

      Summary:

      This paper by Stribling and colleagues sheds light on a decade-long P. aeruginosa outbreak of the high-risk lineage ST-621 in a US Military hospital. The origins of the outbreak date back to the late 90s and it was mainly caused by two distinct subclones SC1 and SC2. The data of this outbreak showed the emergence of antibiotic resistance to cephalosporin, carbapenems, and colistin over time highlighting the emerging risk of extensively resistant infections due to P. aeruginosa and the need for ongoing surveillance.

      Strengths:

      This study overall is well constructed and clearly written. Since detailed information on floor plans of the building and transfers between facilities was available, the authors were able to show that these two subclones emerged in two separate buildings of the hospital. The authors support their conclusions with prospective environmental sampling in 2021 and 2022 and link the role of persistent environmental contamination to sustaining nosocomial transmission. Information on resistance genes in repeat isolates for the same patients allowed the authors to detect the emergence of resistance within patients. The conclusions have broader implications for infection control at other facilities. In particular, the paper highlights the value of real-time surveillance and environmental sampling in slowing nosocomial transmission of P. aeruginosa.

      Weaknesses:

      My major concern is that the authors used fixed thresholds and definitions to classify the origin of an infection. As such, they were not able to give uncertainty measures around transmission routes nor quantify the relative contribution of persistent environmental contamination vs patient-to-patient transmission. The latter would allow the authors to quantify the impact of certain interventions. In addition, these results represent a specific US military facility and the transmission patterns might be specific to that facility. The study also lacked any data on antibiotic use that could have been used to relate to and discuss the temporal trends of antimicrobial resistance.

      We thank the reviewer for their evaluation of our work and for highlighting the broad implications of our findings regarding the application of real-time surveillance to suppress nosocomial transmission. We agree with the reviewer that fixed thresholds and definitions are imperfect to classify the origin of an infection. The design of this study (e.g. inconsistent sampling through time) was not conducive to provide a comprehensive/quantitative measurement of transmission routes. Thus, we decided to apply conservative thresholds of genetic relatedness and strict conditions (e.g. time between isolate collection, shared hospital location etc.) to favor specificity as our goal was simply to establish that cases of environmentto-patient transmission did happen. In the absence of a truth set, we have not performed sensitivity analysis, but we are conducting a follow-up study to compare inferences from MCMC models to our original fixed-thresholds predictions. This limitation is now discussed in the revised manuscript. Finally, we have positively answered all the specific recommendations suggested by the reviewer and modified the manuscript accordingly including the addition of Figure S3.

      Reviewer #1 (Recommendations For The Authors):

      The definitions used on lines 391-396 are necessarily somewhat arbitrary, but it would be helpful to have a little bit more justification for the choices made, particularly for the definition of environmental involving the "3x the number of years they were separated". It seems a little hard to square this with the more relaxed 10 SNP cutoff for a patient-to-patient designation. Are there reasons for thinking SNP differences associated with environmental transmission should be smaller than for patient-to-patient, or is the aim here just to set the bar higher for assuming an environmental source? Because these definitions are quite arbitrary, there could also be some value in exploring the sensitivity of the results to these assumptions.

      Thank you. We agree with the reviewers that SNP thresholds, albeit necessarily, are arbitrary and that more discussion/justification was needed to put the genomic inferences in context. We have revised the manuscript to indicate that: 1/ the 10 SNP cutoff for a patient-to-patient designation was set to account for the known evolution rate of P. aeruginosa (inferred by BEAST at 2.987E-7 subs/site/year in this study and similar to previous estimates PMID: 24039595) and the observed within host variability (now displayed in revised Fig. 1E). We note that this SNP distance was not sufficient and that an epi link (patients on the same ward at the same time) needed to be established. 2/ the environment-to-patient definition was indeed set to be most conservative (nearly identical isolates in two patients from the same ward with no known temporal overlap for > 365 days). This was indeed done to favor high specificity as this inference relied solely on clinical isolates (i.e. the identical environmental strain in the patientenvironment-patient chain was not sampled). For these clinical isolates to have acquired no/very little mutation in that much time, no/low replication is expected and, although unsampled, we propose this most likely happened on hospital surfaces.

      While the term "core genome" should be familiar to most readers, "shell genome" and "cloud genome" are less widely known, and an explanation of what these terms mean here would be helpful.

      Thank you. We have revised the manuscript to define the core, shell, and cloud genomes as genes sets found in ≥ 99%, ≥ 95% and ≥ 15% of isolates, respectively.

      In the first paragraph of the discussion, it could be added that in many cases for clinically important Gram negatives short read sequencing alone will fail to detect transmission events as outbreaks can be driven by plasmid spread with only very limited clonal spread (see, for example, https://www.nature.com/articles/s41564-021-00879-y )

      Thank you. We agree this is an important/emerging aspect of surveillance. However, the goal of this discussion point was to explain why such a large outbreak was missed prior to implementing WGS (short read) surveillance. We feel that discussing “plasmid outbreaks” (which is not at play here, and relatively rare in P. aeruginosa compared to the Enterobacteriaceae) and the need for long read will distract from the narrative. 

      line 599 What does "Mock" mean here? Would it be more accurate to say it is a simplified floor plan?

      Thank you. “Mock” was changed to “simplified”

      IPAC abbreviation is only used once - spelling it out in full would increase readability.

      Revised manuscript was edited as suggested.

      MHS is only used twice.

      Revised manuscript was edited to spell out Military Health System

      Line 364: full stop missing.

      Revised manuscript was edited as suggested.

      Line 401: Bayesian rather than bayesian.

      Revised manuscript was edited as suggested.

      Reviewer #2 (Recommendations For The Authors):

      Thank you for giving me the opportunity to review this interesting manuscript.

      The conclusions of this paper are mostly well supported by the data presented, but epidemiological information was limited and the sampling methodology was inconsistent, thus complicating inference of exact transmission routes.

      Major issues:

      What was the baseline frequency of clinical and/or screening samples of Pseudomonas aeruginosa at the hospital? Neither Figure 1D nor Table S1 allows for differentiating between clinical and screening samples. Most isolates were cultured from clinical materials, and there is no information about the patients' length of stay and their respective sampling dates. Is there any possibility of finding out whether the samples were collected for clinical or screening purposes? Would it be possible to include the patients' admission data to determine whether the strains were imported into the hospital or related to a previous stay, e.g. among known carriers? Also, the issue of sampling dates vs. patient stay on the ward should be addressed, as there may be an overlap in patients' stay on the ward but no overlap in terms of sampling dates or even missing samples (missing links).

      We have revised the manuscript to address this important point: i) 16 isolates were from surveillance swabs and are labelled “Surveillance” in Table S1. The remaining 237 were clinical isolates; ii) unfortunately, because the sampling was done under a public health surveillance framework, we do not have access to historical patient data (admission/discharge date, wards, rooms, etc.) and we can not calculate length of stay or better identify patient overlap. These limitations are now acknowledged in the discussion of the revised manuscript.

      In order to evaluate the extent of the outbreak, more epidemiological data would be useful What is the size of the hospital, what is the average patient turnover, and what is the average length of stay in ICU and non-ICU? Is there any specialization besides the military label?

      We have revised the manuscript to indicate that facility A is 425-bed medical center and is the only Level 1 trauma center in the Military Health System. Unfortunately, the data to calculate length of stay, throughout the years, in ICU and non-ICU, was not available to us. This limitation is now also acknowledged in the discussion.

      Perhaps the authors could attempwt to discuss the extent to which large outbreaks like these may be considered as part of unavoidable evolutionary processes within the hospital microbiome as opposed to accumulation and transmission of potentially harmful genes/clones, and differentiate between the putative community spread without any epidemiological links on the one hand, and hospital outbreaks that could be targeted by local infection prevention activities on the other hand.,

      We respectfully disagree with the suggestion that this large outbreak “may be considered as part of unavoidable evolutionary processes within the hospital microbiome” and should be opposed to “transmission of potentially harmful genes/clones”. As a matter of fact, our data showed that infection control staff at Facility A responded with multiple interventions, including closing sinks, replacing tubing, and using foaming detergents. This resulted in slowing the spread of the ST621 outbreak with just 3 cases identified in 2022, 0 cases in 2023 and 1 case in 2024. This is now discussed in the revised manuscript.

      Page 5, lines 88-92 lines 101-104. It seems as if the outbreak was identified only by the means of genomic surveillance. This raises questions as to the rationale for sampling and sequencing, especially prior to 2020. Considering 11 cases per year between 2011 and 2016, one could assume such an outbreak would have been noticed without sequencing data.

      The MRSN was created in 2010, in response to the outbreak of MDR Acinetobacter baumannii in US military personnel returning from Iraq and Afghanistan. Between 2011 and 2017, the MRSN collected MDR isolates (mandate for all MDR ESKAPE but compliance varied between years and facilities) from across the Military Health System and, for select isolates (e.g. high-risk isolates carrying ESBLs or carbapenemases) performed molecular typing by PFGE. In 2017 the MRSN started to perform whole genome sequencing of its entire repository. In 2020, a routine prospective sequencing service was started and first detected the ST621 outbreak. A retrospective analysis of historical isolate genomes (2011-2019) identified additional cases. The first paragraph of the discussion lists possible factors to explain why the ST621 escaped detection by traditional approaches. We believe 11 cases per year is not a strong signal when stratified by month, wards, or both, especially for a clone lacking a carbapenemase and without a remarkable antibiotic susceptibility profile. 

      Did the infection control personnel suspect transmission? If yes, was the sampling and submission of samples to the MRSN adapted based on the epidemiologic findings?

      The ST621 outbreak was unsuspected before the initial genomic detection in 2020. Until that point, MDR isolates only (Magiorakos et al PMID: 21793988) were collected but compliance was variable through time. Quickly thereafter (starting in 2021), complete sampling of all clinical P. aeruginosa (MDR or not) from Facility A was started. The manuscript was revised to clarify those details of the sampling strategy.

      Is there any information about how many environmental sites were sampled without evidence of ST621 / screening samples were cultured without evidence of Pseudomonas aeruginosa?

      For patient isolates, only 16 isolates were from surveillance swabs. The remaining 237 were clinical isolates. No denominator data was available to calculate P. aeruginosa and ST-621 positivity rate in surveillance swabs throughout the time period. For environmental isolates, a total of 159 swabs were taken from 55 distinct locations in 8 wards/units including the ER. This data is now included in the revised manuscript. However, a complete analysis of these swabs (positivity rate for ESKAPE pathogens, P. aeruginosa, per ward/floor/room, per swab type (sink drain, bed rail etc.) etc.) is beyond the scope of this study and is being performed as a follow up investigation.

      Page 5 lines 89 and 39 Figure S1B. Please describe how the allelic distance for the cluster threshold was selected.

      As indicated in the legend of Figure S1B, no thresholds were applied. All ST621 isolates ever sequenced by the MRSN were included. All except 3 isolates shared between 023 cgMLST allelic differences. The remaining 3 were distant by 88-89 allelic differences. The text was revised to clarify this point.

      Page 5 lines 99-100. Could the authors please provide some distribution measures (e.g. IQR).

      Done as requested. The revised manuscript now reads “…of just 38 single nucleotide polymorphisms (SNPs), and an IQR of 19 (Fig. 1A, Table S1).”

      Page 5 line 102. Could the authors please provide some distribution measures (e.g. IQR).

      Please see above. A chart was created and is now included as Fig. S2.

      Page 6 line 107 and page 34 figure 1c. In the text it is stated that isolates were collected in 27 wards, the figure 1C depicts 26 wards and n/a.

      Thank you for spotting this inconsistency. This has been fixed in the revised manuscript.

      Page 6 lines 117-118. Samples collected in the emergency room would imply samples collected on admission, already addressed previously. Did the authors investigate a potential import into the hospital from community reservoirs or were all these isolates collected among patients who had been previously admitted to the hospital and/or tested positive for the outbreak strain?

      We agree that samples collected in the ER imply samples collected on admission. Of the 29 ER isolates only 9 (31%) were primary isolates (first detection in a new patient) which suggests a majority were from returning patients at Facility A. Because the sampling was done under a public health surveillance framework, we do not have access to historical patient data (admission/discharge date, wards, rooms, etc.) to investigate/confirm that these 9 patients had previous visits at Facility A. This point is now discussed in the revised manuscript.

      Page 6 line 128. This could also represent increased selective pressure. However, according to Table S1, the 28 isolates collected in 2011 (the number does not match with Figure 1D) were from many different wards, thus indicating earlier spread throughout the hospital.

      Yes, we agree. Please note that table S1 lists all isolates for 2011 whereas Figure 1D focuses on primary (first isolate from each patients) only.  

      Page 7 line 133. Both Figure 2 and the discussion section, page 13 line 296 suggest the year 2005 instead of 2004?

      Thank you for catching this typographical error. This was corrected to 2004 in the revised manuscript.

      Figure 1E. The figure should also depict intra-patient diversity for comparison.

      Thank you for this great suggestion. We have revised Figure 1E accordingly.

      Page 7, lines 146-147 Could the authors attempt explaining the upper part of the bimodal peaks?

      This is an all-vs-all SNP analysis for all inter-patient isolates. For each isolates all distances to other isolates are reported, not only the smallest. The upper peaks represent comparisons to isolates from a different outbreak subclone (SC1 vs SC2).

      Page 7, line 150 This is a very small number considering the extent of the outbreak and suggests a large number of missing links. Or does this rather imply continuous import and evolution over time that does not necessarily represent transmission within the hospital?

      We believe all cases were due to transmission happening within the hospital. Based on conservative thresholds (genetic relatedness and epi link, or lack thereof) the precise origin from another patient (n=10) or a contaminated surface (n=12) can be inferred. For the remaining 60 patients, with the available sampling, the conditions we chose are not met and we simply do not conclude whether a direct patient-to-patient or an environmental origin was more likely.

      Page 8 line 155. What does the temporal overlap refer to - sampling date versus patient's stay on the ward? Please specify.

      The temporal overlap was investigated from sampling dates, as dates of patient admission/discharged were not available.

      Page 8, line 157: What does primary/serial isolate mean - first and follow-up samples of ST621 per patient?

      Yes. Primary isolate is used to designate the first isolate from a patient. Serial isolates designate follow-up samples of ST621.

      Page 8 line 165: Table S3 and Figure 3 only refer to environmental samples from three wards. Ward 20 rooms 2 and 18 as well as ward 1 rooms 1 and 6 were hotspots - is there any information on the specific infection control/disinfection measures? Addressed in discussion page 12, lines 273-275, but no information on what was actually done.

      The manuscript was revised to indicate the precise disinfection measures that were taken. A follow-up study is ongoing to assess long-term efficacy and monitor possible retrograde growth from previously contaminated sinks.

      Page 8 line 175: Evaluation of change in resistance fraction over time - There may have been a selection bias with an inconsistent number of strains sequenced per year.

      Yes, incomplete sampling and possible selection bias are now listed with other limitations of this study in the discussion of the revised manuscript.

      Page 9 line 183: The referral to Table S1 is unclear, I could not find the number and the specific isolates selected for long-read sequencing.

      Thank you. This has been added to the revised Table S1.

      Page 10 lines 217-225 and Figure 4C: Perhaps it is possible to better align what is written in the text and the caption of the figure. The caption does not clarify that only one patient develops colistin resistance (what was the reason to include the other patients?).

      Thank you. We have revised the text and the caption of the figure to clarify that only isolates from one patient developed colistin resistance. The isolates from the other patients on Fig. 4C are shown to provide context and accurately map the emergence of the PhoQE77fs mutation.  

      Page 10, lines 228-229 and Table S5: How is it possible to identify those 64 genes in Table S5?

      We have revised Table S5 to facilitate the identification of the 64 genes with ≥ 2 independently acquired mutations (excluding SYN). Specifically, we have added column E labeled “Counts independent mutations per locus (excluding SYN)”. A total of 205 rows (in this table each row is a variant) have a value ≥ 2 and these represent 64 genes (upon deduplication of locus tags).  

      Page 13, lines 280-281: Where is the information on chronic infection presented? Serial cultures would not necessarily mean chronic infection.

      Authors response: Yes, we agree this was not the appropriate characterization and this was revised to ‘long-term’ infections.

      Page 14 line 306: Emergence of colistin resistance in a single patient, correct?

      Yes. This was further clarified in the text.

      Page 14 lines 315-320: This should go to the results section. In particular disinfection, closing, and replacing of tubing should be mentioned in the results section in reference to the results presented in Table S3.

      Thank you. We have considered this suggestion and have decided to leave this discussion as the closing paragraph of this publication. A follow-up study is ongoing to assess long-term efficacy of these interventions on the ST-621 bur also other outbreak clones at Facility A.

      Methods

      Page 15 lines 330-333: Perhaps it is possible to avoid redundancy.

      Thank you. We have revised the text accordingly.

      Page 15 lines 341: Information on which isolates were subjected to long-read sequencing is missing.

      Thank you. This has been added to the revised Table S1.

      Page 16 line 345: Was there a particular reason why Newbler was chosen?

      No. At the time Newbler was the default assembler built in the MRSN bacterial genome analysis pipeline and QC processes.

      Page 16, line 357-358: What was the rationale for selecting this isolate as reference genome?

      This isolate was chosen because it was collected early in the outbreak and phylogenetic analysis revealed it had low root to tip divergence.

      Page 16 line 361: Why 310 isolates, if only 253 were assigned to the outbreak clone and only a subset of those were collected in facility A?

      This was a typographical error that has corrected (it now reads “…set of 253 isolates.”) in the revised manuscript.  

      Page 17 lines 387-395: What is the reason that intra-patient diversity was not included in the set of criteria for SNP distances?

      The observed within host variability (now displayed in revised Fig. 1E) was taken into consideration when setting SNP thresholds for categorizing patient-to-patient transmission or environment-to-patient event. This is now clarified in the revised manuscript.

      Page 17 line 392: How was the threshold of <=10 SNPs determined?

      The 10 SNP cutoff to infer a patient-to-patient transmission event was set to account for the known evolution rate of P. aeruginosa (inferred by BEAST at 2.987E-7 subs/site/year in this study, and similar to previous estimates PMID: 24039595) and the observed within host variability (now displayed in revised Fig. 1E). We note that this SNP distance was not sufficient and that an epi link (patients on the same ward within the same month) needed to be established.

      Page 17 line 395 and Figure 2: What was the assumed average mutation rate per genome per year?

      Thank you. The mean substitution rate inferred by BEAST was 2.987E-7 similar to estimate from previous studies on P. aeruginosa outbreaks (e.g. PMID: 24039595).

      Reviewer #3 (Recommendations For The Authors):

      Please find (line-by-line comments) on each section of the manuscript below:

      Introduction

      Line 86: I am wondering why the authors state ">28 facilities" instead of the exact number of facilities from which these lineages were recovered.

      Thank you. Manuscript was revised to provide the exact number of facilities. It now reads “…recovered from 37 and 28 facilities, respectively.”

      Methods

      It's not clear to me which criteria were used for collecting these isolates (both prospective and retrospective). I understand that some of the data are described in more detail in Lebreton et al but I did not find the specific criteria for the collection of the isolates and I imagine that these might differ if different facilities. Would it be possible to comment on that and add a short paragraph in the Methods section?

      Thank you. This lack of clarity was also raised by other reviewers, and we have revised the manuscript to indicate that: 1/MDR isolates only (Magiorakos et al PMID: 21793988) were collected from 2011-2020 with the same criteria for all facilities although compliance was variable through time and between facilities; and 2/ starting in 2021 all P. aeruginosa isolates, irrespective of their susceptibility profile, were collected from Facility A

      The data comes from a US Military hospital. Is this related to the US Veterans Affairs Healthcare system? Is there more detailed information about the demographics of the patient population?

      Facility A is part of the Military Health System (MHS) which provides care for active service members and their families. This is distinct from the US Veterans Affairs Healthcare system. Only limited patient data was accessible to us as this study was done as part of our public health surveillance activities. Patient age (avg. 57.2 +/- 21.0) and gender (ratio male/female 1.7) are provided in the revised manuscript. 

      Line 384ff: The origin of infection was inferred based on the SNP threshold and epidemiological links. However, recombination events can complicate the interpretation of SNP data. Have the authors attempted to account for this?

      Thank you. We agree that recombination events can complicate the interpretation of SNP data. We used Gubbins v2.3.1 to filter out recombination from the core SNP alignment, as indicated in the revised manuscript.

      The authors' definition of environment-to-patient transmission seems conservative (nearly identical strain and no known temporal overlap for > 365 days). Have the authors changed the threshold, performed sensitivity analyses, and tested how this would affect their results?

      Indeed, acknowledging that fixed thresholds have limitations in their ability to accurately predict the origin of infections, we took a conservative approach to favor specificity as our goal was simply to establish that cases of environment-to-patient transmission did happen. In the absence of a truth set, we have not performed sensitivity analysis, but we are conducting a follow-up study to compare inferences from MCMC models to our original predictions. This limitation is now discussed in the revised manuscript.

      The authors don't seem to incorporate the role of healthcare workers in the transmission process. Could they comment on this? I am assuming that environment-to-patient transmission could either be directly from the environment to the patient or via a healthcare worker. I think it's fine to make simplifying assumptions here but it would be great if this was explicitly described.

      Thank you for this suggestion. We have not sampled the hands of healthcare workers in this study. As a result, the reviewer is correct to say that we made the simplifying assumption that healthcare workers would be possible intermediates in either environment-topatient or patient-to-patient transmissions, as previously described by others (PMID: 8452949). This limitation is now discussed in the revised manuscript.

      Page 5, line 100: What does "all vs all" mean? Based on the supplement, I assume it's the pairwise distance and then averaged across all of those. It would improve the readability of the manuscript if the authors could briefly define this term and then maybe refer to Table S1.

      Thank you. We have created Fig.S2 and revised the manuscript to state that ST-621 isolates from facility A belonged to the same outbreak clone with a distance (averaged all vs all pairwise comparison) of just 38 single nucleotide polymorphisms (SNPs), and an IQR of 19 (Fig. S2, Table S1).

      Figure 1D: It would be interesting to see additional figures in the supplement on the percentage of sequenced isolates per year and whether it varies across the different sources/sites. Is there any information on which isolates were chosen for sequencing?

      Lack of clarity in the sampling/sequencing scheme was raised by multiple reviewers and we have provided a thorough response to earlier comments. We also have revised the material and methods section accordingly. Finally, we have created Fig. S3 to show the percentage of sequenced isolates per year across different sources/sites, as suggested by the reviewer. No noticeable patterns were observed. 

      It seems like only a subset of all clinical isolates were sequenced. Would it be possible that SC2 was present already earlier but not picked up until a certain date?

      Although all isolates received by the MRSN were sequenced, compliance varied through time so it is true that not all clinical isolates were sequenced between 2011-2019. As such, we fully agree with this hypothesis and discuss this possibility as BEAST analysis placed the origin of SC2 in 2004 while the first detection of an SC2 isolate was in December 2012. This limitation is now discussed in the revised manuscript.

      Could the authors elaborate on whether the isolates resulted from single-colony picks? Is it possible that the different absence of a subclone is due to the fact that they picked only a colony?

      Yes, the isolates resulted from single-colony picks except when the presence of different colony morphologies was noted. In the latter, representative isolates for each colony morphologies were processed. We have revised the methods to make that clear.

      Figure 2: It is difficult to see which nodes belong to which patient due to the small font size. I wonder if it was possible to color the nodes for each patient, to make it more readable.

      We tried coloring the nodes but with > 60 distinct patients/colors we decided it did not improve clarity. We have revised figure 2 to increase the font size.  

      Page 7-8, lines 154-155: Did the authors check whether there were isolates of the same strain (that were found in the environment) present in other patients elsewhere in the ward?

      Yes. In rare cases, we observed virtually genetically identical isolates from two patients collected in different wards. Because we only have access to clinical isolate data (collected from patient X in ward Y) and do not have access to patient data (admission/discharge date, wards, rooms, etc.), we do not know but cannot exclude that patients overlap in a room prior to the sampling of their P. aeruginosa isolates. We designed our fixed thresholds to be conservative. As a result, in this analysis, these cases are labelled as “undetermined”.  

      Page 8: Do the authors have any information on antibiotic use during this timeframe? From the discussion, it seems like there is no patient-level prescription data. Is there any data on overall trends? How were trends in antibiotic use correlated with trends in antibiotic resistance?

      Unfortunately, patient-level prescription data (or any other data not linked to the bacterial specimens) was not accessible to us as this study was done as part of our public health surveillance activities.

      To infer the origin of infection, the authors used a static method with fixed thresholds and definitions. This study does not provide any uncertainty with their estimates. Maybe the authors could add a sentence in the discussion section that MCMC methods to infer transmission trees incorporating WGS could provide these estimates. These methods have not been applied to PA a lot but two examples where MCMC methods have been used without WGS (though the definition of environmental contamination may differ between these studies and this study).

      https://doi.org/10.1186/s13756-022-01095-x

      https://doi.org/10.1371/journal.pcbi.1006697

      Thank you for this great suggestion. We have revised the manuscript to include a discussion on the limitations of fixed thresholds to infer transmission chains/origins, and to discuss existing alternatives including MCMC methods. 

      Line 322-323: This sentence is a bit vague since not all of these HAI are due to P. aeruginosa. I would suggest citing a number that is specific to PA.

      Thank you. While our paper shows a particular example of protracted P. aeruginosa outbreak, the roll-out of routine WGS surveillance in the clinic will help prevent hospital-associated drug-resistant infections for more than this species. We believe that broadening the scope in the last sentence of the manuscript is important and we decline to revise as suggested.

    1. Good night, ladies, good night, sweet ladies, good night, good night.

      It's interesting to me how Eliot ends this section of The Waste Land with Ophelia's last words before she commits suicide. Lines before, we get references to "Bill," "Lou," and "May," indicating that the speaker is bidding farewell from the pub setting. Ophelia's line, on the other hand, bids farewell on behalf of not just Lil and the woman in the pub, but all the "sweet ladies" of the waste land. This idea of death as a fate is super interesting. The women have their emotional and spiritual deaths connected to Ophelia's physical death. This is yet another instance where we see suicide in a female in The Waste Land. If I think about what Eliot is trying to get at with women x waste land, especially with this Ophelia connection, I'd say the waste land is a world where the modes of expressing experiences like song, symbol, and even madness have been stripped of their meaning and beauty, leaving only bad nerves, dirty gossip, and the last call of the pub. This is obviously not the ideal place for women; hence, modern society is not fit for women to flourish.

    1. One critique of all of these approaches, however, is that no design, no matter how universal, will equally serve everyone. This is the premise of design justice44 Costanza-Chock, S. (2020). Design justice: Community-led practices to build the worlds we need. MIT Press. , which observes that design is fundamentally about power, in that designs may not only serve some people less well, but systematically exclude them in surprising, often unintentional ways.

      I agree with this. I am privileged to often forget about the exclusion of certain groups in "universal" designs. An example of this that I thought of was pens. I found out recently that a lot of left-handed people have a hard time with ink pens as there palms tend to smear the wet ink immediately after writing. Another example I could think of were the original Band-Aid colors, and how they did a poor job of representing people of all skin tones. Any design that leaves out a certain group of people should always have a substitute version for those people or should not be designed altogether.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript entitled "Molecular dynamics of the matrisome across sea anemone life history", Bergheim and colleagues report the prediction, using an established sequence analysis pipeline, of the "matrisome" - that is, the compendium of genes encoding constituents of the extracellular matrix - of the starlet sea anemone Nematostella vectensis. Re-analysis of an existing scRNA-Seq dataset allowed the authors to identify the cell types expressing matrisome components and different developmental stages. Last, the authors apply time-resolved proteomics to provide experimental evidence of the presence of the extracellular matrix proteins at three different stages of the life cycle of the sea anemone (larva, primary polyp, adult) and show that different subsets of matrisome components are present in the ECM at different life stages with, for example, basement membrane components accompanying the transition from larva to primary polyp and elastic fiber components and matricellular proteins accompanying the transition from primary polyp to the adult stage. 

      Strengths: 

      The ECM is a structure that has evolved to support the emergence of multicellularity and different transitions that have accompanied the complexification of multicellular organisms. Understanding the molecular makeup of structures that are conserved throughout evolution is thus of paramount importance. 

      The in-silico predicted matrisome of the sea anemone has the potential to become an essential resource for the scientific community to support big data annotation efforts and understand better the evolution of the matrisome and of ECM proteins, an important endeavor to better understand structure/function relationships. This study is also an excellent example of how integrating datasets generated using different -omic modalities can shed light on various aspects of ECM metabolism, from identifying the cell types of origins of matrisome components using scRNA-Seq to studying ECM dynamics using proteomics. 

      We greatly appreciate the positive feedback regarding the design of our study and the evolutionary significance of our findings.

      Weaknesses: 

      My concerns pertain to the three following areas of the manuscript: 

      (1) In-silico definition of the anemone matrisome using sequence analysis: 

      a) While a similar computational pipeline has been applied to predict the matrisome of several model organisms, the authors fail to provide a comprehensive definition of the anemone matrisome: In the text, the authors state the anemone matrisome is composed of "551 proteins, constituting approximately 3% of its proteome (see page 6, line 14), but Figure 1 lists 829 entries as part of the "curated" matrisome, Supplementary Table S1 lists the same 829 entries and the authors state that "Here, we identified 829 ECM proteins that comprise the matrisome of the sea anemone Nematostella vectensis" (see page 17, line 10). Is the sea anemone matrisome composed of 551 or 829 genes? If we refer to the text, the additional 278 entries should not be considered as part of the matrisome, but what is confusing is that some are listed as glycoproteins and the "new_manual_annotation" proposed by the authors and that refer to the protein domains found in these additional proteins suggest that in fact, some could or should be classified as matrisome proteins. For example, shouldn't the two lectins encoded by NV2.3951 and NV2.3157 be classified as matrisome-affiliated proteins? Based on what has been done for other model organisms, receptors have typically been excluded from the "matrisome" but included as part of the "adhesome" for consistency with previously published matrisome; the reviewer is left wondering whether the components classified as "Other" / "Receptor" should not be excluded from the matrisome and moved to a separate "adhesome" list. 

      In addition to receptors, the authors identify nearly 70 glycoproteins classified as "Other". Here, does other mean "non-matrisome" or "another matrisome division" that is not core or associated? If the latter, could the authors try to propose a unifying term for these proteins? Unfortunately, since the authors do not provide the reasons for excluding these entries from the bona fide matrisome (list of excluding domains present, localization data), the reader is left wondering how to treat these entries. 

      Overall, the study would gain in strength if the authors could be more definitive and, if needed, even propose novel additional matrisome annotations to include the components for now listed as "Other" (as was done, for example, for the Drosophila or C. elegans matrisomes). 

      The reviewer is correct to point out the confusing terminology used throughout our manuscript, where both the total of 829 proteins constituting the curated list of ECM domain proteins and the actual matrisome (excluding "others") were referred to as "matrisomes". In general, we followed the example set by Naba & Hynes in their 2012 paper (Mol Cell Proteomics. 2012 Apr;11(4):M111.014647. doi: 10.1074/mcp.M111.014647), where they define the "matrisome" as encompassing all components of the extracellular matrix ("core matrisome") and those associated with it ("matrisome-associated" proteins). This corresponds to our group of 551 proteins, comprising both core matrisome and matrisomeassociated proteins. The Naba & Hynes paper also contains the inclusive and exclusive domain lists for the matrisome that we applied for our dataset. In the revised manuscript, we have now labelled the group of 829 proteins as "curated ECM domain proteins/genes", which includes all proteins positively selected for containing a bona fide ECM domain. After excluding non-matrisomal proteins such as receptors, we arrive at the 551 proteins that constitute the "Nematostella matrisome". We have maintained this terminology throughout the revised manuscript and have revised Figures 1B and 4B accordingly.

      Regarding the category of "other" proteins, which by definition are not part of the matrisome although containing ECM domains, we have taken the reviewer's advice and classified these in more detail. We categorized all receptors as "adhesome" (202 proteins).  The remaining group of “other” secreted ECM domain proteins were then further subcategorized. Those exhibiting significant matches in the ToxProt database were subclassified as "putative venoms" (15 proteins). This group also includes the two lectins (NV2.3951 and NV2.3157), which had been originally shifted to the “other” category due to their classification as venoms. We categorized as “adhesive proteins” (28 proteins) factors such as coadhesins that due to their domain architecture resemble bioadhesive proteins described in proteomic studies of other invertebrate species, such as corals or sponges (see also https://doi.org/10.1016/j.jprot.2022.104506). Further sub-categories are stress/injury response proteins (9 proteins) and ion channels (6 proteins). The remaining 17 proteins were categorized as “uncharacterized ECM domain proteins”. These include highly diverse proteins possessing either single ECM domains or novel domain combinations. We decided to retain those in our dataset as candidates for future functional characterization.

      b) It is surprising that the authors are not providing the full currently accepted protein names to the entries listed in Supplementary Table S1 and have used instead "new_manual_annotation" that resembles formal protein names. This liberty is misleading. In fact, the "new_manual_annotation" seems biased toward describing the reason the proteins were positively screened for through sequence analysis, but many are misleading because there is, in fact, more known about them, including evidence that they are not ECM proteins. The authors should at least provide the current protein names in addition to their "new_manual_annotations". 

      c) To truly serve as a resource, the Table should provide links to each gene entry in the Stowers Institute for Medical Research genome database used and some sort of versioning (this could be added to columns A, B, or D). Such enhancements would facilitate the assessment of the rigor of the list beyond the manual QC of just a few entries. 

      d) Since UniProt is the reference protein knowledge database, providing the UniProt IDs associated with the predicted matrisome entries would also be helpful, giving easy access to information on protein domains, protein structures, orthology information, etc. 

      e) In conclusion, at present, the study only provides a preliminary draft that should be more rigorously curated and enriched with more comprehensive and authoritative annotations if the authors aspire the list to become the reference anemone matrisome and serve the community. 

      Table S1 has been updated to include links to the respective Stowers Institute IDs (first two columns), as well as SwissProt IDs and current descriptions from both the Stowers Institute (SI) and Swissprot.

      In our manual annotations, we prioritized these over automated ones due to the considerable effort invested in examining each sequence individually. The cnidaria-specific minicollagens and NOWA proteins might serve as an example. According to the SI descriptions, the minicollagens are annotated as “keratin-associated protein, predicted or hypothetical protein, collagen-like protein and pericardin”. We classified these as minicollagens on the basis of overall domain architecture and of signature domains and sequence motifs, such as minicollagen cysteine-rich domains (CRDs) and polyproline stretches (doi: 10.1016/j.tig.2008.07.001). NOWA is a CTLD/CRD-containing protein that is part of nematocyst tubules (doi:10.1016/j.isci.2023.106291). The first two NOWA isoforms, according to Si descriptions, were annotated as aggrecan and brevican core proteins, which is very misleading. We therefore feel that our manual annotations better serve the cnidarian research community in classifying these proteins.

      Automated annotations of ECM proteins often rely on similarities between individual domains, neglecting overall domain composition. For example, Swissprot descriptions annotate 31 TSP1 domain-containing proteins in our list as "Hemicentin-1", but closer inspection reveals that only one sequence (NV2.24790) qualifies as Hemicentin-1 due to its characteristic vWFA, Ig-like, TSP1, G2 nidogen, and EGF-like domain architecture. Regarding novel protein annotations, NV2.650 might serve as an example. While SI descriptions annotate this protein as "epidermal growth factor" based on the presence of several EGF-like domains, our analysis reveals two integrin alpha N-terminal domains that classify this sequence as integrin-related. We have therefore assigned a description (Secreted integrin-N-related protein) that references this defining domain and avoids misclassification within the EGF family.

      In cases where the automated annotation (including those in Genbank) matched our own findings, we adopted the existing description, as seen with netrin-1 (NV2.7734). We acknowledge that our manual annotations are not flawless and will be refined by future research. Nonetheless, we offer them as an approximation to a more accurate definition of the identified protein list.

      (2) Proteomic analysis of the composition of the mesoglea during the sea anemone life cycle: 

      a) The product of 287 of the 829 genes proposed to encode matrisome components was detected by proteomics. What about the other ~550 matrisome genes? When and where are they expressed? The wording employed by the authors (see line 11, page 13) implies that only these 287 components are "validated" matrisome components. Is that to say that the other ~550 predicted genes do not encode components of the ECM? This should be discussed. 

      Obviously, our wording was not sufficiently accurate here. In the revised Fig. 1B we indicated that 210 of the 551 matrisome (core and associated) proteins were confirmed by mass spectrometry. In total, 287 proteins were identified by mass spectrometry, meaning that 77 of those are non-matrisomal proteins belonging to the “adhesome” (47) and “other” (30) groups. The fact that the remaining 542 proteins of the matrisome predicted by our in silico analysis could not be identified has two major reasons: (1) Our study was focussed on the molecular dynamics of the mesoglea. Therefore, only mesogleas were isolated for the mass spectrometry analysis and nematocysts were mostly excluded by extensive washing steps. As nematocysts contribute significantly to the predicted matrisome, this group of proteins is underrepresented in the mass spectrometry analysis. (2) A significant fraction of the predicted ECM proteins constitutes soluble factors and transmembrane receptors. These might not be necessarily part of the mesoglea isolates. In addition, the isolation and solubilization method we applied might have technical limitations. Although we used harsh conditions for solubilizing the mesoglea samples (90°C and high DTT concentrations), we cannot exclude that we missed proteins which resisted solubilization and thus trypsinization. We confirmed that all genes predicted by the in silico analysis have transcriptomic profiles as demonstrated in supplementary table S4. We have clarified these points in the revised results part (p.6) and also revised the statement in line 16, page 13.

      b) Can the authors comment on how they have treated zero TMT values or proteins for which a TMT ratio could not be calculated because unique to one life stage, for example? 

      We did not include these proteins in the analysis of the respective statistical comparison. This involved only very few proteins (about 10).  

      c) Could the authors provide a plot showing the distribution of protein abundances for each matrisome category in the main figure 4? In mammals, the bulk of the ECM is composed of collagens, followed by fibrillar ECM glycoproteins, the other matrisome components being more minor. Is a similar distribution observed in the sea anemone mesoglea? 

      We have included such a plot showing protein abundances across life stages and protein categories (Fig. 4A). Collagens and basement membrane proteoglycans (perlecan) are the most abundant protein categories in the core matrisome while secreted factors dominate in the matrisome-associated group.

      d) Prior proteomic studies on the ECM of vertebrate organisms have shown the importance of allowing certain post-translational modifications during database search to ensure maximizing peptide-to-spectrum matching. Such PTMs include the hydroxylation of lysines and prolines that are collagen-specific PTMs. Multiple reports have shown that omitting these PTMs while analyzing LC-MS/MS data would lead to underestimating the abundance of collagens and the misidentification of certain collagens. The authors may want to reanalyze their dataset and include these PTMs as part of their search criteria to ensure capturing all collagen-derived peptides. 

      Thank you for this suggestion. We have re-analyzed our dataset including lysine and proline hydroxylation as PTM. While we obtained in total 70 more proteins using this approach, this additional group did not contain any large collagen or minicollagen we had not detected before. We only obtained two additional collagen-like proteins with very short triple helical domains (V2t013973001.1, NV2t024002001.1), one being a fragment. We don’t feel this justifies implementing a re-analysis of the proteome in our study.

      e) The authors should ensure that reviewers are provided with access to the private PRIDE repository so the data deposited can also be evaluated. They should also ensure that sufficient meta-data is provided using the SRDF format to allow the re-use of their LCMS/MS datasets. 

      We apologize for not providing the reviewer access in our initial submission and have asked the editorial office to forward the PRIDE repository link to all reviewers immediately after receiving the reviews. We did upload a metadata.csv file with the proteomics dataset. This file contains an annotation of all TMT labels to the samples and conditions and replicates used in the manuscript. It contains similar information as an SRDF format file. In addition, the search output files on protein and psm level have been provided. So, from our point of view, we provided all necessary information to reproduce the analysis.

      (3) Supplementary tables: 

      The supplementary tables are very difficult to navigate. They would become more accessible to readers and non-specialists if they were accompanied by brief legends or "README" tabs and if the headers were more detailed (see, for example, Table S2, what does "ctrl.ratio_Larvae_rep2" exactly refer to? Or Table S6 whose column headers using extensive abbreviations are quite obscure). Similarly, what do columns K to BX in Supplementary Table S1 correspond to? Without more substantial explanations, readers have no way of assessing these data points. 

      We have revised the tables and removed any redundant data columns. We also included detailed explanations of the used abbreviations, both in the headers and in a separate README file. Some of the information was apparently lost during the conversion to pdf files. We will therefore upload the original .xls files when submitting the revised manuscript.

      Reviewer #2 (Public review): 

      This work set out to identify all extracellular matrix proteins and associated factors present within the starlet sea anemone Nematostella vectensis at different life stages. Combining existing genomic and transcriptomic datasets, alongside new mass spectometry data, the authors provide a comprehensive description of the Nematostella matrisome. In addition, immunohistochemistry and electron microscopy were used to image whole mount and decellularized mesoglea from all life stages. This served to validate the de-cellularization methods used for proteomic analyses, but also resulted in a very nice description of mesoglea structure at different life stages. A previously published developmental cell type atlas was used to identify the cell type specificity of the matrisome, indicating that the core matrisome is predominantly expressed in the gastrodermis, as well as cnidocytes. The analyses performed were rigorous and the results were clear, supporting the conclusions made by the authors. 

      Thank you. We greatly appreciate the positive assessment of our study.

      Reviewer #3 (Public review): 

      Summary: 

      This manuscript by Bergheim et al investigates the molecular and developmental dynamics of the matrisome, a set of gene products that comprise the extracellular matrix, in the sea anemone Nematostella vectensis using transcriptomic and proteomic approaches. Previous work has examined the matrisome of the hydra, a medusozoan, but this is the first study to characterize the matrisome in an anthozoan. The major finding of this work is a description of the components of the matrisome in Nematostella, which turns out to be more complex than that previously observed in hydra. The authors also describe the remodeling of the extracellular matrix that occurs in the transition from larva to primary polyp, and from primary polyp to adult. The authors interpret these data to support previously proposed (Steinmetz et al. 2017) homology between the cnidarian endoderm with the bilaterian mesoderm. 

      Strengths: 

      The data described in this work are robust, combining both transcriptome and proteomic interrogation of key stages in the life history of Nematostella, and are of value to the community. 

      Thank you for your positive assessment of our dataset. 

      Weaknesses: 

      The authors offer numerous evolutionary interpretations of their results that I believe are unfounded. The main problem with extending these results, together with previous results from hydra, into an evolutionary synthesis that aims to reconstruct the matrisome of the ancestral cnidarian is that we are considering data from only two species. I agree with the authors' depiction of hydra as "derived" relative to other medusozoans and see it as potentially misleading to consider the hydra matrisome as an exemplar for the medusozoan matrisome. Given the organismal and morphological diversity of the phylum, a more thorough comparative study that compares matrisome components across a selection of anthozoan and medusozoan species using formal comparative methods to examine hypotheses is required. 

      Specifically, I question the author's interpretation of the evolutionary events depicted in this statement: 

      "The observation that in Hydra both germ layers contribute to the synthesis of core matrisome proteins (Epp et al. 1986; Zhang et al. 2007) might be related to a secondary loss of the anthozoan-specific mesenteries, which represent extensions of the mesoglea into the body cavity sandwiched by two endodermal layers." 

      Anthozoans and medusozoans are evolutionary sisters. Therefore, the secondary loss of "anthozoan-like mesenteries" in hydrozoans is at least as likely as the gain of this character state in anthozoans. By extension, there is no reason to prefer the hypothesis that the state observed in Nematostella, where gastroderm is responsible for the synthesis of the core matrisome components, is the ancestral state of the phylum. Moreover, the fossil evidence provided in support of this hypothesis (Ou et al. 2022) is not relevant here because the material described in that work is of a crown group anthozoan, which diversified well after the origin of Anthozoa. The phylogenetic structure of Cnidaria has been extensively studied using phylogenomic approaches and is generally well supported (Kayal et al. 2018; DeBiasse et al. 2024). Based on these analyses, anthozoans are not on a "basal" branch, as the authors suggest. The structure of cnidarian phylogeny bifurcates with Anthozoa forming one clade and Medusozoa forming the other. From the data reported by Bergheim and coworkers, it is not possible to infer the evolutionary events that gave rise to the different matrisome states observed in Nematostella (an anthozoan) and hydra (a medusozoan). Furthermore, I take the observation in Fig 5 that anthozoan matrisomes generally exhibit a higher complexity than other cnidarian species to be more supportive of a lineage-specific expansion of matrisome components in the Anthozoa, rather than those components being representative of an ancestral state for Cnidaria. Whatever the implication, I take strong issue with the statement that "the acquisition of complex life cycles in medusozoa, that are distinguished by the pelagic medusa stage, led to a secondary reduction in the matrisome repertoire." There is no causal link in any of the data or analyses reported by Bergheim and co-workers to support this statement and, as stated above, while we are dealing with limited data, insufficient to address this question, it seems more likely to me that the matrisome expanded in anthozoans, contrasting with the authors' conclusions. While the discussion raises many interesting evolutionary hypotheses related to the origin of the cnidarian matrisome, which is of vital interest if we are to understand the origin of the bilaterian matrisome, a more thorough comparative analysis, inclusive of a much greater cnidarian species diversity, is required if we are to evaluate these hypotheses. 

      DeBiasse MB, Buckenmeyer A, Macrander J, Babonis LS, Bentlage B, Cartwright P, Prada C, Reitzel AM, Stampar SN, Collins A, et al. 2024. A Cnidarian Phylogenomic Tree Fitted With Hundreds of 18S Leaves. Bulletin of the Society of Systematic Biologists [Internet] 3. Available from: https://ssbbulletin.org/index.php/bssb/article/view/9267

      Epp L, Smid I, Tardent P. 1986. Synthesis of the mesoglea by ectoderm and endoderm in reassembled hydra. J Morphol [Internet] 189:271-279. Available from: https://pubmed.ncbi.nlm.nih.gov/29954165/ 

      Kayal E, Bentlage B, Sabrina Pankey M, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF. 2018. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol [Internet] 18:1-18. Available from: https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-018-1142-0

      Ou Q, Shu D, Zhang Z, Han J, Van Iten H, Cheng M, Sun J, Yao X, Wang R, Mayer G. 2022. Dawn of complex animal food webs: A new predatory anthozoan (Cnidaria) from Cambrian. The Innovation 3:100195 

      Steinmetz PRH, Aman A, Kraus JEM, Technau U. 2017. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nature Ecology & Evolution 2017 1:10 [Internet] 1:1535-1542. Available from: https://www.nature.com/articles/s41559-017-0285-5

      Zhang X, Boot-Handford RP, Huxley-Jones J, Forse LN, Mould AP, Robertson DL, Li L, Athiyal M, Sarras MP. 2007. The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J Biol Chem [Internet] 282:6792-6802. Available from: https://pubmed.ncbi.nlm.nih.gov/17204477/ 

      We agree with the reviewer that only the analysis of several additional anthozoan and medusozoan representatives will yield a valid basis for a reconstruction of the ancestral cnidarian matrisome and allow statements about ancestral or novel features within the phylum. We have therefore revised our statements in the discussion part of the manuscript by implementing the cited literature and also findings from medusozoan genome analysis (e.g. Gold et al., 2018) demonstrating that changes in gene content are as common in the anthozoans as in medusozoans, which questioned the previously stated “basal” state of Nematostella or of anthozoans in general.

      Reviewer #1 (Recommendations for the authors): 

      (1) In Figure 2A, an "o" is missing in the labeling of the "developing cnidcytes" population. 

      Thank you, we have corrected the typo.

      (2) It would be helpful to have the different life stages indicated as headers of the heat maps presented in Figure 4. 

      We have included symbolic representations for the different life stages on top of the heat maps in addition to the respective labels at the bottom.

      Reviewer #2 (Recommendations for the authors): 

      Important changes: 

      (1) Figure 2B The x-axis tissue names should be changed to something more easily readable/understandable - some are clear, but others are not. Perhaps abbreviations could be expanded in the legend. 

      We have expanded the legend in Fig. 2B to render it more easily readable. We have also rotated the maps in A to have them aligned with the ones in Fig.3B.

      (2) Figure 3B This figure would be improved by the inclusion of cluster names, to understand better the mapping. 

      We have added relevant cluster names to Fig. 3B and as stated above aligned the orientation of the maps in Fig. 2B and Fig. 3B.

      (3) Figure 3C As with 2B, I find the y-axis cnidocyte cell state names to be unclear at times. Perhaps abbreviations could be expanded in the legend. 

      All abbreviations were expanded in Fig.3C axis labels.

      (4) Many of the supplementary tables are not well exported or easily readable as is (gene names are truncated, headers truncated, etc), which means that they may not be easily usable by researchers in the field interested in following up on this work in other contexts. Indeed, to be more usable, please consider sharing these supplementary data as .csv files, for example, instead of as .pdfs. 

      We are sorry for this inconvenience, which was obviously caused by the conversion to pdf files. We will upload the original csv files when submitting the revised manuscript.

      Smaller nitpicky comments: 

      (5) Page 2 line 4 & page 3 line 7: Please consider a term other than "pre-bilaterian". The drawing/ordering of a phylogeny of extant species is not meaningful in terms of more or less ancestral. e.g. if the tips are flipped in the drawing of the tree, can we say that bilaterians are pre-cnidarians? What does that mean? 

      We have used that term on the basis that cnidarians existed before the appearance of bilaterians according to the fossil record and molecular phylogenies (McFadden et al., 2021; Adoutte et al., 2000;Cavalier-Smith et al., 1996; Collins, 1998; Kim et al., 1999; Medina et al., 2001; Wainright et al., 1993). To acknowledge remaining uncertainties in the timing of origin of animals, we will use the term “early-diverging metazoans” instead, which is widely accepted in the cnidarian community. 

      (6) Page 3 line 9 I was confused by the use of "gastrula-shaped body" to describe cnidarians, which are on the whole very morphologically diverse and don't all resemble gastrulae (that can also be quite diverse). 

      This term is sometimes used to refer to the diploblastic cnidarian body plan (outer ectoderm, inner endoderm) with a mouth that corresponds to the blastopore. To avoid misunderstandings, we changed it in the revised manuscript to “Cnidarians, the sister group to bilaterians, are characterized by a simple body plan with a central body cavity and a mouth opening surrounded by tentacles.”

      Reviewer #3 (Recommendations for the authors): 

      (1) In general, I felt there was a lot of discussion about protein structure and diversity that is difficult to follow without a figure. I think some of the information in Supplementary Figures S5, S9, and S11 should be in the main figures. 

      Following the reviewer’s suggestion, we have integrated Fig. S5 (collagens) into the main Fig. 2 and Fig. S9 (polydoms) into Fig. 4. As metalloproteases are not extensively discussed in the manuscript (and also due to the large size of the figure) we have kept Fig. S11 as a supplementary figure.

      (2) Page 3, Line 7: The use of the term "pre-bilaterian" is inappropriate. Cnidarians and bilaterians are evolutionary sisters. Therefore, each lineage derives from the same split and is the same age. The cnidarian lineage is not older than the bilaterian lineage. 

      Following a similar request by reviewer 2 we have replaced this term by “early diverging metazoans”.

      (3) Page 5, Line 10. How were in silico matrisomes from early-branching metazoan species predicted? 

      We applied the same bioinformatic pipeline as for the Nematostella matrisome. We clarified this in the respective methods part.

      (4) Page 16, Line 8: This should be Thus. 

      Obviously, the wording of this sentence was ambiguous. We changed it to ”In contrast, the adult mesoglea is significantly enriched in elastic fiber components, such as fibrillins and fibulin. This compositional shift likely adds to the visco-elastic properties (Gosline 1971a, b) of the growing body column (Fig. 4B,D, supplementary table S7).”

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer 1:

      While BAP1 mutant UM cell lines were included for some of the experiments, it seems the in-vivo data mentioned in the response to the reviewers comment is missing? The authors stated that "MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor." But the CDX model data shown in Figure 4 is from 92.1 cells. If this data is available, then the manuscript would benefit from its addition.

      We thank the reviewer for bringing this to our attention. As the reviewer mentioned, we show 92-1 CDX model in our manuscript. Additionally, strong tumor growth inhibition in MP-46  CDX model treated with our BAF ATPase inhibitor can be found in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/).

      Reviewer 3:<br /> Supplementary Figure 2C<br /> Is the T910M mutation in the parental MP41 cells heterozygous? If so, the authors should indicate this in the figure legend. If this is a homozygous mutation, the authors should explain how the inhibitors suppress SMARCA4 activity in cells that have a LOF mutation.

      We thank the reviewer for bringing this to our attention. We updated the figure legend accordingly to reflect the genotype of the mutations highlighted in the table.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The presented study by Centore and colleagues investigates the inhibition of BAF chromatin remodeling complexes. The study is well-written, and includes comprehensive datasets, including compound screens, gene expression analysis, epigenetics, as well as animal studies. This is an important piece of work for the uveal melanoma research field, and sheds light on a new inhibitor class, as well as a mechanism that might be exploited to target this deadly cancer for which no good treatment options exist.

      Strengths:

      This is a comprehensive and well-written study.

      Weaknesses:

      There are minimal weaknesses.

      We thank the reviewer for the positive comments.

      Reviewer #2 (Public Review):

      Summary:

      The authors generate an optimized small molecule inhibitor of SMARCA2/4 and test it in a panel of cell lines. All uveal melanoma (UM) cell lines in the panel are growth-inhibited by the inhibitor making the focus of the paper. This inhibition is correlated with the loss of promoter occupancy of key melanocyte transcription factors e.g. SOX10. SOX10 overexpression and a point mutation in SMARCA4 can rescue growth inhibition exerted by the SMARCA2/4 inhibitor. Treatment of a UM xenograft model results in growth inhibition and regression which correlates with reduced expression of SOX10 but not discernible toxicity in the mice. Collectively the data suggest a novel treatment of uveal melanoma.

      Strengths:

      There are many strengths of the study including the strong challenge of the on-target effect, the assays used, and the mechanistic data. The results are compelling as are the effects of the inhibitor. The in vivo data is dose-dependent and doses are low enough to be meaningful and associated with evidence of target engagement.

      Weaknesses:

      The authors introduce the field stating that SMARCA4 inhibitors are more effective in SMARCA2 deficient cancers and the converse. Since the desirable outcome of cancer therapy would be synthetic lethality it is not clear why a dual inhibitor is desirable. Wouldn't this be associated with more side effects? It is not known how the inhibitor developed here impacts normal cells, in particular T cells which are essential for any durable response to cancer therapies in patients. Another weakness is that the UM cell lines used do not molecularly resemble metastatic UM. These UM most frequently have mutations in the BAP1 tumor suppressor gene. It is not clear if the described SMARCA2/4 inhibitor is efficacious in BAP1 mutant UM cell lines in vitro or BAP1 mutant patient-derived xenografts in vivo.

      We thank the reviewer for their insightful and constructive comments. As we demonstrate in Fig. 1d, uveal melanoma cells are selectively and deeply sensitive to BAF ATPase inhibition, and provides a therapeutic window. This is confirmed in Fig. 4a-c, as we demonstrated robust tumor growth inhibition, achieved at a dose well-tolerated in xenograft study. FHD-286, a dual BRM/BRG1 inhibitor similar to FHT-1015 with optimized physical properties, has been evaluated in a Phase I trial in patients with metastatic uveal melanoma (NCT04879017) and manuscript describing results of this clinical trial is currently in preparation.

      As the reviewer mentioned, BAP1 loss is a signature of metastatic uveal melanoma. MP38 is a BAP1 mutant uveal melanoma cell line, and we demonstrated growth inhibition and robust caspase 3/7 activity in response to FHT-1015 (Supplementary Fig. 3a and 3f). MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript reports the discovery of new compounds that selectively inhibit SMARCA4/SMARCA2 ATPase activity that work through a different mode as previously developed SMARCA4/SMARCA2 inhibitors. They also demonstrate the anti-tumor effects of the compounds on uveal melanoma cell proliferation and tumor growth. The findings indicate that the drugs exert their effects by altering chromatin accessibility at binding sites for lineage-specific transcription factors within gene enhancer regions. In uveal melanoma, altered expression of the transcription factor, SOX10, and SOX10 target gene underlies the anti-proliferative effects of the compounds. This study is significant because the discovery of new SMARCA4/SMARCA2 inhibitory compounds that can abrogate uveal melanoma tumorigenicity has therapeutic value. In addition, the findings provide evidence for the therapeutic use of these compounds in other transcription factor-dependent cancers.

      Strengths:

      The strengths of this manuscript include biochemical evidence that the new compounds are selective for SMARCA4/SMARCA2 over other ATPases and that the mode of action is distinct from a previously developed compound, BRM014, which binds the RecA lobe of SMARCA2. There is also strong evidence that FHT1015 suppresses uveal melanoma proliferation by inducing apoptosis. The in vivo suppression of tumor growth without toxicity validates the potential therapeutic utility of one of the new drugs. The conclusion that FHT1015 primarily inhibits SMARCA4 activity and thereby suppresses chromatin accessibility at lineage-specific enhancers is substantiated by ATAC-seq and ChIP-seq studies.

      Weaknesses:

      The weaknesses include a lack of more precise information on which SMARCA4/SMARCA2 residues the drugs bind. Although the I1173M/I1143M mutations are evidence that the critical residues for binding reside outside the RecA lobe, this site is conserved in CHD4, which is not affected by the compounds. Hence, this site may be necessary but not sufficient for drug binding or specifying selectivity. A more precise evaluation of the region specifying the effect of the new compounds would strengthen the evidence that they work through a novel mode and that they are selective. Another concern is that the mechanisms by which FHT1015 promotes apoptosis rather than simply cell cycle arrest are not clear. Does SOX10 or another lineage-specific transcription factor underlie the apoptotic effects of the compounds?

      We thank the reviewer for the valuable comments.

      We believe that our dual ATPase inhibitor is selective and additional insights into binding specificity and selectivity for earlier stage compounds of this series were recently published in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/).

      The reviewer also poses a great question regarding the mechanism of apoptosis. The mechanism of apoptosis is extremely complex, but we observed a decrease in pro-survival BCL-2 protein expression in response to FHT-1015, in the experiment corresponding to Supplementary Fig. 5e. In the experiment described in Fig. 3k, we also monitored caspase 3/7 activity over time, and SOX10 overexpression rescued 92-1 cells from FHT-1015 induced apoptosis. This suggests the role of SOX10 as an important mediator of response to BAF ATPase inhibition, including apoptosis induced by FHT-1015.

      Additional Reviews:

      The referees would like to draw the authors' attention to the following issues that would best benefit from additional revision. 

      The clinical relevance of the study would be strengthened by the use of uveal melanoma cell lines with BAP1 mutations that better represent metastatic uveal melanoma. The use of patient-derived xenografts would also be pertinent and would be a useful addition. Similarly, attention to the effects of the inhibitor on non-cancerous proliferative cells such as blood/T/immune cells would also strengthen the manuscript. As the study reports the administration of one of the inhibitors in mice for the xenograft experiments, it would be important to assess any potential effects on blood cell counts and better discuss the eventual toxicity or lack of toxicity and how it was assessed. 

      The authors should better explain how SOX10 over expression can rescue viability in the presence of the inhibitor. Similarly given the critical roles of BRG1, SOX10, and MITF in cutaneous melanoma some specific discussion on the sensitivity of cutaneous melanoma cells to the inhibitor should be considered, and potential differences with uveal melanoma highlighted. 

      Aside from these issues, the authors are urged to consider the other points mentioned below. 

      Reviewer #1 (Recommendations For The Authors): 

      Figure 1d, as well as the text in the manuscript referring to this figure, would benefit from indicating specific cell lines used for UM. The same for the sentence in line 153. 

      We thank the reviewer for bringing this to our attention. We have added the cell line names and updated the manuscript accordingly.

      For any of the studies conducted, is there any link with the genetics of UM? E.g. BAP1 wildtype/BAP1 mutant? 

      As addressed above in the public review section, MP38 is a BAP1 mutant uveal melanoma cell line, and we demonstrated growth inhibition and robust caspase 3/7 activity in response to FHT-1015 (Supplementary Fig. 3a and 3f). MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor.

      Row 191 - How were peaks classified as enhancer-occupied? 

      We used annotatePeaks function of HOMER package to annotate genomic locations, as well as H3K27ac ChIP-seq to annotate peaks as enhancer-occupied. We thank the reviewer to pointing it out and have updated the manuscript accordingly to include this information.

      Row 259, the two cell lines should be named, also in Figure 3i. 

      We have added the cell line names and updated the manuscript accordingly.

      Reviewer #2 (Recommendations For The Authors): 

      As a proof of concept, this study is truly excellent and the authors should be commended. However, it is desirable that new knowledge in cancer is translated to the clinic. To this end there are a few things needed to strengthen the study. 

      I am rephrasing my statements from the public review to say that I would recommend testing the inhibitor in T cells (side effects) and BAP1 mutant cell lines (for clinical relevance). 

      As addressed in the public review section, MP38 is a BAP1 mutant uveal melanoma cell line, and we demonstrated growth inhibition and robust caspase 3/7 activity in response to FHT-1015 (Supplementary Fig. 3a and 3f). MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor.

      Regarding concerns for any potential side effect on T cells, we observed an increase in both CD4 and CD8 T-cell populations in the peripheral blood and the spleen, when naïve, non-tumor bearing CD-1 mice were dosed with SMARCA2/4 dual ATPase inhibitor FHD-286 once daily for 14 days. FHD-286 is a compound similar to FHT-1015 described in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/). In addition, FHD-286 has been tested in tumor bearing syngeneic models. When B16F10 tumor bearing C57BL/6 were dosed with FHD-286 for 10 days, we observed an increase in CD69+ activated CD8 T-cell infiltration in the tumor microenvironment (doi:10.1136/jitc-2022-SITC2022.0888).

      Reviewer #3 (Recommendations For The Authors): 

      (1) Determine drug binding by crystal structure or generate additional SMARCA4 or SMARCA2 mutations in the region near I1173/I1143 that are not conserved in CHD4 and test them in an ATPase assay for effects on drug inhibition. For example, Q1166 in SMARCA4 and Q1136 in SMARCA4 could be changed to Alanine as in CHD4. Would this abrogate drug inhibition? 

      We believe that our dual ATPase inhibitor is selective and additional insights into binding specificity and selectivity for earlier stage compounds of this series were recently published in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/).

      (2) The finding that SOX10 can rescue the antiproliferative effects of FHT1015 suggests that SMARCA4 is primarily needed for SOX10 expression. However, the co-occupancy of SMARCA4 and SOX10 at enhancers suggests that they cooperate to promote chromatin accessibility. It is unclear how over-expression of SOX10 can promote chromatin accessibility in drug-inhibited cells since SOX10 does not have chromatin remodeling activity. ATAC-seq in cells over-expressing SOX10 and treated with the drug could identify SOX10-dependent targets that do not require SMARCA4 activity and clarify the mechanism. It would also be informative to determine if SOX10 over-expression abrogates the effects of FHT1015 on both cell cycle and apoptosis, helping to resolve whether it is a partial or complete rescue of proliferation. 

      We agree that running ATAC-seq in cells overexpressing SOX10 would clarify this mechanism. However, shifts in corporate strategy deprioritized any further experiments for this project. One potential mechanism that SOX10 overexpression can partially rescue BAF inhibition phenotype is through overexpressed SOX10 localizing to open chromatin regions (mostly promoters) across the genome. We know from our ATAC-seq data (Fig. 2) that BAF inhibition leads to loss of chromatin accessibility at SOX10 enhancer sites, while promoter regions are only partially affected. Therefore, we think that overexpression of SOX10 would allow upregulation of its target genes via binding to the promoter regions. In this model, the enhancer-driven SOX10 target genes are likely to remain silenced.  

      (3) Although the in vivo studies indicate that the drugs are well-tolerated, additional in vitro studies to determine the effects of the drug on the proliferation/survival of non-cancerous cells would further validate their therapeutic utility.

      Author Response: The reviewer raises a critical question. FHD-286, a dual BRM/BRG1 inhibitor similar to FHT-1015 with optimized physical properties, has been evaluated in a Phase I trial in patients with metastatic uveal melanoma (NCT04879017), and it was well tolerated at continuous daily dose of up to 7.5 mg QD and at intermittent dose of up to 17.5 mg QD.  Manuscript describing results of this clinical trial is currently in preparation.

    1. Author response:

      Reviewer #1 (Public review):

      It appears obvious that with no or a little fitness penalty, it becomes beneficial to have MHC-coding genes specific to each pathogen. A more thorough study that takes into account a realistic (most probably non-linear in gene number) fitness penalty, various numbers of pathogens that could grossly exceed the self-consistent fitness limit on the number of MHC genes, etc, could be more informative.

      The reviewer seems to be referring to the cost of excessively high presentation breadth.  Such a cost is irrelevant to the inferior fitness of a polymorphic population with heterozygote advantage compared to a monomorphic population with merely doubled gene copy number.  It is relevant to the possibility of a fitness valley separating these two states, but this issue is addressed explicitly in the manuscript.

      An addition or removal of one of the pathogens is reported to affect "the maximum condition", a key ecological characteristic of the model, by an enormous factor 10^43, naturally breaking down all the estimates and conclusions made in [RS]. This observation is not substantiated by any formulas, recipes for how to compute this number numerically, or other details, and is presented just as a self-standing number in the text.

      It is encouraging that the reviewer agrees that this observation, if correct, would cast doubt on the conclusions of Siljestam and Rueffler.  I would add that it is not the enormity of this factor per se that invalidates those conclusions, but the fact that the automatic compensatory adjustment of c<sub>max</sub> conceals the true effects of removing a pathogen, which are quite large.

      I am not sure why the reviewer doubts that this observation is correct.  The factor of 2.7∙10<sup>43</sup> was determined in a straightforward manner in the course of simulating the symmetric Gaussian model of Siljestam and Rueffler with the specified parameter values.  A simple way to determine this number is to have the simulation code print the value to which c<sub>max</sub>  is set, or would be set, by the procedure of Siljestam and Rueffler for different parameter values.  In another section of this response I will describe how to do this with the simulation code written and used by Siljestam and Rueffler; doing so confirms the value that I obtained with my own code.  Furthermore, I will now give a theoretical derivation of this factor.

      As specified by Siljestam and Rueffler, the positions of the m pathogens in (m-1)-dimensional antigenic space correspond to the vertices of a regular simplex centered at the origin, with distance between vertices equal to 1.  The squared distance from the origin to each of the m vertices of such a simplex is (m-1)/2m (https://polytope.miraheze.org/wiki/Simplex).  Thus, the sum of the m squared distances is (m-1)/2.  For the (0, 0) homozygote, condition is multiplied by a factor of exp(-(vr)<sup>2</sup>/2) for each pathogen, where r is the distance from the origin.  It follows that, with v=20, all the pathogens together decrease condition by a factor of exp(20<sup>2</sup>∙(m-1)/4) = exp(100∙(m-1)).  Thus, increasing or decreasing m by 1 changes this value by a factor of exp(100) = 2.7∙10<sup>43</sup>.

      This begs the conclusion that the branching remains robust to changes in c_max that span 4 decades as well.

      That shows only that the results are not extremely sensitive to c<sub>max</sub> or K.  They are, nonetheless, exquisitely sensitive to m and v.  This difference in sensitivities is the reason that a relatively small change to m leads to such a large compensatory change in c<sub>max</sub> a change large enough to have a major effect on the results.

      As I wrote above, there is no explanation behind this number, so I can only guess that such a number is created by the removal or addition of a pathogen that is very far away from the other pathogens. Very far in this context means being separated in the x-space by a much greater distance than 1/\nu, the width of the pathogens' gaussians. Once again, I am not totally sure if this was the case, but if it were, some basic notions of how models are set up were broken. It appears very strange that nothing is said in the manuscript about the spatial distribution of the pathogens, which is crucial to their effects on the condition c.

      I did not explicitly describe the distribution of pathogens in antigenic space because it is exactly the same as in Siljestam and Rueffler, Fig. 4: the vertices of a regular simplex, centered at the origin, with unity edge length.

      The number in question (2.7∙10<sup>43</sup>) pertains to the Gaussian model with v=20.  As specified by Siljestam and Rueffler, each pathogen lies at a distance of 1 from every other pathogen, so the distance of any pathogen from the others is indeed much greater than 1/v.  This condition holds, however, for most of the parameter space explored by Siljestam and Rueffler (their Fig. 4), and for all of the parameter space that seemingly supports their conclusions.  Thus, if this condition indicates that “basic notions of how models are set up were broken”, they must have been broken by Siljestam and Rueffler.

      Overall, I strongly suspect that an unfortunately poor setup of the model reported in the manuscript has led to the conclusions that dispute the much better-substantiated claims made in [SD].

      The reviewer seems to be suggesting that my simulations are somehow flawed and my conclusions unreliable.  I will therefore describe how my conclusions about sensitivity to parameter values can be verified using the simulation code provided by Siljestam and Rueffler themselves, with only small, easily understood modifications.  I will consider adding this description as a supplement when I revise the manuscript.

      The starting point is the Matlab file MHC_sim_Dryad.m, available at https://doi.org/10.5061/dryad.69p8cz98j.  First, we can add a line that prints the value of the variable logcmax, which represents the natural logarithm of cmax determined and used by the code.  Below line 116 (‘prework’), add the line ‘logcmax’ (with no semicolon).

      Now, at the Matlab prompt, execute MHC_sim_Dryad(false, 8, 20, 1) to run the simulation for the Gaussian model with m=8, v=20, and K=1.  The output will indicate that logcmax=700, in accord with the theoretical factor exp(100*(m-1)) derived above.  The allelic diversity, n<sub>e</sub>, will rise to a steady state-level of about 140, as in the red curve of my Fig. 2.

      Now lower m to 7, i.e,  run MHC_sim_Dryad(false, 7, 20, 1).  The output will indicate that logcmax=600.  This confirms that lowering m by 1 causes the code to lower the value of c<sub>max</sub> by a factor exp(100)=2.7∙10<sup>43</sup>, which must also be the factor by which the condition of the most fit homozygote would increase without this adjustment.

      With the change of m to 7 and the compensatory change in c<sub>max</sub>, steady-state allelic diversity remains high.  But what if m changes but c<sub>max</sub> remains the same, as it would in reality?

      To find out, we can fix the value of c<sub>max</sub> to the value used with m=8 by adding the following line below the line previously added: ‘logcmax = 700’.  With this additional modification in place, executing MHC_sim_Dryad(false, 7, 20, 1) confirms that without a compensatory change to c<sub>max</sub>, lowering m from 8 to 7 mostly eliminates allelic diversity, in accord with the corresponding curve in my Fig. 2.  Similarly, raising m from 8 to 9, or changing v from 20 to 19.5 or 20.5 (executing MHC_sim_Dryad(false, 8, 19.5, 1) or MHC_sim_Dryad(false, 8, 20.5, 1)), largely eliminates diversity, confirming the other results in my Fig. 2.  Results for the bitstring model can also be confirmed, though this requires additional changes to the code.

      Thus, the extreme sensitivity of the results of Siljestam and Rueffler to parameter values can be verified with the code that they used for their simulations, indicating that my conclusions are not consequences of my having done a “poor setup of the model”.

      Response to Reviewer #2 (Public review):

      (1) The statement that the model outcome of Siljestam and Rueffler is very sensitive to parameter values is, in this form, not correct. The sensitivity is only visible once a strong assumption by Siljestam and Rueffler is removed. This assumption is questionable, and it is well explained in the manuscript by J. Cherry why it should not be used. This may be seen as a subtle difference, but I think it is important to pin done the exact nature of the problem (see, for example, the abstract, where this is presented in a misleading way).

      I appreciate the distinction, and the importance of clearly specifying the nature of the problem.  However, Siljestam and Rueffler do not invoke the implausible assumption that changes to the number of pathogens or their virulence will be accompanied by compensatory changes to c<sub>max</sub>.  Rather, they describe the adjustment of c<sub>max</sub> (Appendix 7) as a “helpful” standardization that applies “without loss of generality”.  Indeed, my low-diversity results could be obtained, despite such adjustment, by combining the small change to m or v with a very large change to K (e.g., a factor of 2.7∙10<sup>43</sup>).  In this sense there is no loss of generality, but the automatic adjustment of c<sub>max</sub> obscures the extreme sensitivity of the results to m and v.

      (2) The title of the study is very catchy, but it needs to be explained better in the text.

      I had hoped that the final paragraph of the Discussion would make the basis for the title clear.  I will consider whether this can be clarified in a revision.

    1. Chapter 4: Common Writing Assignments College writing assignments serve a different purpose than the typical writing assignments you completed in high school. The textbook Successful Writing explains that high school teachers generally focus on teaching you to write in a variety of modes and formats, including personal writing, expository writing, research papers, creative writing, and writing short answers and essays for exams. Over time, these assignments help you build a foundation of writing skills. In college, many instructors will expect you to already have that foundation. Your college composition courses will focus on writing for its own sake, helping you make the transition to college-level writing assignments. However, in most other college courses, writing assignments serve a different purpose. In those courses, you may use writing as one tool among many for learning how to think about a particular academic discipline. Additionally, certain assignments teach you how to meet the expectations for professional writing in a given field. Depending on the class, you might be asked to write a lab report, a case study, a literary analysis, a business plan, or an account of a personal interview. You will need to learn and follow the standard conventions for those types of written products. Finally, personal and creative writing assignments are less common in college than in high school. College courses emphasize expository writing, writing that explains or informs. Often expository writing assignments will incorporate outside research, too. Some classes will also require persuasive writing assignments in which you state and support your position on an issue. College instructors will hold you to a higher standard when it comes to supporting your ideas with reasons and evidence. Common Types of College Writing Assignments Below you will find a list of different types of writing assignments you may write as you pursue your academic goals. Review each assignment and think about the writing you’ve done in high school and how these assignments might look different in your college composition classes.   Figure 1   After reviewing Figure 1 and the descriptions of various types of writing assignments, watch the following video about the writing process. No matter what type of assignment you are writing, it will be important for you to follow a writing process: a series of steps a writer takes to complete a writing task. Making use of a writing process ensures that you stay organized and focused while allowing you to break up a larger assignment into several distinct tasks. Not every writer follows the same process, and part of the work you will do in your writing classes is to discover the writing process that works best for you. Even though the writing process is often presented as a linear set of steps that writers follow from beginning to end, composition scholars now recognize the recursive nature of writing. In other words, many writers repeat steps in the process and not all writers invest an equal amount of time in each stage. Instead, writers often loop back to individual stages as needed in order to develop and refine their work. As you watch the video below, consider your current writing process (if you have one) and reflect upon how you might develop your process to support your growth as a writer—and to save yourself time and stress when completing college writing assignments. In the previous chapters, we covered college writing at CNM and reading strateg

      The key to this is there are different types of writing assignments that has in the common writing assignments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This work computationally characterized the threat-reward learning behavior of mice in a  recent study (Akiti et al.), which had prominent individual differences. The authors  constructed a Bayes-adaptive Markov decision process model and fitted the behavioral data  by the model. The model assumed (i) hazard function starting from a prior (with free mean  and SD parameters) and updated in a Bayesian manner through experience (actually no real  threat or reward was given in the experiment), (ii) risk-sensitive evaluation of future  outcomes (calculating lower 𝛼 quantile of outcomes with free 𝛼 parameter), and (iii) heuristic  exploration bonus. The authors found that (i) brave animals had more widespread hazard  priors than timid animals and thereby quickly learned that there was in fact little real threat,  (ii) brave animals may also be less risk-aversive than timid animals in future outcome  evaluation, and (iii) the exploration bonus could explain the observed behavioral features,  including the transition of behavior from the peak to steady-state frequency of bout. Overall,  this work is a novel interesting analysis of threat-reward learning, and provides useful  insights for future experimental and theoretical work. However, there are several issues that I  think need to be addressed.

      Strengths:

      (1) This work provides a normative Bayesian account for individual differences in  braveness/timidity in reward-threat learning behavior, which complements the analysis by  Akiti et al. based on model-free threat reinforcement learning.

      (2) Specifically, the individual differences were characterized by (i) the difference in the  variance of hazard prior and potentially also (ii) the difference in the risk-sensitivity in the  evaluation of future returns.

      Weakness:

      (1) Theoretically the effect of prior is diluted over experience whereas the effect of biased  (risk-aversive) evaluation persists, but these two effects could not be teased apart in the  fitting analysis of the current data.

      (2) It is currently unclear how (whether) the proposed model corresponds to neurobiological ( rather than behavioral) findings, different from the analysis by Akiti et al.

      We thank reviewer #1 for their useful feedback which we’ve used to improve the discussion,  formatting and clarity of the paper, and for highlighting important questions for future  extensions of our work.

      Major points:

      (1) Line 219

      It was assumed that the exploration bonus was replenished at a steady rate when the animal  was at the nest. An alternative way would be assuming that the exploration bonus slowly  degraded over time or experience, and if doing so, there appears to be a possibility that the  transition of the bout rate from peak to steady-state could be at least partially explained by  such a decrease in the exploration bonus.

      Section 2.2.3 explains the mechanism of the exploration bonus which motivates approach.  We think that the mechanism suggested by the reviewer is, in essence, what is happening in  the model. The exploration pool is indeed depleted over time or bouts of experience at the  object. In the peak confident phase for brave animals and the peak cautious phase for timid  animals, the rate of depletion exceeds the rate of regeneration, since the agent spends only  a single turn at the nest between bouts. In the steady-state phase, the exploration pool has  depleted so much previously that the agent must wait multiple turns at the nest for the pool  to regenerate to a sufficiently high value to justify approaching the object again.

      We have updated section 2.2.3 to explain that agents spend one turn at the nest during peak  phase but multiple turns during steady-state phase. Hopefully, this makes our mechanism  clear:

      “In simulations, when 𝐺(𝑡) is high, the agent has a high motivation to explore the object,  spending only a single turn in the nest state between bouts. In other words, the depletion  from 𝐺0 substantially influences the time point at which approach makes a transition from  peak to steady-state; the steady-state time then depends on the dynamics of depletion  (when at the object) and replenishment (when at the nest). In particular, in the steady-state  phases, the agent must wait multiple turns at the nest for 𝐺(𝑡)  to regenerate so that  informational reward once again exceeds the potential cost of hazard.“

      (2) Line 237- (Section 2.2.6, 2.2.7, Figures 7, 9)

      I was confused by the descriptions about nCVaR. I looked at the cited original literature  Gagne & Dayan 2022, and understood that nCVaR is a risk-sensitive version of expected  future returns (equation 4) with parameter α (α-bar) (ranging from 0 to 1) representing risk  preference. Line 269-271 and Section 4.2 of the present manuscript described (in my  understanding) that α was a parameter of the model. Then, isn't it more natural to report  estimated values of α, rather than nCVaR, for individual animals in Section 2.2.6, 2.2.7,  Figures 7, 9 (even though nCVaR monotonically depends on α)? In Figures 7 and 9, nCVaR  appears to be upper-bounded to 1. The upper limit of α is 1 by definition, but I have no idea why nCVaR was also bounded by 1. So I would like to ask the authors to add more detailed  explanations on nCVaR. Currently, CVaR is explained in Lines 237-243, but actually, there is  no explanation about nCVaR rather than its formal name 'nested conditional value at risk' in  Line 237.

      Thank you for pointing out this error. We have corrected the paper to use nCVaR to refer to  the objective and nCVaR's α, or sometimes just α, to refer to the risk sensitivity parameter  and thus the degree of risk sensitivity.

      (3) Line 333 (and Abstract)

      Given that animals' behaviors could be equally well fitted by the model having both nCVaR ( free α) and hazard prior and the alternative model having only hazard prior (with α = 1), may  it be difficult to confidently claim that brave (/timid) animals had risk-neutral (/risk-aversive)  preference in addition to widespread (/low-variance) hazard prior? Then, it might be good to  somewhat weaken the corresponding expression in the Abstract (e.g., add 'potentially also'  to the result for risk sensitivity) or mention the inseparability of risk sensitivity and prior belief  pessimism (e.g., "... although risk sensitivity and prior belief pessimism could not be teased  apart").

      Thank you for this suggestion, we have duly weakened the wording in the Abstract to say  “potentially more risk neutral”:

      “Some animals begin with cautious exploration, and quickly transition to confident approach  to maximize exploration for reward; we classify them as potentially more risk neutral, and  enjoying a flexible hazard prior. By contrast, other animals only ever approach in a cautious  manner and display a form of  self-censoring; they are characterized by potential risk  aversion and high and inflexible hazard priors.”

      Reviewer #2 (Public Review):

      Shen and Dayan build a Bayes adaptive Markov decision process model with three key  components: an adaptive hazard function capturing potential predation, an intrinsic reward  function providing the urge to explore, and a conditional value at risk (CvaR, closely related  to probability distortion explanations of risk traits). The model itself is very interesting and  has many strengths including considering different sources of risk preference in generating  behavior under uncertainty. I think this model will be useful to consider for those studying  approach/avoid behaviors in dynamic contexts.

      The authors argue that the model explains behavior in a very simple and unconstrained  behavioral task in which animals are shown novel objects and retreat from them in various  manners (different body postures and patterns of motor chunks/syllables). The model itself  does capture lots of the key mouse behavioral variability (at least on average on a  mouse-by-mouse basis) which is interesting and potentially useful. However, the variables in  the model - and the internal states it implies the mice have during the behavior - are  relatively unconstrained given the wide range of explanations one can offer for the mouse  behavior in the original study (Akiti et al). This reviewer commends the authors on an original  and innovative expansion of existing models of animal behaviour, but recommends that the  authors  revise their study to reflect the obvious  challenges . I would also recommend a  reduction in claiming that this exercise gives a normative-like or at least quantitative account  of mental disorders.

      We thank reviewer #2 for highlighting some of the strengths of our paper as well as pointing  out important limitations of Akiti et al’s original study which we’ve inherited as well as some  limitations of our own method. We address their concerns below.

      We have added a paragraph to the discussion discussing the limitations of the state  representation we adopted from Akiti’s study.

      (Reviewer #1 had the same concern, see above) “Motivated by tail-behind versus  tail-exposed in Akiti et al. (2022), we model approach using a dichotomy between cautious  and confident approach states [...]”

      We have reduced the suggestion that our model provides an account of mental disorders in  the abstract.

      Before:

      “On the other hand, “timid” animals, characterized by risk aversion and high and inflexible  hazard priors, display self-censoring that leads to the sort of asymptotic maladaptive  behavior that is often associated with psychiatric illnesses such as anxiety and depression.”

      After:

      “By contrast, other animals only ever approach in a cautious manner and display a form of  self-censoring; they are characterized by potential risk aversion and high and inflexible  hazard priors. “

      My main comment is that this paper is a very nice model creation that can characterize the  heterogeneity rodent behavior in a very simple approach/avoid context (Akiti et al; when a  novel object is placed in an arena) that itself can be interpreted in a multitude of ways. The  use of terms like "exploration", "brave", etc in this context is tricky because the task does not  allow the original authors (Akiti et al) to quantify these "internal states" or "traits" with the  appropriate level of quantitative detail to say whether this model is correct or not in capturing  the internal states that result in the rodent behavior. That said, the original behavioral setup  is so simple that one could imagine capturing the behavioral variability in multiple ways ( potentially without evoking complex computations that the original authors never showed  the mouse brain performs). I would recommend reframing the paper as a new model that  proposes a set of internal states that could give rise to the behavioral heterogeneity  observed in Akiti et al, but nonetheless is at this time only a hypothesis. Furthermore, an  explanation of what would be really required to test this would be appreciated to make the  point clearer.

      We thought very hard about using terms that might be considered to be anthropomorphic  such as ‘timid’ and ‘brave’. We are, of course, aware, of the concerns articulated by  investigators such as LeDoux about this. However, we think that, provided that we are clear  on the first appearance (using ‘scare’ quotes) that we are using them as indeed labels for  latent characteristics that capture correlations in various aspects of behaviour, they are more  helpful than harmful in making our descriptions understandable.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript presents computational modelling of the behaviour of mice during  encounters with novel and familiar objects, originally reported by Akiti et al. (Neuron 110, 2022)          . Mice typically perform short bouts of approach followed by a retreat to a safe  distance, presumably to balance exploration to discover possible rewards with the potential  risk of predation. However, there is considerable heterogeneity in this exploratory behaviour,  both across time as an individual subject becomes more confident in approaching the object,  and across subjects; with some mice rapidly becoming confident to closely explore the  object, while other timid mice never become fully confident that the object is safe. The  current work aims to explain both the dynamics of adaptation of individual animals over time,  and the quantitative and qualitative differences in behaviour between subjects, by modelling  their behaviour as arising from model-based planning in a Bayes adaptive Markov Decision  Process (BAMDP) framework, in which the subjects maintain and update probabilistic  estimates of the uncertain hazard presented by the object, and rationally balance the  potential reward from exploring the object with the potential risk of predation it presents.

      In order to fit these complex models to the behaviour the authors necessarily make  substantial simplifying assumptions, including coarse-graining the exploratory behaviour into  phases quantified by a set of summary statistics related to the approach bouts of the animal.  Inter-individual variation between subjects is modelled both by differences in their prior  beliefs about the possible hazard presented by the object and by differences in their risk  preference, modelled using a conditional value at risk (CVaR) objective, which focuses the  subject's evaluation on different quantiles of the expected distribution of outcomes.  Interestingly these two conceptually different possible sources of inter-subject variation in  brave vs timid exploratory behaviour turn out not to be dissociable in the current dataset as  they can largely compensate for each other in their effects on the measured behaviour.  Nonetheless, the modelling captures a wide range of quantitative and qualitative differences  between subjects in the dynamics of how they explore the object, essentially through  differences in how subject's beliefs about the potential risk and reward presented by the  object evolve over the course of exploration, and are combined to drive behaviour.

      Exploration in the face of risk is a ubiquitous feature of the decision-making problem faced  by organisms, with strong clinical relevance, yet remains poorly understood and  under-studied, making this work a timely and welcome addition to the literature.

      Strengths:

      (1) Individual differences in exploratory behaviour are an interesting, important, and  under-studied topic.

      (2) Application of cutting-edge modelling methods to a rich behavioural dataset, successfully  accounting for diverse qualitative and qualitative features of the data in a normative  framework.

      (3) Thoughtful discussion of the results in the context of prior literature.

      Limitations:

      (1) The model-fitting approach used of coarse-graining the behaviour into phases and fitting  to their summary statistics may not be applicable to exploratory behaviours in more complex  environments where coarse-graining is less straightforward.

      (2) Some aspects of the work could be more usefully clarified within the manuscript.

      We thank reviewer #3 for their positive feedback and helping us to improve the clarity of our  paper. We have added discussion they thought was missing.

      Reviewer #1 (Recommendations for the authors):

      (1) Line 25-28

      This part of the Abstract might give an impression that timidity (but not braveness) is  potentially associated with psychiatric illness and even that timidity is thus inferior to  braveness. However, even though extreme timidity might indeed be associated with anxiety  or depression, extreme braveness could also be associated with other psychiatric or  behavioral problems. Moreover, as a population, the existence of both timid and brave  individuals could be advantageous, and it could be a reason why both types of individuals  evolutionarily survived in the case of wild animals (although Akiti et al. used mice, which may  have no or very limited genetic varieties, and so things may be different). So I would like to  encourage the authors to elaborate on the expression of this part of the Abstract and/or  enrich the related discussion in the Discussion.

      This is an important point. We note on line 38 that excessive novelty seeking (potentially  caused by excessive braveness) could also be maladaptive.

      Additionally, we have added a paragraph to the discussion discussing heterogeneity in risk  sensitivity within a population.

      “Our data show that there is substantial variation in the degrees of risk sensitivity across the  mice.  Previous works have reported substantial interpopulation and intrapopulation  differences in risk-sensitivity in humans which depend on gender, age, socioeconomic  status, personality characteristics, wealth and culture (Rieger et al., 2015; Frey et al., 2017).  Despite the normative appeal of 𝛼 = 1, it is possible that a population may benefit from  including individuals with $\alpha$ different from 1.0 or highly negative priors. For example,  more cautious individuals could learn from merely observing the risky behavior of less  cautious individuals. Furthermore, we have only considered risk-sensitivity under epistemic  uncertainty in our work. Risk averse individuals, for instance with 𝛼 < 1 may be more  successful than risk-neutral agents in environments where there are unexpected dangers ( unknown unknowns). Risk-aversion is thus a temperament of ecological and evolutionary  significance (Réale et al., 2007).”

      (2) Line 149

      Section 2.2 consists of eight subsections. I think this organization may not be very  appealing, because there are a bit too many subsections, and their relations are not  immediately clear to readers. So I would like to encourage the authors to make an  elaboration. For example, since 2.2.1 - 2.2.5 describes a summary of model construction  and model fitting whereas 2.2.6-2.2.8 shows the results, it could be good to divide these into  separate sections (2.2.1 - 2.2.5 and 2.3.1 - 2.3.3).

      Thank you for pointing this out. We’ve renumbered the sections as you’ve suggested.

      (3) Line 347-8

      Theoretically, the effect of prior is diluted over experience whereas the effect of biased  (risk-aversive) evaluation persists, as the authors mentioned in Lines 393-394. Then isn't it  possible to consider environments/conditions in which the two effects can be separated?

      We appreciate this suggestion. Indeed, our original thought in modeling this experiment was  that this would be exactly the case here - with epistemic uncertainty reducing as the object  became more familiar. However, proving to an animal that a single environment is  completely stationary/fixed is hard - reflected in our conclusion here that the exploration  bonus pool replenishes. Thus, we argued in the discussion that a series of environments  would be necessary to separate risk sensitivity from priors.

      (4) Line 407

      It would be nice to add a brief phrase explaining how (in what sense) this model's  assumption was consistent with the reported behavior. Also, should the assumption of  having two discrete approach states (cautious and confident) itself be regarded as a  limitation of the model? If the tail-behind and tail-exposure approaches were not merely  operationally categorized but were indicated to be two qualitatively distinct behaviors in the  experiment by Akiti et al., it is reasonable to model them as two discrete states, but  otherwise, the assumption of two discrete states would need to be mentioned as a  simplification/limitation.

      We have now removed line 407, and now have an additional  paragraph in the discussion  discussing the limitations of the tail-behind and tail-exposure state representation: “Motivated by tail-behind versus tail-exposed in Akiti et al. (2022), we model approach using  a dichotomy between cautious and confident approach states. This is likely a crude  approximation to the continuous and multifaceted nature of animal approach behavior. For  example, during approach animals likely adjust their levels of vigilance continuously (or  discretely; Lloyd and Dayan (2018)) to  monitor threat, and choose different velocities for  movement, and different attentional strategies for inspecting the novel object. We hope  future works will model these additional behavioral complexities, perhaps with additional  internal states, and corroborate these states with neurobiological data.”

      (5) Line 418

      The authors contrasted their model-based analyses with the model-free analyses of Akiti et  al. Another aspect of differences between the authors' model and the model of Akiti et al. is  whether it is normative or mechanistic: while how the model of Akiti et al. can be biologically  implemented appears to be clear (TS dopamine represents threat TD error, and TS  dopamine-dependent cortico-striatal plasticity implements TD error-based update of  model-free threat prediction), biological implementation of the authors' model seems more  elusive. Given this, it might be a fruitful direction to explore how these two models can be  integrated in the future.

      We enthusiastically agree that it would be most interesting in the future to explore the  integration of the two models - and, in the discussion ( Lines 537-548, 454-461) , point to  some first steps that might be fruitful along these lines. There are two separate  considerations here: one is that our account is mostly computational and algorithmic,  whereas Akiti’s model is mostly algorithmic and implementational; the second is, as noted by  the reviewer, that our account is model-based, whereas Akiti’s model is model-free (in the  sense of reinforcement learning; RL). These are related - thanks in no small part to the work  from the group including Akiti, we know a lot more about the implementation of model-free  than model-based RL. However, our model-based account does reach additional features of  behavior not captured in Akiti et al.’s model such as bout duration, frequency, and approach  type. Thus, the temptation of unification.

      (6) Line 426

      Related to the previous point, it would be nice to more specifically describe what variable TS  dopamine can represent in the authors' model if possible.

      In the discussion  (Lines 454-461) , we speculate that  TS dopamine could still respond to the  physical salience of the novel object and affect choices by determining the potential cost of  the encountered threat or the prior on the hazard function. For example, perhaps ablating TS  dopamine reduces the hazard priors which leads to faster transition from cautious to  confident approach and longer bout durations, consistent with the optogenetics behavioral  data reported in Akiti et al.

      Reviewer #2 (Recommendations for the authors):

      My guess is simpler versions of the model would not fit the data well. But this does not mean  for example that the mice have probability distortions (CvaR) or that even probabilistic  reasoning and the internal models necessary to support them are acting in the behavioral  context studied by Akiti. So related to the above, I would ask what other models would fit and  would not fit the data? And what does this mean?

      These are good points. Our model provides an approximately normative account of the  animals’ behavior  in terms of what it achieves relative to a utility function. In practice, the  animals could deploy a precompiled model-free policy (which does not rely on probabilistic  computations) that is exactly equivalent to our model-based policy. With the current  experiment, we cannot conclude whether or not the animals are performing the prospective  calculations in an online manner. Of course, the extent to which animals or humans are  performing probabilistic computations online and have internal models are on-going  questions of study.

      Model comparison is difficult because currently we do not know of any other risk-sensitive  exploration models. We cannot directly compare to the model in Akiti et al. since our model  explains additional features of behavior: bout duration, frequency, and approach type.  Indeed, our model is as simple as it can be in the sense with the exception of nCVaR,  removing any of the other parameters makes it difficult to fit some animals in our dataset. In the future, our model could be used to fit other datasets of risk-sensitive exploration and,  ideally,  be compared to other models.

      Explaining why animals avoid the novel object in what the offers call benign environment is a  very tricky issue. In Akiti et al, the readers are not yet convinced that the mice know that this  environment is benign. Being placed in an arena with a novel object presents mice with a  great uncertainty and we do not know whether they treat this as benign. Therefore, the  alternative explanations in this study need to be carefully discussed in lieu of the limitations  of the initial study.

      It is certainly true that it is unclear if the arena is  completely  benign to the animals. However,  the amount of time the animal spends in the center of the arena decreases significantly from  habituation to novelty days. This suggests that the animals avoid the novel object largely  because of the object itself, rather than the potential danger associated with the arena.  Furthermore, the animals are not reported as exhibiting more extreme behaviours such as  freezing. In any case, our account is relative in the sense that we are comparing the time the  animal spends at the object versus elsewhere in the environment, driven by the relative  novelty and relative risk of the environment versus the object. Trying to get more absolute  measures of these quantities would require a richer experimental set-up, for instance with  different degree of habituation or experience of the occurrence of (other) novel objects, in  general.

      We added a short note to the discussion to explain this:

      “Fourth, we modeled the relative amount of time the animal spends at the object versus  elsewhere in the environment which depends on the differential risk in the two states.  However, it is likely the animals avoid the novel object largely because of the object itself,  rather than the potential danger associated with the arena since they spend much less time  at the center of the arena during novelty than habituation days.”

      Figure 2 - how confident are the authors that each mouse differs from y=1? Related to this,  the behavior in Akiti is very noisy and changes across time. I am not sure if the authors fully  describe at what levels their model captures the behavior vs not in a detailed enough  fashion.

      We have performed a random permutation test on the minute-to-minute data. We have  updated Figure 2 so that brave animals that pass the Benjamini–Hochberg procedure y>1 at  level q=0.05 are represented with solid green dots and animals that don’t pass are  represented with hollow dots. 8 out of 11 brave animals passed Benjamini–Hochberg.

      Reviewer #3 (Recommendations for the authors):

      (1) I could not find information in the preprint about code availability. Please consider making  the code public to help others apply these modelling methods.

      We have released code and included the url in the paper in the Methods section.

      (2) Though the manuscript was generally clearly written, there were a number of places  where some additional information or clarification would be useful:

      a) Please define and explain the terms 'tail-behind' and 'tail-exposed' (used to describe  approach bout types) when first used.

      We have added definitions when we first mention these terms:

      “[...] 'tail-behind' (bouts where the animal's nose was closer to the object than the tail for the  entire bout) and 'tail-exposed' (bouts where the animal's tail is closer to the object than the  nose at some point during the bout), associated respectively with cautious risk-assessment  and engagement”

      b) At lines 57-58 when contrasting the 'model-free' account of Akiti et al with the 'model-based' account of the current work, it would be worth clarifying that these terms are  being used in the RL sense rather than e.g. a model-based analysis of the data.  

      We have updated the relevant lines to say “model-free/based reinforcement learning”.

      c) Line 61, the phrase 'the significant long-run approach of timid animals despite having  reached the "avoid" state' is unclear as the 'avoid' state has not been defined.

      We updated the terminology to “avoidance behavior” to be consistent with Akiti et al.  Avoidance refers to the animal routinely avoiding the object and therefore being unable to  learn whether it is safe.

      d) It was not completely clear to me how the coarse-graining of the behaviour was  implemented. Specifically, how were animals assigned to the brave, intermediate, or timid  group, and how were the parameters of the resulting behavioural phases fit?

      Sorry that this was not clear. Section 2.1 explains how the minute-to-minute behavioral data  was coarse-grained and how animal groups were assigned. We have added further  explanation of Figure 2 to the main text:

      “Fig 2 summarizes our categorization of the animals into the three groups: brave,  intermediate, and timid based on the phases identified in the animal's exploratory  trajectories. Timid animals spend no time in confident approach and are plotted in orange at  the origin of Fig 2. Brave animals differ from intermediate animals in that their approach time  during the first ten minutes of the confident phase is greater than the last ten minutes ( steady-state phase). Brave animals are plotted in green above and intermediate animals  are plotted in black below the y=1 line in Fig 2.”

      We also added extra information to outline the goal, and methodology of coarse-graining and  animal grouping:

      “We sought to capture  these qualitative differences (cautious versus confident) as well as  aspects of the quantitative changes in bout durations and frequencies as the animal learns  about their environment. To make this readily possible, we abstracted the data in two ways:

      averaging  bout statistics over time, and clustering the animals into three groups with  operationally distinct behaviors.”

      e) What purpose does the 'retreat' state serve in the BAMDP model (as opposed to  transitioning directly from 'object' to 'nest' states), and why do subjects not pass through it  following 'detect' states?

      Thank you for pointing this out. We have updated Figure 3 to note that the two “detected  states” also point to the “retreat” state. The reviewer is correct that there could be alternative  versions of the state diagram, and the ‘retreat’ state could indeed have been eliminated.  However, we thought that it was helpful to structure the animal’s progress through state  space.

      f) Why was the hazard function parameterised via the mean and SD at each time step rather  than with a parametric form of the mean and SD as a function of time?

      Since the agent can only spend 2, 3, or 4 turns at the object states, we didn’t see a need to  parameterize the mean and SD as a function of time. Doing so is a good solution to scaling  up the hazard function to more time-steps.

      (3) There were also a couple of points that could potentially be usefully touched on in the  discussion:

      a) What, if any, is the relationship between the CVaR objective and distributional RL? They  seem potentially related due to both focussing on quantiles of the outcome distribution.

      We have added a paragraph to the discussion discussing the connection between  distributional RL and CVaR:

      “CVaR is known to come in different flavors in the case of temporally-extended behavior.  Gagne and Dayan (2021) introduces two alternative time-consistent formulations of CVaR:  nested CVaR (nCVaR) and precommitted CVaR (pCVaR). nCVaR and pCVaR both enjoy  Bellman equations which make it possible to compute approximately optimal policies without  directly computing whole distributions of the outcomes. We use nCVaR in this study for its  computational efficiency. There is, of course, great current interest in distributional  reinforcement learning (Bellemare et al., 2023b) which does acquire such whole  distributions, not the least because of prominent observations linking non-linearities in the  response functions of dopamine neurons to methods for learning distributions of outcomes ( Dabney et al., 2020; Masset et al., 2023; Sousa et al., 2023). One functional motivation for  considering entire outcome distributions is the possibility of using them to determine  risk-sensitive policies (Gagne and Dayan, 2021).

      While it is possible to compute CVaR directly from return distributions, Gagne and Dayan  (2021) showed that this can lead to temporally inconsistent policies where the agent  deviates from its original plans (the authors called this the fixed CVaR or fCVaR measure).

      Rather further removed from our model-based methods is work from Antonov and Dayan  (2023), who consider a model-free exploration strategy which exploits full return distributions  to compute the value of perfect information which is used as a heuristic for trying actions  with uncertain consequences. Future works can examine risk-sensitive versions of Antonov  and Dayan (2023)'s computationally efficient model-free algorithm as one solution to the  burdensome computations in our model-based method.”

      b) Why normatively might subjects have non-neutral risk preference as captured by the  CvaR?

      We also added a paragraph to the discussion discussing the advantage of heterogeneity in  risk sensitivity within a population:

      (Reviewer #1 had the same question, see above) “Our data show that there is substantial  variation in the degrees of risk sensitivity across the mice.  Previous works have reported  substantial interpopulation and intrapopulation differences in risk-sensitivity in humans which  depend on gender, age, socioeconomic status, personality characteristics, wealth and culture [...]”

      c) Relevance of the current modelling work to clinical conditions characterised by  dysregulation of risk assesment (e.g. anxiety or PTSD).

      We’ve added a paragraph to the discussion:

      “Inter-individual differences in risk sensitivity are also of critical importance in psychiatry,  reflected in a panoply of anxiety disorders (Butler and Mathews, 1983; Giorgetta et al., 2012;  Maner et al., 2007; Charpentier et al., 2017), along with worry and rumination (Gagne and  Dayan, 2022). Understanding the spectrum of   extreme priors and extreme values of 𝛼  could have therapeutic implications, adding significance to the search for tasks that can  more cleanly separate them.”

      d) Is it surprising to see differences in risk preference (nCVaR) between the familiar object  and novel object condition, given that risk preference might be conceptualised as a trait  rather than a state variable?

      Thank you for raising this point. You are right that we expected risk sensitivity (nCVaR alpha)  to be the same between FONC and UONC animals on average. It is difficult to know if alpha  is higher for FONC than UONC animals due to the non-identifiability between alpha and  hazard priors. We have added this discussion to the paper:

      “This is surprising if we interpret 𝛼 as a trait that is stable through time. Unfortunately, due to  the non-identifiability between 𝛼 and hazard priors, we cannot verify whether 𝛼 is actually  higher for FONC animals than UONC animals.”

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The study is methodologically solid and introduces a compelling regulatory model. However, several mechanistic aspects and interpretations require clarification or additional experimental support to strengthen the conclusions.

      Strengths:

      (1) The manuscript presents a compelling structural and biochemical analysis of human glutamine synthetase, offering novel insights into product-induced filamentation.

      (2) The combination of cryo-EM, mutational analysis, and molecular dynamics provides a multifaceted view of filament assembly and enzyme regulation.

      (3) The contrast between human and E. coli GS filamentation mechanisms highlights a potentially unique mode of metabolic feedback in higher organisms.

      Weaknesses:

      (1) The mechanism underlying spontaneous di-decamer formation in the absence of glutamine is insufficiently explored and lacks quantitative biophysical validation.

      (2) Claims of decamer-only behavior in mutants rely solely on negative-stain EM and are not supported by orthogonal solution-based methods.

      We thank the reviewer for the summary and noting of the strengths. We agree that the evolutionary divergence of metabolic feedback in GS homologs is a fruitful avenue for future studies. With regard to the weaknesses, the di-decamer in the absence of glutamine only forms under high (higher than physiological) concentrations of enzyme. Our primary evidence for the mutant behavior was the lack of crosslinking (Figure 1E), with supplementary support from the negative stain. In the revised version we will soften the language to say “reduced” rather than “did not support” filament formation.

      Reviewer #2 (Public review):

      The authors set out to resolve the high-resolution structure of a glutamine synthetase (GS) decamer using cryo-EM, investigate glutamine binding at the decamer interface, and validate structural observations through biochemical assays of ATP hydrolysis linked to enzyme activity. Their work sits at the intersection of structural and functional biology, aiming to bridge atomic-level details with biological mechanisms - a goal with clear relevance to researchers studying enzyme catalysis and metabolic regulation.

      Strengths and weaknesses of methods and results:

      A key strength of the study lies in its use of cryo-EM, a technique well-suited for resolving large, dynamic macromolecular complexes like the GS decamer. The reported resolutions (down to 2.15 Å) initially suggest the potential for detailed structural insights, such as side-chain interactions and ligand density. However, several methodological limitations significantly undermine the reliability of the results:

      (1) Cryo-EM data processing: The absence of critical details about B-factor sharpening - a standard step to enhance map interpretability - is a major concern. For high-resolution maps (<3 Å), sharpening is typically applied to resolve side-chain features, yet the submitted maps (e.g., those in Figures 1D, 2D, and supplementary figures) appear unprocessed, with density quality inconsistent with the claimed resolutions. This makes it difficult to evaluate whether observed features (e.g., glutamine binding) are genuine or artifacts of unsharpened data.

      (2) Modeling and density consistency: The structural models, particularly for glutamine binding at the decamer interface, do not align with the reported resolution. The maps shown in Figure 2D and Supplementary Figure S7 lack sufficient density to confidently place glutamine or even surrounding residues, conflicting with claims of 2.15 Å resolution. Additionally, fitting a non-symmetric ligand (glutamine) into a symmetry-refined map requires justification, as symmetry constraints may distort ligand placement.

      (3) Biochemical assay controls: While the enzyme activity assays aim to link structure to function, they lack essential controls (e.g., blank reactions without GS or substrates, substrate omission tests) to confirm that ATP hydrolysis is GS-dependent. The use of TCEP, a reducing agent, is also not paired with experiments to rule out unintended effects on the PK/LDH system, further limiting confidence in activity measurements.

      Achievement of aims and support for conclusions:

      The study falls short of convincingly achieving its goals. The claimed high-resolution structural details (e.g., side-chain densities, ligand binding) are not supported by the provided maps, which lack sharpening and show inconsistencies in density quality. Similarly, the biochemical data do not robustly validate the structural claims due to missing controls. As a result, the evidence is insufficient to confirm glutamine binding at the decamer interface or the functional relevance of the observed structural features.

      Likely impact and utility:

      If these methodological gaps are addressed, the work could make a meaningful contribution to the field. A well-resolved GS decamer structure would advance understanding of enzyme assembly and ligand recognition, while validated biochemical assays would strengthen the link between structure and function. Improved data processing and clearer reporting of validation steps would also make the structural data more reliable for the community, providing a resource for future studies on GS or related enzymes.

      We disagree with the reviewer’s overall assessment.

      With regard to sharpening and resolution: we examined sharpened maps and in a revised version will present additional supplementary figures showing these maps side by side. We note that the resolutions reported are global and that the most interesting features are, of course, in the periphery and subject to conformational and compositional heterogeneity. We will include supplementary figures of core side chain densities that are more like what are expected by the reviewer in the revision. 

      With regard to modeling: the apo filament and turnover filament datasets were handled nearly identically. The additional density is therefore likely not artefactual to the symmetry operator - however, the lower resolution in this region noted by the reviewer is worthy of further exploration. The maps are public and we think this is the most plausible interpretation of the density, which we based primarily on the biochemical data and will include more speculation in the version.

      With regard to the biochemical controls: we point the reviewer to Figure S1, which shows that omission of ammonia or glutamate in the wild-type (tagless) system removes any coupling of the reactions. We will perform the additional controls to publication quality in the revised version along with the TCEP control. We note that the reducing agent is present across all experiments, ruling out an effect on any specific result. The inclusion of TCEP is also very standard in other published uses of the Coupled ATPase assay (e.g. PMID: 31778111 and PMID: 32483380 by our first author)

      Additional context:

      Cryo-EM has transformed structural biology by enabling high-resolution analysis of large complexes, but its success hinges on rigorous data processing and validation steps that are critical to ensuring reproducibility. The challenges highlighted here are not unique to this study; they reflect broader issues in the field where incomplete reporting of methods can obscure the reliability of results. By addressing these points, the authors would not only strengthen their current work but also set a positive example for transparent and rigorous structural biology research.

      All the data is public and the reviewer or anyone is free to reinterpret the maps and models - and we encourage that rather than just an interpretation of our static figures. In addition, we will upload the raw micrograph data for the apo filament and turnover filament datasets to EMPIAR prior to submitting the revision.

      Reviewer #3 (Public review):

      In this manuscript, the authors propose a product-dependent negative-feedback mechanism of human glutamine synthetase, whereby the product glutamine facilitates filament formation, leading to reduced catalytic specificity for ammonia. Using time-resolved cryo-EM, the authors demonstrate filament formation under product-rich conditions. Multiple high-quality structures, including decameric and di-decameric assemblies, were resolved under different biochemical states and combined with MD simulations, revealing that the conformational space of the active site loop is critical for the GS catalysis. The study also includes extensive steady-state kinetic assays, supporting the view that glutamine regulates GS assembly and its catalytic activity. Overall, this is a detailed and comprehensive study. However, I would advise that a few points be addressed and clarified.

      (1) In Figure 2D and Supplementary Figure 7, the extra density observed between the two decamers does not appear to have the defining features of a glutamine. A less defined density may be expected given the nature of the complex, but even though mutagenesis assays were performed to support this assignment, none of these results constitutes direct and conclusive evidence for glutamine binding at this site. I would thus suggest showing the density maps at multiple contour thresholds to allow readers to also better evaluate the various small molecules under turnover conditions that cannot be well fitted based on this density map, helping to provide a more balanced interpretation of the results.

      (2) On the same point regarding the density for the enzyme under turnover conditions, more details should be provided about the symmetry expansion and classification performed, and also show the approximate ratio of reconstructions that include this density. Did you try symmetry expansion followed by focused classification, especially on the interface region?

      (3) The interface between the two decamers of the model needs to be double-checked and reassigned, especially for the residues surrounding the fitted glutamine. For example, the side chain of the Lys residue shown in the attached figure is most likely modeled incorrectly.

      We thank the reviewer for the feedback. As noted above, we will include supplemental figures that show maps at multiple thresholds and sharpening schemes. We noted in the manuscript and above that our interpretation here is based on integrating biochemical evidence alongside the density and will make that even more clear in the revised manuscript. The filaments +/- the putative glutamine density were processed nearly identically, but we will attempt various schemes of focused classification/symmetry expansion in the revision as well. However, we point out that there is extensive averaging there that makes modeling a bit trickier than expected given the global resolution.

    1. Praising students for merely meeting expectations may reduce student behavior over time as it “cheapens” your praise.

      This is something I agree with wholeheartedly. And I think it is because I see this in my job, we have an "Employee of the Quarter" program and it sounds wonderful on the surface level but the unfortunate reality is that every single person will eventually get this award even if they don't deserve it. This will cause employees to think "Oh I can get this extra special recognition and this award just for being here/doing below the bare minimum/doing the bare minimum,,."

    1. Group G Ben Braniff, Kim Maynard, Nick Devic, Maria Echeverri Solis, Sam Yalda

      1. Design has a major impact on the world and society. Even the little things can add up to a lot. Sustainability is a revolutionary Idea that should be at the core of every design now.

      2. Society is another bottom line meaning all design inherently affects humans and/or is designed for humans. It's important to design for the extremes and the edge cases like people with disabilities.

      3. Corporations output a lot of waste. When they make small changes to be more sustainable, it results in big changes and saving a lot of material. Small changes can include anything from using 2% less plastic per water bottle to using wood buttons instead of plastic ones.

      4. A lot of people don't consider themselves disabled, but it's very common at some point in people's lives to have a certain level of impairment. It's important to keep this in mind when designing as you're designing for the general population--not just a specific individual.

      5. Addressing issues like world hunger may require rethinking the way we design food production. As they stated for example, choosing kangaroo meat over beef as a more environmentally sustainable option.

      6. Thoughtful design choices per the example in the video such as adding white circles inside letters to reduce ink use, can improve efficiency and conserve resources.

      7. It is interesting how he opens up his discussion to slowly introduce that design isn't just about doing it for marketing or 'profit' as he pointed out. When watching this it helps a person realize that design is so much more powerful than that if you put it towards another cause. Design could end up being the solution to some of the biggest problems in society.

      8. A very important point he made was that improving accessibility is beneficial to many more people than just the people that initially needed it such as people with disabilities. From this i think a good takeaway is that design should always be considerate of any disabilities/needs that the audience might have because sometimes that design is just better for everyone in general.

      9. My first take is design should go beyond money and aesthetics. By thinking about sustainability and accessibility the designers can create solutions that are socially responsible and environmentally friendly.

      10. My second take is when you design with people with disabilities you end up with solutions that are more usable and inclusive

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work aims to elucidate the molecular mechanisms affected in hypoxic conditions, causing reduced cortical interneuron migration. They use human assembloids as a migratory assay of subpallial interneurons into cortical organoids and show substantially reduced migration upon 24 hours of hypoxia. Bulk and scRNA-seq show adrenomedullin (ADM) up-regulation, as well as its receptor RAMP2, confirmed atthe protein level. Adding ADM to the culture medium after hypoxic conditions rescues the migration deficits, even though the subtype of interneurons affected is not examined. However, the authors demonstrate very clearly that ineffective ADM does not rescue the phenotype, and blocking RAMP2 also interferes with the rescue. The authors are also applauded for using 4 different cell lines and using human fetal cortex slices as an independent method to explore the DLXi1/2GFP-labelled iPSC-derived interneuron migration in this substrate with and without ADM addition (after confirming that also in this system ADM is up-regulated). Finally, the authors demonstrate PKA-CREB signalling mediating the effect of ADM addition, which also leads to up-regulation of GABAreceptors. Taken together, this is a very carefully done study on an important subject - how hypoxia affects cortical interneuron migration. In my view, the study is of great interest.

      Strengths:

      The strengths of the study are the novelty and the thorough work using several culture methods and 4 independent lines.

      Weaknesses:

      The main weakness is that other genes regulated upon hypoxia are not confirmed, such that readers will not know until which fold change/stats cut-off data are reliable.

      Reviewer #2 (Public review):

      Summary

      The manuscript by Puno and colleagues investigates the impact of hypoxia on cortical interneuron migration and downstream signaling pathways. They establish two models to test hypoxia, cortical forebrain assembloids, and primary human fetal brain tissue. Both of these models provide a robust assay for interneuron migration. In addition, they find that ADM signaling mediates the migration deficits and rescue using exogenous ADM.

      Strengths:

      The findings are novel and very interesting to the neurodevelopmental field, revealing new insights into how cortical interneurons migrate and as well, establishing exciting models for future studies. The authors use sufficient iPSC lines including both XX and XY, so the analysis is robust. In addition, the RNAseq data with re-oxygenation is a nice control to see what genes are changed specifically due to hypoxia. Further, the overall level of validation of the sequencing data and involvement of ADM signaling is convincing, including the validation of ADM at the protein level. Overall, this is a very nice manuscript.

      Weaknesses:

      I have a few comments and suggestions for the authors. See below.

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to test whether hypoxia disrupts the migration of human cortical interneurons, a process long suspected to underlie brain injury in preterm infants but previously inaccessible for direct study. Using human forebrain assembloids and ex vivo developing brain tissue, they visualized and quantified interneuron migration under hypoxic conditions, identified molecular components of the response, and explored the effect of pharmacological intervention (specifically ADM) on restoring the migration deficits.

      Strengths:

      The major strength of this study lies in its use of human forebrain assembloids and ex vivo prenatal brain tissue, which provide a direct system to study interneuron migration under hypoxic conditions. The authors combine multiple approaches: long-term live imaging to directly visualize interneuron migration, bulk and single-cell transcriptomics to identify hypoxia-induced molecular responses, pharmacological rescue experiments with ADM to establish therapeutic potential, and mechanistic assays implicating the cAMP/PKA/pCREB pathway and GABA receptor expression in mediating the effect. Together, this rigorous and multifaceted strategy convincingly demonstrates that hypoxia disrupts interneuron migration and that ADM can restore this defect through defined molecular mechanisms.

      Overall, the authors achieve their stated aims, and the results strongly support their  conclusions. The work has a significant impact by providing the first direct evidence of hypoxia-induced interneuron migration deficits in the human context, while also nominating a candidate therapeutic avenue. Beyond the specific findings, the methodological platform - particularly the combination of assembloids and live imaging - will be broadly useful to the community for probing neurodevelopmental processes in health and disease.

      Weaknesses:

      The main weakness of the study lies in the extent to which forebrain assembloids

      recapitulate in vivo conditions, as the migration of interneurons from hSO to hCO does not fully reflect the native environment or migratory context of these cells. Nevertheless, this limitation is tempered by the fact that the work provides the first direct observation of human interneuron migration under hypoxia, representing a major advance for the field. In addition, while the transcriptomic analyses are valuable and highlight promising candidates, more in-depth exploration will be needed to fully elucidate the molecular mechanisms governing neuronal migration and maturation under hypoxic conditions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should examine if all cortical interneurons are affected by ADM or only subtypes (Parvalbumin/Somatostatin).

      We thank the reviewer for raising this important question. In our study, we utilized the Dlx1/2b::eGFP reporter to broadly label cortical interneurons; however, this system does not distinguish specific interneuron subtypes. To address this, in the revised version of the manuscript we will use the single-cell RNA sequencing data and immunostainings to provide this information. Based on previous analyses from Birey et al (Cell Stem Cell, 2022), we expect interneurons within assembloids to express mostly calbindin (CALB2) and somatostatin (SST) at this in vitro stage of development; parvalbumin subtype appears later based on data from Birey et al (Nature, 2017) and more recently from Varela et al, (bioRxiv, 2025).

      In parallel, we will analyze available scRNA-seq data from developing human primary brain tissue a similar age as the one used in the manuscript, and check whether these subtypes of interneurons are similar to the ones within assembloids.

      (2) The authors should test more candidates from their bulk RNA-seq data with different fold changes for regulation after hypoxia, to allow the reader to judge at which cut-off the DEGs may be reproducible. This would make this database much more valuable for the field of hypoxia research.

      We appreciate the reviewers’ thoughtful suggestion. In addition to the bulk RNA-seq analysis, we did validate several upregulated hypoxia-responsive genes with varying fold changes by qPCR; these include PDK1, PFKP, VEGFA (Figure S1). 

      We go agree that in-depth investigation of specific cut-offs would be interesting, however, this could be the focus of a different manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) Can the authors comment on the possibility of inflammatory response pathways being activated by hypoxia? Has this been shown before? While not the focus of the manuscript, it could be discussed in the Discussion as an interesting finding and potential involvement of other cells in the Hypoxic response.

      We thank the reviewer this important comment about inflammation. Indeed, hypoxia has been shown to activate the inflammatory response pathways. In various studies, it was found that HIF-1a can interact with NF-κB signaling, leading to the upregulation of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α (Rius et al., Cell, 2008; Hagberg et al., Nat Rev Neurol, 2015).

      In our transcriptomics data (Figure 2D), and to the reviewers’ point, we identified enrichment of inflammatory signaling response following the hypoxic exposure. Since hSO at the time of analyses do contain astrocytes, we think these glia contribute to the observed pro-inflammatory changes. Based on these results and because ADM is known to have strong anti-inflammatory properties, the effects of ADM on hypoxic astrocytes should be investigated in future studies focused on hypoxia-induced inflammation. In the revision, we will address this comment in the discussion section and cite the appropriate papers.

      (2) Could the authors comment on the mechanism at play here with respect to ADM and binding to RAMP2 receptors - is this a potential autocrine loop, or is the source of ADM from other cell types besides inhibitory neurons? Given the scRNA-seq data, what cell-to-cell mechanisms can be at play? Since different cells express ADM, there could be different mechanisms in place in ventral vs dorsal areas.

      Based on our scRNA-seq data in hSOs showing significant upregulation of ADM expression in astrocytes and progenitors, we speculate that the primary mechanism is likely to involve paracrine interactions. However, we cannot exclude autocrine mechanisms with the included experiments. Dissecting these interactions in a cell-type specific manner could be an important focus for future ADM-related studies.

      To address the question about the possible different mechanisms in ventral versus dorsal areas, in the revision we will plot and include in the figures the data about the cell-type expression of ADM and its receptors in hCOs.

      (3) For data from Figure 6 - while the ELISA assays are informative to determine which pathways (PKA, AKT, ERK) are active, there is no positive control to indicate these assays are "working" - therefore, if possible, western blot analysis from assembloid tissue could be used (perhaps using the same lysates from Figure 3) as an alternative to validate changes at the protein level (however, this might prove difficult); further to this, is P-CREB activated at the protein level using WB?

      We thank the reviewer for this comment and the observation. Although we did not include a traditional positive control in these ELISA assays, several lines of evidence indicate that the measurements are reliable. First, the standard curves behaved as expected, and all sample values fell within the assay’s dynamic range. Second, technical replicates showed low variability, and the observed changes across experimental conditions (e.g., hypoxia vs. control) were consistent with the expected biological responses based on previous literature. We agree that including western blot validation would strengthen the findings, and we will note this for our future studies focused on CREB and ADM.

      (4) Could the authors comment further on the mechanism and what biological pathways and potential events are downstream of ADM binding to RAMP2 in inhibitory neurons? What functional impact would this have linked to the CREB pathway proposed? While the link to GABA receptors is proposed, CREB has many targets beyond this.

      We appreciate the reviewers’ insightful question. Currently, not much is known about the molecular pathways and downstream cellular events triggered by ADM binding to RAMP2 in inhibitory neurons, and in general in brain cells. The data from our study brings the first information about the cell-type specific expression of ADM in baseline and hypoxic conditions and is one of the key novelties of our study.

      While the signaling landscape of ADM in interneurons is largely unexplored, several studies in other (non-brain) cell types have demonstrated that ADM binding to RAMP2 can activate downstream cascades such as the cAMP/PKA/CREB pathway, PI3K/AKT, and ERK/MAPK, all of which are also known to be critical regulators of neuronal development and survival. These previously published data along with our CREB-targeted findings in hypoxic interneurons, suggest ADM–RAMP2 signaling could influence multiple aspects of interneuron biology, but these remain to be evaluated in future studies.

      We agree with the reviewer that CREB has a wide range of transcriptional targets. We decided to focus on GABA as a target of CREB for two main reasons, including: (i) GABA signaling has been previously shown to play an important role in the migration of cortical interneurons, and (ii) a previous study by Birey et al. (Cell Stem Cell, 2022) demonstrated that CREB pathway activity is essential for regulating interneuron migration in assembloid models of Timothy Syndrom, thus further providing evidence that dysregulation of CREB activity disrupts migration dynamics.

      While our study provides a first step toward uncovering the mechanisms of interneuron migration protection by ADM, we fully acknowledge that future work will be needed to delineate the full spectrum of ADM–RAMP2 downstream signaling events in inhibitory neurons and other brain cells.

      (5) Does hypoxia cause any changes to inhibitory neurogenesis (earlier stages than migration?) - this might always be known, but was not discussed.

      We appreciate this question from the reviewer; however, this was not something that we focused on in this manuscript due to the already large amount of data included. A separate study focusing on neurogenesis defects and the molecular mechanisms of injury for that specific developmental process would be an important next step.

      (6) In the Discussion section, it might be worth detailing to the readers what the functional impact of delayed/reduced migration of inhibitory neurons into the cortex might result in, in terms of functional consequences for neural circuit development.

      We thank the Reviewer for the suggestion of detailing the functional impact of reduced inhibitory neuron migration. We will revise the manuscript by incorporating a paragraph about this in the Discussion section.

      Reviewer #3 (Recommendations for the authors):

      Most of the evidence presented is convincing in supporting the conclusions, and I have only minor suggestions for improvement:

      (1) The bulk RNA-seq was performed in hSOs only, which may not fully capture the phenotypes of migrating or migrated interneurons. It would be valuable, if feasible, to sort migrated cells from hSO-hCO assembloids and specifically examine their molecular mediators.

      We thank the reviewer for this suggestion. While it is likely that the cellular environment will have some influence on a subset of the molecular changes, based on all the data from the manuscript and our specific target, the RNA-sequencing on hCOs was sufficient to capture essential changes like ADM upregulation. The in-depth exploration on differential responses of migrated versus non-migrated interneurons to hypoxia could be the focus of a different project.

      (2) In Figure 3, it is striking that cell-type heterogeneity dominates over hypoxia vs. control conditions. A joint embedding of hSO and hCO cells could provide further insight into molecular differences between migrated and non-migrated interneurons.

      We thank the reviewer for this observation and opportunity to clarify. Since we manually separated the assembloids before the analyses, we processed these samples separately. That is why they separate like this. In the revision, we will add data about ADM expression and its receptors’ expression in the hCOs.

      (3) It would be helpful to expand the discussion on how closely the migration observed in hSO-hCO assembloids reflects in vivo conditions, and what environmental aspects are absent from this model. This would better frame the interpretation and translational relevance of the findings.

      We thank the Reviewer for bringing up this important point. Although the assembloid model offers the unique advantage of allowing the direct investigation of migration patterns of hypoxic interneurons, we fully agree it does not fully recapitulate the in vivo environment. While there are multiple aspects that cannot be recapitulated in vitro at this time (e.g. cellular complexity, vasculature, immune response, etc), we are encouraged by the validation of our main findings in ex vivo developing human brain tissue, which strongly supports the validity of our findings for in vivo conditions.

      We will expand our discussion to include more details and the need to validate these findings using in vivo models, while also acknowledging that different species (e.g. rodents versus non-human primates versus humans) might have different responses to hypoxia.

      (4) The authors suggest that hypoxia is also associated with delayed interneuron maturation, yet the bulk RNA-seq data primarily reveal stress and hypoxia-related genes. A more detailed discussion of why genes linked to interneuron maturation and function were not strongly affected would clarify this point.

      We thank the Reviewer for the opportunity to clarify.

      The RNAseq data was performed during the acute stages of hypoxia/reoxygenation and we think a maturation phenotype might be difficult to capture at this point and would require analysis at later in vitro assembloid maturation stages.

      Our speculation about a possible maturation defect is based on data from previous studies from developmental biology that showed failure of interneurons to reach their final cortical location within a specified developmental window will impair their integration within the neuronal network, and thus lead to maturation defects and possible elimination by apoptosis.

      Since preterm infants suffer from countless hypoxic events over multiple months, we suggest these repetitive events are likely to induce cumulative delays in migration, inability of interneurons to reach their target in time, followed by abnormal integration within the excitatory network, and eventual elimination of some of these interneurons through apoptosis. However, the direct demonstration of this effect following a hypoxic insult would require prolonged in vivo experiments in rodents to follow the migration, network integration and apoptosis of interneurons; to our knowledge this experimental design is not technically feasible at this time.

      (5) Relatedly, while the focus on interneuron migration is well justified, acknowledging how hypoxia might also impact other aspects of cortical development (e.g., progenitor proliferation, neuronal maturation, or circuit integration) would place the findings in a broader developmental framework and strengthen their relevance.

      We appreciate the Reviewer’s suggestion to discuss the role of hypoxia on other processes during cortical development. In the revised manuscript, we will include citations about the effects of hypoxia on interneuron proliferation, maturation and circuit integration as available, and also expand to other cell types known to be affected.

      (6) Very minor: in Figure S3C and D, it was not stated what the colors mean (grey: control, yellow: hypoxia)

      Thank you for pointing out this error and we will correct it in our revision.

    1. This manuscript examines preprint review services and their role in the scholarly communications ecosystem.  It seems quite thorough to me. In Table 1 they list many peer-review services that I was unaware of e.g. SciRate and Sinai Immunology Review Project.

      To help elicit critical & confirmatory responses for this peer review report I am trialling Elsevier’s suggested “structured peer review” core questions, and treating this manuscript as a research article.

      Introduction

      1. Is the background and literature section up to date and appropriate for the topic?

        Yes.

      2. Are the primary (and secondary) objectives clearly stated at the end of the introduction?

        No. Instead the authors have chosen to put the two research questions on page 6 in the methods section. I wonder if they ought to be moved into the introduction – the research questions are not methods in themselves. Might it be better to state the research questions first and then detail the methods one uses to address those questions afterwards? [as Elsevier’s structured template seems implicitly to prefer.

      Methods

      1. Are the study methods (including theory/applicability/modelling) reported in sufficient detail to allow for their replicability or reproducibility?

        I note with approval that the version number of the software they used (ATLAS.ti) was given.

        I note with approval that the underlying data is publicly archived under CC BY at figshare.

        The Atlas.ti report data spreadsheet could do with some small improvement – the column headers are little cryptic e.g. “Nº  ST “ and “ST” which I eventually deduced was Number of Schools of Thought and Schools of Thought (?)   

        Is there a rawer form of the data that could be deposited with which to evidence the work done? The Atlas.ti report spreadsheet seemed like it was downstream output data from Atlas.ti. What was the rawer input data entered into Atlas.ti? Can this be archived somewhere in case researchers want to reanalyse it using other tools and methods.

        I note with disapproval that Atlas.ti is proprietary software which may hinder the reproducibility of this work. Nonetheless I acknowledge that Atlas.ti usage is somewhat ‘accepted’ in social sciences despite this issue.

        I think the qualitative text analysis is a little vague and/or under-described: “Using ATLAS.ti Windows (version 23.0.8.0), we carried out a qualitative analysis of text from the relevant sites, assigning codes covering what they do and why they have chosen to do it that way.” That’s not enough detail. Perhaps an example or two could be given? Was inter-rater reliability performed when ‘assigning codes’ ? How do we know the ‘codes’ were assigned accurately?

      2. Are statistical analyses, controls, sampling mechanism, and statistical reporting (e.g., P-values, CIs, effect sizes) appropriate and well described?

        This is a descriptive study (and that’s fine) so there aren’t really any statistics on show here other than simple ‘counts’ (of Schools of Thought) in this manuscript. There are probably some statistical processes going on within the proprietary qualitative analysis of text done in ATLAS.ti but it is under described and so hard for me to evaluate. 

      Results

      1. Is the results presentation, including the number of tables and figures, appropriate to best present the study findings?

        Yes. However, I think a canonical URL to each service should be given.  A URL is very useful for disambiguation, to confirm e.g. that the authors mean this Hypothesis (www.hypothes.is) and NOT this Hypothesis (www.hyp.io). I know exactly which Hypothesis is the one the authors are referring to but we cannot assume all readers are experts 😊

        Optional suggestion: I wonder if the authors couldn’t present the table data in a slightly more visual and/or compact way? It’s not very visually appealing in its current state. Purely as an optional suggestion, to make the table more compact one could recode the answers given in one or more of the columns 2, 3 and 4 in the table e.g. "all disciplines = ⬤ , biomedical and life sciences = ▲, social sciences =  ‡  , engineering and technology = † ". I note this would give more space in the table to print the URLs for each service that both reviewers have requested.

        ———————————————————————————————

        | Service name | Developed by | Scientific disciplines | Types of outputs |

        | Episciences | Other | ⬤ | blah blah blah. |

        | Faculty Opinions | Individual researcher | ▲ | blah blah blah. |

        | Red Team Market | Individual researcher | ‡ | blah blah blah. |

        ———————————————————————————————

        The "Types of outputs" column might even lend themselves to mini-colour-pictograms (?) which could be more concise and more visually appealing? A table just of text, might be scientifically 'correct' but it is incredibly dull for readers, in my opinion.

      2. Are additional sub-analyses or statistical measures needed (e.g., reporting of CIs, effect sizes, sensitivity analyses)?

        No / Not applicable. 

      Discussion

      1. Is the interpretation of results and study conclusions supported by the data and the study design?

        Yes.

      2. Have the authors clearly emphasized the limitations of their study/theory/methods/argument?

        No. Perhaps a discussion of the linguistic/comprehension bias of the authors might be appropriate for this manuscript. What if there are ‘local’ or regional Chinese, Japanese, Indonesian or Arabic language preprint review services out there? Would this authorship team really be able to find them?

      Additional points:

      • Perhaps the points made in this manuscript about financial sustainability (p24) are a little too pessimistic. I get it, there is merit to this argument, but there is also some significant investment going on there if you know where to look. Perhaps it might be worth citing some recent investments e.g. Gates -> PREreview (2024) https://content.prereview.org/prereview-welcomes-funding/  and Arcadia’s $4 million USD to COAR for the Notify Project which supports a range of preprint review communities including Peer Community In, Episciences, PREreview and Harvard Library.  (source: https://coar-repositories.org/news-updates/coar-welcomes-significant-funding-for-the-notify-project/

      • Although I note they are mentioned, I think more needs to be written about the similarity and overlap between ‘overlay journals’ and preprint review services. Are these arguably not just two different terms for kinda the same thing? If you have Peer Community In which has it’s overlay component in the form of the Peer Community Journal, why not mention other overlay journals like Discrete Analysis and The Open Journal of Astrophysics.   I think Peer Community In (& it’s PCJ) is the go-to example of the thin-ness of the line the separates (or doesn’t!) overlay journals and preprint review services. Some more exposition on this would be useful.

    2. Thank you very much for the opportunity to review the preprint titled “Preprint review services: Disrupting the scholarly communication landscape?” (https://doi.org/10.31235/osf.io/8c6xm) The authors review services that facilitate peer review of preprints, primarily in the STEM (science, technology, engineering, and math) disciplines. They examine how these services operate and their role within the scholarly publishing ecosystem. Additionally, the authors discuss the potential benefits of these preprint peer review services, placing them in the context of tensions in the broader peer review reform movement. The discussions are organized according to four “schools of thought” in peer review reform, as outlined by Waltman et al. (2023), which provides a useful framework for analyzing the services. In terms of methodology, I believe the authors were thorough in their search for preprint review services, especially given that a systematic search might be impractical.

      As I see it, the adoption of preprints and reforming peer review are key components of the move towards improving scholarly communication and open research. This article is a useful step along that journey, taking stock of current progress, with a discussion that illuminates possible paths forward. It is also well-structured and easy for me to follow. I believe it is a valuable contribution to the metaresearch literature.

      On a high level, I believe the authors have made a reasonable case that preprint review services might make peer review more transparent and rewarding for all involved. Looking forward, I would like to see metaresearch which gathers further evidence that these benefits are truly being realised.

      In this review, I will present some general points which merit further discussion or clarification to aid an uninitiated reader. Additionally, I raise one issue regarding how the authors framed the article and categorised preprint review services and the disciplines they serve. In my view, this problem does not fundamentally undermine the robust search, analyses, and discussion in this paper, but it risks putting off some researchers and constrains how broadly one should derive conclusions.

      General comments

      Some metaresearchers may be aware of preprints, but not all readers will be familiar with them. I suggest briefly defining what they are, how they work, and which types of research have benefited from preprints, similar to how “preprint review service” is clearly defined in the introduction.

      Regarding Waltman et al.’s (2023) “Equity & Inclusion” school of thought, does it specifically aim for “balanced” representation by different groups as stated in this article? There is an important difference between “balanced” versus “equitable” representation, and I would like to see it addressed in this text.

      Another analysis I would like to see is whether any of the 23 services reviewed present any evidence that their approach has improved research quality. For instance, the discussion on peer review efficiency and incentives states that there is currently “no hard evidence” that journals want to utilise reviews by Rapid Reviews: COVID-19, and that “not all journals are receptive” to partnerships. Are journals skeptical of whether preprint review services could improve research quality? Or might another dynamic be at work?

      The authors cite Nguyen et al. (2015) and Okuzaki et al. (2019), stating that peer review is often “overloaded”. I would like to see a clearer explanation by what “overloaded” means in this context so that a reader does not have to read the two cited papers.

      To the best of my understanding, one of the major sticking points in peer review reform is whether to anonymise reviewers and/or authors. Consequently, I appreciate the comprehensive discussion about this issue by the authors.

      However, I am only partially convinced by the statement that double anonymity is “essentially incompatible” with preprint review. For example, there may be, as yet not fully explored, ways to publish anonymous preprints with (a) a notice that it has been submitted to, or is undergoing, peer review; and (b) that the authors will be revealed once peer review has been performed (e.g. at least one review has been published). This would avoid the issue of publishing only after review is concluded as is the case for Hypothesis and Peer Community In.

      Additionally, the authors describe 13 services which aim to “balance transparency and protect reviewers’ interests”. This is a laudable goal, but I am concerned that framing this as a “balance” implies a binary choice, and that to have more of one, we must lose an equal amount of the other. Thinking only in terms of “balance” prevents creative, win-win solutions. Could a case be made for non-anonymity to be complemented by a reputation system for authors and reviewers? For example, major misconduct (e.g. retribution against a critical review) would be recorded in that system and dissuade bad actors. Something similar can already be seen in the reviewer evaluation system of CrowdPeer, which could plausibly be extended or modified to highlight misconduct.

      I also note that misconduct and abusive behaviour already occur even in fully or partially anonymised peer review, and they are not limited to the review or preprints. While I am not aware of existing literature on this topic, academics’ fears seem reasonable. For example, there is at least anecdotal testimonies that a reviewer would deliberately reject a paper to retard the progress of a rival research group, while taking the ideas of that paper and beating their competitors to winning a grant. Or, a junior researcher might refrain from giving a negative review out of fear that the senior researcher whose work they are reviewing might retaliate. These fears, real or not, seem to play a part in the debates about if and how peer review should (or should not) be anonymised. I would like to see an exploration of whether de-anonimisation will improve or worsen this behaviour and in what contexts. And if such studies exist, it would be good to discuss them in this paper.

      I found it interesting that almost all preprint review services claim to be complementary to, and not compete with, traditional journal-based peer review. The methodology described in this article cannot definitely explain what is going on, but I suspect there may be a connection between this aversion to compete with traditional journals, and (a) the skepticism of journals towards partnering with preprint review services and (b) the dearth of publisher-run options. I hypothesise that there is a power dynamic at play, where traditional publishers have a vested interest in maintaining the power they hold over scholarly communication, and that preprint review services stress their complementarity (instead of competitiveness) as a survival mechanism. This may be an avenue for further metaresearch.

      To understand preprints from which fields of research are actually present on the services categorised under “all disciplines,” I used the Random Integer Set Generator by the Random.org true random number service (https://www.random.org/integer-sets/) to select five services for closer examination: Hypothesis, Peeriodicals, PubPeer, Qeios, and Researchers One. Of those, I observed that Hypothesis is an open source web annotation service that allows commenting on and discussion of any web page on the Internet regardless of whether it is research or preprints. Hypothesis has a sub-project named TRiP (Transparent Review in Preprints), which is their preprint review service in collaboration with Cold Spring Harbor Laboratory. It is unclear to me why the authors listed Hypothesis as the service name in Table 1 (and elsewhere) instead of TRiP (or other similar sub-projects). In addition, Hypothesis seems to be framed as a generic web annotation service that is used by some as a preprint review tool. This seems fundamentally different from others who are explicitly set up as preprint review services. This difference seems noteworthy to me.

      To aid readers, I also suggest including hyperlinks to the 23 services reviewed in this paper. My comments on disciplinary representation in these services are elaborated further below.

      One minor point of curiosity is that several services use an “automated tool” to select reviewers. It would be helpful to describe in this paper exactly what those tools are and how they work, or report situations where services do not explain it.

      Lastly, what did the authors mean by “software heritage” in section 6? Are they referring to the organisation named Software Heritage (https://www.softwareheritage.org/) or something else? It is not clear to me how preprint reviews would be deposited in this context.

      Respecting disciplinary and epistemic diversity

      In the abstract and elsewhere in the article, the authors acknowledge that preprints are gaining momentum “in some fields” as a way to share “scientific” findings. After reading this article, I agree that preprint review services may disrupt publishing for research communities where preprints are in the process of being adopted or already normalised. However, I am less convinced that such disruption is occurring, or could occur, for scholarly publishing more generally.

      I am particularly concerned about the casual conflation of “research” and “scientific research” in this article. Right from the start, it mentions how preprints allow sharing “new scientific findings” in the abstract, stating they “make scientific work available rapidly.” It also notes that preprints enable “scientific work to be accessed in a timely way not only by scientists, but also…” This framing implies that all “scholarly communication,” as mentioned in the title, is synonymous with “scientific communication.” Such language excludes researchers who do not typically identify their work as “scientific” research. Another example of this conflation appears in the caption for Figure 1, which outlines potential benefits of preprint review services. Here, “users” are defined as “scientists, policymakers, journalists, and citizens in general.” But what about researchers and scholars who do not see themselves as “scientists”?

      Similarly, the authors describe the 23 preprint review services using six categories, one of which is “scientific discipline”. One of those disciplines is called “humanities” in the text, and Table 1 lists it as a discipline for Science Open Reviewed. Do the authors consider “humanities” to be a “scientific” discipline? If so, I think that needs to be justified with very strong evidence.

      Additionally, Waltman et al.’s four schools of thought for peer review reform works well with the 23 services analysed. However, at least three out of the four are explicitly described as improving “scientific” research.

      Related to the above are how the five “scientific disciplines” are described as the “usual organisation” of the scholarly communication landscape. On what basis should they be considered “usual”? In this formulation, research in literature, history, music, philosophy, and many other subjects would all be lumped together into the “humanities”, which sit at the same hierarchical level as “biomedical and life sciences”, arguably a much more specific discipline. My point is not to argue for a specific organisation of research disciplines, but to highlight a key epistemic assumption underlying the whole paper that comes across as very STEM-centric (science, technology, engineering, and math).

      How might this part of the methodology affect the categories presented in Table 1? “Biomedical and life sciences” appear to be overrepresented compared to other “disciplines”. I’d like to see a discussion that examines this pattern, and considers why preprint review services (or maybe even preprints more generally) appear to cover mostly the biomedical or physical sciences.

      In addition, there are 12 services described as serving “all disciplines”. I believe this paper can be improved by at least a qualitative assessment of the diversity of disciplines actually represented on those services. Because it is reported that many of these service stress improving the “reproducibility” of research, I suspect most of them serve disciplines which rely on experimental science.

      I randomly selected five services for closer examination, as mentioned above. Of those, only Qeios has demonstrated an attempt to at least split “arts and humanities” into subfields. The others either don’t have such categories altogether, or have a clear focus on a few disciplines (e.g. life sciences for Hypothesis/TRiP). In all cases I studied, there is a heavy focus on STEM subjects, especially biology or medical research. However, they are all categorised by the authors as serving “all disciplines”.

      If preprint review services originate from, or mostly serve, a narrow range of STEM disciplines (especially experiment-based ones), it would be worth examining why that is the case, and whether preprints and reviews of them could (or could not) serve other disciplines and epistemologies.

      It is postulated that preprint review services might “disrupt the scholarly communication landscape in a more radical way”. Considering the problematic language I observed, what about fields of research where peer-reviewed journal publications are not the primary form of communication? Would preprint review services disrupt their scholarly communications?

      To be clear, my concern is not just the conflation of language in a linguistic sense but rather inequitable epistemic power. I worry that this conflation would (a) exclude, minoritise, and alienate researchers of diverse disciplines from engaging with metaresearch; and (b) blind us from a clear pattern in these 23 services, that is their strong focus on the life sciences and medical research and a discussion of why that might be the case. Critically, what message are we sending to, for example, a researcher of 18th century French poetry with the language and framing of this paper? I believe the way “disciplines” are currently presented here poses a real risk of devaluing and minoritising certain subject areas and ways of knowing. In its current form, I believe that while this paper is a very valuable contribution, one should not derive from it any conclusions which apply to scholarly publishing as a whole.

      The authors have demonstrated inclusive language elsewhere. For example, they have consciously avoided “peer” when discussing preprint review services, clearly contrasting them to “journal-based peer review”. Therefore, I respectfully suggest that similar sensitivity be adopted to avoid treating “scientific research” and “research” as the same thing. A discussion, or reference to existing works, on the disciplinary skew of preprints (and reviews of them) would also add to the intellectual rigour of this already excellent piece.

      Overall, I believe this paper is a valuable reflection on the state of preprints and services which review them. Addressing the points I raised, especially the use of more inclusive language with regards to disciplinary diversity, would further elevate its usefulness in the metaresearch discourse. Thank you again for the chance to review.

      Signed:

      Dr Pen-Yuan Hsing (ORCID ID: 0000-0002-5394-879X)

      University of Bristol, United Kingdom

      Data availability

      I have checked the associated dataset, but still suggest including hyperlinks to the 23 services analysed in the main text of this paper.

    1. In "Researchers Are Willing to Trade Their Results for Journal Prestige: Results from a Discrete Choice Experiment", the authors investigate researchers’ publication preferences using a discrete choice experiment in a cross-sectional survey of international health and medical researchers. The study investigates publishing decisions in relation to negotiation of trade-offs amongst various factors like journal impact factor, review helpfulness, formatting requirements, and usefulness for promotion in their decisions on where to publish. The research is timely; as the authors point out, reform of research assessment is currently a very active topic. The design and methods of the study are suitable and robust. The use of focus groups and interviews in developing the attributes for study shows care in the design. The survey instrument itself is generally very well-designed, with important tests of survey fatigue, understanding (dominant choice task) and respondent choice consistency (repeat choice task) included. Respondent performance was good or excellent across all these checks. Analysis methods (pMMNL and latent class analysis) are well-suited to the task. Pre-registration and sharing of data and code show commitment to transparency. Limitations are generally well-described.

      In the below, I give suggestions for clarification/improvement. Except for some clarifications on limitations and one narrower point (reporting of qualitative data analysis methods), my suggestions are only that – the preprint could otherwise stand, as is, as a very robust and interesting piece of scientific work.

      1. Respondents come from a broad range of countries (63), with 47 of those countries represented by fewer than 10 respondents. Institutional cultures of evaluation can differ greatly across nations. And we can expect variability in exposure to the messages of DORA (seen, for example, in level of permeation of DORA as measured by signatories in each country, https://sfdora.org/signers/)..%3B!!NVzLfOphnbDXSw!HdeyeHHei6yWQHFjhN3deSSfp82ur9i9JNOLEVOYZN0BvyslUO2S8DlvjBbautmafJEvlUsxQZbT0JLQX7lO8EcOYtZsJkA%24&data=05%7C02%7Ca.l.brasil.varandas.pinto%40cwts.leidenuniv.nl%7C9f47a111adec49d04bb608dd0614ae94%7Cca2a7f76dbd74ec091086b3d524fb7c8%7C0%7C0%7C638673408085242099%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=by5mhPfSM0MFFG9LE2iiYjdtSs5IhvpuukqVv%2FLak2s%3D&reserved=0 "https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fsfdora.org%2Fsigners%2F).%3B!!NVzLfOphnbDXSw!HdeyeHHei6yWQHFjhN3deSSfp82ur9i9JNOLEVOYZN0BvyslUO2S8DlvjBbautmafJEvlUsxQZbT0JLQX7lO8EcOYtZsJkA%24&data=05%7C02%7Ca.l.brasil.varandas.pinto%40cwts.leidenuniv.nl%7C9f47a111adec49d04bb608dd0614ae94%7Cca2a7f76dbd74ec091086b3d524fb7c8%7C0%7C0%7C638673408085242099%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=by5mhPfSM0MFFG9LE2iiYjdtSs5IhvpuukqVv%2FLak2s%3D&reserved=0") In addition, some contexts may mandate or incentivise publication in some venues using measures including IF, but also requiring journals to be in certain databases like WoS or Scopus, or having preferred journal lists). I would suggest the authors should include in the Sampling section a rationale for taking this international approach, including any potentially confounding factors it may introduce, and then adding the latter also in the limitations.

      2. Reporting of qualitative results: In the introduction and methods, the role of the focus groups and interviews seems to have been just to inform the design of the experiment. But then, results from that qualitative work then appear as direct quotes within the discussion to contextualise or explain results. In this sense though, the qualitative results are being used as new data. Given this, I feel that the methods section should include description of the methods and tools used for qualitative data analysis (currently it does not). But in addition, to my understanding (and this may be a question of disciplinary norms – I’m not a health/medicine researcher), generally new data should not be introduced in the discussion section of a research paper. Rather the discussion is meant to interpret, analyse, and provide context for the results that have already been presented. I personally hence feel that the paper would benefit from the qualitative results being reported separately within the results section.

      3. Impact factors – Discussion section: While there is interesting new information on the relative trade-offs amongst other factors, the most emphasised finding, that impact factors still play a prominent role in publication venue decisions, is hardly surprising. More could perhaps be done to compare how the levels of importance reported here differ with previous results from other disciplines or over time (I know a like-for-like comparison is difficult but other studies have investigated these themes, e.g., https://doi.org/10.1177/01655515209585). In addition, beyond the question of whether impact factors are important, a more interesting question in my view is why they still persist. What are they used for and why are they still such important “driver[s] of researchers’ behaviour”? This was not the authors’ question, and they do provide some contextualisation by quoting their participants, but still I think they could do more to contextualise what is known from the literature on that to draw out the implications here. The attribute label in the methods for IF is “ranking”, but ranking according of what and for what? Not just average per-article citations in a journal over a given time frame. Rather, impact factors are used as a proxy indicators of less-tangible desirable qualities – certainly prestige (as the title of this article suggests), but also quality, trust (as reported by one quoted focus group member “I would never select a journal without an impact factor as I always publish in journals that I know and can trust that are not predatory”, p.6), journal visibility, importance to the field, or improved chances of downstream citations or uptake in news media/policy/industry etc. Picking apart the interactions of these various factors in researchers’ choices to make use of IFs (which is not in all cases bogus or unjustified) could add valuable context. I’d especially recommend engaging at least briefly with more work from Science and Technology Studies - especially Müller and de Rijcke’s excellent Thinking with Indicators study (doi: 10.1093/reseval/rvx023), but also those authors other work, as well as work from Ulrike Felt, Alex Rushforth (esp https://doi.org/10.1007/s11024-015-9274-5), Björn Hammerfelt and others.

      4. Disciplinary coverage: (1) A lot of the STS work I talk about above emphasises epistemic diversity and the ways cultures of indicator use differ across disciplinary traditions. For this reason, I think it should be pointed out in the limitations that this is research in Health/Med only, with questions on generalisability to other fields. (2) Also, although the abstract and body of the article do make clear the disciplinary focus, the title does not. Hence, I believe the title should be slightly amended (e.g., “Health and Medical Researchers Are Willing to Trade …”)

    1. when we are immersed in something, surrounded by it the waywe are by images from the media, we may come to accept them as just part ofthe real and natural world.

      We’re constantly surrounded by media images so it’s easy to take them for granted. I think Hall is saying for us to take a step back and think critically about what they show and why.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):  

      Summary:  

      The authors state the study's goal clearly: "The goal of our study was to understand to what extent animal individuality is influenced by situational changes in the environment, i.e., how much of an animal's individuality remains after one or more environmental features change." They use visually guided behavioral features to examine the extent of correlation over time and in a variety of contexts. They develop new behavioral instrumentation and software to measure behavior in Buridan's paradigm (and variations thereof), the Y-maze, and a flight simulator. Using these assays, they examine the correlations between conditions for a panel of locomotion parameters. They propose that inter-assay correlations will determine the persistence of locomotion individuality.

      Strengths:  

      The OED defines individuality as "the sum of the attributes which distinguish a person or thing from others of the same kind," a definition mirrored by other dictionaries and the scientific literature on the topic. The concept of behavioral individuality can be characterized as: (1) a large set of behavioral attributes, (2) with inter-individual variability, that are (3) stable over time. A previous study examined walking parameters in Buridan's paradigm, finding that several parameters were variable between individuals, and that these showed stability over separate days and up to 4 weeks (DOI: 10.1126/science.aaw718). The present study replicates some of those findings and extends the experiments from temporal stability to examining correlation of locomotion features between different contexts.  

      The major strength of the study is using a range of different behavioral assays to examine the correlations of several different behavior parameters. It shows clearly that the inter-individual variability of some parameters is at least partially preserved between some contexts, and not preserved between others. The development of high-throughput behavior assays and sharing the information on how to make the assays is a commendable contribution.

      Weaknesses:  

      The definition of individuality considers a comprehensive or large set of attributes, but the authors consider only a handful. In Supplemental Fig. S8, the authors show a large correlation matrix of many behavioral parameters, but these are illegible and are only mentioned briefly in Results. Why were five or so parameters selected from the full set? How were these selected? Do the correlation trends hold true across all parameters? For assays in which only a subset of parameters can be directly compared, were all of these included in the analysis, or only a subset?  

      The correlation analysis is used to establish stability between assays. For temporal re-testing, "stability" is certainly the appropriate word, but between contexts it implies that there could be 'instability'. Rather, instead of the 'instability' of a single brain process, a different behavior in a different context could arise from engaging largely (or entirely?) distinct context-dependent internal processes, and have nothing to do with process stability per se. For inter-context similarities, perhaps a better word would be "consistency".  

      The parameters are considered one-by-one, not in aggregate. This focuses on the stability/consistency of the variability of a single parameter at a time, rather than holistic individuality. It would appear that an appropriate measure of individuality stability (or individuality consistency) that accounts for the high-dimensional nature of individuality would somehow summarize correlations across all parameters. Why was a multivariate approach (e.g. multiple regression/correlation) not used? Treating the data with a multivariate or averaged approach would allow the authors to directly address 'individuality stability', along with the analyses of single-parameter variability stability.

      The correlation coefficients are sometimes quite low, though highly significant, and are deemed to indicate stability. For example, in Figure 4C top left, the % of time walked at 23{degree sign}C and 32{degree sign}C are correlated by 0.263, which corresponds to an R2 of 0.069 i.e. just 7% of the 32{degree sign}C variance is predictable by the 23{degree sign}C variance. Is it fair to say that 7% determination indicates parameter stability? Another example: "Vector strength was the most correlated attention parameter... correlations ranged... to -0.197," which implies that 96% (1 - R2) of Y-maze variance is not predicted by Buridan variance. At what level does an r value not represent stability?

      The authors describe a dissociation between inter-group differences and inter-individual variation stability, i.e. sometimes large mean differences between contexts, but significant correlation between individual test and retest data. Given that correlation is sensitive to slope, this might be expected to underestimate the variability stability (or consistency). Is there a way to adjust for the group differences before examining correlation? For example, would it be possible to transform the values to in-group ranks prior to correlation analysis?

      What is gained by classifying the five parameters into exploration, attention, and anxiety? To what extent have these classifications been validated, both in general, and with regard to these specific parameters? Is increased walking speed at higher temperature necessarily due to increased 'explorative' nature, or could it be attributed to increased metabolism, dehydration stress, or a heat-pain response? To what extent are these categories subjective?

      The legends are quite brief and do not link to descriptions of specific experiments. For example, Figure 4a depicts a graphical overview of the procedure, but I could not find a detailed description of this experiment's protocol.

      Using the current single-correlation analysis approach, the aims would benefit from re-wording to appropriately address single-parameter variability stability/consistency (as distinct from holistic individuality). Alternatively, the analysis could be adjusted to address the multivariate nature of individuality, so that the claims and the analysis are in concordance with each other.

      The study presents a bounty of new technology to study visually guided behaviors. The Github link to the software was not available. To verify successful transfer or open-hardware and open-software, a report would demonstrate transfer by collaboration with one or more other laboratories, which the present manuscript does not appear to do. Nevertheless, making the technology available to readers is commendable.

      The study discusses a number of interesting, stimulating ideas about interindividual variability and presents intriguing data that speaks to those ideas, albeit with the issues outlined above.

      While the current work does not present any mechanistic analysis of interindividual variability, the implementation of high-throughput assays sets up the field to more systematically investigate fly visual behaviors, their variability, and their underlying mechanisms.  

      Comments on revisions:  

      I want to express my appreciation for the authors' responsiveness to the reviewer feedback. They appear to have addressed my previous concerns through various modifications including GLM analysis, however, some areas still require clarification for the benefit of an audience that includes geneticists.  

      (1) GLM Analysis Explanation (Figure 9)  

      While the authors state that their new GLM results support their original conclusions, the explanation of these results in the text is insufficient. Specifically:

      The interpretation of coefficients and their statistical significance needs more detailed explanation. The audience includes geneticists and other nonstatistical people, so the GLM should be explained in terms of the criteria or quantities used to assess how well the results conform with the hypothesis, and to what extent they diverge.

      The criteria used to judge how well the GLM results support their hypothesis are not clearly stated.

      The relationship between the GLM findings and their original correlationbased conclusions needs better integration and connection, leading the reader through your reasoning.

      We thank the reviewer for highlighting this important point. We have revised the Results section in the reviseed manuscript to include a more detailed explanation of the GLM analysis. Specifically, we now clarify the interpretation of the model coefficients, including the direction and statistical significance, in relation to the hypothesized effects. We also outline the criteria we used to assess how well the GLM supports our original correlation-based conclusions—namely, whether the sign and significance of the coefficients align with the expected relationships derived from our prior analysis. Finally, we explicitly describe how the GLM results confirm or extend the patterns observed in the correlation-based analysis, to guide readers through our reasoning and the integration of both approaches.

      (2) Documentation of Changes  

      One struggle with the revised manuscript is that no "tracked changes" version was included, so it is hard to know exactly what was done. Without access to the previous version of the manuscript, it is difficult to fully assess the extent of revisions made. The authors should provide a more comprehensive summary of the specific changes implemented, particularly regarding:

      We thank the reviewer for bringing this to our attention. We were equally confused to learn that the tracked-changes version was not visible, despite having submitted one to eLife as part of our revision. 

      Upon contacting the editorial office, they confirmed that we did submit a trackedchanges version, but clarified that it did not contain embedded figures (as they were added manually to the clean version).  The editorial response said in detail: “Regarding the tracked-changes file: it appears the version with markup lacked figures, while the figure-complete PDF had markup removed, which likely caused the confusion mentioned by the reviewers.” We hope this answer from eLife clarifies the reviewers’ concern.

      (2)  Statistical Method Selection  

      The authors mention using "ridge regression to mitigate collinearity among predictors" but do not adequately justify this choice over other approaches. They should explain:

      Why ridge regression was selected as the optimal method  

      How the regularization parameter (λ) was determined  

      How this choice affects the interpretation of environmental parameters' influence on individuality

      We appreciate the reviewer’s thoughtful question regarding our choice of statistical method. In response, we have expanded the Methods section in the revised manuscript to provide a more detailed justification for the use of a GLM, including ridge regression. Specifically, we explain that ridge regression was selected to address collinearity and to control for overfitting.

      We now also describe how the regularization parameter (λ) was selected: we used 5-fold cross-validation over a log-spaced grid (10<sup>⁻⁶</sup> - 10<sup>⁶</sup) to identify the optimal value that minimized the mean squared error (MSE).

      Finally, we clarify in both the Methods and Results sections how this modeling choice affects the interpretation of our findings. 

      Reviewer #2 (Public review):  

      Summary:  

      The authors repeatedly measured the behavior of individual flies across several environmental situations in custom-made behavioral phenotyping rigs.

      Strengths:  

      The study uses several different behavioral phenotyping devices to quantify individual behavior in a number of different situations and over time. It seems to be a very impressive amount of data. The authors also make all their behavioral phenotyping rig design and tracking software available, which I think is great, and I'm sure other folks will be interested in using and adapting to their own needs.

      Weaknesses/Limitations:  

      I think an important limitation is that while the authors measured the flies under different environmental scenarios (i.e. with different lighting, temperature) they didn't really alter the "context" of the environment. At least within behavioral ecology, context would refer to the potential functionality of the expressed behaviors so for example, an anti-predator context, or a mating context, or foraging. Here, the authors seem to really just be measuring aspects of locomotion under benign (relatively low risk perception) contexts. This is not a flaw of the study, but rather a limitation to how strongly the authors can really say that this demonstrates that individuality is generalized across many different contexts. It's quite possible that rank-order of locomotor (or other) behaviors may shift when the flies are in a mating or risky context.  

      I think the authors are missing an opportunity to use much more robust statistical methods It appears as though the authors used pearson correlations across time/situations to estimate individual variation; however far more sophisticated and elegant methods exist. The problem is that pearson correlation coefficients can be anti-conservative and additionally, the authors have thus had to perform many many tests to correlate behaviors across the different trials/scenarios. I don't see any evidence that the authors are controlling for multiple testing which I think would also help. Alternatively, though, the paper would be a lot stronger, and my guess is, much more streamlined if the authors employ hierarchical mixed models to analyse these data, which are the standard analytical tools in the study of individual behavioral variation. In this way, the authors could partition the behavioral variance into its among- and within-individual components and quantify repeatability of different behaviors across trials/scenarios simultaneously. This would remove the need to estimate 3 different correlations for day 1 & day 2, day 1 & 3, day 2 & 3 (or stripe 0 & stripe 1, etc) and instead just report a single repeatability for e.g. the time spent walking among the different strip patterns (eg. figure 3). Additionally, the authors could then use multivariate models where the response variables are all the behaviors combined and the authors could estimate the among-individual covariance in these behaviors. I see that the authors state they include generalized linear mixed models in their updated MS, but I struggled a bit to understand exactly how these models were fit? What exactly was the response? what exactly were the predictors (I just don't understand what Line404 means "a GLM was trained using the environmental parameters as predictors (0 when the parameter was not changed, 1 if it was) and the resulting individual rank differences as the response"). So were different models run for each scenario? for different behaviors? Across scenarios? What exactly? I just harp on this because I'm actually really interested in these data and think that updating these methods can really help clarify the results and make the main messages much clearer!

      I appreciate that the authors now included their sample sizes in the main body of text (as opposed to the supplement) but I think that it would still help if the authors included a brief overview of their design at the start of the methods. It is still unclear to me how many rigs each individual fly was run through? Were the same individuals measured in multiple different rigs/scenarios? Or just one?

      I really think a variance partitioning modeling framework could certainly improve their statistical inference and likely highlight some other cool patterns as these methods could better estimate stability and covariance in individual intercepts (and potentially slopes) across time and situation. I also genuinely think that this will improve the impact and reach of this paper as they'll be using methods that are standard in the study of individual behavioral variation

      Reviewer #3 (Public review):  

      This manuscript is a continuation of past work by the last author where they looked at stochasticity in developmental processes leading to inter-individual behavioural differences. In that work, the focus was on a specific behaviour under specific conditions while probing the neural basis of the variability. In this work, the authors set out to describe in detail how stable individuality of animal behaviours is in the context of various external and internal influences. They identify a few behaviours to monitor (read outs of attention, exploration, and 'anxiety'); some external stimuli (temperature, contrast, nature of visual cues, and spatial environment); and two internal states (walking and flying).

      They then use high-throughput behavioural arenas - most of which they have built and made plans available for others to replicate - to quantify and compare combinations of these behaviours, stimuli, and internal states. This detailed analysis reveals that:

      (1) Many individualistic behaviours remain stable over the course of many days.  

      (2) That some of these (walking speed) remain stable over changing visual cues. Others (walking speed and centrophobicity) remain stable at different temperatures.

      (3) All the behaviours they tested fail to remain stable over spatially varying environment (arena shape).

      (4) and only angular velocity (a read out of attention) remains stable across varying internal states (walking and flying)

      Thus, the authors conclude that there is a hierarchy in the influence of external stimuli and internal states on the stability of individual behaviours.

      The manuscript is a technical feat with the authors having built many new high-throughput assays. The number of animals are large and many variables have been tested - different types of behavioural paradigms, flying vs walking, varying visual stimuli, different temperature among others.  

      Comments on revisions:'  

      The authors have addressed my previous concerns.  

      We thank the reviewer for the positive feedback and are glad our revisions have satisfactorily addressed the previous concerns. We appreciate the thoughtful input that helped us improve the clarity and rigor of the manuscript.

      Reviewer #1 (Recommendations for the authors):  

      Comment on Revised Manuscript  

      Recommendations for Improvement  

      (1) Expand the Results section for Figure 9 with a more detailed interpretation of the GLM coefficients and their biological significance

      (2) Provide explicit criteria (or at least explain in detail) for how the GLM results confirm or undermine their original hypothesis about environmental context hierarchy

      While the claims are interesting, the additional statistical analysis appears promising. However, clearer explanation of these new results would strengthen the paper and ensure that readers from diverse backgrounds can fully understand how the evidence supports the authors' conclusions about individuality across environmental contexts. 

      We thank the reviewer for these constructive suggestions. In response to these suggestions, we have expanded both the Methods and Results sections to provide a more detailed explanation of the GLM coefficients, including their interpretation and how they relate to our original correlation-based findings.

      We now clarify how the direction, magnitude, and statistical significance of specific coefficients reflect the influence of different environmental factors on the persistence of individual behavioral traits. To make this accessible to readers from diverse backgrounds, we explicitly outline the criteria we used to evaluate whether the GLM results support our hypothesis about the hierarchical influence of environmental context, namely, whether the structure and strength of effects align with the patterns predicted from our prior correlation analysis.

      These additions improve clarity and help readers understand how the new statistical results reinforce our conclusions about the context-dependence of behavioral individuality.

      Reviewer #2 (Recommendations for the authors):  

      Thanks for the revision of the paper! I updated my review to try and provide a little more guidance by what I mean about updating your analyses. I really think this is a super cool data set and I genuinely wish this were MY dataset so that way I could really dig into it to partition the variance. These variance partitioning methods are standard in my particular subfield (study of individual behavioral variation in ecology and evolution) and so I think employing them is 1) going to offer a MUCH more elegant and holistic view of the behavioral variation (e.g. you can report a single repeatability estimate for each behavior rather than 3 different correlations) and 2) improve the impact and readership for your paper as now you'll be using methods that a whole community of researchers are very familiar with. It's just a suggestion, but I hope you consider it!

      We sincerely thank the reviewer for the insightful and encouraging feedback and for introducing us to this modeling approach. In response to this suggestion, we have incorporated a hierarchical linear mixed-effects model into our analysis (now presented in Figure 10), accompanied by a new supplementary table (Table T3). We also updated the Methods, Results, and Discussion sections to describe the rationale, implementation, and implications of the mixed-model analysis.

      We agree with the reviewer that this approach provides a more elegant way to quantify behavioral variation and individual consistency across contexts. In particular, the ability to estimate repeatability directly aligns well with the core questions of our study. It facilitates improved communication of our findings to ecology, evolution, and behavior researchers. We greatly appreciate the suggestion; it has significantly strengthened both the analytical framework and the interpretability of the manuscript.

    1. Today, teachers are continually faced with the challenge of effectively reaching out to their classroom of students who span the spectrum of learning readiness, personal interests, skills, knowledge, and perspective. We know that not all students are alike.

      This is why I think it's important to survey your students at the beginning of the year in order to learn about their interests. Gaining insight into how your students learn best can help you, as the teacher, vary your teaching methods. Yes, habits can be good so students can know what the expectations are, but offering different sources, different instructional strategies, and diversifying your classroom layout can cover a wide range of learners. Keeping in mind that people learn through all of the major senses can truly help students retain information. For example, I am an auditory learner. I have to read aloud or talk things out. That's why I have to read things a few times to really grasp the material when it's a quiet setting. Therefore, timed tests really get my anxiety levels up. Not everyone has this problem or even recognizes it. Being an auditory learner may be great in the college setting during lectures, but it becomes very difficult in the test setting when everything is quiet. How could a teacher make an adjustment in the test setting for my scenario?

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating. Prior social isolation is known to increase aggression in males, manifesting as increased lunging, which is suppressed by group housing (GH). However, it is also known that single housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., develop a modified aggression assay to address this issue by recording aggression in Drosophila males for 2 hours, with a virgin female immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons in promoting high frequency lunging, similar to earlier studies, whereas Or47b neurons promote low frequency but higher intensity tussling. Optogenetic activation revealed that three pairs of pC1SS2 neurons increase tussling. Cell-type-specific DsxM manipulations combined with morphological analysis of pC1SS2 neurons and side-by-side tussling quantification link the developmental role of DsxM to the functional output of these aggression-promoting cells. In contrast, although optogenetic activation of P1a neurons in the dark did not increase tussling, thermogenetic activation under visible light drove aggressive tussling. Using a further modified aggression assay, GH males exhibit increased tussling and maintain territorial control, which could contribute to a mating advantage over SH males, although direct measures of reproductive success are still needed.

      Strengths:

      Through a series of clever neurogenetic and behavioral approaches, the authors implicate specific subsets of ORNs and pC1 neurons in promoting distinct forms of aggressive behavior, particularly tussling. They have devised a refined territorial control paradigm, which appears more robust than earlier assays using a food cup (Chen et al., 2002). This new setup is relatively clutter-free and could be amenable to future automation using computer vision approaches. The updated Figure 5, which combines cell-type-specific developmental manipulation of pC1SS2 neurons with behavioral output, provides a link between developmental mechanisms and functional aggression circuits. The manuscript is generally well written, and the claims are largely supported by the data.

      Thank you for the precise summary of the manuscript and acknowledgment of the novelty and significance of the study.

      Weakness:

      Although most concerns have been addressed, the manuscript still lacks a rigorous, objective method for quantifying lunging and tussling. Because scoring appears to have been done manually and a single lunge in a 30 fps video spans only 2-3 frames, the 0.2 s cutoff seems arbitrary, and there are no objective criteria distinguishing reciprocal lunging from tussling. Despite this, the study offers valuable insights into the neural and behavioral mechanisms of Drosophila aggression.

      Thank you for this comment. The duration of each lunge was measured by analyzing the videos frame by frame—from the frame before the initiation of the lunge to the frame after its completion—resulting in an average span of 3–5 frames. Given a frame rate of 30 fps, this corresponds to approximately 0.1–0.17 seconds. We acknowledge that there are certain limitations for manually quantifying the two types of aggressive behaviors, which has now been stated in the newly added “Limitations of the Study” section in the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      Gao et al. investigated the change of aggression strategies by the social experience and its biological significance by using Drosophila. Two modes of inter-male aggression in Drosophila are known: lunging, high-frequency but weak mode, and tussling, low-frequency but more vigorous mode. Previous studies have mainly focused on the lunging. In this paper, the authors developed a new behavioral experiment system for observing tussling behavior and found that tussling is enhanced by group rearing, while lunging is suppressed. They then searched for neurons involved in the generation of tussling. Although olfactory receptors named Or67d and Or65a have previously been reported to function in the control of lunging, the authors found that these neurons do not function in the execution of tussling and another olfactory receptor, Or47b, is required for tussling, as shown by the inhibition of neuronal activity and the gene knockdown experiments. Further optogenetic experiments identified a small number of central neurons pC1[SS2] that induce the tussling specifically. These neurons express doublesex (dsx), a sex-determination factor, and knockdown of dsx strongly suppresses the induction of tussling. In order to further explore the ecological significance of the aggression mode change in group-rearing, a new behavioral experiment was performed to examine the territorial control and the mating competition. And finally, the authors found that differences in the social experience (group vs. solitary rearing) and the associated change in aggression strategy are important in these biologically significant competitions. These results add a new perspective to the study of aggression behavior in Drosophila. Furthermore, this study proposes an interesting general model in which the social experience modified behavioral changes play a role in reproductive success.

      Strengths:

      A behavioral experiment system that allows stable observation of tussling, which could not be easily analyzed due to its low-frequency, would be very useful. The experimental setup itself is relatively simple, just the addition of a female to the platform, so it should be applicable to future research. The finding about the relationship between the social experience and the aggression mode change is quite novel. Although the intensity of aggression changes with the social experience was already reported in several papers (Liu et al., 2011 etc), the fact that the behavioral mode itself changes significantly has rarely been addressed, and is extremely interesting. The identification of sensory and central neurons required for the tussling makes appropriate use of the genetic tools and the results are clear. A major strength of this study in neurobiology is the finding that another group of neurons (Or47b-expressing olfactory neurons and pC1[SS2] neurons), distinct from the group of neurons previously thought to be involved in low-intensity aggression (i.e. lunging), function in the tussling behavior. Furthermore, the results showing that the regulation of aggression by pC1[SS2] neurons is based on the function of the dsx gene will bring a new perspective to the field. Further investigation of the detailed circuit analysis is expected to elucidate the neural substrate of the conflict between the two aggression modes. The experimental systems examining the territory control and the reproductive competition in Fig. 6 are novel and have advantages in exploring their biological significance. It is important to note that in addition to showing the effects of age and social experience on territorial and mating behaviors, the authors experimentally demonstrated that altered fighting strategy has effects with respect to these behaviors.

      Thank you for your precise summary of our study and being very positive on the novelty and significance of the study.

      Reviewer #3 (Public review):

      In this revised manuscript, Gao et al. presented a series of well-controlled behavioral data showing that tussling, a form of high-intensity fighting among male fruit flies (Drosophila melanogaster) is enhanced specifically among socially experienced and relatively old males. Moreover, results of behavioral assays led authors to suggest that increased tussling among socially experienced males may increase mating success. They also concluded that tussling is controlled by a class of olfactory sensory neurons and sexually dimorphic central neurons that are distinct from pathways known to control lunges, a common male-type attack behavior.

      A major strength of this work is that it is the first attempt to characterize behavioral function and neural circuit associated with Drosophila tussling. Many animal species use both low-intensity and high-intensity tactics to resolve conflicts. High-intensity tactics are mostly reserved for escalated fights, which are relatively rare. Because of this, tussling in the flies, like high-intensity fights in other animal species, have not been systematically investigated. Previous studies on fly aggressive behavior have often used socially isolated, relatively young flies within a short observation duration. Their discovery that 1) older (14-days old) flies tend to tussle more often than younger (2 to 7-days-old) flies, 2) group-reared flies tend to tussle more often than socially isolated flies, and 3) flies tend to tussle at later stage (mostly ~15 minutes after the onset of fighting), are the result of their creativity to look outside of conventional experimental settings. These new findings are key for quantitatively characterizing this interesting yet under-studied behavior.

      Newly presented data have made several conclusions convincing. Detailed descriptions of methods to quantify behaviors help understand the basis of their claims by improving transparency. However, I remain concerned about authors' persistent attempt to link the high intensity aggression to reproductive success. The authors' effort to "tone down" the link between the two phenomena remains insufficient. There are purely correlational. I reiterate this issue because the overall value of the manuscript would not change with or without this claim.

      Thank you for acknowledging the novelty and significance of the study. Regarding the relationship you mentioned between high-intensity aggression and reproductive success, we further toned down the statement between them throughout the manuscript in the revised manuscript. We also modified the title to “Social Experience Shapes Fighting Strategies in Drosophila”. In addition, we now added a ‘Limitations of the Study’ section to clearly state the correlation between tussling and reproductive success.

      Reviewer #1 (Recommendations for the authors):

      If possible, mention the EM-connectome data showing the minimal interneuronal path from Or47b ORNs to pC1SS2 neurons (even if derived from the female connectome), which can strengthen the model of parallel sensory-central pathways.

      Thank you for this comment. According to data from the EM connectome, connecting Or47b ORNs to pC1d neurons requires at least two intermediate neurons. An example minimal pathway is: ORN_VA1v (L) → AL-AST1 (L) → PLP245 (L) → pC1d (R). We have added this point in the Discussion section of the revised manuscript.

      I'm not convinced that labeling lunges as "gentle" combat behavior works, either in the abstract or elsewhere. While lunging is indeed a lower-intensity form of aggression compared to tussling, applying anthropomorphic descriptors risks misleading readers.

      Thank you for this comment. We now use “low-intensity” instead of “gentle” to describe lunging.

      In Materials & Methods, please cross-check all figure-panel references after the recent re-numbering (e.g. "Figure 5A6A" etc.).

      Thank you for this comment. We have thoroughly verified the figure panel references in the Materials & Methods section.

      Ensure that Table S1 is clearly cited in the main text where you first describe fly genotypes.

      Thank you for this comment. We have now cited Table S1 in the main text.

      There are multiple grammatical errors and typos throughout the manuscript. Please correct them. Some examples are below, but this is not an exhaustive list:

      Line 98-102 requires rephrasing as the results are already published and not being observed by the authors.

      Thank you for this comment. We have revised the manuscript to “we occasionally observed the high-intensity boxing and tussling behavior in male flies as previously reported (Chen et al., 2002; Nilsen et al., 2004), which….”

      line 116- lower not 'lowed'.

      Corrected.

      line 942 & 945- knock-down males not 'knocking down males'.

      Corrected. Thank you very much for these comments.

      Reviewer #2 (Recommendations for the authors):

      The authors have almost completely answered the major comments I have noted on the ver.1 manuscript: (1) They clearly show changes in fighting strategy in the territory control behavior experiment in Fig. 6-figure supplements. (2) A detailed description of how aggressive behavior is measured. Thus, I am convinced by this revision.

      Thank you for these comments that make the manuscript a better version.

      Furthermore, in Fig. 5, which examined the relationship of pC1[SS2] characteristics with the function of dsx, is a novel data and very interesting. I look forward to further developments.

      Thank you. We will continue to explore this part in our future study.

      However, one point still concerns me.

      Line 192: Although the authors describe it as "usage-dependent," the trans-Tango technique is essentially a postsynaptic cell-labeling technique. It is possible that the labeling intensity in postsynaptic cells increases from the change in expression levels of the Or47b gene due to GH. However, there is no difference in the expression level of the Or47b gene labeled by GFP between SH and GH. Therefore, we cannot conclude that the expression of the Or47b gene is increased by rearing conditions.

      The original paper on trans-TANGO (Talay et al., 2017) does not discuss the usage-dependency. A review of trans-synaptic labeling techniques (Ni, Front Neural Circuits. 2021) discusses that the increase in trans-TANGO signaling with aging may be related to synaptic strength, but there is no experimental evidence for this. In my opinion, the results in Figure 3-figure supplement 2 only weakly suggest that the increase in trans-TANGO signaling may be explained by an increase in synaptic strength due to group rearing.

      We appreciate the reviewer’s insightful comment regarding the interpretation of the trans-Tango signal. Indeed, the original trans-Tango study (Talay et al., 2017) does not claim that the method is usage-dependent. The observed increase in trans-Tango labeling with age, as reported in their supplemental figures, may reflect accumulation over time, potentially influenced by synaptic maturation or increased component expression. To avoid overstating our results, we have revised the relevant statement in the manuscript to remove the term "usage-dependent" and now describe the change in trans-Tango signal more cautiously.  

      Reviewer #3 (Recommendations for the authors):

      Below are the cases where their professed attempts to "tone down the statement" appear ignored:

      Lines 27-29:

      "Our findings... suggest how social experience shapes fighting strategies to optimize reproductive success".

      We have now revised the manuscript to “Our findings… suggest that social experience may shape fighting strategies to optimize reproductive success.”

      Lines 85-86:

      "... discover that this infrequent yet intense form of combat is... crucial for territory dominance and mating competition".

      We have now revised the manuscript to “…discover that this infrequent yet intense form of combat is enhanced by social enrichment, while the low-intensity lunging is suppressed by social enrichment.” 

      Lines 335-339:

      "Here, we found that... GH males tend to... increase the high-intensity tussling, which enhances their territorial and mating competition."

      We have removed “which enhances their territorial and mating competition” in the revised manuscript.

      Lines 343-344:

      "... presenting a paradox between social experience, aggression and reproductive success. Our result resolved this paradox..."

      We have now revised the manuscript to “...Our results provide an explanation for this paradox…”

      Lines 355-358:

      "Interestingly, we found that the mating advantage gained through social enrichment can even offset the mating disadvantage associated with aging, further supporting the vital role of shifting fighting strategies in experienced, aged males."

      We have removed “further supporting the vital role of shifting fighting strategies in experienced, aged males” in the revised manuscript.

      Lines 361-362:

      "These results separate the function of the two fighting forms and rectify out understanding of how social experiences regulate aggression and reproductive success."

      We have removed this sentence in the revised manuscript.

      Some may say that a speculative statement is harmless, but I think it indeed is harmful unless it is clearly indicated as a speculation. It is regrettable that authors remain reluctant to change their claim without providing any new supporting evidence. All three reviewers raised the same concern in the first round of review.

      We apologize for not making the speculative nature of the statement clearer in the previous version. In the revised manuscript, we have now explicitly rephrased sentences to only suggest a correlation but not a causal link between tussling and reproductive success.

      I have no choice but to keep my evaluation of the manuscript as "Incomplete" unless the authors thoroughly eliminate any attempt to link these two. This must go beyond changing a few words in the lines listed above.

      Thank you for this comment. In addition to the lines listed above, we carefully checked all statements regarding the correlation between fighting strategies and reproductive success throughout the full text. Furthermore, we have also added a “Limitations of the Study” section to address the shortcomings of this study in the revised manuscript.

      I do not have the same level of concern over the interpretation of Fig. 6A-C, because this is directly linked to aggressive interactions. Even if the socially isolated males do not engage in tussling, it is not a leap to assume that a different fighting tactic of socially experienced males can give them an advantage in defending a territory. To me, this is a sufficient ethological link with the observed behavioral change.

      Thank you for this insightful comment.

      The following are relatively minor, although important, concerns.

      I beg to differ over the authors' definition of "tussling". Supplemental movies S1 and S2 appear to include "tussling" bouts in which 2 flies lunging at each other in rapid succession, and supplemental movie S3 appears to include bouts of "holding", in which one fly holds the opponent's wings and shakes vigorously. These cases suggest that the definition of "tussling" as opposed to "lunging" has a subjective element. However, I would not delve on this matter further because it is impossible to be completely objective over behavioral classification, even by using a computational method. An important point is that the definition is applied consistently within the publication. I have no reason to doubt that this was not the case.

      Thank you for this comment. Since the analysis of tussling behavior was conducted manually, it is challenging to achieve complete objectivity. However, we made every effort to apply consistent criteria throughout the analysis. We have added a “Limitations of the Study” section in the revised manuscript to clearly state this caveat. We appreciate your understanding.

      Authors now state that "all tester flies were loaded by cold anesthesia" (lines 432-433). I would like to draw attention to the well-known fact that anesthesia, whether by ice or by CO2, are long known to affect fly's subsequent behaviors (for aggression, see Trannoy S. et al., Learn. Mem. 2015. 22: 64-68). It will be prudent to acknowledge the possibility that this handling method could have contributed to unusually high levels of spontaneous tussling, which has not been reported elsewhere before.

      Thank you for this comment. The increased tussling behavior observed in our study is unlikely due to cold anesthesia, as noted by Trannoy S. et al. (2015), cold anesthesia profoundly reduces locomotion and general aggressiveness in flies. We acknowledge that the use of cold anesthesia in behavioral experiments may have potential effects on aggression. To minimize this influence, we allowed the flies to recover and adapt for at least 30 minutes before behavioral recording. Moreover, both control and experimental groups were treated in exactly the same manner to ensure consistency.

      It is intriguing that pC1SS2 neurons are dsx+ but fru-. Authors convincingly demonstrated that these neurons are clearly distinct from the P1a neurons, a well-characterized hub for male social behaviors. It is possible that pC1SS2 neurons overlap with previously characterized dsx+ neurons that are important for male aggressions (measured by lunges), such as in Koganezawa et al., Curr. Biol. 2016 and Chiu et al., Cell 2020, a point authors could have explicitly raised.

      Thank you for this comment. We have added this point into the Discussion section of the revised manuscript, as follows: “That tussling-promoting… aggression (Koganezawa et al., 2016). Moreover, the anatomical features of pC1<sup>SS2</sup> neurons are highly similar to the male-specific aggression-promoting (MAP) neurons identified by another previous study (Chiu et al., 2021).

      I acknowledge the authors' courage to initiate an investigation to a less characterized, high intensity fighting behavior. Tussling requires the simultaneous engagement of two flies. Even if there are confusion over the distinction between lunges and tussling, authors' conclusion that socially experienced flies and socially isolated flies employ distinct fighting strategy is convincing. The concern I raised above is about the interpretation of the data, not about the quality of data.

      Thank you for your constructive comments to make this manuscript better.

    1. You may receive an assignment prompt that asks you to write from your memory, recapturing the experience of reading a special book or text from your childhood or adolescence. Think of this as a chance to recapture something significant from your past, to explore its importance, and to reconstruct it in writing for others to appreciate. Certain books we’ve read live in our memories. When we first read these books or when they were read to us, they spoke to us in some important way. They may still speak to us. Find a book that played an important role in your life when you were a child or an adolescent. Why was it important? What was it like to read this book? Did you read it on your own or did someone read it to you? If someone read it to you, who was it, and what was the experience like? Is there a connection between this book and learning to read on your own? Re-read the book. (If it is long, like Little Women, for example, it is all right to skim it, although you may find yourself re-reading certain parts.) In your essay, use the book as a springboard for your writing by focusing on an insight (a discovery) you have made about the book. Be sure to cite passages and tell the effect they had on you. As you shape your drafts, give attention to organization, the way you build your story. Decide what the reader needs to know in the beginning, and think about the order the events happened and how much to tell the reader at each point. Give attention also to the pictures you create: try to reconstruct key moments by showing what happened rather than merely telling that it happened. Dialogue and scene descriptions often help to make those moments come alive. Finally, give careful thought to the story’s theme or controlling idea.

      brainstorm on how to wirte a narrative

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      The present study evaluates the role of visual experience in shaping functional correlations between extrastriate visual cortex and frontal regions. The authors used fMRI to assess "resting-state" temporal correlations in three groups: sighted adults, congenitally blind adults, and neonates. Previous research has already demonstrated differences in functional correlations between visual and frontal regions in sighted compared to early blind individuals. The novel contribution of the current study lies in the inclusion of an infant dataset, which allows for an assessment of the developmental origins of these differences.

      The main results of the study reveal that correlations between prefrontal and visual regions are more prominent in the blind and infant groups, with the blind group exhibiting greater lateralization. Conversely, correlations between visual and somato-motor cortices are more prominent in sighted adults. Based on these data, the authors conclude that visual experience plays an instructive role in shaping these cortical networks. This study provides valuable insights into the impact of visual experience on the development of functional connectivity in the brain.

      Strengths:

      The dissociations in functional correlations observed among the sighted adult, congenitally blind, and neonate groups provide strong support for the study's main conclusion regarding experience-driven changes in functional connectivity profiles between visual and frontal regions.

      In general, the findings in sighted adult and congenitally blind groups replicate previous studies and enhance the confidence in the reliability and robustness of the current results.

      Split-half analysis provides a good measure of robustness in the infant data.

      Weaknesses:

      There is some ambiguity in determining which aspects of these networks are shaped by experience.

      This uncertainty is compounded by notable differences in data acquisition and preprocessing methods, which could result in varying signal quality across groups. Variations in signal quality may, in turn, have an impact on the observed correlation patterns.

      The study's findings could benefit from being situated within a broader debate surrounding the instructive versus permissive roles of experience in the development of visual circuits.

      Reviewer #2 (Public Review):

      Summary:

      Tian et al. explore the developmental organs of cortical reorganization in blindness. Previous work has found that a set of regions in the occipital cortex show different functional responses and patterns of functional correlations in blind vs. sighted adults. In this paper, Tian et al. ask: how does this organization arise over development? Is the "starting state" more like the blind pattern, or more like the adult pattern? Their analyses reveal that the answer depends on the particular networks investigated; some functional connections in infants look more like blind than sighted adults; other functional connections look more like sighted than blind adults; and others fall somewhere in the middle, or show an altogether different pattern in infants compared with both sighted and blind adults. 

      Strengths:

      The question raised in this paper is extremely important: what is the starting state in development for visual cortical regions, and how is this organization shaped by experience? This paper is among the first to examine this question, particularly by comparing infants not only with sighted adults but also blind adults, which sheds new light on the role of visual (and cross-modal) experience. Another clear strength lies in the unequivocal nature of many results. Many results have very large effect sizes, critical interactions between regions and groups are tested and found, and infant analyses are replicated in split halves of the data. 

      Weaknesses:

      A central claim is that "infant secondary visual cortices functionally resemble those of blind more than sighted adults" (abstract, last paragraph of intro). I see two potential issues with this claim. First, a minor change: given the approaches used here, no claims should be made about the "function" of these regions, but rather their "functional correlations". Second (and more importantly), the claim that the secondary visual cortex in general resembles blind more than sighted adults is still not fully supported by the data. In fact, this claim is only true for one aspect of secondary visual area functional correlations (i.e., their connectivity to A1/M1/S1 vs. PFC). In other analyses, the infant secondary visual cortex looks more like sighted adults than blind adults (i.e., in within vs. across hemisphere correlations), or shows a different pattern from both sighted and blind adults (i.e., in occipito-frontal subregion functional connectivity). It is not clear from the manuscript why the comparison to PFC vs. non-visual sensory cortex is more theoretically important than hemispheric changes or within-PFC correlations (in fact, if anything, the within-PFC correlations strike me as the most important for understanding the development and reorganization of these secondary visual regions). It seems then that a more accurate conclusion is that the secondary visual cortex shows a mix of instructive effects of vision and reorganizing effects of blindness, albeit to a different extent than the primary visual cortex.

      Relatedly, group differences in overall secondary visual cortex connectivity are particularly striking as visualized in the connectivity matrices shown in Figure S1. In the results (lines 105-112), it is noted that while the infant FC matrix is strongly correlated with both adult groups, the infant group is nonetheless more strongly correlated with the blind than sighted adults. I am concerned that these results might be at least partially explained by distance (i.e., local spread of the bold signal), since a huge portion of the variance in these FC matrices is driven by stronger correlations between regions within the same system (e.g., secondary-secondary visual cortex, frontal-frontal cortex), which are inherently closer together, relative to those between different systems (e.g., visual to frontal cortex). How do results change if only comparisons between secondary visual regions and non-visual regions are included (i.e., just the pairs of regions within the bold black rectangle on the figure), which limits the analysis to long-rang connections only? Indeed, looking at the off-diagonal comparisons, it seems that in fact there are three altogether different patterns here in the three groups. Even if the correlation between the infant pattern and blind adult pattern survives, it might be more accurate to claim that infants are different from both adult groups, suggesting both instructive effects of vision and reorganizing effects of blindness. It might help to show the correlation between each group and itself (across independent sets of subjects) to better contextualize the relative strength of correlations between the groups. 

      It is not clear that differences between groups should be attributed to visual experience only. For example, despite the title of the paper, the authors note elsewhere that cross-modal experience might also drive changes between groups. Another factor, which I do not see discussed, is possible ongoing experience-independent maturation. The infants scanned are extremely young, only 2 weeks old. Although no effects of age are detected, it is possible that cortex is still undergoing experience-independent maturation at this very early stage of development. For example, consider Figure 2; perhaps V1 connectivity is not established at 2 weeks, but eventually achieves the adult pattern later in infancy or childhood. Further, consider the possibility that this same developmental progression would be found in infants and children born blind. In that case, the blind adult pattern may depend on blindness-related experience only (which may or may not reflect "visual" experience per se). To deal with these issues, the authors should add a discussion of the role of maturation vs. experience and temper claims about the role of visual experience specifically (particularly in the title). 

      The authors measure functional correlations in three very different groups of participants and find three different patterns of functional correlations. Although these three groups differ in critical, theoretically interesting ways (i.e., in age and visual/cross-modal experience), they also differ in many uninteresting ways, including at least the following: sampling rate (TR), scan duration, multi-band acceleration, denoising procedures (CompCor vs. ICA), head motion, ROI registration accuracy, and wakefulness (I assume the infants are asleep).

      Addressing all of these issues is beyond the scope of this paper, but I do feel the authors should acknowledge these confounds and discuss the extent to which they are likely (or not) to explain their results. The authors would strengthen their conclusions with analyses directly comparing data quality between groups (e.g., measures of head motion and split-half reliability would be particularly effective).

      Response #1: We appreciate the reviewer’s comments. In response, we have revised the paper to provide a more balanced summary of the data and clarified in the introduction which signatures the paper focuses on and why. Additionally, we have included several control analyses to account for other plausible explanations for the observed group differences. Specifically, we randomly split the infant dataset into two halves and performed split-half cross-validation. Across all comparisons, the results from the two halves were highly similar, suggesting that the effects are robust (see Supplementary Figures S3 and S4).

      Furthermore, we compared the split-half noise ceiling across the groups (infants, sighted adults, and blind adults) and found no significant differences between them (details in response #6). Finally, we repeated our analysis after excluding infants with a radiology score of 4 or 5, and the results remained consistent, indicating that our findings are not confounded by potential brain anomalies (details in response #2).

      We hope these control analyses help strengthen our conclusions.

      Reviewer #3 (Public Review):

      Summary:

      This study aimed to investigate whether the differences observed in the organization of visual brain networks between blind and sighted adults result from a reorganization of an early functional architecture due to blindness, or whether the early architecture is immature at birth and requires visual experience to develop functional connections. This question was investigated through the comparison of 3 groups of subjects with resting-state functional MRI (rs-fMRI). Based on convincing analyses, the study suggests that: 1) secondary visual cortices showed higher connectivity to prefrontal cortical regions (PFC) than to non-visual sensory areas (S1/M1 and A1) in sighted infants like in blind adults, in contrast to sighted adults; 2) the V1 connectivity pattern of sighted infants lies between that of sighted adults (stronger functional connectivity with non-visual sensory areas than with PFC) and that of blind adults (stronger functional connectivity with PFC than with non-visual sensory areas); 3) the laterality of the connectivity patterns of sighted infants resembled those of sighted adults more than those of blind adults, but sighted infants showed a less differentiated fronto-occipital connectivity pattern than adults.

      Strengths:

      The question investigated in this article is important for understanding the mechanisms of plasticity during typical and impaired development, and the approach considered, which compares different groups of subjects including, neonates/infants and blind adults, is highly original.

      -Overall, the analyses considered are solid and well-detailed. The results are quite convincing, even if the interpretation might need to be revised downwards, as factors other than visual experience may play a role in the development of functional connections with the visual system.

      Weaknesses:

      While it is informative to compare the "initial" state (close to birth) and the "final" states in blind and sighted adults to study the impact of post-natal and visual experience, this study does not analyze the chronology of this development and when the specialization of functional connections is completed. This would require investigating when experience-dependent mechanisms are important for the setting- establishment of multiple functional connections within the visual system. This could be achieved by analyzing different developmental periods in the same way, using open databases such as the Baby Connectome Project. Given the early, "condensed" maturation of the visual system after birth, we might expect sighted infants to show connectivity patterns similar to those of adults a few months after birth.

      The rationale for mixing full-term neonates and preterm infants (scanned at term-equivalent age) from the dHCP 3rd release is not understandable since preterms might have a very different development related to prematurity and to post-natal (including visual) experience. Although the authors show that the difference between the connectivity of visual and other sensory regions, and the one of visual and PFC regions, do not depend on age at birth, they do not show that each connectivity pattern is not influenced by prematurity. Simply not considering the preterm infants would have made the analysis much more robust, and the full-term group in itself is already quite large compared with the two adult groups. The current study setting and the analyses performed do not seem to be an adequate and sufficient model to ascertain that "a few weeks of vision after birth is ... insufficient to influence connectivity".

      In a similar way, excluding the few infants with detected brain anomalies (radiological scores higher or equal to 4) would strengthen the group homogeneity by focusing on infants supposed to have a rather typical neurodevelopment. The authors quote all infants as "sighted" but this is not guaranteed as no follow-up is provided.

      Response #2: We appreciate the reviewer’s suggestion. We re-analyzed the infant cohort after excluding all cases with radiological scores ≥4 (n =39 infants excluded). The revised analysis confirmed that the connectivity patterns reported in the main text remain statistically unchanged (see Supplementary Fig. S11). This demonstrates the robustness of our findings to potential confounding effects from potential brain anomalies. We have explicitly clarified this in the revised Methods section (page 14, line 391in the manuscript).

      In our dataset, newborns (average age at scan = 2.79 weeks) have very limited and immature vision. We agree with the reviewer that long-term visual outcomes cannot be guaranteed without follow-up data. The term "sighted infants" was used operationally to distinguish this cohort from congenitally blind populations.

      The post-menstrual age (PMA) at scan of the infants is also not described. The methods indicate that all were scanned at "term-equivalent age" but does this mean that there is some PMA variability between 37 and 41 weeks? Connectivity measures might be influenced by such inter-individual variability in PMA, and this could be evaluated.

      The rationale for presenting results on the connectivity of secondary visual cortices before one of the primary cortices (V1) was not clear to understand. Also, it might be relevant to better justify why only the connectivity of visual regions to non-visual sensory regions (S1-M1, A1) and prefrontal cortex (PFC) was considered in the analyses, and not the ones to other brain regions.

      In relation to the question explored, it might be informative to reposition the study in relation to what others have shown about the developmental chronology of structural and functional long-distance and short-distance connections during pregnancy and the first postnatal months.

      The authors acknowledge the methodological difficulties in defining regions of interest (ROIs) in infants in a similar way as adults. The reliability and the comparability of the ROIs positioning in infants is definitely an issue. Given that brain development is not homogeneous and synchronous across brain regions (in particular with the frontal and parietal lobes showing delayed growth), the newborn brain is not homothetic to the adult brain, which poses major problems for registration. The functional specialization of cortical regions is incomplete at birth. This raises the question of whether the findings of this study would be stable/robust if slightly larger or displaced regions had been considered, to cover with greater certainty the same areas as those considered in adults. And have other cortical parcellation approaches been considered to assess the ROIs robustness (e.g. MCRIB-S for full-terms)?

      Recommendations for the Authors:

      Reviewer #1(Recommendations for the authors):

      Further consideration should be given to the underlying changes in network architecture that may account for differences in functional correlations across groups. An increase (or decrease) in correlation between two regions could signify an increase (decrease) in connection or communication between those regions. Alternatively, it might reflect an increase in communication or connection with a third region, while the physical connections/interactions between the two original regions remain unchanged. These possibilities lead to distinct mechanistic interpretations. For example, there are substantial changes in connectivity during early visual (e.g. Burkhalter A. 1993, Cerebral Cortex) and visuo-motor development (e.g., Csibra et al. 2000 Neuroreport). It's not clear whether increases in communication within the visual network and improvements in visuo-motor behavior (e.g., Yizhar et al. 2023 Frontiers in Neuroscience) wouldn't produce a qualitatively similar pattern of results.

      Relatedly, the within-network correlation patterns between visual ROIs and frontal ROIs appear markedly different between sighted adults and infants (Supplementary Figure S1). To what extent do the differences in long-range correlations between visual and frontal regions reflect these within-network differences in functional organization?

      Response #3: The reviewer is raising some interesting questions about possible mechanisms and network changes. Resting state studies are indeed always subject to possibility that some effects are mediated by a third, unobserved region. Prior whole-cortex connectivity analyses have observed primarily changes in occipito-frontal connectivity in blindness, so there is not a clear cortical ‘third region’ candidate (Deen et al., 2015). However, some thalamic affects have also been observed and could contribute to the phenomenon (Bedny et al., 2011). Resting state changes in correlation between two areas do not imply changes in strength of long-range anatomical connectivity. Indeed, in the current case they may well reflect differential functional coupling, rather than strengthening or weakening of anatomical connections. We now discuss this in the Discussion section on page 12, line 301 as follows:

      “Despite these insights, many questions remain regarding the neurobiological mechanisms underlying experience-based functional connectivity changes and their relationship to anatomical development. Long-range anatomical connections between brain regions are already present in infants—even prenatally—though they remain immature (Huang et al., 2009; Kostović et al., 2019, 2021; Takahashi et al., 2012; Vasung, 2017). Functional connectivity changes may stem from local synaptic modifications within these stable structural pathways, consistent with findings that functional connectivity can vary independently of structural connection strength (Fotiadis et al., 2024). Moreover, functional connectivity has been shown to outperform structural connectivity in predicting individual behavioral differences, suggesting that experience-based functional changes may reflect finer-scale synaptic or network-level modulations not captured by macrostructural measures (Ooi et al., 2022). Prior studies also suggest that, even in adults, coordinated sensory-motor experience can lead to enhancement of functional connectivity across sensory-motor systems, indicating that large-scale changes in functional connectivity do not necessarily require corresponding changes in anatomical connectivity (Guerra-Carrillo et al., 2014; Li et al., 2018).”

      It is not clear how changes in correlation patterns among visual areas would produce the connectivity between visual areas and prefrontal areas reported in the current study. Activity in visual areas drives correlations both among visual areas and between visual and prefrontal areas and the same is true of prefrontal corticies.

      The findings from this study should be more closely linked to the extensive literature surrounding the debate on whether experience plays an instructive or permissive role in visual development (e.g., Crair 1999 Current Opin Neurobiol; Sur et al. 1999 J Neurobiol; Kiorpes 2016 J Neurosci; Stellwagen & Shatz 2002 Neuron; Roy et al. 2020 Nature Communications).

      Response #4: The instructive role suggests that specific experiences or patterns of neural activity directly shape and organize neural circuitry, while the permissive role indicates that such experiences or activity merely enable other factors, such as molecular signals, to influence neural circuit formation(Crair, 1999; Sur et al., 1999). To distinguish whether experience plays an instructive or permissive role, it is essential to manipulate the pattern or information content of neural activity while maintaining a constant overall activity level (Crair, 1999; Roy et al., 2020; Stellwagen & Shatz, 2002). However, both the sighted and blind adult groups have had extensive experience and neural activity in the visual cortices. For the sighted group, activity in the visual cortex is partly driven by bottom-up input from the external environment, through the retina, LGN, and ultimately to the cortex. In contrast, the blind group’s visual cortex activity is partially driven by top-down input from non-visual networks. The precise role of this activity in shaping the observed connectivity patterns remains unclear. Although our study cannot speak to this issue directly, we now link to the relevant literature on page 12,line 320 of the manuscript in the Discussion section as follows:

      “The current findings reveal both effects of vision and effects of blindness on the functional connectivity patterns of the visual cortex. A further open question is whether visual experience plays an instructive or permissive role in shaping neural connectivity patterns. An instructive role suggests that specific sensory experiences or patterns of neural activity directly shape and organize neural circuitry. In contrast, a permissive role implies that sensory experience or neural activity merely facilitates the influence of other factors—such as molecular signals—on the formation and organization of neural circuits (Crair, 1999; Sur et al., 1999). Studies with animals that manipulate the pattern or informational content of neural activity while keeping overall activity levels constant could distinguish between these hypotheses (Crair, 1999; Roy et al., 2020; Stellwagen & Shatz, 2002).”

      The assertion that a few weeks of vision after birth is insufficient to influence connectivity is provocative. Though supported by the study's results, it would benefit from integration with research in animal models showing considerable malleability of networks from early experience (e.g., Akerman et al. 2002 Neuron; Li et al. 2006 Nature Neuroscience; Stacy et al. 2023 J Neuroscience).

      Response #5: We thank the reviewer for their suggestion. The present study found that several weeks of postnatal visual experience is insufficient to significantly alter the long-term connectivity patterns of the visual cortices. While animal studies have shown that acute visual experience, or even exposure to visual stimuli through unopened eyelids, can robustly influence visual system development(Akerman et al., 2002; Li et al., 2008; Van Hooser et al., 2012). We think this discrepancy may be attributed to the substantial differences in developmental timelines between species. The human lifespan is much longer, and so is the human critical period, making it unclear how to map duration from one species to another. We briefly touched upon the time course issue in page 11 line 289 in the Discussion section as follows:

      “The present results reveal the effects of experience on development of functional connectivity between infancy and adulthood, but do not speak to the precise time course of these effects. Infants in the current sample had between 0 and 20 weeks of visual experience. Comparisons across these infants suggests that several weeks of postnatal visual experience is insufficient to produce a sighted-adult connectivity profile. The time course of development could be anywhere between a few months and years and could be tested by examining data from children of different ages.”

      Substantial differences between the groups are evident in several key aspects of the study, including the number of subjects, brain sizes, imaging parameters, and data preprocessing, all of which are likely to have an impact on the overall signal quality. To clarify how these differences might have impacted correlation differences between groups, it would be essential to include information on the noise ceilings for each correlation analysis within each group.

      Response #6: We thank the reviewer for their suggestion. We now report the split-half noise ceiling for adult and infant groups. For each participant, we first split the rs-fMRI time series into two halves, then calculated the ROI-wise rsFC pattern from the two splits. The split-half noise ceiling was estimated according to Lage-Castellanos et al (2019). The noise ceilings of the three groups (infants: 0.90 ± 0.056,blind adults: 0.88 ± 0.041, sighted adults: 0.90 ± 0.055) showed no significant difference (One-way ANOVA<sub>,</sub> F(2,552) = 2.348, p = 0.097). Therefore, we believe that overall signal quality is unlikely to impact our results. We also add the relevant context in the Method section in page 16 Line 447 as follows:

      “Substantial differences between the groups exist in this study, including the number of subjects, brain sizes, imaging parameters, and data preprocessing, all of which are likely to have an impact on the overall signal quality. To address this concern, we compared the split-half noise ceiling across the groups (infants, sighted adults, and blind adults). For each participant, we first split the rs-fMRI time series into two halves, then calculated the ROI-wise rsFC pattern from the two splits. The split-half noise ceiling was estimated according to Lage-Castellanos et al (Lage-Castellanos et al., 2019). The noise ceilings of the three groups (infants: 0.90 ± 0.056, blind adults: 0.88 ± 0.041, sighted adults: 0.90 ± 0.055) showed no significant difference (One-way ANOVA, F (2,552) = 2.348, p = 0.097). Therefore, overall signal quality is unlikely to impact our results.”

      In general, it appears that the infant correlations are stronger compared to the other groups. While this could reflect increased coherence or lack of differentiation, it is also possible that it is simply due to the presence of a non-neuronal global signal. Such a signal has the potential to substantially limit the effective range of functional correlations and comparisons with adults. To address this, it is advisable to conduct control analyses aimed at assessing and potentially removing global signals.

      Response #7: We agree with the reviewer that global signal regression (GSR) may help reduce non-neuronal artifacts, such as motion, cardiac, and respiratory signals, which are known to correlate with the global signal. However, the global signal also contains neural signals from gray matter, and removing it can introduce unwanted artifacts, especially for the current study. First, GSR can reduce the physiological accuracy of functional connectivity (FC); second, GSR may have differential effects across groups, potentially introducing additional artifacts in between-group comparisons, as noted by Murphy et al (Murphy & Fox, 2017). The CompCor method (Behzadi et al., 2007; Whitfield-Gabrieli & Nieto-Castanon, 2012) is capble to estimate the global non-neuronal artifacts like the GSR method. Meanwhile as it estimate global non-neuronal artifacts from signals within the white matter (WM) and cerebrospinal fluid (CSF) masks, but not the gray matter (GM), CompCor could introduce minimal unwanted bias to the GM signal.

      Was there a difference in correlations for preterm vs term neonates? Recent research has suggested that preterm births can have an impact on functional networks, particularly in frontal cortices. e.g., Tokariev et al. 2019, Li et al. 2021 elife; Zhang et al. 2022 Fronteirs in Neuroscience.

      Response #8: We have compared preterm and term neonates for all the main results, including the connectivity from the secondary visual cortex/V1 to non-visual sensory cortices versus prefrontal cortices, the laterality of occipito-frontal connectivity, and the specialization across different fronto-occipital networks. This information is reported in Page 6 line 169 and Supplementary Figure S7. The connectivities of full-term infants are generally higher than those of preterm infants. However, the connectivity patterns of term and preterm infants are very similar.

      The consistency between the current results and prior work (e.g., Burton et al. 2014) is notable, particularly in the observed greater correlations in prefrontal regions and weaker correlations in somato-motor regions for early blind individuals compared to sighted. However, almost all visual-frontal correlations in both groups were negative in that prior study. Some discussion on why positive correlations were found in the current study could help to clarify.

      Response #9: Many other papers have reported positive correlations similar to those found in our study (e.g., Deen et al., 2015; Kanjlia et al., 2021). In contrast, Burton's study identified predominantly negative visual-frontal correlations, we think this is likely because the global signal was regressed out during preprocessing. This methodological choice can lead to an increase in negative connections (Murphy & Fox, 2017).

      The term "secondary visual areas" used throughout the paper lacks specificity, and its usage in terms of underlying anatomical and functional areas has been inconsistent in the literature. It would be advisable to adopt a more precise characterization based on functional and/or anatomical criteria.

      Response #10: We specified in the article that Tthe occipital ROIs were defined in the current study are functional areas in people born blind identified in prior studies as regions that respond to three non-visual tasks such as language, math, or executive function, and show functional connectivity changes in blind adults in previous studies (Kanjlia et al., 2016, 2021; Lane et al., 2015). These regions respond to language, math and executivie function in the congenitally blind population (see Figure 1.) The are refered collectively as ‘secondary visual areas’ to destinguish them from V1. Anatomically, these three regions cover the majority of the lateral occipital cortex and part of the ventral occipital cortex, providing a good sample of the connectivity profile of higher-order visual areas. Thus, we are using the term "secondary visual areas" to refer to these regions. In blind individuals, although these regions respond to non-visual tasks, their exact functions are unknown.

      The inclusion of the ventral temporal cortex in the visual ROIs is currently only depicted in Supplementary Figure S7. To enhance the clarity of the areas of interest analyzed, it would be advisable to illustrate the ventral temporal areas in the main text. Were there notable differences in the frontal correlations between the lateral occipital visual areas and ventral temporal areas?

      Response #11: We thank the reviewer for pointing out this issue. We added a statement about the ventral visual cortex in describing the location of the ROI and added the ventral view of ROIs in the Figure 1. The language-responsive and math -responsive ROIs covers both the lateral and ventral visual cortex, whereas executive function (response-conflict) regions cover only the lateral visual cortex. We compared the connectivity patterns of these three regions and found no differences (see supplementary Fig S2).

      The blind group results are characterized as reflecting a reorganization in comparison to sighted adults while the results for sighted adults compared to infants are discussed more as a maturation ("adult pattern isn't default but requires experience to establish"). Both the sighted and blind adult groups showed differences from the infant group, and these differences are attributed to the role of experience. Why use "reorganization" for one result and maturation for another?

      Response #12: We agree with the reviewer that both of the adult groups should be thought of as equal in relation to the infants. In other words, the brain develops under one set of experiential conditions or another. We do not think that the adult sighted pattern reflects maturation. Rather, the sighted adult pattern reflects the combined influence of maturation and visual experience. The adult blind pattern reflects the combined influence of maturation and blindness. We use the term ‘reorganization’ to label differences in the blind adults relative to sighted infants. We do so for the purpose of clarity and to remain consistent with terminology in prior liaterature. However, we agree with the reviewer that the blind group does not reflect ‘reorganization’ intrinsically any more than the sighted adult group.

      The statement that "visual experience is required to set up long-range functional connectivity" is unclear, especially since the infant and blind groups showed stronger long-range functional correlations with PFC.

      Response #13: We revised this sentence to specifically as “visual experience establishes elements of the sighted-adult long-range connectivity” in tha Abstract line 17.

      The statement that the visual ROIS roughly correspond to "the anatomical location of areas such as V5/MT+, LO, V3a, and V4v" appears imprecise. From Supplementary Figure S7, these areas cover anterior portions of ventral temporal cortex (do these span the anatomical location of putative category-selective areas?) and into the intraparietal sulcus.

      Response #14: Thanks to the reviewer for the clarification. The ventral ROIs cover the middle and part of the anterior portion of the ventral temporal lobe, including the putative category-selective areas. Additionally, the dorsal ROIs extend beyond the occipital lobe to the intraparietal sulcus and superior parietal lobule. We have added a more detailed description of the anatomical location of the ROI in the Methods section Page 17 line 489 as follows:

      “Each functional ROI spans multiple anatomical regions and together the secondary visual ROIs tile large portions of lateral occipital, occipito-temporal, dorsal occipital and occipito-parietal cortices. In sighted people, the secondary visual occipital ROIs include the anatomical locations of functional regions such as motion area V5/MT+, the lateral occipital complex (LO), category specific ventral occipitotemporal cortices and dorsally, V3a and V4v.  The occipital ROI also covers the middle of the ventral temporal lobe. Dorsally, it extended to the intraparietal sulcus and superior parietal lobule.”

      The motivation for assessing correlations with motor and frontal regions was briefly discussed in the introduction. It would be helpful to reiterate this motivation when first introducing the analyses in the results.

      Response #15: Thank you for the thoughtful suggestion. Upon reflection, we chose to substantially revise the Introduction to more clearly and comprehensively explain the rationale for examining the couplings with motor and frontal regions, rather than reiterating it in the Results section. We believe this revised framing provides a stronger foundation for the analyses that follow, while avoiding redundancy across sections. We hope this addresses the reviewer’s concern.

      Reviewer #2 (Recommendations for the authors):

      Congratulations on a well-written paper and an interesting set of results.

      Reviewer #3 (Recommendations for the authors):

      Abstract:

      Mentioning "sighted infants" does not seem adequate.

      Response #16: In our dataset, newborns (average age at scan = 2.79 weeks) have very limited and immature vision. We agree with the reviewer that long-term visual outcomes cannot be guaranteed without follow-up data. The term "sighted infants" was used operationally to distinguish this cohort from congenitally blind populations.

      In sentences after "Specifically...", it was not clear whether the authors referred to V1 connectivity.

      Response #17: We thank the reviewer for this comment. In the revised abstract, we have removed the original "Specifically..." phrasing and clarified the results.

      Introduction

      Talking about the "instructive effects" of vision might be confusing or misleading. Visual experiences like exposure to oral language are part of the normal/spontaneous environment that allows the infant behavioral acquisitions (contrarily with learnings that occur later during development with instruction like for reading).

      Response #18: We appreciate the reviewer’s concern and would like to clarify that the term “instructive effect” is used here derived from neurodevelopmental studies (Crair, 1999; Sur et al., 1999). In this context, “instructive” refers to activity-dependent mechanisms where patterns of neural activity actively guide the organization of synaptic connectivity, emphasizing that spontaneous or sensory-driven activity (e.g., retinal waves, visual experience) can directly shape circuit refinement, as seen in ocular dominance column formation. In the context of our study, we emphasize that vision plays an instructive role in setting up the balance of connectivity between occipital cortex and non-visual networks.

      For references on the development of connectivity, I would advise citing MRI studies but also studies based on histological approaches (see for example the detailed review by Kostovic et al, NeuroImage 2019).

      Response #19: We thank the reviewer for this suggestion. We have incorporated a discussion on the long-range anatomical connections that emerge as early as infancy, referencing studies that employed diffusion MR imaging and histological methods, as detailed below.

      “Many long-range anatomical connections between brain regions are already established in infants, even before birth, although they are not yet mature (Huang et al., 2009; Kostović et al., 2019, 2021; Takahashi et al., 2012; Vasung, 2017).” (Page 12, line 303 in the manuscript)

      Results

      P7 l170: It might be helpful to be precise that this is "compared with inter-hemispheric connectivity".

      Response #20: We thank the reviewer for this suggestion. To align with our established terminology, we have revised the statement to explicitly contrast within-hemisphere connectivity with between-hemisphere connectivity. The modified text now reads (page 7, line 183 in the manuscript):

      “Compared to sighted adults, blind adults exhibited a stronger dominance of within-hemisphere connectivity over between-hemisphere connectivity. That is, in people born blind, left visual networks are more strongly connected to left PFC, whereas right visual networks are more strongly connected to right PFC.

      L176-181: It was not clear to me what was the difference between "across" and "between hemisphere connectivity". Would it be informative to test the difference between blind and sighted adults?

      Response #21: We clarify that there is no distinction between the terms “across” and “between hemisphere connectivity”—they refer to the same concept. To ensure consistency, we have revised the text to exclusively use “between hemisphere connectivity” throughout the manuscript. Regarding the comparison between blind and sighted adults, we conducted statistical comparisons between these groups in our analysis, and the results have been incorporated into the revised version (Page 7, line 187 in the manuscript).

      Adding statistics on Figure 3, but also on Figures 1 and 2 might help the reading.

      Response #22: We have added the statistics in Figure 1-4.

      Adding the third comparison in Figure 4 would be possible in my view.

      Response #23: We explored integrating the response-conflict region into Figure 4, but this would require a 3x3 bar chart with pairwise statistical significance markers, which introduced excessive visual complexity that hindered readers’ ability to grasp our intended message. To ensure clarity, we retained the original Figure 4 while providing the complete three-region analysis (including all statistical comparisons) in Supplementary Figure S8 to ensure completeness.

      Methods

      The authors might have to specify ages at birth, and ages at scan (median + range?).

      Response #24: We have added that information in the Methods section as follows:

      “The average age from birth at scan = 2.79 weeks (SD = 3.77, median = 1.57, range = 0 – 19.71); average gestational age at scan = 41.23 weeks (SD = 1.77, median = 41.29, range = 37 – 45.14); average gestational age at birth = 38.43 weeks (SD = 3.73, median = 39.71, range = 23 – 42.71).” (Page 14, line 379 in the manuscript)

      It might be relevant to comment on the range of available fMRI volumes, and the fact that connectivity measures might then be less robust in infants.

      Response #25: We report the range of fMRI volumes in the Methods section (Page 16, Line 449). Adult participants (blind and sighted) underwent 1–4 scanning sessions, each containing 240 volumes (mean scan duration: 710.4 seconds per participant). For infants, all subjects had 2300 fMRI volumes, and we retained a subset of 1600 continuous volumes per subject with the minimum number of motion outliers. While infant connectivity measures may inherently exhibit lower robustness due to developmental and motion-related factors, our infant cohort’s large sample size (n=475) and stringent motion censoring criteria enhance the reliability of group-level inferences. We have integrated this clarification into the Methods section (Page 16, Line 444) as follows:

      "While infant connectivity estimates may be less robust at the individual level compared to adults due to shorter scan durations and higher motion, our cohort’s large sample size (n=475) and rigorous motion censoring mitigate these limitations for group-level analyses. "

      The mention of dHCP 2nd release should be removed from the paragraph on data availability.

      Response #26: We have removed it.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome. In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way, and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a *very good idea*.

      The more concrete contributions, however, are not as strong. In particular, evidence for the paper's most striking claims is weak. Quoting the abstract, these claims are (1) "the elasticity of control [is] a distinct cognitive construct guiding adaptive behavior" and (2) "overestimation of elasticity is associated with elevated psychopathology involving an impaired sense of control."

      Main issues

      I'll highlight the key points.

      - The task cannot distinguish elasticity inference from general learning processes

      - Participants were explicitly instructed about elasticity, with labeled examples

      - The psychopathology claims rely on an invalid interpretation of CCA, and are contradicted by simple correlations (elasticity bias and the sense of agency scale is r=0.03)

      Distinct construct

      Starting with claim 1, there are three subclaims here. (1A) People's behavior is sensitive to differences in elasticity; (1B) there are mental processes specific to elasticity inference, i.e., not falling out of general learning mechanisms; and, implicitly, (1C) people infer elasticity naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not well supported.

      (1B) The data cannot support the "distinct cognitive construct" claim because the task is too simple to dissociate elasticity inference from more general learning processes (also raised by Reviewer 1). The key behavioral signature for elasticity inference (vs. generic controllability inference) is the transfer across ticket numbers, illustrated in Fig 4. However, this pattern is also predicted by a standard Bayesian learner equipped with an intuitive causal model of the task. Each ticket gives you another chance to board and the agent infers the probability that each attempt succeeds. Crucially, this logic is not at all specific to elasticity or even control. An identical model could be applied to inferring the bias of a coin from observations of whether any of N tosses were heads-a task that is formally identical to this one (at least, the intuitive model of the task; see first minor comment).

      Importantly, this point cannot be addressed by showing that the author's model fits data better than this or any other specific Bayesian model. It is not a question of whether one particular updating rule explains data better than another. Rather, it is a question of whether the task can distinguish between biases in *elasticity* inference versus biases in probabilistic inference more generally. The present task cannot make this distinction because it does not make separate measurements of the two types of inference. To provide compelling evidence that elasticity inference is a "distinct cognitive construct", one would need to show that there are reliable individual differences in elasticity inference that generalize across contexts but do not generalize to computationally similar types of probabilistic inference (e.g. the coin flipping example).

      (1C) The implicit claim that people infer elasticity outside of the experimental task is undermined by the experimental design. The authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips."

      In the revisions, the authors seem to go back and forth on whether they are claiming that people infer elasticity without instruction (I won't quote it here). I'll just note that the examples they provide in the most recent rebuttal are all cases in which one never receives explicit labels about elasticity. If people only infer elasticity when it is explicitly labeled, I struggle to see its relevance for understanding human cognition and behavior.

      Psychopathology

      Finally, I turn to claim 2, that "overestimation of elasticity is associated with elevated psychopathology involving an impaired sense of control." The CCA analysis is in principle unable to support this claim. As the authors correctly note in their latest rebuttal, the CCA does show that "there is a relationship between psychopathology traits and task parameters". The lesion analysis further shows that "elasticity bias specifically contributes to this relationship" (and similarly for the Sense of Agency scale). Crucially, however, this does *not* imply that there is a relationship between those two variables. The most direct test of that relationship is the simple correlation, which the authors report only in a supplemental figure: there is no relationship (r=0.03). Although it is of course possible that there is a relationship that is obscured by confounding variables, the paper provides no evidence-statistical or otherwise-that such a relationship exists.

      Minor comments

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p - p^2 for two tickets; the p^2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, the researcher could infer "biases" in elasticity inference that are probably better characterized as effective use of prior information (encoded in the causal model).

      The model is heuristically defined and does not reflect Bayesian updating. For example, it over-estimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

    2. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform understanding of control across domains, which is a topic of great importance.

      We thank the Reviewer for their favorable appraisal and valuable suggestions, which have helped clarify and strengthen the study’s conclusion. 

      In its revised form, the manuscript addresses most of my previous concerns. The main remaining weakness pertains to the analyses aimed at addressing my suggesting of Bayesian updating as an alternative to the model proposed by the authors. My suggestion was to assume that people perform a form of function approximation to relate resource expenditure to success probability. The authors performed a version of this where people were weighing evidence for a few canonical functions (flat, step, linear), and found that this model underperformed theirs. However, this Bayesian model is quite constrained in its ability to estimate the function relating resources. A more robust test would be to assume a more flexible form of updating that is able to capture a wide range of distributions (e.g., using basis functions, gaussian processes, or nonparametric estimators); see, e.g., work by Griffiths on human function learning). The benefit of testing this type of model is that it would make contact with a known form of inference that individuals engage in across various settings and therefore could offer a more parsimonious and generalizable account of function learning, whereby learning of resource elasticity is a special case. I defer to the authors as to whether they'd like to pursue this direction, but if not I think it's still important that they acknowledge that they are unable to rule out a more general process like this as an alternative to their model. This pertains also to inferences about individual differences, which currently hinge on their preferred model being the most parsimonious.

      We thank the Reviewer for this thoughtful suggestion. We acknowledge that more flexible function learning approaches could provide a stronger test in favor of a more general account. Our Bayesian model implemented a basis function approach where the weights of three archetypal functions (flat, step, linear) are learned from experience Testing models with more flexible basis functions would likely require a task with more than three levels of resource investment (1, 2, or 3 tickets). This would make an interesting direction for future work expanding on our current findings. We now incorporate this suggestion in more detail in our updated manuscript (335-341):

      “Second, future models could enable generalization to levels of resource investment not previously experienced. For example, controllability and its elasticity could be jointly estimated via function approximation that considers control as a function of invested resources. Although our implementation of this model did not fit participants’ choices well (see Methods), other modeling assumptions drawn from human function learning [30] or experimental designs with continuous action spaces may offer a better test of this idea.”

      Reviewer #2 (Public review):

      This research investigates how people might value different factors that contribute to controllability in a creative and thorough way. The authors use computational modeling to try to dissociate "elasticity" from "overall controllability," and find some differential associations with psychopathology. This was a convincing justification for using modeling above and beyond behavioral output and yielded interesting results. Notably, the authors conclude that these findings suggest that biased elasticity could distort agency beliefs via maladaptive resource allocation. Overall, this paper reveals important findings about how people consider components of controllability. The authors have gone to great lengths to revise the manuscript to clarify their definitions of "elastic" and "inelastic" and bolster evidence for their computational model, resulting in an overall strong manuscript that is valuable for elucidating controllability dynamics and preferences. 

      We thank the Reviewer for their constructive feedback throughout the review process, which has substantially strengthened our manuscript and clarified our theoretical framework.

      One minor weakness is that the justification for the analysis technique for the relationships between the model parameters and the psychopathology measures remains lacking given the fact that simple correlational analyses did not reveal any significant associations.

      We note that the existence of bivariate relationships is not a prerequisite for the existence of multivariate relationships. Conditioning the latter on the former, therefore, would risk missing out on important relationships existing in the data. Ultimately, correlations between pairs of variables do not offer a sensitive test for the general hypothesis that there is a relationship between two sets of variables. As an illustration, consider that elasticity bias correlated in our data (r = .17, p<.001) with the difference between SOA (sense of agency) and SDS (self-rating depression). Notably, SOA and SDS were positively correlated (r = .47, p<.001), and neither of them was correlated with elasticity bias (SOA: r=.04 p=.43, SDS: r=-.06, p=.16). It was a dimension that ran between them that mapped onto elasticity bias. This specific finding is incidental and uncorrected for multiple comparisons, hence we do not report it in the manuscript, but it illustrates the kinds of relationships that cannot be accounted for by looking at bivariate relationships alone.  

      Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome.

      In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a very good idea.

      We thank the Reviewer for their thoughtful engagement with our manuscript. We appreciate their recognition of elasticity as a key dimension of control that has the potential to advance our understanding of psychopathology and healthy decision-making.

      Starting with theory, the authors do not provide a strong formal characterization of the proposed notion of elasticity. There are existing, highly general models of controllability (e.g., Huys & Dayan, 2009; Ligneul, 2021) and the elasticity idea could naturally be embedded within one of these frameworks. The authors gesture at this in the introduction; however, this formalization is not reflected in the implemented model, which is highly task-specific.

      Our formal definition of elasticity, detailed in Supplementary Note 1, naturally extends the reward-based and information-theoretic definitions of controllability by Huys & Dayan (2009) and Ligneul (2021). We now further clarify how the model implements this formalized definition (lines 156-159).

      “Conversely, in the ‘elastic controllability model’, the beta distributions represent a belief about the maximum achievable level of control (𝑎<sub>Control</sub>, 𝑏<sub>Control</sub>) coupled with two elasticity estimates that specify the degree to which successful boarding requires purchasing at least one (𝑎<sub>elastic≥1</sub>, 𝑏<sub>elastic≥1</sub>) or specifically two (𝑎<sub>elastic2</sub>, 𝑏<sub>elastic2</sub>) extra tickets. As such, these elasticity estimates quantify how resource investment affects control. The higher they are, the more controllability estimates can be made more precise by knowing how much resources the agent is willing and able to invest (Supplementary Note 1).”

      Moreover, the authors present elasticity as if it is somehow "outside of" the more general notion of controllability. However, effort and investment are just specific dimensions of action; and resources like money, strength, and skill (the "highly trained birke") are just specific dimensions of state. Accordingly, the notion of elasticity is necessarily implicitly captured by the standard model. Personally, I am compelled by the idea that effort and resource (and therefore elasticity) are particularly important dimensions, ones that people are uniquely tuned to. However, by framing elasticity as a property that is different in kind from controllability (rather than just a dimension of controllability), the authors only make it more difficult to integrate this exciting idea into generalizable models.

      We respectfully disagree that we present elasticity as outside of, or different in kind from, controllability. Throughout the manuscript, we explicitly describe elasticity as a dimension of controllability (e.g., lines 70-72, along many other examples). This is also expressed in our formal definition of elasticity (Supplementary Note 1). 

      The argument that vehicle/destination choice is not trivial because people occasionally didn't choose the instructed location is not compelling to me-if anything, the exclusion rate is unusually low for online studies. The finding that people learn more from non-random outcomes is helpful, but this could easily be cast as standard model-based learning very much like what one measures with the Daw two-step task (nothing specific to control here). Their final argument is the strongest, that to explain behavior the model must assume "a priori that increased effort could enhance control." However, more literally, the necessary assumption is that each attempt increases the probability of success-e.g. you're more likely to get a heads in two flips than one. I suppose you can call that "elasticity inference", but I would call it basic probabilistic reasoning.

      We appreciate the Reviewer’s concerns but feel that some of the more subjective comments might not benefit from further discussion. We only note that controllability and its elasticity are features of environmental structure, so in principle any controllability-related inference is a form of model-based learning. The interesting question is whether people account in their world model for that particular feature of the environment.   

      The authors try to retreat, saying "our research question was whether people can distinguish between elastic and inelastic controllability." I struggle to reconcile this with the claim in the abstract "These findings establish the elasticity of control as a distinct cognitive construct guiding adaptive behavior". That claim is the interesting one, and the one I am evaluating the evidence in light of.

      In real-world contexts, it is often trivial that sometimes further investment enhances control and sometimes it does not. For example, students know that if they prepare more extensively for their exams they will likely be able to achieve better grades, but they also know that there is uncertainty in this regard – their grades could improve significantly, modestly, or in some cases, they might not improve at all, depending on the type of exams their study program administers and the knowledge or skills being tested. Our research question was whether in such contexts people learn from experience the degree to which controllability is elastic to invested resources and adapt their resource investment accordingly. Our findings show that they do. 

      The authors argue for CCA by appeal to the need to "account for the substantial variance that is typically shared among different forms of psychopathology". I agree. A simple correlation would indeed be fairly weak evidence. Strong evidence would show a significant correlation after *controlling for* other factors (e.g. a regression predicting elasticity bias from all subscales simultaneously). CCA effectively does the opposite, asking whether-with the help of all the parameters and all the surveys-one can find any correlation between the two sets of variables. The results are certainly suggestive, but they provide very little statistical evidence that the elasticity parameter is meaningfully related to any particular dimension of psychopathology.

      We agree with the Reviewer on the relationship between elasticity and any particular dimension of psychopathology. The CCA asks a different question, namely, whether there is a relationship between psychopathology traits and task parameters, and whether elasticity bias specifically contributes to this relationship. 

      I am very concerned to see that the authors removed the discussion of this limitation in response to my first review. I quote the original explanation here:

      - In interpreting the present findings, it needs to be noted that we designed our task to be especially sensitive to overestimation of elasticity. We did so by giving participants free 3 tickets at their initial visits to each planet, which meant that upon success with 3 tickets, people who overestimate elasticity were more likely to continue purchasing extra tickets unnecessarily. Following the same logic, had we first had participants experience 1 ticket trips, this could have increased the sensitivity of our task to underestimation of elasticity in elastic environments. Such underestimation could potentially relate to a distinct psychopathological profile that more heavily loads on depressive symptoms. Thus, by altering the initial exposure, future studies could disambiguate the dissociable contributions of overestimating versus underestimating elasticity to different forms of psychopathology.

      The logic of this paragraph makes perfect sense to me. If you assume low elasticity, you will infer that you could catch the train with just one ticket. However, when elasticity is in fact high, you would find that you don't catch the train, leading you to quickly infer high elasticity eliminating the bias. In contrast, if you assume high elasticity, you will continue purchasing three tickets and will never have the opportunity to learn that you could be purchasing only one-the bias remains.

      The authors attempt to argue that this isn't happening using parameter recovery. However, they only report the *correlation* in the parameter, whereas the critical measure is the *bias*. Furthermore, in parameter recovery, the data-generating and data-fitting models are identical-this will yield the best possible recovery results. Although finding no bias in this setting would support the claims, it cannot outweigh the logical argument for the bias that they originally laid out. Finally, parameter recovery should be performed across the full range of plausible parameter values; using fitted parameters (a detail I could only determine by reading the code) yields biased results because the fitted parameters are themselves subject to the bias (if present). That is, if true low elasticity is inferred as high elasticity, then you will not have any examples of low elasticity in the fitted parameters and will not detect the inability to recover them.

      The logic the Reviewer describes breaks down when one considers the dynamics of participants’ resource investment choices. A low elasticity bias in a participant’s prior belief would make them persist for longer in purchasing a single ticket despite failure, as compared to a person without such a bias. Indeed, the ability of the experimental design to demonstrate low elasticity biases is evidenced by the fact that the majority of participants were fitted with a low elasticity bias (μ = .16 ± .14, where .5 is unbiased). 

      Originally, the Reviewer was concerned that elasticity bias was being confounded with a general deficit in learning. The weak inter-parameter correlations in the parameter recovery test resolved this concern, especially given that, as we now noted, the simulated parameter space encompassed both low and high elasticity biases (range=[.02,.76]). Furthermore, regarding the Reviewer's concern about bias in the parameter recovery, we found no such significant bias with respect to the elasticity bias parameter (Δ(Simulated, Recovered)= -.03, p=.25), showing that our experiment could accurately identify low and high elasticity biases.

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p – p<sup>^</sup>2 for two tickets; the p<sup>^</sup>2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, they will appear to "underestimate" the elasticity of control. I don't think this seriously jeopardizes the key results, but any follow-up work should ensure that the task's structure is consistent with the intuitive causal model.

      We thank the Reviewer for this comment, and agree the participants may have employed the intuitive understanding the Reviewer describes. This is consistent with our model comparison results, which showed that participants did not assume that control increases linearly with resource investment (lines 677-692). Consequently, this is also not assumed by our model, except perhaps by how the prior is implemented (a property that was supported by model comparison). In the text, we acknowledge that this aspect of the model and participants’ behavior deviates from the true task's structure, and it would be worthwhile to address this deviation in future studies. 

      That said, there is no reason that this will make participants appear to be generally underestimating elasticity. Following exposure to outcomes for one and three tickets, any nonlinear understanding of probabilities would only affect the controllability estimate for two tickets. This would have contrasting effects on the elasticity estimated to the second and third tickets, but on average, it would not change the overall elasticity estimated. On the other hand, such a participant is only exposed to outcomes for two and three tickets, they would come to judge the difference between the first and second tickets too highly, thereby overestimating elasticity.  

      The model is heuristically defined and does not reflect Bayesian updating. For example, it overestimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

      Note that we have tested a fully Bayesian model (lines 676-691), but found that this model fitted participants’ choices worse. 

      You're right; saying these analyses provides "no information" was unfair. I agree that this is a useful way to link model parameters with behavior, and they should remain in the paper. However, my key objection still holds: these analyses do not tell us anything about how *people's* prior assumptions influence behavior. Instead, they tell us about how *fitted model parameters* depend on observed behavior. You can easily avoid this misreading by adding a small parenthetical, e.g.

      Thus, a prior assumption that control is likely available **(operationalized by \gamma_controllability)** was reflected in a futile investment of resources in uncontrollable environments.

      We thank the Reviewer for the suggestion and have added this parenthetical (lines 219, 225).

    1. Reviewer #2 (Public review):

      Summary:

      This paper considers the effects of cognitive load (using an n-back task related to font color), predictability, and age on reading times in two experiments. There were main effects of all predictors, but more interesting effects of load and age on predictability. The effect of load is very interesting, but the manipulation of age is problematic, because we don't know what is predictable for different participants (in relation to their age). There are some theoretical concerns about prediction and predictability, and a need to address literature (reading time, visual world, ERP studies).

      Strengths/weaknesses

      It is important to be clear that predictability is not the same as prediction. A predictable word is processed faster than an unpredictable word (something that has been known since the 1970/80s), e.g., Rayner, Schwanenfluegel, etc. But this could be due to ease of integration. I think this issue can probably be dealt with by careful writing (see point on line 18 below). To be clear, I do not believe that the effects reported here are due to integration alone (i.e., that nothing happens before the target word), but the evidence for this claim must come from actual demonstrations of prediction.

      The effect of load on the effects of predictability is very interesting (and also, I note that the fairly novel way of assessing load is itself valuable). Assuming that the experiments do measure prediction, it suggests that they are not cost-free, as is sometimes assumed. I think the researchers need to look closely at the visual world literature, most particularly the work of Huettig. (There is an isolated reference to Ito et al., but this is one of a large and highly relevant set of papers.)

      There is a major concern about the effects of age. See the Results (161-5): this depends on what is meant by word predictability. It's correct if it means the predictability in the corpus. But it may or may not be correct if it refers to how predictable a word is to an individual participant. The texts are unlikely to be equally predictable to different participants, and in particular to younger vs. older participants, because of their different experiences. To put it informally, the newspaper articles may be more geared to the expectations of younger people. But there is also another problem: the LLM may have learned on the basis of language that has largely been produced by young people, and so its predictions are based on what young people are likely to say. Both of these possibilities strike me as extremely likely. So it may be that older adults are affected more by words that they find surprising, but it is also possible that the texts are not what they expect, or the LLM predictions from the text are not the ones that they would make. In sum, I am not convinced that the authors can say anything about the effects of age unless they can determine what is predictable for different ages of participants. I suspect that this failure to control is an endemic problem in the literature on aging and language processing and needs to be systematically addressed.

      Overall, I think the paper makes enough of a contribution with respect to load to be useful to the literature. But for discussion of age, we would need something like evidence of how younger and older adults would complete these texts (on a word-by-word basis) and that they were equally predictable for different ages. I assume there are ways to get LLMs to emulate different participant groups, but I doubt that we could be confident about their accuracy without a lot of testing. But without something like this, I think making claims about age would be quite misleading.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigates the influence of prior stimuli over multiple time scales in a position discrimination task, using pupillometry data and a reanalysis of EEG data from an existing dataset. The authors report consistent history-dependent effects across task-related, task-unrelated, and stimulus-related dimensions, observed across different time scales. These effects are interpreted as reflecting a unified mechanism operating at multiple temporal levels, framed within predictive coding theory.

      Strengths:

      The authors have done a good job in their revision, clarifying important points and stating the limitations of the study clearly.

      I also think they made a valid effort to address and correct issues arising from the temporal dependency confound, although I still wonder whether the best approach would have been to design an experiment in a way that avoided this confound in the first place.<br /> Overall, this is a substantially improved version, and I particularly appreciate the clarification and correction regarding the direction of the bias in the EEG data (repulsive rather than attractive).

      Weaknesses:

      These are now relatively minor points.

      I believe this latter aspect, the repulsive bias, may deserve further discussion, especially in relation to their behavioral findings and, in particular, to earlier work proposing multi-stage frameworks of serial dependence, where low-level repulsion interacts with attractive biases at higher-level stages (Fritsche et al., 2020; Pascucci et al., 2019; Sheehan & Serences, 2022). The authors may also consider to cite some key reviews on serial dependence that discuss both repulsion and attraction in forced-choice and reproduction tasks (Manassi et al., 2023; Pascucci et al., 2023).

      Related to this, after finding the opposite pattern, is the sentence in line 472-473 ("Further, we found an attractive...") and the related argument still valid?

      Regarding my earlier point about former line 197 and Figure 3b,c: what I noticed-similar to the patterns reported in the studies I referenced-is that the data cannot be simply described as showing faster and more accurate responses for small deltas. Responses also appear faster and more accurate for very large deltas, with performance being worse in between. Indeed, as the authors state: "The peak in precision for large Deltas locations is consistent with alternate events being encoded more precisely, while the peak for small offsets may be explained by the attractive bias towards the previous target." I wonder whether it is necessary, or unequivocally supported by the data, to hypothesize two separate mechanisms here. An alternative could be interference effects between consecutive stimuli that are neither identical nor completely different-making the previous one more likely to interfere with the current stimulus representation.

      Finally, this is definitely a minor point, but I still find the reply to my comment about the prediction of stable retinal input rather speculative. Such a prediction would seem more plausible in world-centered coordinates.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The manuscript is quite dense, with some concepts that may prove difficult for the non-specialist. I recommend spending a few more words (and maybe some pictures) describing the difference between task-relevant and task-irrelevant planes. Nice technique, but not instantly obvious. Then we are hit with "stimulus-related", which definitely needs some words (also because it is orthogonal to neither of the above). 

      We agree that the original description of the planes was too terse and have expanded on this in the revised manuscript.

      Line 85 - To test the influence of attention, trials were sorted according to two spatial reference planes, based on the location of the stimulus: task-related and task-unrelated (Fig. 1b). The task-related plane corresponded to participants’ binary judgement (Fig 1b, light cyan vertical dashed line) and the task-unrelated plane was orthogonal to this (Fig 1b, dark cyan horizontal dashed line). For example, if a participant was tasked with performing a left-or-right of fixation judgement, then their task-related plane was the vertical boundary between the left and right side of fixation, while their task-unrelated plane was the horizontal boundary. The former (left-right) axis is relevant to their task while the latter (top-bottom) axis is orthogonal and task irrelevant. This orthogonality can be leveraged to analyze the same data twice (once according to the task-related plane and again according to the taskunrelated plane) in order to compare performance when the relative location of an event is either task relevant or irrelevant.

      Line 183 - whereas task planes were constant, the stimulus-related plane was defined by the location of the stimulus on the previous trial, and thus varied from trial to trial. That is, on each trial, the target is considered a repeat if it changes location by <|90°| relative to its location on the previous trial, and an alternate if it moves by >|90°|.

      (2) While I understand that the authors want the three classical separations, I actually found it misleading. Firstly, for a perceptual scientist to call intervals in the order of seconds (rather than milliseconds), "micro" is technically coming from the raw prawn. Secondly, the divisions are not actually time, but events: micro means one-back paradigm, one event previously, rather than defined by duration. Thirdly, meso isn't really a category, just a few micros stacked up (and there's not much data on this). And macro is basically patterns, or statistical regularities, rather than being a fixed time. I think it would be better either to talk about short-term and long-term, which do not have the connotations I mentioned. Or simply talk about "serial dependence" and "statistical regularities". Or both. 

      We agree that the temporal scales defined in the current study are not the only way one could categorize perceptual time. We also agree that by using events to define scales, we ignore the influence of duration. In terms of the categories, we selected these for two reasons: 1) they conveniently group previous phenomena, and 2) they loosely correspond to iconic-, short- and long-term memory. We agree that one could also potentially split it up into two categories (e.g., short- and long-term), but in general, we think any form of discretization will have limitations. For example, Reviewer 1 suggests that the meso category is simply a few micros stacked together. However, there is a rich literature on phenomena associated with sequences of an intermediate length that do not appear to be entirely explained by stacking micro effects (e.g., sequence learning and sequential dependency). We also find that when controlling for micro level effects, there are clear meso level effects. Also, by the logic that meso level effects are just stacked micro effects, one could also argue the same for macro effects. We don’t think this argument is incorrect, rather we think it exemplifies the challenge of discretising temporal scales. Ultimately, the current study was aimed to test whether seemingly disparate phenomena identified in previous work could be captured by unifying principles. To this end we found that these categories were the most useful. However, we have included a “Limitations and future directions” section in the Discussion of the revised manuscript that acknowledges both the alternative scheme proposed by Reviewer 1, and the value of extending this work to consider the influence of duration (as well as events).

      Line 488 - Limitations and future directions. One potential limitation of the current study is the categorization of temporal scales according to events, independent of the influence of event duration. While this simplification of time supports comparison between different phenomena associated with each scale (e.g., serial dependence, sequential dependencies, statistical learning), future work could investigate the role of duration to provide a more comprehensive understanding of the mechanisms identified in the current study.

      Related to this, while the temporal scales applied here conveniently categorized known sensory phenomena, and partially correspond to iconic-, short-, and long-term memory, they are but one of multiple ways to delineate time. For example, temporal scales could alternatively be defined simply as short- and long-term (e.g., by combining micro and meso scale phenomena). However, this could obscure meaningful differences between phenomena associated with sensory persistence and short-term memory, or qualitative differences in the way that shortsequences of events are processed.

      (3) More serious is the issue of precision. Again, this is partially a language problem. When people use the engineering terms "precision" and "accuracy" together, they usually use the same units, such as degrees. Accuracy refers to the distance from the real position (so average accuracy gives bias), and precision is the clustering around the average bias, usually measured as standard deviation. Yet here accuracy is percent correct: also a convention in psychology, but not when contrasting accuracy with precision, in the engineering sense. I suggest you change "accuracy" to "percent correct". On the other hand, I have no idea how precision was defined. All I could find was: "mixture modelling was used to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively". I do not know what that means.

      In the case of a binary decision, is seems reasonable to use the term “accuracy” to refer to the correspondence between the target state and the response on a task. However, we agree that while our (main) task is binary, the target is not and nor is the secondary task. We thank the reviewer for bringing this to our attention, as we agree that this will be a likely cause of confusion. To avoid confusion we have specifically referred to “task accuracy” throughout the revised manuscript.

      With regards to precision, our measure of precision is consistent with what Reviewer 1 describes as such, i.e., the clustering of responses. In particular, the von Mises distribution is essentially a Gaussian distribution in circular space, and the kappa parameter defines the width of the distribution, regardless of the mean, with larger values of kappa indicating narrower (more precise) distributions. We could have used standard deviation to assess precision; however, this would incorrectly combine responses on which participants failed to encode the target (e.g., because of a blink) and were simply guessing. To account for these trials, we applied mixture modelling of guess and genuine responses to isolate the precision of genuine responses, as is standard in the visual working memory literature. However, we agree that this was not sufficiently described in the original manuscript and have elaborated on this method in the revised version.

      Line 598 - From the reproduction task, we sought to estimate participant’s recall precision. It is likely that on some trials participants failed to encode the target and were forced to make a response guess. To isolate the recall precision from guess responses, we used mixture modelling to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively (Bays et al., 2009). The k parameter of the von Mises distribution reflects its width, which indicates the clustering of responses around a common location.

      (4) Previous studies show serial dependence can increase bias but decrease scatter (inverse precision) around the biased estimate. The current study claims to be at odds with that. But are the two measures of precision relatable? Was the real (random) position of the target subtracted from each response, leaving residuals from which the inverse precision was calculated? (If so, the authors should say so..) But if serial dependence biases responses in essentially random directions (depending on the previous position), it will increase the average scatter, decreasing the apparent precision. 

      Previous studies have shown that when serial dependence is attractive there is a corresponding increase in precision around small offsets from the previous item (citations). Indeed, attractive biases will lead to reduced scattering (increased precision) around a central attracter. Consistent with previous studies, and this rational, we also found an attractive bias coupled with increased precision. To clarify, for the serial dependency analysis, we calculated bias and precision by binning reproduction responses according to the offset between the current and previous target and then performing the same mixture modelling described above to estimate the mean (bias) and kappa (precision) parameters of the von Mises distribution fit to the angular errors. This was not explained in the original manuscript, so we thank Reviewer 1 for bringing this to our attention and have clarified the analysis in the revised version.

      Line 604 - For the serial dependency analysis, we calculated bias and precision by binning reproduction responses according to the angular offset between the current and previous target and then performing mixture modelling to estimate the mean (bias) and k (precision) parameters of the von Mises distribution.

      (5) I suspect they are not actually measuring precision, but location accuracy. So the authors could use "percent correct" and "localization accuracy". Or be very clear what they are actually doing. 

      As explained in our response to Reviewer 1’s previous comment, we are indeed measuring precision.

      Reviewer #2 (Public review):

      (1) The abstract should more explicitly mention that conclusions about feedforward mechanisms were derived from a reanalysis of an existing EEG dataset. As it is, it seems to present behavioral data only.

      It is not clear what relevance the fact that the data has been analyzed previously has to the results of the current study. However, we do think that it is important to be clear that the EEG recordings were collected separately from the behavioural and eyetracking data, so we have clarified this in the revised abstract.

      Line 7 - By integrating behavioural and pupillometry recordings with electroencephalographical recordings from a previous study, we identify two distinct mechanisms that operate across all scales.

      (2) The EEG task seems quite different from the others, with location and color changes, if I understand correctly, on streaks of consecutive stimuli shown every 100 ms, with the task involving counting the number of target events. There might be different mechanisms and functions involved, compared to the behavioral experiments reported. 

      As stated above, we agree that it is important that readers are aware that the EEG recordings were collected separately to the behavioural and eyetracking data. We were forthright about this in the original manuscript and how now clarified this in the revised abstract. We agree that collecting both sets of data in the same experiment would be a useful validation of the current results and have acknowledged this in a new Limitations and future directions section of the Discussion of the revised manuscript.

      Line 501 - Another limitation of the current study is that the EEG recordings were collected in the separate experiment to the behavioural and pupillometry data. The stimuli and task were similar between experiments, but not identical. For example, the EEG experiment employed coloured arc stimuli presented at a constant rate of ~3.3 Hz and participants were tasked with counting the number of stimuli presented at a target location. By contrast, in the behavioural experiment, participants viewed white blobs presented at an average rate of ~2.8 Hz and performed a binary spatial task coupled with an infrequent reproduction task. An advantage of this was that the sensory responses to stimuli in the EEG recordings were not conflated with motor responses; however, future work combining these measures in the same experiment would serve as a validation for the current results.

      (3) How is the arbitrary choice of restricting EEG decoding to a small subset of parieto-occipital electrodes justified? Blinks and other artifacts could have been corrected with proper algorithms (e.g., ICA) (Zhang & Luck, 2025) or even left in, as decoders are not necessarily affected by noise. Moreover, trials with blinks occurring at the stimulus time should be better removed, and the arbitrary selection of a subset of electrodes, while reducing the information in input to the decoder, does not account for trials in which a stimulus was missed (e.g., due to blinks).

      Electrode selection was based on several factors: 1) reduction of eye movement/blink artifacts (as noted in the original manuscript), 2) consistency with the previous EEG study (Rideaux, 2024) and other similar decoding studies (Buhmann et al., 2024; Harrison et al., 2023; Rideaux et al., 2023), 3) improved signal-to-noise by including only sensors that carry the most position information (as shown in Supplementary Figure 1a and the previous EEG study). We agree that this was insufficiently explained in the original manuscript and have clarified our sensor selection in the revised version.

      Line 631 - We only included the parietal, parietal-occipital, and occipital sensors in the analyses to i) reduce the influence of signals produced by eye movements, blinks, and non-sensory cortices, ii) for consistency with similar previous decoding studies (Buhmann et al., 2024; Rideaux, 2024; Rideaux et al., 2025), and iii) to improve decoding accuracy by restricting sensors to those that carried spatial position information (Supplementary Fig. 1a).

      (4) The artifact that appears in many of the decoding results is puzzling, and I'm not fully convinced by the speculative explanation involving slow fluctuations. I wonder if a different high-pass filter (e.g., 1 Hz) might have helped. In general, the nature of this artifact requires better clarification and disambiguation.

      We agree that the nature of this artifact requires more clarification and disambiguation. Due to relatively slow changes in the neural signal, which are not stimulus-related, there is a degree of temporal autocorrelation in the recordings. This can be filtered out, for example, by using a stricter high-pass filter; however, we tried a range of filters and found that a cut-off of at least 0.7 Hz is required to remove the artifact, and even a filter of 0.2 Hz introduces other (stimulus-related) artifacts, such as above-chance decoding prior to stimulus onset. These stimulus-related artifacts are due to the temporal smearing of data, introduced by the filtering, and have a more pronounced and complex influence on the results and are more difficult to remove through other means, such as the baseline correction applied in the original manuscript.

      The temporal autocorrelation is detected by the decoder during training and biases it to classify/decode targets that are presented nearby in time as similar. That is, it learns the neural pattern for a particular stimulus location based on the activity produced by the stimulus and the temporal autocorrelation (determined by slow stimulus unrelated fluctuations). The latter only accounts for a relatively smaller proportion of the variance in the neural recordings under normal circumstances and would typically go undetected when simply plotting decoding accuracy as a function of position. However, it becomes weakly visible when decoding accuracy is plotted as a function of distance from the previous target, as now the bias (towards temporally adjacent targets) aligns with the abscissa. Further, it becomes highly visible when the stimulus labels are shuffled, as now the decoder can only learn from the variance associated with the temporal autocorrelation (and not from the activity produced by the stimulus).

      In the linear discriminant analysis, this led to temporally proximal items being more likely to be classified as on the same side. This is why there is above-chance performance for repeat trials (Supplementary Figure 2b), and below-chance performance for alternate trials, even when the labels are shuffled – the temporal autocorrelation produces a general bias towards classifying temporally proximate stimuli as on the same side, which selectively improves the classification accuracy of repeat trials. Fortunately, the bias is relatively constant as a function of time within the epoch and is straightforward to estimate by shuffling the labels, which means that it can be removed through a baseline correction. However, to further demonstrate that the autocorrelation confound cannot account for the differences observed between repeat and alternate trials in the micro classification analysis, we now additionally show the results from a more strictly filtered version of the data (0.7 Hz). These results show a similar pattern as the original, with the additional stimulusrelated artifacts introduced by the strict filter, e.g., above chance decoding prior to stimulus onset.

      In the inverted encoding analysis, the same temporal autocorrelation manifests as temporally proximal trials being decoded as more similar locations. This is why there is increased decoding accuracy for targets with small angular offsets from the previous target, even when the labels are shuffled (Supplementary Figure 3c), because it is on these trials that the bias happens to align with the correct position. This leads to an attractive bias towards the previous item, which is most prominent when the labels are shuffled.

      To demonstrate the phenomenon, we simulated neural recordings from a population of tuning curves and performed the inverted encoding analysis on a clean version of the data and a version in which we introduced temporal autocorrelation. We then repeated this after shuffling the labels. The simulation produced very similar results to those we observed in the empirical data, with a single exception: while precision in the simulated shuffled data was unaffected by autocorrelation, precision in the unshuffled data was clearly affected by this manipulation. This may explain why we did not find a correlation between the shuffled and unshuffled precision in the original manuscript. 

      These results echo those from the classification analysis, albeit in a more continuous space. However, whereas in the classification analysis it was straightforward to perform a baseline correction to remove the influence of general temporal dependency, the more complex nature of the accuracy, precision, and bias parameters over the range of time and delta location makes this approach less appropriate. For example, the bias in the shuffled condition ranged from -180 to 180 degrees, which when subtracted from the bias in the unshuffled condition would produce an equally spurious outcome, i.e., the equal opposite of this extreme bias. Instead for the inverted encoding analysis, we used the data high-pass filtered at 0.7 Hz. As with the classification analysis, this removed the influence of general temporal dependencies, as indicated by the results of the shuffled data analysis (Supplementary Figure 3f), but it also temporally smeared the stimulus-related signal, resulting in above chance decoding accuracy prior to stimulus onset (Supplementary Figure 3d). However, given thar we were primarily interested in the pattern of accuracy, precision, and bias as a function of delta location, and less concerned with the precise temporal dynamics of these changes, which appeared relatively stable in the filtered data. Thus, this was the more suitable approach to removing the general temporal dependencies in the inverted encoding analysis and the one that is presented in Figure 3.

      We have updated the revised manuscript in light of these changes, including a fuller description of the artifact and the results from the abovementioned control analyses.

      Figure 3 updated.

      Figure 3 caption - e) Decoding accuracy for stimulus location, from reanalysis of previously published EEG data (17). Inset shows the EEG sensors included in the analysis (blue dots), and black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). f) Decoding accuracy for location, as a function of time and D location. Bright colours indicate higher decoding accuracy; absolute accuracy values can be inferred from (e). g-i) Average location decoding  (g) accuracy, (h) precision, and (h) bias from 50 – 500 ms following stimulus onset. Horizontal bar in (e) indicates cluster corrected periods of significance; note, all time points were significantly above chance due to temporal smear introduced by strict high-pass filtering (see Supplementary Figure 3 for full details). Note, the temporal abscissa is aligned across (e & f). Shaded regions indicate ±SEM.

      Line 218 - To further investigate the influence of serial dependence, we applied inverted encoding modelling to the EEG recordings to decode the angular location of stimuli. We found that decoding accuracy of stimulus location sharply increased from ~60 ms following stimulus onset (Fig. 3e). Note, to reduce the influence of general temporal dependencies, we applied a 0.7 Hz high-pass filter to the data, which temporally smeared the stimulus-related information, resulting in above chance decoding accuracy prior to stimulus presentation (for full details, see Supplementary Figure 3). To understand how serial dependence influences the representation of these features, we inspected decoding accuracy for location as a function of both time and D location (Fig. 3f). We found that decoding accuracy varied depending not only as a function of time, but also as a function of D location. To characterise this relationship, we calculated the average decoding accuracy from 50 ms until the end of the epoch (500 ms), as a function of D location (Fig. 3g). This revealed higher accuracy for targets with larger D location. We found a similar pattern of results for decoding precision (Fig. 3h). These results are consistent with the micro temporal context (behavioural) results, showing that targets that alternated were recalled more precisely. Lastly, we calculated the decoding bias as a function of D location and found a clear repulsive bias away from the previous item (Fig. 3i). While this result is inconsistent with the attractive behavioural bias, it is consistent with recent studies of serial dependence suggesting an initial pattern of repulsion followed by an attractive bias during the response period (20–22).

      Line 726 - As shown in Supplementary Figure 3, we found the same general temporal dependencies in the decoding accuracy computed using inverted encoding that were found using linear discriminant classification. However, as a baseline correction would not have been appropriate or effective for the parameters decoded with this approach, we instead used a high-pass filter of 0.7 Hz to remove the confound, while being cautious about interpreting the timing of effects produced by this analysis due to the temporal smear introduced by the filter.

      Supplementary Figure 2 updated.

      Supplementary Figure 2 caption - Removal of general micro temporal dependencies in EEG responses. We found that there were differences in classification accuracy for repeat and alternate stimuli in the EEG data, even when stimulus labels were shuffled. This is likely due to temporal autocorrelation within the EEG data due to low frequency signal changes that are unrelated to the decoded stimulus dimension. This signal trains the decoder to classify temporally proximal stimuli as the same class, leading to a bias towards repeat classification. For example, in general, the EEG signal during trial one is likely to be more similar to that during trial two than during trial ten, because of low frequency trends in the recordings. If the decoder has been trained to classify the signal associated with trial one as a leftward stimulus, then it will be more likely to classify trial two as a leftward stimulus too. These autocorrelations are unrelated to stimulus features; thus, to isolate the influence of stimulus-specific temporal context, we subtracted the classification accuracy produced by shuffling the stimulus labels from the unshuffled accuracy (as presented in Figure 2e, f). We confirmed that using a stricter high-pass filter (0.7 Hz) removes this artifact, as indicated by the equal decoding accuracy between the two shuffled conditions. However, the stricter high-pass filter temporally smears the stimulus-related signal, which introduces other (stimulus-related) artifacts, e.g., above-chance decoding accuracy prior to stimulus presentation, that are larger and more complex, i.e., changing over time. Thus, we opted to use the original high pass filter (0.1 Hz) and apply a baseline correction. a) The uncorrected classification  accuracy along task related and unrelated planes. Note that these results are the same as the corrected version shown in Figure 2e, because the confound is only apparent when accuracy is grouped according to temporal context.

      b) Same as (a), but split into repeat and alternate stimuli, along (left) task-related and (right) unrelated planes. Classification  accuracy when labels are shuffled is also shown. Inset in (a) shows the EEG sensors included in the analysis (blue dots). (c, d) Same as (a, b), but on data filtered using a 0.7 Hz high-pass filter. Black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). Shaded regions indicate ±SEM.

      Supplementary Figure 3 updated.

      Supplementary Figure 3 caption - Removal of general temporal dependencies in EEG responses for inverted encoding analyses. As described in Methods - Neural Decoding, we used inverted encoding modelling of EEG recordings to estimate the decoding accuracy, precision, and bias of stimulus location. Just as in the linear discriminant classification analysis, we also found the influence of general temporal dependencies in the results produced by the inverted encoding analysis. In particular, there was increased decoding accuracy for targets with low D location. This was weakly evident in the period prior to stimulus presentation, but clearly visible when the labels were shuffled. These results are mirror those from the classification analysis, albeit in a more continuous space. However, whereas in the classification analysis it was straightforward to perform a baseline correction to remove the influence of general temporal dependency, the more complex nature of the accuracy, precision, and bias parameters over the range of time and D location makes this approach less appropriate. For example, the bias in the shuffled condition ranged from -180° to 180°, which when subtracted from the bias in the unshuffled condition would produce an equally spurious outcome, i.e., the equal opposite of this extreme bias. Instead for the inverted encoding analysis, we used the data high-pass filtered at 0.7 Hz. As with the classification analysis, this significantly reduced the influence of general temporal dependencies, as indicated by the results of the shuffled data analysis, but it also temporally smeared the stimulus-related signal, resulting in above chance decoding accuracy prior to stimulus onset. However, we were primarily interested in the pattern of accuracy, precision, and bias as a function of D location, and less concerned with the precise temporal dynamics of these changes. Thus, this was the more suitable approach to removing the general temporal dependencies in the inverted encoding analysis and the one that is presented in Figure 3. (a) Decoding accuracy as a function of time for the EEG data filtered using a 0.1 Hz high-pass filter. Inset shows the EEG sensors included in the analysis (blue dots), and black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). (b, c) The same as (a), but as a function of time and D location for (b) the original data and (c) data with shuffled labels. (d-f) Same as (a-c), but for data filtered using a 0.7 Hz high-pass filter. Shaded regions in (a, d) indicate ±SEM. Horizontal bars in (a, d) indicate cluster corrected periods of significance; note, all time points in (d) were significantly above chance. Note, the temporal abscissa is vertically aligned across plots (a-c & d-f).

      In the process of performing these additional analyses and simulations, we became aware that the sign of the decoding bias in the inverted encoding analyses had been interpreted in the wrong direction. That is, where we previously reported an initial attractive bias followed by a repulsive bias relative to the previous target, we have in fact found the opposite, an initial repulsive bias followed by an attractive bias relative to the previous target. Based on the new control analyses and simulations, we think that the latter attractive bias was due to general temporal dependencies. That is, in the filtered data, we only observe a repulsive bias. While the bias associated with serial dependence was not a primary feature of the study, this (somewhat embarrassing) discovery has led to reinterpretation of some results relating to serial dependence. However, it is encouraging to see that our results now align with those of recent studies (Fischer et al., 2024; Luo et al., 2025; Sheehan et al. 2024).

      Line 385 - Our corresponding EEG analyses revealed better decoding accuracy and precision for stimuli preceded by those that were different and a bias away from the previous stimulus. These results are consistent with finding that alternating stimuli are recalled more precisely. Further, while the repulsive pattern of biases is inconsistent with the observed behavioural attractive biases, it is consistent with recent work on serial dependence indicating an initial period of repulsion, followed by an attractive bias during the response period (20–22). These findings indicate that serial dependence and first-order sequential dependencies can be explained by the same underlying principle.

      (5) Given the relatively early decoding results and surprisingly early differences in decoding peaks, it would be useful to visualize ERPs across conditions to better understand the latencies and ERP components involved in the task.

      A rapid presentation design was used in the EEG experiment, and while this is well suited to decoding analyses, unfortunately we cannot resolve ERPs because the univariate signal is dominated by an oscillation at the stimulus presentation frequency (~3 Hz). We agree that this could be useful to examine in future work.

      (6) It is unclear why the precision derived from IEM results is considered reliable while the accuracy is dismissed due to the artifact, given that both seem to be computed from the same set of decoding error angles (equations 8-9).

      This point has been addressed in our response to point (4).

      (7) What is the rationale for selecting five past events as the meso-scale? Prior history effects have been shown to extend much further back in time (Fritsche et al., 2020). 

      We used five previous items in the meso analyses to be consistent with previous research on sequential dependencies (Bertelson, 1961; Gao et al., 2009; Jentzsch & Sommer, 2002; Kirby, 1976; Remington, 1969). However, we agree that these effects likely extend further and have acknowledged this in the revied version of the manuscript.

      Line 240 - Higher-order sequential dependences are an example of how stimuli (at least) as far back as five events in the past can shape the speed and task accuracy of responses to the current stimulus (9, 10); however, note that these effects have been observed for more than five events (20).

      (8) The decoding bias results, particularly the sequence of attraction and repulsion, appear to run counter to the temporal dynamics reported in recent studies (Fischer et al., 2024; Luo et al., 2025; Sheehan & Serences, 2022). 

      This point has been addressed in our response to point (4).

      (9) The repulsive component in the decoding results (e.g., Figure 3h) seems implausibly large, with orientation differences exceeding what is typically observed in behavior. 

      As noted in our response to point (4), this bias was likely due to the general temporal dependency confound and has been removed in the revised version of the manuscript.

      (10) The pattern of accuracy, response times, and precision reported in Figure 3 (also line 188) resembles results reported in earlier work (Stewart, 2007) and in recent studies suggesting that integration may lead to interference at intermediate stimulus differences rather than improvement for similar stimuli (Ozkirli et al., 2025).

      Thank you for bringing this to our attention, we have acknowledged this in the revised manuscript.

      Line 197 - Consistent with our previous binary analysis, and with previous work (19), we also found that responses were faster and more accurate when D location was small (Fig. 3b, c).

      (11) Some figures show larger group-level variability in specific conditions but not others (e.g., Figures 2b-c and 5b-c). I suggest reporting effect sizes for all statistical tests to provide a clearer sense of the strength of the observed effects. 

      Yes, as noted in the original manuscript, we find significant differences between the variance task-related and -unrelated conditions. We think this is due to opposing forces in the task-related condition: 

      “The increased variability of response time differences across the taskrelated plane likely reflects individual differences in attention and prioritization of responding either quickly or accurately. On each trial, the correct response (e.g., left or right) was equally probable. So, to perform the task accurately, participants were motivated to respond without bias, i.e., without being influenced by the previous stimulus. We would expect this to reduce the difference in response time for repeat and alternate stimuli across the taskrelated plane, but not the task-unrelated plane. However, attention may amplify the bias towards making faster responses for repeat stimuli, by increasing awareness of the identity of stimuli as either repeats or alternations (17). These two opposing forces vary with task engagement and strategy and thus would be expected produce increased variability across the task-related plane.” We agree that providing effect sizes may provided a clearer sense of the observed effects and have done so in the revised version of the manuscript.

      Line 739 - For Wilcoxon signed rank tests, the rank-biserial correlation (r) was calculated as an estimate of effect size, where 0.1, 0.3, and 0.5 indicate small, medium, and large effects, respectively (54). For Friedman’s ANONA tests, Kendal’s W was calculated as an estimate of effect size, where 0.1, 0.3, and 0.5 indicate small, medium, and large effects, respectively (55).

      (12) The statement that "serial dependence is associated with sensory stimuli being perceived as more similar" appears inconsistent with much of the literature suggesting that these effects occur at post-perceptual stages (Barbosa et al., 2020; Bliss et al., 2017; Ceylan et al., 2021; Fischer et al., 2024; Fritsche et al., 2017; Sheehan & Serences, 2022). 

      In light of the revised analyses, this statement has been removed from the manuscript.

      (13) If I understand correctly, the reproduction bias (i.e., serial dependence) is estimated on a small subset of the data (10%). Were the data analyzed by pooling across subjects?

      The dual reproduction task only occurred on 10% of trials. There were approximately 2000 trials, so ~200 reproduction responses. For the micro and macro analyses, this was sufficient to estimate precision within each of the experimental conditions (repeat/alternate, expected/unexpected). However, it is likely that we were not able to reproduce the effect of precision at the meso level across both experiments because we lacked sufficient responses to reliably estimate precision when split across the eight sequence conditions. Despite this, the data was always analysed within subjects.

      (14) I'm also not convinced that biases observed in forced-choice and reproduction tasks should be interpreted as arising from the same process or mechanism. Some of the effects described here could instead be consistent with classic priming. 

      We agree that the results associated with the forced-choice task (response time task accuracy) were likely due to motor priming, but that a separate (predictive) mechanism may explain the (precision) results associated with the reproduction task. These are two mechanisms we think are operating across the three temporal scales investigated in the current study.

      Reviewing Editor Comments:

      (1) Clarify task design and measurement: The dense presentation makes it difficult to understand key design elements and their implications. Please provide clearer descriptions of all task elements, and how they relate to each other (EEG vs. behaviour, stimulus plane vs. TR and TU plane, reproduction vs. discrimination and role of priming), and clearly explain how key measures were computed for each of these (e.g., precision, accuracy, reproduction bias).

      In the revised manuscript, we have expanded on descriptions of the source and nature of the data (behavioural and EEG), the different planes analyzed in the behavioural task, and how key metrics (e.g., precision) were computed.

      (2) Offer more insight into underlying data, including original ERP waveforms to aid interpretation of decoding results and the timing of effects. In particular, unpack the decoding temporal confound further.

      In the revised manuscript, we have considerably offered more insight into the decoding results, in particular, the nature of the temporal confound. We were unable to assess ERPs due to the rapid presentation design employed in the EEG experiment.

      (3) Justify arbitrary choices such as electrode selection for EEG decoding (e.g., limiting to parieto-occipital sensors), number of trials in meso scale, and the time terminology itself.

      In the revised manuscript, we have clarified the reasons for electrode selection.

      (3) Discuss deviations from literature: Several findings appear to contradict or diverge from previous literature (e.g., effects of serial dependence). These discrepancies could be discussed in more depth. 

      Upon re-analysis of the serial dependence bias and removal of the temporal confound, the results of the revised manuscript now align with those from previous literature, which has been acknowledged.

      Reviewer #1 (Recommendations for the authors):

      (1) would like to use my reviewer's prerogative to mention a couple of relevant publications. 

      Galluzzi et al (Journal of Vision, 2022) "Visual priming and serial dependence are mediated by separate mechanisms" suggests exactly that, which is relevant to this study.

      Xie et al. (Communications Psychology, 2025) "Recent, but not long-term, priors induce behavioral oscillations in peri-saccadic vision" also seems relevant to the issue of different mechanisms. 

      Thank you for bringing these studies to our attention. We agree that they are both relevant have referenced both appropriately in the revised version of the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) I find the discussion on attention and awareness (from line 127 onward) somewhat vague and requiring clarification.

      We agree that this statement was vague and referred to “awareness” without operationation. We have revised this statement to improve clarity.

      Line 135 - However, task-relatedness may amplify the bias towards making faster responses for repeat stimuli, by increasing attention to the identity of stimuli as either repeats or alternations (17).

      (2) Line 140: It's hard to argue that there are expectations that the image of an object on the retina is likely to stay the same, since retinal input is always changing. 

      We agree that retinal input is often changing, e.g., due to saccades, self-motion, and world motion. However, for a prediction to be useful, e.g., to reduce metabolic expenditure or speed up responses, it must be somewhat precise, so a prediction that retinal input will change is not necessarily useful, unless it can specify what it will change to. Given retinal input of x at time t, the range of possible values of x at time t+1 (predicting change) is infinite. By contrast, if we predict that x=x at time t+1 (no change), then we can make a precise prediction. There is, of course, other information that could be used to reduce the parameter space of predicted change from x at time t, e.g., the value of x at time t-1, and we think this drives predictions too. However, across the infinite distribution of changes from x, zero change will occur more frequently than any other value, so we think it’s reasonable to assert that the brain may be sensitive to this pattern.

      (3) Line 564: The gambler's fallacy usually involves sequences longer than just one event.

      Yes, we agree that this phenomenon is associated with longer sequences. This section of the manuscript was in regards to previous findings that were not directly relevant to the current study and has been removed in the revised version.

      (4) In the shared PDF, the light and dark cyan colors used do not appear clearly distinguishable. 

      I expect this is due to poor document processing or low-quality image embeddings. I will check that they are distinguishable in the final version.

      References: 

      Barbosa, J., Stein, H., Martinez, R. L., Galan-Gadea, A., Li, S., Dalmau, J., Adam, K. C. S., Valls-Solé, J., Constantinidis, C., & Compte, A. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 23(8), Articolo 8. https://doi.org/10.1038/s41593-020-0644-4

      Bliss, D. P., Sun, J. J., & D'Esposito, M. (2017). Serial dependence is absent at the time of perception but increases in visual working memory. Scientific reports, 7(1), 14739. 

      Ceylan, G., Herzog, M. H., & Pascucci, D. (2021). Serial dependence does not originate from low-level visual processing. Cognition, 212, 104709. https://doi.org/10.1016/j.cognition.2021.104709

      Fischer, C., Kaiser, J., & Bledowski, C. (2024). A direct neural signature of serial dependence in working memory. eLife, 13. https://doi.org/10.7554/eLife.99478.1

      Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590-595. 

      Fritsche, M., Spaak, E., & de Lange, F. P. (2020). A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife, 9, e55389. https://doi.org/10.7554/eLife.55389

      Gekas, N., McDermott, K. C., & Mamassian, P. (2019). Disambiguating serial effects of multiple timescales. Journal of vision, 19(6), 24-24. 

      Luo, M., Zhang, H., Fang, F., & Luo, H. (2025). Reactivation of previous decisions repulsively biases sensory encoding but attractively biases decision-making. PLOS Biology, 23(4), e3003150. https://doi.org/10.1371/journal.pbio.3003150

      Ozkirli, A., Pascucci, D., & Herzog, M. H. (2025). Failure to replicate a superiority effect in crowding. Nature Communications, 16(1), 1637. https://doi.org/10.1038/s41467025-56762-5

      Sheehan, T. C., & Serences, J. T. (2022). Attractive serial dependence overcomes repulsive neuronal adaptation. PLoS biology, 20(9), e3001711. 

      Stewart, N. (2007). Absolute identification is relative: A reply to Brown, Marley, and

      Lacouture (2007).  Psychological  Review, 114, 533-538. https://doi.org/10.1037/0033-295X.114.2.533

      Treisman, M., & Williams, T. C. (1984). A theory of criterion setting with an application to sequential dependencies. Psychological review, 91(1), 68. 

      Zhang, G., & Luck, S. J. (2025). Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals. NeuroImage, 316, 121304. https://doi.org/10.1016/j.neuroimage.2025.121304

  4. mathieubcd.github.io mathieubcd.github.io
    1. Scenario analysis is amethod in which multiple potential future states (or outcomes) are forecast.It is not constrained by events of the past, which may not capture the impactof changes in the environment; rather it uses both trends (the known) anduncertainties (the unknown) to predict a range of possible future scenarios.

      Healthcare leaders often rely too heavily on past data, even though the future rarely unfolds the same way as the past. Scenario analysis encourages organizations to think in terms of possibilities, not certainties, which is especially relevant in healthcare, where conditions can change quickly. For example, we can plan for best-case, worst-case, and most likely outcomes during a pandemic. This improves resource planning and highlights the risks of making decisions based on outdated assumptions. It’s a reminder that uncertainty should be treated as part of strategy, not just as an obstacle.

    1. Are we to keep the people of India ignorant in order that we may keep them submissive? Or do we think that we can give them knowledge without awakening ambition? Or do we mean to awaken ambition and to provide it with no legitimate vent? Who will answer any of these questions in the affirmative? Yet one of them must be answered in the affirmative, by every person who maintains that we ought permanently to exclude the natives from high office. 1 have no fears. The path of duty is plain before us: and it is also the path of wisdom, of national prosperity, of national honor.

      Here, Macaulay challenges the logic of permanently excluding Indians from higher office under British rule. He frames the issue as a series of rhetorical questions, pointing out the contradictions in denying education and advancement to Indians while still claiming to rule justly. His language reveals both a moral stance and a pragmatic one: keeping India submissive through ignorance is unjust and also unwise for Britain’s long-term prosperity. By insisting that knowledge will naturally create ambition, he argues that denying Indians political opportunity would lead to instability. Overall, the passage reveals Macaulay’s conviction that the gradual inclusion of Indians into governance was not only a duty but also a means to strengthen Britain’s honor and secure its empire.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na<SUP>+</SUP>/K<SUP>+</SUP>ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study proposes several interesting compensatory mechanisms, such as sodium leak channelsand extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Weaknesses:

      (1) While the modeling approach provides valuable insights, the lack of experimental data to validate the model's predictions weakens the overall conclusions.

      (2)The proposed compensatory mechanisms are discussed primarily in theoretical terms without providing quantitative estimates of their impact on the neuron's metabolic cost or other physiological parameters.

      Comments on revisions:

      The revised manuscript is notably improved.

      We thank the reviewer for their concise and accurate summary and appreciate the constructive feedback on the article’s strengths and weaknesses. Experimental work is beyond the scope of our modeling-based study. However, we would like our work to serve as a framework for future experimental studies into the role of the electrogenic pump current (and its possible compensatory currents) in disease, and its role in evolution of highly specialized excitable cells (such as electrocytes).

      Quantitative estimates of metabolic costs in this study are limited to the ATP that is required to fuel the Na<SUP>+</SUP>/K<SUP>+</SUP> pump. By integrating the net pump current over time and dividing by one elemental charge, one can find the rate of ATP that is consumed by the Na<SUP>+</SUP>/K<SUP>+</SUP> pump for either compensatory mechanism. The difference in net pump current is thus proportional to ATP consumption, which allows for a direct comparison of the cost efficiency of the Na<SUP>+</SUP>/K<SUP>+</SUP> pump for each proposed compensatory mechanism. The Na<SUP>+</SUP>/K<SUP>+</SUP> pump is however not the only ATP-consuming element in the electrocyte, and some of the compensatory mechanisms induce other costs related to cell ‘housekeeping’ or presynaptic processes. We now added a section in the appendix titled ‘Considerations on metabolic costs of compensatory mechanisms’ (section 11.4), where we provide rough estimates on the influence of the compensatory mechanisms on the total metabolic costs of the cell and membrane space occupation. Although we argue that according these rough estimates, the impact of discussed compensatory mechanisms could be significant, due to the absence of more detailed experimental quantification, a plausible quantitative cost estimate on the whole cell level remains beyond the scope of this article.

      Reviewer #1 (Recommendations for the authors):

      I just have a few recommendations on the updated manuscript.

      (1) When exploring the different roles of Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase in the Results section, the authors employed many different models. For instance, the voltage equation on page 15, voltage equation (2) on page 22, voltage equation (12) on page 24, voltage equation (30) on page 32, and voltage equation (38) on page 35 are presented as the master equations for their respective biophysical models. Meanwhile, the phase models are presented on page 29 and page 33. I would recommend that the authors clearly specify which equations correspond to each subsection of the Results section and explicitly state which equations were used to generate the data in each figure. This would help readers more easily follow the connections between the models, the results, and the figures.

      We thank the reviewer for pointing out that the links of the different voltage equations to the results could be expressed more explicitly in the article. All simulations were done using the ‘master equation’  expressed in Eq. 2, and the other voltage equations that are specified in the article (in the new version of the article Eqs. 13, 31, and 39) are reformulations of Eq. 2 to analytically show different properties of the voltage equation (Eq. 2). This has now been mentioned in the article when formulating the voltage equations, and the equation for the total leak current (in the new version Eq. 3) has been added for completeness.

      (2) The authors may want to revisit their description and references concerning Eigenmannia virescens. For example, wave-type weakly electric fish (e.g., Eigenmannia) and pulse-type weakly electric fish (e.g., Gymnotus carapo) exhibit large differences, making references 52-55 may be inappropriate for subsection 4.3.1, as these studies focus on Gymnotus carapo. Additionally, even within wave-type species, chirp patterns vary. For example, Eigenmannia can exhibit short "pauses"-type chirps, whereas Apteronotus leptorhynchus (another waver-form fish) does not (https://pubmed.ncbi.nlm.nih.gov/14692494/).

      We thank the reviewer for pointing this out. The citations and phrasing in sections 4.3.1 and 4.3.2 have been updated to specifically refer to the weakly electric fish e. Virescens.

      (3) Table on page 21: Please explain why the parameter value (13.5mM) of [Na<SUP>^</SUP>+]_{in} is 10 timeslarger than its value (1.35mM) in reference [26]? How does this value (13.5mM) compare with the range of variable [Na<SUP>^</SUP>+]_{in} in equation (6)?

      The intracellular sodium concentration in reference [26] was reported to be 1.35 mM, but the authors also reported an extracellular sodium concentration of 120 mM, and a sodium reversal potential of 55 mV. Upon calculating the sodium reversal potential, we found that an intracellular sodium concentration of 1.35 mM would give a sodium reversal potential of 113 mV. An intracellular sodium concentration of 13.5 mM, on the other hand, leads to the reported and physiological reversal potential of 55 mV. This has now been clarified in the article, and the connection between this value and Eq. 6 (Eq. 7 in the new version) has also been clarified.

      Reviewer #2 (Public review):

      Summary:

      The paper by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes - specialized, highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions that these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells after each spike. The resulting ion imbalance must be restored, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular space. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. For most cells, this does not pose an issue, as their firing rate is much slower, and other compensatory mechanisms and pumps can effectively restore the ion imbalances. However, in the electrocytes of weakly electric fish, which spike at exceptionally high rates, the net efflux of positive ions presents a challenge. Additionally, these cells are involved in critical communication and survival behaviors, underscoring their essential role in reliable functioning.

      In a computational model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implications of this cell in the context of chirps-a means of communication between individual fish. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors demonstrate that including the extracellular potassium buffer is necessary to obtain a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte, followed by a decay to the baseline. For this to occur reliably, the authors emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is necessary. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energy-efficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of sodium and potassium currents to include the dynamics of the sodium-potassium (NaK) pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions to electrosensing behavior that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for conducting in vivo experiments to determine which of these proposed solutions the fish employ and their relative importance. The authors include testable hypotheses for their computational models.

      Weaknesses:

      The model for action potential generation simplifies ion dynamics by considering only sodium and potassium currents, excluding other ions like calcium. The ion channels considered are assumed to be static, without any dynamic regulation such as post-translational modifications. For instance, a sodium-dependent potassium pump could modulate potassium leak and spike amplitude (Markham et al., 2013).

      This work considers only the sodium-potassium (NaK) pumps to restore ion gradients. However, in many cells, several other ion pumps, exchangers, and symporters are simultaneously present and actively participate in restoring ion gradients. When sodium currents dominate action potentials, and thus when NaK pumps play a critical role, such as the case in Eigenmannia virescens, the present study is valid. However, since other biological processes may find different solutions to address the pump's non-electroneutral nature, the generalizability of the results in this work to other fast-spiking cell types is limited. For example, each spike could include a small calcium ion influx that could be buffered or extracted via a sodium-calcium exchanger.

      We thank the reviewer for the detailed summary and the updated identified strengths and weaknesses. The current article indeed focuses on and isolates the interplay between sodium currents, potassium currents, and sodium-potassium pump currents. As discussed in section 5.1, in excitable cells where these currents are the main players in action-potential generation, the results presented in this article are applicable. The contribution of post-translational effects of ion channels, other ionic currents, and other active transporters and pumps, could be exciting avenues for further studies

      .

      Reviewer #2 (Recommendations for the authors):

      Thank you for addressing my comments.

      All the figures are now consistent. The color schema used is clear.

      The methods and discussions expansions improve the paper.

      Including the model assumptions and simplifications is appreciated.

      Including internal references is helpful.

      The equations are clear, and the references have been fixed.

      I am content with the changes. I have updated my review accordingly.

      We thank the reviewer for their initial constructive comments that lead to the significant improvement of the article.

      Page : 3 Line : 113 Author : Unknown Author 07/24/2025 

      Although this is technically correct, the article is about electrocommunication signals and does not focus on sensing.

      Page : 3 Line : 153 Author : Unknown Author 07/24/2025

      electrocommunication

      Page : 4 Line : 164 Author : Unknown Author 07/24/2025 

      Judging from the cited article, I think this should be a sodium-dependent potassium current.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential druginteracting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      We fully recognize that different compounds may have different interaction propensity profiles along the IDP sequence. In future studies, we will investigate compound-specific parameter values. The limiting factor is training data, but such data are beginning to be available.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts druginteracting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow

      Weaknesses:

      (1) The DIRseq method is based on SeqDYN, which itself is a simple (which I do not mean as a negative - simple is good!) statistical predictor for R2 relaxation rates. The challenge here is that R2 rates cover a range of timescales, so the physical intuition as to what exactly elevated R2 values mean is not necessarily consistent with "drug interacting". Presumably, the authors are not using the helix boost component of SeqDYN here (it would be good to explicitly state this). This is not necessarily a weakness, but I think it would behove the authors to compare a few alternative models before settling on the DIRseq method, given the somewhat ad hoc modifications to SeqDYN to get DIRseq.

      Actually, the factors that elevate R2 are well-established. These are local interactions and residual secondary structures (if any). The basic assumption of our method is that intra-IDP interactions that elevate R2 convert to IDP-drug interactions. This assumption was supported by our initial observation that the drug interaction propensity profiles predicted using the original SeqDYN parameters already showed good agreement with CSP profiles. We only made relatively small adjustments to the parameters to improve the agreement. Indeed we did not apply the helix boost portion of SeqDYN to DIRseq, and now state as such (p. 4, second last paragraph). We now also compare DIRseq with several alternative models, as summarized in new Table S2.

      Specifically, the authors previously showed good correlation between the stickiness parameter of Tesei et al and the inferred "q" parameter for SeqDYN; as such, I am left wondering if comparable accuracy would be obtained simply by taking the stickiness parameters directly and using these to predict "drug interacting residues", at which point I'd argue we're not really predicting "drug interacting residues" as much as we're predicting "sticky" residues, using the stickiness parameters. It would, I think, be worth the authors comparing the predictive power obtained from DIRseq with the predictive power obtained by using the lambda coefficients from Tesei et al in the model, local density of aromatic residues, local hydrophobicity (note that Tesei at al have tabulated a large set of hydrophobicity scores!) and the raw SeqDYN predictions. In the absence of lots of data to compare against, this is another way to convince readers that DIRseq offers reasonable predictive power.

      We now compare predictions of these various parameter sets, and report the results in Table S2.  In short, among all the tested parameter sets, DIRseq has the best performance as measured by (1) strong correlations between prediction scores and CSPs and (2) high true positives and low false positives (p. 7-9).

      (2) Second, the DIRseq is essentially SeqDYN with some changes to it, but those changes appear somewhat ad hoc. I recognize that there is very limited data, but the tweaking of parameters based on physical intuition feels a bit stochastic in developing a method; presumably (while not explicitly spelt out) those tweaks were chosen to give better agreement with the very limited experimental data (otherwise why make the changes?), which does raise the question of if the DIRseq implementation of SeqDYN is rather over-parameterized to the (very limited) data available now? I want to be clear, the authors should not be critiqued for attempting to develop a model despite a paucity of data, and I'm not necessarily saying this is a problem, but I think it would be really important for the authors to acknowledge to the reader the fact that with such limited data it's possible the model is over-fit to specific sequences studied previously, and generalization will be seen as more data are collected.

      We have explained the rationale for the parameter tweaks, which were limited to q values for four amino-acid types, i.e., to deemphasize hydrophobic interactions and slightly enhance electrostatic interactions (p. 4-5). We now add that these tweaks were motivated by observations from MD simulations of drug interactions with a-syn (ref 13). As already noted in the response to the preceding comment, we now also present results for the original parameter values as well as for when the four q values are changed one at a time.

      (3) Third, perhaps my biggest concern here is that - implicit in the author's assumptions - is that all "drugs" interact with IDPs in the same way and all drugs are "small" (motivating the change in correlation length). Prescribing a specific length scale and chemistry to all drugs seems broadly inconsistent with a world in which we presume drugs offer some degree of specificity. While it is perhaps not unexpected that aromatic-rich small molecules tend to interact with aromatic residues, the logical conclusion from this work, if one assumes DIRseq has utility, is that all IDRs bind drugs with similar chemical biases. This, at the very least, deserves some discussion.

      The reviewer raises a very important point. In Discussion, we now add that it is important to further develop DIRseq to include drug-specific parameters when data for training become available (p. 12-13). To illustrate this point, we use drug size as a simple example, which can be modeled by making the b parameter dependent on drug molecule size.

      (4) Fourth, the authors make some general claims in the introduction regarding the state of the art, which appear to lack sufficient data to be made. I don't necessarily disagree with the author's points, but I'm not sure the claims (as stated) can be made absent strong data to support them. For example, the authors state: "Although an IDP can be locked into a specific conformation by a drug molecule in rare cases, the prevailing scenario is that the protein remains disordered upon drug binding." But is this true? The authors should provide evidence to support this assertion, both examples in which this happens, and evidence to support the idea that it's the "prevailing view" and specific examples where these types of interactions have been biophysically characterized.

      We now cite nine studies showing that IDPs remain disordered upon drug binding.

      Similarly, they go on to say:

      "Consequently, the IDP-drug complex typically samples a vast conformational space, and the drug molecule only exhibits preferences, rather than exclusiveness, for interacting with subsets of residues." But again, where is the data to support this assertion? I don't necessarily disagree, but we need specific empirical studies to justify declarative claims like this; otherwise, we propagate lore into the scientific literature. The use of "typically" here is a strong claim, implying most IDP complexes behave in a certain way, yet how can the authors make such a claim? 

      Here again we add citations to support the statement.

      Finally, they continue to claim:

      "Such drug interacting residues (DIRs), akin to binding pockets in structured proteins, are key to optimizing compounds and elucidating the mechanism of action." But again, is this a fact or a hypothesis? If the latter, it must be stated as such; if the former, we need data and evidence to support the claim.

      We add citations to both compound optimization and mechanism of action.

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should compare the sequences of the IDPs in the case studies with the 45 IDPs in training the SeqDYN model to make sure that they are not included in the training dataset or are highly homologous.

      Please note that the data used for training SeqDYN were R2 rates, which are independent of the property being studied here, i.e., drug interacting residues. Therefore whether the IDPs studied here were in the training set for SeqDYN is immaterial.

      (2) The authors manually tuned four parameters in SeqDYN to develop the model for predicting drug-interacting residues without giving strict testing or explanations. More explanations, testing of more values, and ablation testing should be given.

      As responded above, we now both expand the explanation and present more test results.

      (3) The authors changed the q values of L, I, and M to the value of V. What are the results if these values are not changed?

      These results are shown in Table S2 (entry named SeqDYN_orig).

      (4) Only one b value is chosen based on the assumption that a drug molecule interacts with 3-4 residues at a time. However, the number of interacting residues is related to the size of the drug molecule. Adjusting the b value with the size of the ligand may provide improvement. It is better to test the influence of adjusting b values. At least, this should be discussed.

      Good point! We now state that b potentially can be adjusted according to ligand size (p. 12-13). In addition, we also show the effect of varying b on the prediction results (Table S2; p. 8, last paragraph).

      (5) The authors add 12 Q to eliminate end effects. However, explanations on why 12 Qs are chosen should be given. How about other numbers of Q or using other residues (e.g., the commonly used residues in making links, like GS/PS or A?

      As we already explained, “Gln was selected because its 𝑞 value is at the middle of the 20 𝑞 values.” (p. 5, second paragraph). Also, 12 Qs are sufficient to remove any end effects; a higher number of Qs does not make any difference.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors make reference to the "C-terminal IDR" in cMyc, but the region they note is found in the bHLH DNA binding domain (which falls from residue ~370-420).

      We now clarify that this region is disordered on its own but form a helix-loop-loop structure upon heterodimerization with Max (p. 11, last paragraph).

      (2) Given the fact that X-seq names are typically associated with sequencing-based methods, it's perhaps confusing to name this method DIRseq?

      We appreciate the reviewer’s point, but by now the preprint posted in bioRxiv is in wide circulation, and the DIRseq web server has been up for several months, so changing its name would cause a great deal of confusion.

      (3) I'd encourage the authors just to spell out "drug interacting residues" and retain an IDR acronym for IDRs. Acronyms rarely make writing clearer, and asking folks to constantly flip between IDR and DIR is asking a lot of an audience (in this reviewer's opinion, anyway).

      The reviewer makes a good point; we now spell out “drug-interacting residues”.

      (4) The assumption here is that CSPs result from direct drug:IDR interactions. However, CSPs result from a change in the residue chemical environment, which could in principle be an indirect effect (e.g., in the unbound state, residues A and B interact; in the bound state, residue A is now free, such that it experiences a CSP despite not engaging directly). While I recognize such assumptions are commonly made, it behoves the authors to explicitly make this point so the reader understands the relationship between CSPs and binding.

      We did add caveats of CSP in Introduction (p. 3, second paragraph).

      (5) On the figures, please label which protein is which figure, as well as provide a legend for the annotations on the figures (red line, blue bar, cyan region, etc.)

      We now label protein names in Fig. 1. For annotation of display items, it is also made in the Figs. 2 and 3 captions; we now add it to the Fig. 4 caption.

      (6) abstract: "These successes augur well for deciphering the sequence code for IDP-drug binding." - This is not grammatically correct, even if augur were changed to agree. Suggest rewriting.

      “Augur well” means to be a good sign (for something). We use this phrase here in this meaning.

      (6) page 5: "we raised the 𝑞 value of Asp to be the same as that of Glu" → suggested "increased" instead of raised.

      We have made the suggested change.

      (7) The authors should consider releasing the source code (it is available via the .js implementation on the server, but this is not very transferable/shareable, so I'd encourage the authors to provide a stand-alone implementation that's explicitly shareable).

      We have now added a link for the user to download the source code.

    1. Author response:

      The following is the authors’ response to the current reviews.

      eLife Assessment

      The authors examine the effect of cell-free chromatin particles (cfChPs) derived from human serum or from dying human cells on mouse cells in culture and propose that these cfChPs can serve as vehicles for cell-to-cell active transfer of foreign genetic elements. The work presented in this paper is intriguing and potentially important, but it is incomplete. At this stage, the claim that horizontal gene transfer can occur via cfChPs is not well supported because it is only based on evidence from one type of methodological approach (immunofluorescence and fluorescent in situ hybridization (FISH)) and is not validated by whole genome sequencing.

      We disagree with the eLife assessment that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate technology. Rather, eLife should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells.

      The reviewer is mistaken. We do not claim that the internalized cfChPs are incorporated into the nucleus. We show throughout the paper that the cfChPs perform their novel functions autonomously outside the genome without being incorporated into the nucleus. This is clearly seen in all our chromatin fibre images, metaphase spreads and our video abstract. Occasionally, when the cfChPs fluorescent signal overlie the chromosomes, we have been careful to state that the cfChPs are associated with the chromosomes without implying that they have integrated.

      These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Again the reviewer makes the same mistake. We do not claim that the internalized cfChPs are incorporated into the chromosomes. We have addressed this issue above.

      We have a feeling that the reviewer has not understood our work – which is the discovery of “satellite genomes” which function autonomously outside the nuclear genome.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We disagree with the reviewer that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate approach. Rather, the reviewer should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed on Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer has raised a related issue below and we have responded to both of them together.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I thank the authors for taking my comments and those of the other reviewer into account and for adding new material to this new version of the manuscript. Among other modifications/additions, they now mention that they think that NIH3T3 cells treated with cfChPs die out after 250 passages because of genomic instability which might be caused by horizontal transfer of cfChPs DNA into the genome of treated cells (pp. 45-46, lines 725-731). However, no definitive formal proof of genomic instability and horizontal transfer is provided.

      We mention that the NIH3T3 cells treated with cfChPs die out after 250 passages in response to the reviewer’s earlier comment “Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism”.

      We have agreed with the reviewer and have simply speculated that the cells may die because of extreme genomic instability. We have left it as a speculation without diverting our paper in a different direction to prove genomic instability.

      The authors now refer to an earlier study they conducted in which they Illumina-sequenced NIH3T3 cells treated with cfChPs (pp. 48, lines. 781-792). This study revealed the presence of human DNA in the mouse cell culture. However, it is unclear to me how the author can conclude that the human DNA was inside mouse cells (rather than persisting in the culture medium as cfChPs) and it is also unclear how this supports horizontal transfer of human DNA into the genome of mouse cells. Horizontal transfer implies integration of human DNA into mouse DNA, through the formation of phosphodiester bounds between human nucleotides and mouse nucleotides. The previous Illumina-sequencing study and the current study do not show that such integration has occured. I might be wrong but I tend to think that DNA FISH signals showing that human DNA lies next to mouse DNA does not necessarily imply that human DNA has integrated into mouse DNA. Perhaps such signals could result from interactions at the protein level between human cfChPs and mouse chromatin?

      With due respect, our earlier genome sequencing study that the reviewer refers to was done on two single cell clones developed following treatment with cfChPs. So, the question of cfChPs lurking in the culture medium does not arise.

      The authors should be commended for doing so many FISH experiments. But in my opinion, and as already mentioned in my earlier review of this work, horizontal transfer of human DNA into mouse DNA should first be demonstrated by strong DNA sequencing evidence (multiple long and short reads supporting human/mouse breakpoints; discarding technical DNA chimeras) and only then eventually confirmed by FISH.

      As mentioned earlier, we disagree with the reviewer that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate approach. Rather, the reviewer should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Regarding my comment on the quantity of human cfChPs that has been used for the experiments, the authors replied that they chose this quantity because it worked in a previous study. Could they perhaps explain why they chose this quantity in the earlier study? Is there any biological reason to choose 10 ng and not more or less? Is 10 ng realistic biologically? Could it be that 10 ng is orders of magnitude higher than the quantity of cfChPs normally circulating in multicellular organisms and that this could explain, at least in part, the results obtained in this study?

      The reviewer again raises the same issue to which we have already addressed in our revised manuscript. To quote “We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and activation of apoptotic pathways using this concentration of cfChPs (Mittra I et. al., 2015)”.

      It is also mentioned in the response that RNA-seq has been performed on mouse cells treated with cfChPs, and that this confirms human-mouse fusion (genomic integration). Since these results are not included in the manuscript, I cannot judge how robust they are and whether they reflect a biological process rather than technical issues (technical chimeras formed during the RNA-seq protocol is a well-known artifact). In any case, I do not think that genomic integration can be demonstrated through RNA-seq as junction between human and mouse RNA could occur at the RNA level (i.e. after transcription). RNA-seq could however show whether human-mouse chimeras that have been validated by DNA-sequencing are expressed or not.

      We did perform transcriptome sequencing as suggested earlier by the reviewer, but realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript.

      Given these comments, I believe that most of the weaknesses I mentioned in my review of the first version of this work still hold true.

      An important modification is that the work has been repeated in other cell lines, hence I removed this criticism from my earlier review.

      Additional changes made

      (1) We have now rewritten the “Abstract” to 250 words to fit in eLife’s instructions. (It was not possible to reduce the word count further.

      (2) We have provided the Video 1 as separate file instead of link.

      (3) Some of Figure Supplements (which were stand-alone) are now given as main figures. We have re-arranged Figures and Figure Supplements in accordance with eLife’s instructions.

      (4) We have now provided a list of the various cell lines used in this study, their tissue origin and procurement source in Supplementary File 3.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells. These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 1-4)”.

      Another weakness of this study is that it is performed only in one receiving cell type (NIH3T3 mouse cells). Thus, rather than a general phenomenon occurring on a massive scale in every multicellular organism, it could merely reflect aberrant properties of a cell line that for some reason became permeable to exogenous cfChPs. This begs the question of the relevance of this study for living organisms.

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 6)”.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer is right in expecting that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome. This is indeed the case, and we find that beyond ~ 250 passages the cfChPs treated NIH3T3 cells begin to die out apparently become their genomes have become too unstable for survival. This point will be highlighted in the revised version (pp. 45-46, lines 725-731).

      Reviewer #2 (Public review):

      I must note that my comments pertain to the evolutionary interpretations rather than the study's technical results. The techniques appear to be appropriately applied and interpreted, but I do not feel sufficiently qualified to assess this aspect of the work in detail.

      I was repeatedly puzzled by the use of the term "function." Part of the issue may stem from slightly different interpretations of this word in different fields. In my understanding, "function" should denote not just what a structure does, but what it has been selected for. In this context, where it is unclear if cfChPs have been selected for in any way, the use of this term seems questionable.

      We agree. We have removed the term “function” wherever we felt we had used it inappropriately.

      Similarly, the term "predatory genome," used in the title and throughout the paper, appears ambiguous and unjustified. At this stage, I am unconvinced that cfChPs provide any evolutionary advantage to the genome. It is entirely possible that these structures have no function whatsoever and could simply be byproducts of other processes. The findings presented in this study do not rule out this neutral hypothesis. Alternatively, some particular components of the genome could be driving the process and may have been selected to do so. This brings us to the hypothesis that cfChPs could serve as vehicles for transposable elements. While speculative, this idea seems to be compatible with the study's findings and merits further exploration.

      We agree with the reviewer’s viewpoint. We have replaced the term “predatory genome” with a more realistic term “satellite genome” in the title and throughout the manuscript. We have also thoroughly revised the discussion section and elaborated on the potential role of LINE-1 and Alu elements carried by the concatemers in mammalian evolution. (pp. 46-47, lines 743-756).

      I also found some elements of the discussion unclear and speculative, particularly the final section on the evolution of mammals. If the intention is simply to highlight the evolutionary impact of horizontal transfer of transposable elements (e.g., as a source of new mutations), this should be explicitly stated. In any case, this part of the discussion requires further clarification and justification.

      As mentioned above, we have revised the “discussion” section taking into account the issues raised by the reviewer and highlighted the potential role of cfChPs in evolution by acting as vehicles of transposable elements.

      In summary, this study presents important new findings on the behavior of cfChPs when introduced into a foreign cellular context. However, it overextends its evolutionary interpretations, often in an unclear and speculative manner. The concept of the "predatory genome" should be better defined and justified or removed altogether. Conversely, the suggestion that cfChPs may function at the level of transposable elements (rather than the entire genome or organism) could be given more emphasis.

      As mentioned above, we have replaced the term “predatory genome” with “satellite genome” and revised the “discussion” section taking into account the issues raised by the reviewer.

      Reviewer #1 (Recommendations for the authors):

      (1) I strongly recommend validating the findings of this study using other approaches. Whole genome sequencing using both short and long reads should be used to validate the presence of human DNA in the mouse cell line, as well as its integration into the mouse genome and concatemerization. Breakpoints between mouse and human DNA can be searched in individual reads. Finding these breakpoints in multiple reads from two or more sequencing technologies would strengthen their biological origin. Illumina and ONT sequencing are now routinely performed by many labs, such that this validation should be straightforward. In addition to validating the findings of the current study, it would allow performance of an in-depth characterization of the rearrangements undergone by both human cfChPs and the mouse genome after internalization of cfChPs, including identification of human TE copies integrated through bona fide transposition events into the mouse genome. New copies of LINE and Alu TEs should be flanked by target site duplications. LINE copies should be frequently 5' truncated, as observed in many studies of somatic transposition in human cells.

      (2) Furthermore, should the high level of cell-to-cell HGT detected in this study occur on a regular basis within multicellular organisms, validating it through a reanalysis of whole genome sequencing data available in public databases should be relatively easy. One would expect to find a high number of structural variants that for some reason have so far gone under the radar.

      (3) Short and long-read RNA-seq should be performed to validate the expression of human cfChPs in mouse cells. I would also recommend performing ChIP-seq on routinely targeted histone marks to validate the chromatin state of human cfChPs in mouse cells.

      (4) The claim that fused human proteins are produced in mouse cells after exposing them to human cfChPs should be validated using mass spectrometry.

      The reviewer has suggested a plethora of techniques to validate our findings. Clearly, it is neither possible to undertake all of them nor to incorporate them into the manuscript. However, as suggested by the reviewer, we did conduct transcriptome sequencing of cfChPs treated NIH3T3 cells and were able to detect the presence of human-human fusion sequences (representing concatemerisation) as well as human-mouse fusion sequences (representing genomic integration). However, we realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript. However, to address the reviewer’s concerns we have now referred to results of our earlier whole genome sequencing study of NIH3T3 cells similarly treated with cfChPs wherein we had conclusively detected the presence of human DNA and human Alu sequences in the treated mouse cells. These findings have now been added as an independent paragraph (pp. 48, lines. 781-792).

      (5) It is unclear from what is shown in the paper (increase in FISH signal intensity using Alu and L1 probes) if the increase in TE copy number is due to bona fide transposition or to amplification of cfChPs as a whole, through mechanisms other than transposition. It is also unclear whether human TEs end up being integrated into the neighboring mouse genome. This should be validated by whole genome sequencing.

      Our results suggest that TEs amplify and increase their copy number due to their association with DNA polymerase and their ability to synthesize DNA (Figure 14a and b). Our study design cannot demonstrate transposition which will require real time imaging.

      The possibility of incorporation of TEs into the mouse genome is supported by our earlier genome sequencing work, referred to above, wherein we detected multiple human Alu sequences in the mouse genome (pp. 48, lines. 781-792).

      (6) In order to be able to generalize the findings of this study, I strongly encourage the authors to repeat their experiments using other cell types.

      We thank the reviewer for this suggestion. We have now used four different cell lines derived from four different species and demonstrated that horizontal transfer of cfChPs occur in all of them suggesting that it is a universal phenomenon. (pp. 37, lines 560-572) and (Supplementary Fig. S14a-d).

      We have also mentioned this in the abstract (pp. 3, lines 52-54).

      (7) Since the results obtained when using cfChPs isolated from healthy individuals are identical to those shown when using cfChPs from cancer sera, I wonder why the authors chose to focus mainly on results from cancer-derived cfChPs and not on those from healthy sera.

      Most of the experiments were conducted using cfChPs isolated from cancer patients because of our especial interest in cancer, and our earlier results (Mittra et al., 2015) which had shown that cfChPs isolated from cancer patients had significantly greater activity in terms of DNA damage and activation of apoptotic pathways than those isolated from healthy individuals. We have now incorporated the above justification on (pp. 6, lines. 124-128).

      (8) Line 125: how was the 10-ng quantity (of human cfChPs added to the mouse cell culture) chosen and how does it compare to the quantity of cfChPs normally circulating in multicellular organisms?

      We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and apoptotic pathways using this concentration of cfChPs (Mittra I et. al. 2015). We have now incorporated the justification of using this dose in our manuscript (pp. 51-52, lines. 867-870).

      (9) Could the authors explain why they repeated several of their experiments in metaphase spreads, in addition to interphase?

      We conducted experiments on metaphase spreads in addition to those on chromatin fibres because of the current heightened interest in extra-chromosomal DNA in cancer, which have largely been based on metaphase spreads. We were interested to see how the cfChP concatemers might relate to the characteristics of cancer extrachromosomal DNA and whether the latter in fact represent cfChPs concatemers acquired from surrounding dying cancer cells. We have now mentioned this on pp. 7, lines 150-155.

      (10) Regarding negative controls consisting in checking whether human probes cross-react with mouse DNA or proteins, I suggest that the stringency of washes (temperature, reagents) should be clearly stated in the manuscript, such that the reader can easily see that it was identical for controls and positive experiments.

      We were fully aware of these issues and were careful to ensure that washing steps were conducted meticulously. The careful washing steps have been repeatedly emphasized under the section on “Immunofluorescence and FISH” (pp. 54-55, lines. 922-944).

      (11) I am not an expert in Immuno-FISH and FISH with ribosomal probes but it can be expected that ribosomal RNA and RNA polymerase are quite conserved (and thus highly similar) between humans and mice. A more detailed explanation of how these probes were designed to avoid cross-reactivity would be welcome.

      We were aware of this issue and conducted negative control experiment to ensure that the human ribosomal RNA probe and RNA polymerase antibody did not cross-react with mouse. Please see Supplementary Fig. S4c.

      (12) Finally, I could not understand why the cfChPs internalized by neighboring cells are called predatory genomes. I could not find any justification for this term in the manuscript.

      We agree and this criticism has also been made by #Reviewer 2. We have now replaced the term “predatory” genomes with “satellite” genomes.

      Reviewer #2 (Recommendations for the authors):

      (1) P2 L34: The term "role" seems to imply "what something is supposed to do" (similar to "function"). Perhaps "impact" would be more neutral. Additionally, "poorly defined" is vague-do you mean "unknown"?

      We thank the reviewer for this suggestion. We have now rephrased the sentence to read “Horizontal gene transfer (HGT) plays an important evolutionary role in prokaryotes, but it is thought to be less frequent in mammals.” (pp. 2, lines. 26-27).

      (2) P2 L35: It seems that the dash should come after "human blood."

      Thank you, we have changed the position of the dash (pp. 2, line. 29).

      (3) P2 L37: Must we assume these structures have a function? Could they not simply be side effects of other processes?

      We think this is a matter of semantics, especially since we show that cfChPs once inside the cell perform many functions such as replication, DNA synthesis, RNA synthesis, protein synthesis etc. We, therefore, think the word “function” is not inappropriate.

      (4) Abstract: After reading the abstract, I am unclear on the concept of a "predatory genome." Based on the summarized results, it seems one cannot conclude that these elements provide any adaptive value to the genome.

      We agree. We have now replaced the term “predatory” genomes with a more realistic term viz. “satellite” genomes.

      (5) Video abstract: The video abstract does not currently stand on its own and needs more context to be self-explanatory.

      Thank you for pointing this out. We have now created a new and much more professional video with more context which we hope will meet with the reviewer’s approval.

      (6) P4 L67: Again, I am uncertain that HGT should be said to have "a role" in mammals, although it clearly has implications and consequences. Perhaps "role" here is intended to mean "consequence"?

      We have now changed the sentence to read as follows “However, defining the occurrence of HGT in mammals has been a challenge” (pp. 4, line. 73).

      (7) P6 L111: The phrase "to obtain a new perspective about the process of evolution" is unclear. What exactly is meant by this statement?

      We have replaced this sentence altogether which now reads “The results of these experiments are presented in this article which may help to throw new light on mammalian evolution, ageing and cancer” (pp. 5-6, lines 116-118).

      (8) P38 L588: The term "predatory genome" has not been defined, making it difficult to assess its relevance.

      This issue has been addressed above.

      (9) P39 L604: The statement "transposable elements are not inherent to the cell" suggests that some TEs could originate externally, but this does not rule out that others are intrinsic. In other words, TEs are still inherent to the cell.

      This part of the discussion section has been rewritten and the above sentence has been deleted.

      (10) P39 L609: The phrase "may have evolutionary functions by acting as transposable elements" is unclear. Perhaps it is meant that these structures may serve as vehicles for TEs?

      This sentence has disappeared altogether in the revised discussion section.

      (11) P41 L643: "Thus, we hypothesize ... extensively modified to act as foreign genetic elements." This sentence is unclear. Are the authors referring to evolutionary changes in mammals in general (which overlooks the role of standard mutational processes)? Or is it being proposed that structural mutations (including TE integrations) could be mediated by cfChPs in addition to other mutational mechanisms?

      We have replaced this sentence which now reads “Thus, “within-self” HGT may occur in mammals on a massive scale via the medium of cfChP concatemers that have undergone extensive and complex modifications resulting in their behaviour as “foreign” genetic elements” (pp. 47, lines 763-766).

      (12) P41 L150: The paragraph beginning with "It has been proposed that extreme environmental..." transitions too abruptly from HGT to adaptation. Is it being proposed that cfChPs are evolutionary processes selected for their adaptive potential? This idea is far too speculative at this stage and requires clarification.

      We agree. This paragraph has been removed.

      (13) P43 L681: This summary appears overly speculative and unclear, particularly as the concept of a "predatory genome" remains undefined and thus cannot be justified. It suggests that cfChPs represent an alternative lifestyle for the entire genome, although alternative explanations seem far more plausible at this point.

      We have now replaced the term “predatory” genome with “satellite” genome. The relevant part of the summary section has also been partially revised (pp. 49-50, lines 817-831).

      Changes independent of reviewers’ comments.

      We have made the following additions / modifications.

      (1) The abstract has been modified and it’s “conclusion” section has been rewritten.

      (2) Section 1.14 has been newly added together with accompanying Figures 15 a,b and c.

      (3) The “Discussion” section has been greatly modified and parts of it has been rewritten.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They infer selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      Weaknesses:

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis.

      As suggested, we have now addressed this limitation by inferring epistatic fitness landscapes for CH505, CH848, SHIV.CH505, and SHIV.CH848. Indeed, the computational burden of the epistasis inference procedure was one constraint that motivated us to consider only additive fitness in the previous version of our paper. The original approach developed by Sohail et al. (2022) tested only sequences with <50 sites due to this limitation, far smaller than the ones we consider. Beyond this computational constraint, we also believed that 1) an additive fitness model may suffice to capture local fitness landscapes, and practically, 2) epistatic interactions are more challenging to validate than the effects of individual mutations, making the interpretation of the model more complex.

      However, after performing the analyses described in this paper, we developed a new approach for identifying epistatic interactions that can scale to much longer sequences (Shimagaki et al., Genetics, in press). We therefore applied this method to infer an epistatic fitness landscape for the HIV and SHIV data sets that we studied. As in that work, we focused on short-range (<50 bp) interactions which we could more confidently estimate from data. We have added a section in the SI describing the epistatic fitness model and our analysis. 

      Overall, we found substantial agreement between the epistatic and purely additive models in terms of the estimated fitness effects of individual mutations (new Supplementary Fig. 8) and overall fitness (Supplementary Fig. 9). Consistent with our prior work, we did not find substantial evidence for very strong epistatic interactions (Supplementary Fig. 10). This does not necessarily mean that strong epistatic interactions do not exist; rather, this shows that strong interactions don’t substantially improve the fit of the model to data, and thus many are regularized toward zero. While the biological validation of epistatic interactions is challenging, we found that the largest epistatic interactions, which we defined as the top 1% of all shortrange interactions, were modestly but significantly enriched in the CD4 binding site, V1 and V5 regions for CH505 and in the CD4 binding site, V4, and V5 for CH848. In addition, mutation pairs N280S/V281A and E275K/V281G, which confer resistance to CH235, ranked in the top 15% of all epistatic interactions in CH505.

      We have now included an additional section in the Results, “Robustness of inferred selection to changes in the fitness model and finite sampling”, which discusses our epistatic analyses (page 6, lines 415-464), along with the above Supplementary Figures and a technical section in the SI summarizing the epistasis inference approach.

      Although the evolution of broadly neutralizing antibodies (bnAbs) is a motivating question in the introduction and discussion sections (and the title), the relevance of the analysis and results to better understanding how bnAbs arise is not clear. The only result presented in direct connection to bnAbs is Figure 6.

      It is true that, while bnAb development is a major motivator of our study, our analysis focuses on HIV-1 and does not directly consider antibody evolution. We have now brought attention to this point as a limitation directly in the Discussion. Following the suggestion below in the “Recommendations for the authors,” we have edited our manuscript to place more emphasis on viral fitness and somewhat reduce the emphasis on bnAbs, though this remains an important motivating factor. Specifically, the Abstract now begins

      Human immunodeficiency virus (HIV)-1 evolves within individual hosts to escape adaptive immune responses while maintaining its capacity for replication. Coevolution between the HIV-1 and the immune system generates extraordinary viral genetic diversity. In some individuals, this process also results in the development of broadly neutralizing antibodies (bnAbs) that can neutralize many viral variants, a key focus of HIV-1 vaccine design. However, a general understanding of the forces that shape virusimmune coevolution within and across hosts remains incomplete. Here we performed a quantitative study of HIV-1 evolution in humans and rhesus macaques, including individuals who developed bnAbs.

      We have similarly modified the Discussion to focus first on viral fitness. In response to comments from Reviewer 3, we have also more clearly articulated how our work might contribute to the understanding of bnAb development in the Discussion.

      Questions or suggestions for further discussion:

      I list here a number of points for which I believe the paper would benefit if additional discussion/results were included.

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis. In Sohail et al (2022) MBE 39(10), p. msac199  (https://doi.org/10.1093/molbev/msac199) an extension of MPL is developed allowing one to infer epistasis. Can the authors comment on why this was not attempted here?

      I presume one possible reason is that epistasis inference requires considerably more computational effort (and more data). However, since the authors find most beneficial mutations occurring in Env, perhaps restricting the analysis to Env genes only (e.g. the trimer shown in Figure 2) can lead to tractable inference of epistasis within this segment (instead of the full genome).

      As described above, we have now addressed this comment by inferring epistatic fitness landscapes for the data sets that we consider. Our overall results using the epistatic fitness model are consistent with the ones that we previously obtained with an additive model.

      Do the authors find correlations in the inferred selection coefficients of the two samples CH505 and CH848? I could not find any discussion of this in the manuscript. Only correlations between Humans and RM are discussed.

      To address this question, we compared the fitness values and individual selection coefficients across CH505 and CH848 data sets. We found little correlation between CH505 and CH848 fitness values (shown in a new Supplementary Fig. 6) or selection coefficients. We found only 199 common mutations between HIV-1 amino acid sequences from CH505 and CH848 out of 868 and 1,406 total mutations, respectively. Thus, we were not surprised to find no strong relationship between fitness estimates from CH505 and CH848 data sets. 

      Reviewer #2 (Public review):

      Summary:

      This paper combines a biological topic of interest with the demonstration of important theoretical/methodological advances. Fitness inference is the foundation of the quantitative analysis of adapting systems. It is a hard and important problem and this paper highlights a compelling approach (MPL) first presented in (1) and refined in (2), roughly summarized in equation 12.

      (1) Sohail, M. S., Louie, R. H., McKay, M. R. & Barton, J. P. Mpl resolves genetic linkage in fitness inference from complex evolutionary histories. Nature biotechnology 39, 472-479 (2021).

      (2) Shimagaki, K. & Barton, J. P. Bézier interpolation improves the inference of dynamical models from data. Physical Review E 107, 024116 (2023).

      The authors find that positive selection shapes the variable regions of env in shared patterns across two patient donors. The patterns of positive selection are interesting in and of themselves, they confirm the intuition that hyper-variation in env is the result of immune evasion rather than a broadly neutral landscape (flatness). They show that the immune evasion patterns due to CD8 T and naive B-cell selection are shared across patients. Furthermore, they suggest that a particular evolutionary history (larger flux to high fitness states) is associated with bNAb emergence. Mimicking this evolutionary pattern in vaccine design may help us elicit bNAbs in patients in the future.

      There is a lot of information to be found in the full fitness landscape of env. The enormous strength of reversion-to-consensus in the patterns is a known pattern of HIV post-infection populations but they are nicely quantified here. Agreement between SHIV and HIV evolution is shown. They find selection is larger for autologous antibodies than the bNAbs themselves (perhaps bNAbs are just too small a component of the host response to drive the bulk of selection?), and that big fitness increases precede antibody breadth in rhesus macaques, suggesting that this fitness increase is the immune challenge required to draw forth a bNAb. This is all of high interest to HIV researchers.

      Strength of evidence:

      One limitation is, of course, that the fitness model is constant in time when the immune challenge is variable and changing. This simplification may complicate some interpretations.

      We agree that this is a limitation of our current approach. In prior work, we have found that the constant fitness effects of mutations that we infer typically reflect the time-averaged fitness effect when the selection changes over time (Gao and Barton, PNAS 2025; Lee et al., Nat Commun 2025). It could be difficult, however, to capture changes in selection that fluctuate rapidly with underlying immune responses. We have added a new paragraph in the Discussion that more clearly sets out some of the limitations of our analysis, including our assumption of constant selection coefficients.

      There are additional methodological and technical limitations that should be considered in the interpretation of our results. Most notably, we assume that the viral fitness landscape is static in time. While we do not expect selection for effective replication (“intrinsic” fitness) to change substantially over time, pressure for immune escape could vary along with the immune responses that drive them. In prior work, we have found that constant selection coefficients typically reflect the average fitness effect of a mutation when its true contribution to fitness is time-varying [42,43]. This may not adequately description mutational effects that undergo large or rapid shifts in time. Future work should also examine temporal patterns in selection for individual mutations.

      Equation 12 in the methods is really a beautiful tool because it is so simple, but accounts for linkage and can be solved precisely even in the presence of detailed mutational and selection models. However, the reliance on incomplete observations of the frequency leads to complications that must be carefully (re)addressed here.

      For instance, the consistent finding of strong selection in hypervariable regions is biologically intuitive but so striking, that I worry that it might be the result of a bias for selection in high entropy regions. 

      Thank you for this suggestion. We agree that it is important to carefully interrogate these results. To assess the effects of general sequence variability on inferred selection, we first computed a position-specific entropy measure, H<sub >i</sub >, for each site i. We first defined the time-dependent entropy H<sub >i</sub >(t) = - ∑<sub >a</sub> x<sub>i</sub> (a, t) log x<sub>i</sub> (a, t)), where x<sub>i</sub> (a, t) represents the frequency of amino acid/nucleotide a at position i and time t, at each sample time. We then computed H<sub>i</sub> as the average of H<sub>i</sub>(t) across all sample times. A new Supplementary Fig. 1 plots the entropy against the inferred selection coefficients. Although some sequence variation must be observed in order for us to infer that a mutation is beneficial, we did not find a systematic bias toward larger (more beneficial) selection coefficients at more variable sites. Overall, we found only a modest correlation between inferred selection coefficients and entropy (Pearson’s r = 0.33 and 0.29 for CH505 and CH848, respectively), which appears to be partly driven by the tendency for mutations inferred to be significantly deleterious to occur at sites with low entropy. In addition to the new Supplementary Figure, we have added a reference to this analysis in the main text:

      To test whether our results might be biased by overall sequence variability, we examined the relationship between our inferred selection coefficients and entropy, a common measure of sequence variability. Overall, we found only a modest correlation between selection and entropy, suggesting that the signs of selection that we observe are not due to increased sequence variability alone (Supplementary Fig. 1).

      Mutational and covariance terms in equation 12 might be underestimated, due to finite sampling effect in highly diverse populations. Sampling effects lead to zeros in x(t) when actual frequency zeros might be rare at the population sizes of HIV viral loads and mutation rates. Both mutational flux and C underestimation will bias selection upward in eq. 12. 

      The prior papers (1) and (2) seem to show robustness to finite sampling effects, but, again, more care needs to be shown that this robustness transfers to the amino acid inference under these conditions. That synonymous sites are rarely selected for in the nucleotide level is a good sign, and it may be a matter of simply fully explaining the amino-acid level model.

      As above, we agree that these tests are important. To assess the robustness of our results to finite sampling, we performed bootstrap sampling on the viral sequences and inferred selection coefficients using the resampled sequences. Specifically, we resampled the same number of sequences as in the original data at each time point and repeated this for all time points across all HIV-1 and SHIV data sets. A new Supplementary Fig. 11 shows a typical comparison of the original selection coefficients vs. those obtained through bootstrap resampling. Overall, we observe a high degree of consistency between the selection coefficients in each case, which is surely aided by the long time series in these data sets. As pointed out by the reviewer, uncertainty in low-frequency mutations is a particular concern, though the effects on inferred selection are mitigated by regularization. 

      We have added a section in the Results, “Robustness of inferred selection to changes in the fitness model and finite sampling”, which includes this analysis:

      Finite sampling of sequence data could also affect our analyses. To further test the robustness of our results, we inferred selection coefficients using bootstrap resampling, where we resample sequences from the original ensemble, maintaining the same number of sequences for each time point and subject. The selection coefficients from the bootstrap samples are consistent with the original data (see Supplementary Fig. 11), with Pearson’s r values of around 0.85 for HIV-1 data sets and 0.95 for SHIV data sets, respectively.

      Uncertainty propagates to the later parts of the paper, eg. HIV and SIV shared patterns might be the result of shared biases in the method application. However, this worry does not extend to the apples-to-apples comparison of fitness trajectories across individuals (Figures 5 and 6) which I think are robust (for these sample sizes). 

      One way to address this uncertainty is to compare the fitness values and individual selection coefficients across CH505 and CH848 data sets, which was also requested by Reviewer 1. Overall, we found little correlation between CH505 and CH848 fitness values (shown in a new Supplementary Fig. 6) or selection coefficients. This suggests that similarities between HIV-1 and SHIV landscapes are not solely determined by potential biases in the inference approach. We have now added a reference to this point in the main text:

      In contrast, the inferred fitness landscapes of CH505 and CH848, which share few mutations in common, are poorly correlated (Supplementary Fig. 6). This suggests that the similarities between viral fitness values in humans and RMs are not artifacts of the model, but rather stem from similarities in underlying evolutionary drivers.

      The timing evidence is slightly weakened by the fact that bNAb detection is different from bNAb presence and the possibility that fitness increases occurred after the bNAbs appeared remains. Still, their conclusion is plausible and fits in with the other observations which form a coherent and compelling picture.

      Yes, we agree that this is a limitation of our analysis — bNAbs may have been present at low levels before they were detected, and we cannot definitively reject selection by bNAbs. Nonetheless, in at least one case (RM5695), rapid fitness gains were substantially separated in time from bNAb detection (roughly 2 weeks after infection vs. 16 weeks, respectively). We have now added this point in a new paragraph in the Discussion:

      While we found a strong relationship between viral fitness dynamics and the emergence of bnAbs, it may not be true that the former stimulates the latter. For example, bnAbs may have been present within each host before they were experimentally detected. Rapid viral fitness gains within hosts that developed broad antibody responses could then have been driven by undetected bnAb lineages. However, we did not find strong selection for known bnAb resistance mutations, and in at least one case (RM5695), rapid fitness gains (roughly 2 weeks after infection) substantially preceded bnAb detection (16 weeks). Still, given the limited size of the data set that we studied, it is unclear the extent to which our results will transfer to larger and broader data sets.

      Overall thisrpretations could provide valuable insights into the broader significance of these results. is a convincing paper, part of a larger admirable project of accurately inferring complete fitness landscapes.

      Reviewer #3 (Public review):

      Summary:

      Shimagaki et al. investigate the virus-antibody coevolutionary processes that drive the development of broadly neutralizing antibodies (bnAbs). The study's primary goal is to characterize the evolutionary dynamics of HIV-1 within hosts that accompany the emergence of bnAbs, with a particular focus on inferring the landscape of selective pressures shaping viral evolution. To assess the generality of these evolutionary patterns, the study extends its analysis to rhesus macaques (RMs) infected with simianhuman immunodeficiency viruses (SHIV) incorporating HIV-1 Env proteins derived from two human individuals.

      Strengths:

      A key strength of the study is its rigorous assessment of the similarity in evolutionary trajectories between humans and macaques. This cross-species comparison is particularly compelling, as it quantitatively establishes a shared pattern of viral evolution using a sophisticated inference method. The finding that similar selective pressures operate in both species adds robustness to the study's conclusions and suggests broader biological relevance.

      Weaknesses:

      However, the study has some limitations. The most significant weakness is that the authors do not sufficiently discuss the implications of the observed similarities. While the identification of shared evolutionary patterns (e.g., Figure 5) is intriguing, the study would benefit from a more explicit discussion of what these findings mean for instance, in the context of HIV vaccine design, immunotherapy, or fundamental viral-host interactions. Even speculative inte

      Thank you for this suggestion. We have now clarified the potential implications of our work in several areas. While speculative, one possible application is in vaccine design: it may be beneficial to design sequential immunogens to mimic the patterns of viral evolution associated with rapid fitness gains. This “population-based” design principle is different from typical approaches, which have focused on molecular details of virus surface proteins. 

      We have extended our discussion of our results in the context of viral evolution within and across hosts and related host species. Overall, our work suggests that there may be relatively few paths to significantly higher viral fitness in vivo. Evolutionary “contingencies” such as shifting immune pressure or epistatic interactions could influence the direction of evolution, but not so dramatically that the dynamics that we see in different hosts are not comparable. We have also connected our work more broadly to the literature in evolutionary parallelism in HIV-1 in different contexts.

      A secondary, albeit less critical, limitation is the placement of methodological details in the Supplementary Information. While it is understandable that the authors focus on results in the main text - especially since the methodology is not novel and has been previously described in earlier publications - some readers might benefit from a more thorough presentation of the method within the main paper.

      We have now modified the main text to add a new section, “Model overview,” that lays out the key steps of our approach. While we reserve technical details for the Methods, we believe that this new section provides more intuition about how our results were obtained (including a discussion of the important Eq. 12, now Eq. 3 in the main text) and our underlying assumptions.

      Conclusions:

      Overall, the study presents a compelling analysis of HIV-1 evolution and its parallels in SHIV-infected macaques. While the quantitative comparison between species is a notable contribution, a deeper discussion of its broader implications would strengthen the paper's impact.

      Reviewer #1 (Recommendations for the authors):

      I suggest de-emphasizing bnAbs and focusing on selection landscape inference, which seems to be the actual focus of the paper.

      While we do not directly study antibody development in this work, bnAb development is certainly an important motivating factor. As described in the responses above, we have now modified the Abstract and Discussion to place relatively more emphasis on fitness comparisons and to relatively less focus on bnAb development.  

      Reviewer #2 (Recommendations for the authors):

      Please make sure that the MPL method is defined in this paper and its limitations are at least partially repeated.

      As noted in responses above, we have now included more methodological details in the main text of the paper, which we hope will make the intuition and assumptions involved in our analysis clearer.

      I'd like the code to better show or describe the model, I could not figure out the model details by looking at the code. It seems mostly just to be csv exporting for use with preexisting MPL code. A longer code readme would be helpful.

      We have now updated the README on GitHub to include a conceptual overview of our inference approach, which references how each step is implemented in the code.

      Reviewer #3 (Recommendations for the authors):

      Try to give some more details (not necessarily giving the full mathematical derivation) on the statistical method utilized.

      As noted above, we have now expanded our discussion of the statistical methods and assumptions in the main text.

      Figures 3 and 4 are somewhat 'messy'. Although I do not have a constructive suggestion here, I feel that with a little more effort maybe the authors could come up with something more clean.

      It is true that the mutation frequency dynamics are somewhat “choppy” and difficult to follow intuitively. To attempt to make these figures easier to parse visually, we have increased the transparency on the lines and added exponential smoothing to the mutation frequencies, resulting in smoother trajectories. The trajectories without smoothing are retained in Supplementary Fig. 3. Here we also note that this smoothing is for visual purposes only; we use the original frequency trajectories for inference, rather than the smoothed ones.

    1. Author response:

      Reviewer #1 (Public review)

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      We thank the reviewer for the detailed and accurate description of the data shown and its relevance to further our understanding of MPS assembly mechanism and function.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      We will consider the inclusion of live imaging experiments using the expressión of C-terminus-tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we will explore how to develop these experiments to generate data for inclusion in a revised submission.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      We don´t discard the presence of “nano beads” in these axons. It was recently suggested that the normal morphology of axons is indeed resembling “pearls-on-a-string” (Griswold et al., 2025), with “nano beads” separated by thin tubular "connectors" (also referred to as NSV, for non-synaptic varicosities). However, it is unlikely that the gap-patch pattern of beta2-spectrin can be attributed to such a morphology, given we used formaldehyde as fixative, and Griswold and colleagues show that the use of aldehyde-based fixatives do not preserve NSVs. We are able to see scattered axonal enlargements (“micro beads”), as we described in distal portions in Fig. 1C(C2) and E. However, the number, appearance and staining of these are not compatible with the gap-patch pattern in beta2-spectrin. Moreover, we would have expected to see these NSVs in our extensive STED imaging, yet we did not. We will discuss this further in the resubmission.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      Our stainings are for tubulin protein isoforms beta-III and alpha-II. That is, they would label microtubules, but free tubulin as well. The slight decrease in intensity for tubulin within gaps is indeed something to investigate, but we don´t interpret this as “patchy microtubules”. If the Reviewer refers to Fig. 2C-D, it is actually difficult to anticipate the slight decrease in intensity by the naked eye. To further support this, we will consider including stainings and quantitative analyses for microtubules in the resubmission. We are familiar with the use of permeabilizing conditions during fixation (in protocols known as “cytoskeletal fixation” to label microtubules (and not free tubulin).

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      We agree with the apparent discrepancy. However, one has to take into account that these axons are still elongating even at 2 weeks in culture. Hence, at any time point, there is a new axonal compartment recently added, and hence, with low beta2-spectrin and no MPS. Also, the dynamical evolution of the MPS has to take into account beta2-spectrin supply. If supply is somehow lower than a given threshold, it is expected that there will be more gaps, given the new, more distant parts of the axons have a lower supply of beta2-spectrin . To explore this formally, we are working on simulations of these multifactorial dynamic systems to better understand this, that together with key experimental observations would enhance our understanding into overall MPS assembly in growing axons. However, findings for this project will be the subject of another manuscript.

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      The results with the co-treatment with Latrunculin A and Staurosporine are indeed intriguing, and provide clear evidence that the gap-and-patch pattern arises from local assembly of the MPS, requiring new actin filaments. However, the fact that F-actin within the pre-formed MPS seems unaffected is not surprising. There are many different populations of F-actin in axons (i.e. MPS rings, longitudinal filaments, actin patches, actin trails). Latrunculin A affects filaments indirectly. The target of Latrunculin A is not actin filaments, but free monomers. It ultimately affects actin filaments as they end up losing monomers, and devoid of new monomers, filaments get shorter and eventually disappear. The drastic decrease in F-actin in our axons reflects that. The fact that F-actin in the MPS is preserved only speaks to the fact that these filaments are stable -if they are not losing monomers in the time frame of the treatment, the filament remains unaffected. We will support this with more observations and imaging and with a more extensive discussion summarizing the literature on the matter in the resubmission.

      On the other hand, the use of F-actin stabilizing drugs (like Jasplakinolide) would have a different effect. We will study how an experiment with these drugs could be informative of the process under investigation for the resubmission

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

      We agree with the reviewer's interpretation. A virtue of our experimental model and our interpretations of the observations in fixed cells is that it gives rise to informative questions such as the ones posed by the reviewer. As stated above, we will consider the inclusion of live imaging experiments using the expressión of C-terminus tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we think we can provide the evidence suggested.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      We thank the reviewer for the detailed and accurate description of the data shown.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

      We will consider the inclusion of live imaging experiments using the expressión of tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we believe we can provide the evidence suggested. We don't discard the notion that axons carrying familial ALS mutations will show defects in MPS formation and/or stability when observed at longer culture times, or under culture conditions that promote neuronal aging (Guix et al., 2021). Thus, we will continue to work with these cells, but the goal of that project lies well beyond the primary message of the present manuscript, and we anticipate that the revised version will not include new data on this matter. 

      Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      We will further explore the inclusion of more measurements of other parameters and variables towards establishing whether these gaps-and-patches patterns are equivalent structures in control and staurosporine-treated cells. 

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

      As stated before regarding similar comments by other reviewers, we will consider the inclusion of live imaging experiments in the revised version of the manuscript.

      Nicolas Unsain, PhD, and Thomas Durcan, PhD.

      References

      Griswold, J.M., Bonilla-Quintana, M., Pepper, R. et al. Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nat Neurosci 28, 49–61 (2025). https://doi.org/10.1038/s41593-024-01813-1

      Guix F.X., Marrero Capitán A., Casadomé-Perales A., Palomares-Pérez .I, López Del Castillo I., Miguel V., Goedeke L., Martín M.G., Lamas S., Peinado H., Fernández-Hernando C., Dotti C.G. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021 Jun 28;4(8):e202101055. doi: 10.26508/lsa.202101055. Print 2021 Aug.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03098

      Corresponding author: Pedro Escoll

      1. General Statements

      Our study investigates the interplay between the metabolism of host cells and the intracellular replication of Salmonella enterica serovar Typhimurium (ST). Type III Secretion Systems (T3SSs) are considered essential for ST to replicate within macrophages. However, we found that restricting macrophages to different bioenergetic contexts, such as supplementing them with glycerol, modulates bacterial replication and remarkably, enables a T3SS-deficient ST mutant (ΔprgHssaV) to replicate intracellularly. This T3SS-independent replication occurs within the Salmonella-containing vacuole (SCV) and is driven by the capacity of the host cell to provide these preferred nutrients, rather than by the host glycolytic activity itself.

      2. Description of the planned revisions

      __Reviewer #1 (Evidence, reproducibility and clarity): __

      Summary:

      In this manuscript, the authors investigate how host cell metabolic heterogeneity influences the intracellular replication of Salmonella enterica serovar Typhimurium. They use live-cell imaging of infected human primary macrophages to reveal that bacterial replication does not occur uniformly across infected cells. They demonstrate that supplementation with specific carbon sources-used by Salmonella during infection-promotes bacterial replication and increases the proportion of macrophages supporting intracellular growth. These effects are seen even in the absence of functional Type III Secretion Systems (T3SS), using a ΔprgHssaV double mutant. The authors further suggest that this replication enhancement is not strictly dependent on host glycolytic activity but rather on the host cell's ability to import nutrients. Their findings imply that intracellular Salmonella can exploit host cell metabolism to grow, even without its canonical virulence secretion systems, under nutrient-favorable conditions.

      Major Concern:

      While the topic is potentially interesting, the novelty is not fully clear. The concept that nutrient availability impacts intracellular Salmonella replication, largely via T3SS2 function, has been addressed previously (e.g., Liss et al., 2017). The finding that added exogenous carbon sources can enhance bacterial growth is thus not unexpected. The key claim-that Salmonella can replicate intracellularly even in the absence of T3SS function-would be significantly strengthened by demonstrating whether this is specific to Salmonella, or whether similar effects are seen with non-intracellular organisms such as E. coli K-12. If the phenomenon is unique to Salmonella, this would suggest a pathogen-specific mechanism beyond general metabolic support.

      As acknowledged by the Reviewer, the novelty and key claim of our work is that Salmonella can replicate intracellularly even in the absence of T3SS. To experimentally sustain that claim, we showed evidence that providing macrophages with the preferred carbon sources used by Salmonella during infection, such as glycerol, bypass the requirement of both T3SS by Salmonella to grow, intravacuolarly, inside macrophages.

      With respect to the article mentioned by the Reviewer (Liss et al. 2017, ref 36 in the manuscript), there are three important novel insights provided by our work: i) we show that Salmonella can replicate intracellularly in the SCV even in the absence of T3SS if certain carbon sources are provided; ii) we show the preference of Salmonella for certain carbon sources intracellularly such as glycerol and galactose (but not preferentially glucose); and iii) we have extended our observations to primary human macrophages in addition to RAW cells.

      We are not convinced that the experiment suggested by the Reviewer to use E. coli K12 (ECK12) is necessary to support our findings for Salmonella, but we propose to add the requested experiment. Briefly, we will infect hMDMs and RAW macrophages with ST-WT-GFP, ST-ΔprgHΔssaV or ECK12-WT-GFP, while culturing macrophages on different carbon sources (glucose, glycerol, galactose, fructose). Then we will monitor intracellular bacterial growth. By comparing bacterial growth of ST double mutant with ECK12-WT-GFP under favorable carbon sources such as glycerol, the results will be definitive to answer whether this phenomenon is unique to Salmonella or not.

      Specific Comments:

      1. Figure 1H: The effect shown here is not compelling due to inconsistent y-axis scaling. Panels 1B, 1C, and 1D should use a unified axis range with 1H to allow direct visual comparison of growth dynamics.

      Thank you, we will change it as suggested.

      Figures 1B, 1C, 1G, 1H: The current presentation of individual growth traces makes it difficult to appreciate the population-level trend. A smoothed average line overlaid on these plots could better represent the average dynamics of replicative vs. non-replicative infections. Or alternatively the total fraction of cells that proliferate summarized as a segmented bar plot (possibly binned per time point).

      We will plot the results as suggested, the total fraction of infected cells harboring bacteria that proliferate as a segmented bar plot, binned per time point.

      Figure 2G: This panel would benefit from including a comparable condition with the SPI-1/SPI-2 double mutant to aid interpretation. Additionally, the authors should explore whether this nutrient-supported replication is seen in non-phagocytic cells such as HeLa or Caco-2, which would help delineate whether the observed phenomenon is macrophage-specific.

      The graph asked by Reviewer is Figure S1D. As we are representing ST growth in macrophages supporting Salmonella replication, some of the conditions, such as lactate, cannot be shown in the infection conditions using the double mutant because there are no cells supporting the replication of the double mutant, so there are no cells to plot.

      As suggested, we are also going to perform the same experiments in HeLa cells to investigate whether the observed phenomenon is macrophage specific.

      Line 117: The sentence stating that the double mutant can undergo "exponential intracellular growth even in the absence of T3SS-dependent secretion" is an overstatement. The data suggest only a modest improvement in growth, restricted to a minority of infected cells. This claim should be revised accordingly, as should similar overstatements in the discussion (e.g., lines 203-204).

      We will remove the term 'exponential' and revise the sentence at line 117 and those in the discussion. Line 203-204 will be: 'we demonstrated that providing macrophages with preferred nutrients allows a subpopulation of ST to replicate intracellularly without the need for a functional T3SS'.

      Line 162: The authors should clarify that glycerol had the strongest effect in primary macrophages, while multiple alternative carbon sources had notable effects primarily in RAW cells.

      We will add this clarification in the text.

      Lines 198-201: This relates to the major concern. The authors should assess whether the observed growth enhancement is unique to Salmonella by testing other bacteria not known for intracellular replication. This would clarify whether the effect is due to general nutrient-driven host cell permissivity or a pathogen-specific adaptation.

      As outlined above, we will perform the suggested experiment with E. coli K12 to answer whether this phenomenon is unique to Salmonella or not.

      RAW 264.7 Observations: The modest intracellular growth of SPI-1/SPI-2 double mutants in RAW cells is consistent with prior observations in the field. The idea that nutrient availability explains this is noteworthy. The authors might consider whether differences in standard culture media (e.g., glucose concentration) influence these outcomes. This could have broader implications for reproducibility in infection models.

      Thank you for the suggestion, we will include a paragraph discussing whether differences in standard culture media might influence bacterial replication. Indeed, to answer also a question from Reviewer #2, we will include a new supplementary Figure where we have already compared "no Glucose" (0 mM), "low Glucose" (2 mM) and standard culture media Glucose levels (10 mM). Our results show that differences in Glucose levels in the culture media influence Salmonella intracellular growth in hMDMs and RAW macrophages (see Figure below).

      Reviewer #1 (Significance):

      This manuscript highlights how host cell metabolism and nutrient availability can influence intracellular Salmonella replication. While the findings are intriguing, the current framing overstates their novelty and impact. Key revisions-such as comparative experiments with non-pathogenic bacteria and non-phagocytic cells, consistent figure scaling, and more measured language-would improve the clarity and significance of the work. If the authors can show Salmonella-specific mechanisms at play, the study could offer important insights into host-pathogen metabolic interactions.

      We believe that performing all experiments suggested by the Reviewers, as well as the requested changes in the text to avoid overstatements, will improve the manuscript and will offer readers new insights and details to better understand the metabolic interactions happening between host and pathogens and how they can shape bacterial virulence.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary: In their study titled "Provision of Preferred Nutrients to Macrophages Enables Salmonella to Replicate Intracellularly Without Relying on Type III Secretion Systems", Dr. Garcia-Rodriguez et al. describe the influence of the host cell metabolism on the intracellular proliferation potential of Salmonella during infection. The authors investigate whether the supplementation of the media with different carbon sources has an impact on the intracellular lifestyle of Salmonella. By using single cell tracking in live-cell microscopy, including the use of different reporter strains, they describe that glycerol benefits Salmonella's ability to grow within its vacuolar niche, in part, interestingly, in a Type-3-Secretion System independent manner.

      They furthermore highlight the dependence on host background for this observation by showing that effects differ between cells of varying metabolic activity. Throughout their study, they use cutting-edge methodologies, as well as Salmonella strains that could be of versatile use in other investigations. This work, while limited to in vitro models for now, has implications for the better understanding of how pathogens and their host are intertwined. This, in turn, has significance for the development of new anti-infective strategies further down the line. I therefore believe that it should be disseminated to the research community. The following comments summarize ideas how the quality of the study could be improved:

      Major comments:

      1. Salmonella, especially when cultured to activate the SPI-1 T3SS, introduce rapid cell death in their host - most commonly through activation of the NLRC4 inflammasome and downstream pyroptotic signaling. The authors don't describe the effect of the infection in differently supplemented media on host cell death, yet it would be important to elucidate whether this cellular response is also altered.

      We have performed these experiments and tracked host cell death by measuring Annexin-V levels in single cells, during infection in the conditions using the different supplements. We will include these results in the revised version of the manuscript and main text. Please see the Figure below showing that the different carbon sources did not affect macrophages cell death significantly (future Figure S1E and S1F)

      The aspect of partially T3SS-independent growth enhancement by glycerol (and depending on the host background glucose) is most curious. The authors quantify this by determining the percentage of cells containing proliferating Salmonella and by tracking individual cells over the time course of the infection. I am missing a general statement on whether the initial infection rate (i.e. timepoint 0) is comparable across conditions and mutants, and whether possible discrepancies in the infection rate could have downstream effects on the statements and claims made in the manuscript. This is, to my mind, also important for the quantification of cytosolic and vacuolar bacteria. There, the authors always speak in "percent of infected cells", so it is relevant whether the number of infected cells varies among conditions (see e.g. Figure 3).

      We thank the reviewer for this comment. The initial infection rate at t=0 significantly differs between WT and mutants in RAW 264.7 macrophages, and carbon source supplementation has no effect. However, as we only analyze infected cells, this does not affect the final results. In any case, we are going to add the graphs of % of infected cells at t=0 as supplementary Figures S1G-K.

      The authors use a concentration of 10mM for all supplemented alternative carbon sources. It would be useful to discuss the rationale behind this approach, including whether all chemicals have the same ability to be taken up by the cell. A concentration series (at least for some of the tested compounds) may be beneficial to bolster the conclusions that the authors make.

      We use 10 mM as this is the concentration of Glucose in standard culture media. By using 10 mM for all the different carbon sources, we can thus compare them keeping concentration constant (10 mM). Indeed, to answer also Reviewer #1, we will include in the manuscript a paragraph discussing whether differences in standard culture media might influence bacterial replication. As this Reviewer suggested, we will include a new supplementary Figure comparing no Glucose (0 mM), low Glucose (2 mM) and standard culture media Glucose levels (10 mM), showing that the concentration of glucose has a gradual effect in supporting the replication of the T3SS-deficient strain in RAW macrophages (see Figure below).

      I think it would strengthen the study, if the authors used host cell mutants in certain metabolite transporters, or alternatively Salmonella mutants that are deficient in uptake or metabolism of some of the compounds used in this study. This point is alluded to in the discussion, and I believe if the authors could show that in certain host mutant backgrounds the impact of supplementation with alternative carbon sources can be reversed, it would immensely bolster the strength of the claims.

      Following Reviewer's suggestion, we generated ST metabolic mutants unable to metabolize glycerol, galactose or fructose. As seen in the Figures below, during infection, the supplementations with glycerol/galactose does not boost Salmonella replication in metabolic mutants as in WT conditions, demonstrating that supplemented carbon sources indeed arrive to bacteria within the SCV and are used by intracellular Salmonella to grow. This Figures will be now Future Figure 4J-N.

      I think it would be useful to include the meaning of this work for other intracellular pathogens in the discussion section: Do the authors believe that this phenotype is Salmonella-specific? If the pathogens are at hand, it might be interesting to infect with other intracellular bacteria, such as Shigella or Francisella to investigate if the boosting of growth by glycerol also holds true for these.

      We have performed experiments with Legionella pneumophila and galactose (see figure below), showing that this carbon source is specific of Salmonella (as shown in Figure 4F in the manuscript). We could perform experiments also with L. pneumophila and glycerol to answer the Reviewers question. However, we think that the results with Legionella might be out of the focus of this article and would constitute themselves a new article, as both pathogens have a very different, non-comparable intracellular metabolism. Thus, the experiment suggested by Reviewer #1 using E. coli K12 (ECK12) while culturing macrophages on different carbon sources (glucose, glycerol, galactose, fructose) is in our opinion a better fit. We will monitor intracellular bacterial growth and, by comparing bacterial growth of the ST-ΔprgHssaV double mutant with ECK12-WT-GFP under favorable carbon sources such as glycerol, the results will be definitive to answer whether this phenomenon is unique to Salmonella or not.

      Minor comments:

      • Line 41: The authors write "are required for", but given their findings, it might be more accurate to phrase this as "have previously been described to be required for" or "have previously been described essential for".

      We will change it.

      • Line 86: Is the referencing of Figure S1C correct or should it be S1A?

      Yes, thank you, it is S1A, we will change it.

      • Lines 119,120: Related to what is displayed in Figure 2G: Are these differences significant?

      Glucose, galactose and lactate curves are significantly different compared to control (p

      • Lines 126,127: What is the change for glycerol, and is the intracellular growth significantly higher compared to the control?

      6,2 {plus minus} 1.9% in glycerol vs. 2 {plus minus} 1% in control, p

      • Figure 1E&F: Related to one of the major comments: Would it be possible to quantify this at timepoint 0 to ensure that the initial infection rates are the same across conditions?

      As outlined above, we will add the graphs of % of infected cells at t=0 as supplementary Figures S1G-K (Major Comment number 2 from this Reviewer)

      • Figure 3E,F: Why does the sum of the curves not add up to 100% (especially in the beginning)? And related to that, why do both the percentage of cytosolic and vacuolar cells grow over time? Since this infection is performed with gentamycin present, re-infection should not be possible.

      The localization module of the SINA plasmid relies on transcriptional reporters, whose expression requires time for induction and detection. Therefore, at early time points, infected cells are not classified as vacuolar or cytoplasmic because the reporters have not yet been expressed (as described in PLoS Pathog. 2021;17(4):e1009550, PMID: 33930101).

      At later time points, a subset of cells harbors bacteria that do not express any of the reporters. These bacteria are considered dormant, representing about 10% of the population, as detailed in the same article. In addition, a small percentage of infected cells simultaneously contain both STvac and STcyt. Such cells are subclassified as harboring STcyt but also STvac. Consequently, the total proportion of infected cells carrying STvac and STcyt may also exceed 100%.

      • Figure S1A: While significance testing is described in the legend, there are no indications of significance in the figure panels.

      The Reviewer is right, there is no significant changes between conditions, we will change the significance testing to ns=non-significant.

      • Figure S1B: Due to the stark discrepancies between hMDMs and RAW264.7, it might make sense to plot them on two different y-axes. Furthermore, I would clarify the y-axis: In the legend, it seems as CFU counts are shown, while CFU/ml/t2 rather describes a change over time.

      We agree. However, we will maintain the scale of the Y-axis as it was required by Reviewer #1 to be consistent with Y-axis. We will change the legend to indicate that we plot CFU/ml/t2.

      • Figure S1C: The prgH-mutant seems to outperform the wildtype in intracellular proliferation, while the double mutant underperforms compared to the ssaV-mutant. Could you please discuss/explain how the prgH-deletion has seemingly opposite effects on intracellular proliferation, depending on whether it is introduced in a wildtype or ssaV-KO background?

      As T3SS-1 plays a role in inducing macrophage cell death via activation of the NLRC4 inflammasome, macrophages infected with bacteria carrying a functional T3SS-1 (such as WT), are more prone to undergo cell death at late time-points, which disrupts bacterial proliferation and reduces the proportion of infected cells. Thus, these dead cells were not considered in the analysis. Even if cell death of ST-WT-infected RAW macrophages remains below 5%, more ΔprgH-infected cells are considered in the analyses at late time-points, and ST-ΔprgH continue replicating (and growing in ST area).

      • Figure S2A: As for the comments related to Figure 3, I am unsure how the sum of STvac and STcyt can deviate from 100. This is especially puzzling for the red curve (glycerol) at e.g. 3hpi, when the sum of the two clearly seems to be larger than 100.

      At early time points, no infected cells are classified as vacuolar or cytoplasmic because the reporters have not yet been expressed. At later time points, a subset of cells harbor bacteria that do not express any of the reporters, which are considered dormant (10% of the population). Finally, a small percentage of infected cells simultaneously contain both STvac and STcyt, therefore the total proportion of infected cells carrying STvac and STcyt may also exceed 100%.

      **Cross-commenting** I agree in principle with the comments raised by Reviewer #1 - especially when it comes to the enhancement in significance if the authors assess the species specificity. Elucidating whether the growth enhancement is Salmonella-specific, occurs for other intracellular pathogens (e.g. Shigella, Francisella) or also for extracellular bacteria (e.g. E. coli, Yersinia), would definitely strengthen the study.

      As said before, for the revision we are going to perform the experiments suggested by Reviewer #1 of using E. coli K12 (ECK12) while culturing macrophages on different carbon sources (glucose, glycerol, galactose, fructose). And to satisfy this Reviewer's curiosity, we are going to perform experiments also with L. pneumophila and glycerol.

      Reviewer #2 (Significance):

      General assessment:

      As the authors write in their discussion, the strength of this study is also it's limitation: Using single cell tracking in microscopy is a very elegant and powerful approach, yet conversely, it limits the scope of the study to in vitro approaches. While it enables assessment of bacterial pathogenicity and host-dependence on a single-cell level, it remains to be investigated whether the conclusion that the authors draw from their work will hold in more complex or physiologically relevant models.

      During the preparation of this Revision Plan, we discovered the article published in PLoS Pathogens by Andrew Grant and Pietro Mastroni "Attenuated Salmonella Typhimurium Lacking the Pathogenicity Island-2 Type 3 Secretion System Grow to High Bacterial Numbers inside Phagocytes in Mice" (PLoS Pathog 2012 8(12): e1003070, PMID: 23236281). In this article, authors showed that our main conclusion is also relevant in vivo (Salmonella Typhimurium can replicate within macrophages in the absence of T3SS). This will be addressed in the Discussion of the revised manuscript. Our study provides a metabolic explanation, at the single cell level for those observations.

      A further small shortcoming of the study is the heavy focus on the bacterial aspect in this host-pathogen interaction. While the authors do link the proliferative potential of the intracellular bacteria to the metabolic status of the individual host cell, more could be done with respect to host responses in the varying media compositions, including investigating alterations to the cell cycle, induction of cell death, or the ability to activate inflammatory signaling.

      We agree, and we are actively investigating how restricting macrophages to specific carbon sources impact other host responses, such as cytokine production. For the revised manuscript, we will add the results on the induction of cell death.

      Nonetheless, this study is of large interest to the field and the systematic approach to addressing their hypotheses speaks to the scientific excellence of the investigators.

      Thank you.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      N/A

      • *

      4. Description of analyses that authors prefer not to carry out

      N/A

    1. For example, in the Logic & Communication column, we see many light-orange cells – the AI often thought papers were a bit clearer or better argued (by its judgment) than the human evaluators did.

      I wonder if we should normalize this in a few ways, at least as an alternative measure.

      I suspect the AI's distribution of ratings may have different than the human distribution of ratings overall and, the "bias" may also differ by category.

      Actually, that might be something to do first -- compare the distributions of (middle -- later more sophisticated) ratings for humans and for LLMs in an overall sense.

      One possible normalization would be to state these as percentiles relative to the other stated percentiles within that group (humans, LLMs), or even within categories of paper/field/cause area (I suspect there's some major difference between the more applied and niche-EA work and the standard academic work (the latter is also probably concentrated in GH&D and environmental econ). On the other hand, the systematic differences between LLM and human ratings on average might also tell us something interesting. So I wouldn't want to only use normalized measures.

      I think a more sophisticated version of this normalization just becomes a statistical (random effects?) model where you allow components of variation along several margins.

      It's true the ranks thing gets at this issue to some extent, as I guess Spearman also does? But I don't think it fully captures it.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this paper, the GFP-GBP system for mistargeting protein localization was used in fission yeast cells to discover new protein interactions involved in vesicular trafficking during cytokinesis. This approach uncovered a new association between the F-BAR protein Rga7 and its binding partner Rng10 with the Munc13 protein Ync13 at the cell division site. Additional associations were observed between Rga7-Rng10, Ync13 and the glucan synthases Ags1 and Bgs4, and the vesicle fusion protein Sec1. These interactions identified by the GFP-GBP system were further supported by co-immunoprecipitation experiments and by defining localization dependencies with live cell imaging in a variety of mutant strains. The imaging data are all of high quality and for the most part support the conclusions. However, in my opinion some of the interpretations are overstated, and the manuscript would benefit from providing additional mechanistic information. Major and minor recommendations are outlined below.

      Major suggestions 1. The co-IP data are interpreted to suggest that all the above-mentioned proteins form a single "big complex." However, as noted in the manuscript and reflected in the model, the multipass integral membrane proteins Bgs4 and Ags1 are embedded in the vesicle membrane and likely only indirectly associate with the scaffold Rga7-Rng10 via Ync13, without forming a 'complex'. One would expect the entirety of these vesicle contents to co-IP if the model is correct. The first paragraph of page 11 should be revised to more clearly reflect this scenario and to align with the proposed model.

      Response: We thank the reviewer for this thoughtful clarification. In the original manuscript, we stated “…indicating these proteins do interact or form big protein complexes… These results suggest that Rga7, Rng10, and Ync13 form a protein complex.” We agree that our initial wording may have unintentionally implied that all proteins detected in co-IP experiments assemble into a single, large physical complex. As the reviewer correctly noticed, the multipass integral membrane proteins Bgs4 and Ags1 are embedded within vesicle membranes and are more likely to associate indirectly with the Rga7-Rng10-Ync13 complex, rather than being part of one unified protein complex. To avoid overinterpretation, we have modified the last sentence of the first paragraph on the original page 11 as below: “These results suggest that Rga7, Rng10, and Ync13 do form a protein complex, although maybe dynamic and not super stable (see Discussion). Our data indicate that Rga7 interacts with both Ync13 and Rng10 to form a module on the plasma membrane for targeting of the vesicles containing cargos such as glucan synthases Bgs4 and Ags1. However, these glucan synthases are multipass integral membrane embedded proteins and likely only indirectly associate with the module Rng10-Rga7-Ync13, without forming a big protein complex.”

      Can Ync13 be artificially directed or tethered to the division site independently of Rga7-Rng10 (e.g., via Imp2)? If so, can this rescue the phenotypes of rga7Δ cells? This experiment could clarify whether Ync13 is the key functional effector of the Rga7-Rng10 complex.

      Response: We thank the reviewer for suggesting this interesting experiment. We agree that testing whether correctly localized Ync13 is sufficient to execute the division-site function of the Rga7–Rng10 complex would clarify its role. To test this, we artificially targeted Ync13 to the division site independently of Rga7 by tethering it to the scaffold protein Pmo25. Pmo25, an MO25 family protein, localizes to both the plasma membrane at the division site and the spindle pole body (mainly one of the SPBs) during mitosis and cytokinesis, enabling us to mislocalize Ync13 to these structures through GFP–GBP system. We did not use Imp2 because its localization pattern (mainly to the contractile ring [1, 2]) is different from Ync13. Microscopy revealed robust localization of Ync13 at the division site and the SPB in rga7Δ cells, and this tethered Ync13 persisted along the cleavage furrow throughout ring constriction. Importantly, enforced division-site localization of Ync13 significantly rescued the cytokinesis defects and cell lysis of rga7Δ. Consistently, growth assays on Phloxin B (PB) plate showed the elevated lysis/death in rga7Δ cells was rescued by Ync13 tethering to Pmo25-GBP. Together, these findings support that Ync13 is a key functional effector acting downstream of the Rga7–Rng10 scaffold at the division site. We have added these results in the new Figure 6 and associate text in the revised manuscript. We have also updated the model in Figure 8 to reflect this new result.

      1. Demeter J, Sazer S. imp2, a new component of the actin ring in the fission yeast Schizosaccharomyces pombe. J Cell Biol. 1998;143(2):415-27. PubMed PMID: 9786952.
      2. Martin-Garcia R, Coll PM, Perez P. F-BAR domain protein Rga7 collaborates with Cdc15 and Imp2 to ensure proper cytokinesis in fission yeast. J Cell Sci. 2014;127(Pt 19):4146-58. Epub 2014/07/24. doi: 10.1242/jcs.146233. PubMed PMID: 25052092.
      3. The authors should consider structural or computational modeling of the proposed Rga7-Rng10-Ync13 complex. Such analysis could offer insight into how these components interact and strengthen the proposed model. Response: We thank the reviewer for this valuable suggestion. Following the recommendation, we performed structural modeling of the Rga7–Rng10–Ync13 complex using AlphaFold3. Our previous work demonstrated that the F-BAR protein Rga7 forms a stable dimer and its F-BAR domain binds the C-terminal (aa751–1038) region of Rng10 [3]. Based on these findings, we constructed an input model consisting of two full-length Rga7 subunits, two Rng10(751–1038) subunits, and one full-length Ync13. The predicted structure revealed a modular organization in which Rng10(751–1038) associated strongly with the F-BAR domain of the Rga7 dimer, consistent with our prior biochemical data [3]. In addition, the model suggested that Ync13 interacted with the GAP domain of Rga7, positioning Ync13 in close proximity to the Rga7–Rng10 interface (Fig. S5, A, B, D and F). Further domain specific predictions confirmed the interactions between Rga7-GAP and Ync13 N-terminus (pTM: 0.63, ipTM: 0.64), two Rga7 F-BARs (pTM: 0.74, ipTM: 0.71), as well as Rga7 F-BAR and Rng10(751–1038) (pTM: 0.56, ipTM: 0.78) (Fig. S5, C-F). Overlay analyses revealed that the interacting domains align well with the structure of whole complex as the root mean square differences (RMSDs) are Liu Y, McDonald NA, Naegele SM, Gould KL, Wu J-Q. The F-BAR domain of Rga7 relies on a cooperative mechanism of membrane binding with a partner protein during fission yeast cytokinesis. Cell Rep. 2019;26(10):2540-8.e4. doi: 10.1016/j.celrep.2019.01.112. PubMed PMID: 30840879; PubMed Central PMCID: PMCPMC6425953.

      Minor text edits 1. Define "SIN" in the discussion section for clarity.

      Response: We defined the SIN pathway in the Discussion section as suggested: “At low restrictive temperatures, the lethality of mutant sid2, the most downstream kinase in the Septation Initiation Network, is partially rescued by upregulating Rho1. Thus, it has been suggested that the Septation Initiation Network activates Rho1, which in turn activates the glucan synthases [4].”

      Alcaide-Gavilán M, Lahoz A, Daga RR, Jimenez J. Feedback regulation of SIN by Etd1 and Rho1 in fission yeast. Genetics. 2014;196(2):455-70. Epub 2013/12/18. doi: 10.1534/genetics.113.155218. PubMed PMID: 24336750; PubMed Central PMCID: PMCPMC3914619.

      Figure S3, the protein schematics should start at residue "1" and not "0".

      Response: We apologize for the mistake. The schematics in revised figure (now Figure S4A) have been corrected to start at residue 1.

      Mass spectrometry data referenced in the text are not provided in the manuscript.

      __Response: __We apologize for the omission. The mass spectrometry data are now shown in Table S1. __

      __

      In Figure 4A. The Ags1 rim localization does not appear decreased as the authors claim.

      __Response: __After examining the data again, we agree with the reviewer’s assessment. So, we reworded the sentence as the following: “We also found that in ync13Δ cells, the Bgs4 intensity at the rim of the septum was much lower than in WT after ring constriction (Fig. 4B).”


      On page 13: "both Rga7 and Rng10 can mistarget Trs120 to mitochondria."

      Response: Thank you. The typo “mistargeting” has been corrected to “mistarget”.

      Minor figure edits 1. Consider inverting single-channel images to display fluorescence on a white background, which would improve visual clarity.

      Response: We appreciate the reviewer’s suggestion. However, we have chosen to retain the original display format with fluorescence shown in a black background, to be consistent with our (and some others’) previous publications. We believe this format preserves clarity while allowing easier comparison with the previously published works.

      The Figure 1 legend should describe the experimental setup rather than restating conclusions.

      Response: We thank the reviewer for this helpful suggestion. The Figure 1 legend has been revised to describe the experimental setup and imaging conditions rather than summarizing conclusions as the following:

      Fig. 1. Physical interactions among the key cytokinetic proteins in plasma membrane deposition and septum formation revealed by ectopic mistargeting to mitochondria by Tom20-GBP. __Arrowheads mark examples of colocalization at mitochondria. (A) Ync13 colocalizes with Rga7 and Rng10 at cell tips and the division site. (B-F) Tom20-GBP can ectopically mistarget Rga7/Rng10-mEGFP and their interacting partners tagged with tdTomato/RFP/mCherry to mitochondria. Tom20–GBP was used to recruit mEGFP-tagged Rga7 or Rng10 to mitochondria, and colocalization was assessed with tdTomato/RFP/mCherry-tagged candidate binding partners. Cells were grown at 25ºC in YE5S + 1.2 M sorbitol medium for ~36 to 48 h and then were washed with YE5S without sorbitol and grown in YE5S for 4 h before imaging. (B) Rga7/Rng10-Ync13. (C) Rga7/Rng10-Trs120. (D) Rga7/Rng10-Bgs4. (E) Rga7/Rng10-Ags1. (F)__ Rga7-Smi1. Bars, 5 μm.

      Reduce the number of arrows indicating co-localization in microscopy images; highlighting 1-2 representative examples is sufficient and less visually cluttered.

      Response: We appreciate the reviewer’s suggestion. We have revised the micrographs to reduce the number of arrowheads, highlighting several representative examples of co-localization per image. This improves clarity and reduces visual clutter while still guiding the reader to the key observations.

      Figure 3F, the scale bar is listed as 5 μm in the legend but it appears to my eye to be 2 μm.

      Response: We thank the reviewer for noticing this error. After rechecking the original imaging data, we have added a new 5 μm scale bar.

      The orientation of Bgs4/Smi1 should be inverted in the schematic within vesicles so that Smi1 is always on the cytoplasmic side.

      Response: We thank the reviewer for pointing out this error. The schematic has been corrected so that Bgs4 and Smi1 are oriented appropriately, with Smi1 consistently placed on the cytoplasmic side of vesicles because it does not have a transmembrane domain. The revised schematic is included in the updated Figure 8.

      6. Also in the schematic, Mid1 is not at the constricting CR and therefore needs to be removed.

      __Response: __Thank you for the suggestion. Mid1 has been removed from the model figure.

      Reviewer #1 (Significance (Required): From the data presented in the manuscript, it is proposed that Rga7 and Rng10 form a scaffold at the division site for delivery of exocytic vesicles marked by the TRAPPII complex but not the exocyst complex. Further, it is proposed that these vesicles deliver specifically the glucan synthases necessary for septation. Overall, this study builds on previous work from the Wu lab to clarify how the TRAPPII-decorated vesicles are specifically delivered to the cell division site, adding some new information about vesicle trafficking regulation during cytokinesis. It also provides new insight into the role of a F-BAR scaffold protein.

      This paper will be of interest to those studying cytokinesis and also those studying mechanisms of intracellular trafficking.

      Reviewer expertise: Cell division, signaling, membrane biology

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      This paper provides a comprehensive analysis of the roles of Rng10, Rga7, and Ync13 in cytokinesis using fission yeast as a model system. The authors demonstrate that Ync13/Rna7/Rng10 not only interact with each other but also associate with components of glucan synthases, which are essential for secondary septum formation but not for the primary septum. They further show that Ync13 is involved in exocytosis through its interaction with Sec1 and plays a role in membrane trafficking via interaction with the TRAPP-II complex. Collectively, their findings reveal a coordinated mechanism that ensures the timely formation of the secondary septum during cytokinesis, as deletion of these proteins disrupts septum formation and leads to cell lysis.

      The conclusions drawn in this paper are well-supported by the data, with a clear methodology and robust statistical analyses that enhance reproducibility. However, I have the following major and minor comments:

      Major Comments - 1) The authors propose that Ync13, Rng10, and Rga7 interact to form a protein complex, supported by their mislocalization studies. While these findings are suggestive, additional co-immunoprecipitation (co-IP) data specifically demonstrating a direct interaction between Ync13 and Rng10 would strengthen the claim.

      Response: We thank the reviewer for this suggestion. The direct interaction between Rga7 with Rng10 has been already established and published by our group [3, 5]. Here we found that Rga7 and Ync13 directly interact by in vitro binding assay (Figure 2, D and E). While our current data do not suggest a direct physical interaction between Ync13 and Rng10, our mislocalization results and other data do provide strong support for their functional association. In particular, ectopic tethering of Ync13 to mitochondria recruits Rng10 to the same sites and vice versa (Figures. 1B and S2A). Additionally, division-site tethering of Ync13 by Pmo25-GBP rescues both the growth and cell-lysis phenotype of rga7Δ (Figure 6), consistent with the idea that Ync13 functions downstream of Rga7-Rng10 because Rga7 localization depends on Rng10 (Figure 8). Furthermore, our AlphaFold3 modeling predicts that Rng10 binds the BAR domain of Rga7, whereas Ync13 binds the GAP domain of Rga7, suggesting that Rng10 and Ync13 are positioned within the same complex through Rga7 without direct interaction (Figure S5).

              The predicted lack of direct interaction between Ync13 and Rng10(751–1038) is supported by the experiment mentioned below to answer the minor question from the Reviewer 3. We tested the mistargeting of mECitrine-Rng10(751–1038) in *rga7Δ tom20-GBP* cells and found that Ync13-tdTomato could not be recruited to mitochondria (Figure S4H). This indicates that Ync13 cannot interact with Rng10(751–1038) independently of Rga7, supporting our proposed model that Rga7 interacts with Rng10 through the BAR domain while with Ync13 through the GAP domain. We have added these clarifications to the revised manuscript (Results and Discussion) to better contextualize the evidence for the Rga7–Rng10–Ync13 assembly.
      

      Liu Y, McDonald NA, Naegele SM, Gould KL, Wu J-Q. The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis. Cell Rep. 2019;26(10):2540-8.e4. doi: 10.1016/j.celrep.2019.01.112. PubMed PMID: 30840879; PubMed Central PMCID: PMCPMC6425953. Liu Y, Lee I-J, Sun M, Lower CA, Runge KW, Ma J, et al. Roles of the novel coiled-coil protein Rng10 in septum formation during fission yeast cytokinesis. Mol Biol Cell. 2016;27(16):2528-41. Epub 2016/07/08. doi: 10.1091/mbc.E16-03-0156. PubMed PMID: 27385337; PubMed Central PMCID: PMCPMC4985255.

      2) It remains unclear whether Ync13 directly interacts with components of the glucan synthase complex (Bgs4/Ags1), or if this association is mediated through other factors (Rng10, Rga7). Clarifying the nature of this interaction would significantly enhance the mechanistic insight.

      Response: We thank the reviewer for this thoughtful clarification. As pointed out by Reviewer 1 in major comment 1, the multipass integral membrane proteins Bgs4 and Ags1 are embedded within vesicle membranes and are more likely to associate indirectly with the Rga7–Rng10-Ync13 complex rather than being part of one unified protein complex, although Rga7 Co-IPs with Bgs4 and its binding partner Smi1 (Figure 1, A-C). We would like to make it clear that our model or manuscript does not claim direct interactions between the Ync13-Rga7-Rng10 module and the glucan synthase complexes but suggest that the module aids in selection of vesicle targeting sites on the plasma membrane. To clarify, we have revised the text to more clearly state that our co-IP and in vitro binding results demonstrate that Rga7 physically associates with Ync13 and Rng10, and that vesicle-associated proteins such as Bgs4 and Ags1 are likely recruited through indirect interactions.

      __Minor comments: __1) The manuscript refers to mass spectrometry-based interaction data, but the corresponding dataset is not included. Providing this would enhance transparency and reproducibility.

      __Response: __We apologize for the omission. The mass spectrometry data are now shown in Table S1.

      2) In Figure 2D, the MBP-6x pull-down lane shows a faint band around 76 kDa. The authors should clarify what this band represents and whether it has any relevance to the study.

      Response: We thank the reviewer for noticing this faint band. The weak ~76 kDa band in the MBP-6x pull-down lane is non-specific background binding of MBP and Rga7. We added a note in the figure legend to clarify this point.


      3) A quantification graph corresponding to the data in Figure 3G would aid in better interpreting the results and assessing their significance.

      Response: We thank the reviewer for this suggestion. We have now added two quantification graphs corresponding to Figure 3G, showing the measured Rng10 signal intensities across the division site. Statistical analysis shows the full width at half maximum (FWHM) is significantly different between WT and ync13D cells, and the figure legend and text have been updated accordingly in the revised manuscript.

      4) Figure 4D appears to be missing time legends, which are essential for interpreting the dynamics of the experiment.

      Response: We thank the reviewer for noticing this. We apology for making this confusing statement in figure legend. We would like to clarify that the full width at half maximum (FWHM) was calculated from line scans using single time point images from cells at the end of contractile-ring constriction. Those line scans were fitted with the Gaussian distribution to calculate the mean and standard deviation of FWHM. We have updated the figure legend to make it clearer in the revised manuscript.

      Reviewer #2 (Significance (Required)):

      Nature and Significance of the Advance This study provides a conceptual and mechanistic advance in understanding the spatial and temporal regulation of membrane trafficking during cytokinesis. It identifies a conserved module-Ync13-Rga7-Rng10-that directs the selective tethering and fusion of secretory vesicles at the division site, functioning independently of the exocyst complex. This finding challenges the prevailing model that the exocyst is universally required for vesicle tethering during cytokinesis. While previous work has underscored the roles of TRAPP-II and vesicle trafficking in septum formation (Wang et al., 2016; Arellano et al., 1997; Gerien and Wu, 2018), the precise mechanism targeting vesicles to the division site remained unclear. This study fills that gap by elucidating how Ync13 and Rga7 coordinate vesicle delivery and glucan synthase localization (Liu et al., 2016; Zhu et al., 2018), thereby extending our understanding of septum biogenesis and membrane remodeling beyond actomyosin ring dynamics.

      Relevant Audience: This work is relevant to: • Cell biologists investigating cytokinesis, membrane trafficking, or vesicle fusion. • Yeast geneticists interested in conserved cell division pathways. • Researchers focused on SNARE-mediated membrane dynamics and trafficking regulation. • Biomedical scientists exploring analogous processes in mammalian systems, particularly those studying cell division defects linked to disease. The findings have implications across both basic and translational research in cell biology and membrane dynamics.

      My Expertise: My research focuses on membrane fusion, specifically the SNARE-mediated fusion process. I study the spatio-temporal regulation of fusion events and the coordinated action of regulatory proteins in determining the structural and functional outcomes of membrane fusion. This background provides me with the framework to critically evaluate studies investigating cytokinesis and trafficking mechanisms at the molecular level.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Zhang et al. elucidate key roles of a conserved module the Ync13-Rga7-Rng10 complex in coordinating selective tethering, docking, and fusion of glucan synthases containing vesicles with the plasma membrane, a process crucial for cell wall synthesis and survival of fission yeast at division. Using methods including mistargeting proteins to mitochondria, co-immunoprecipitation, in vitro binding assays, genetic and cellular methods, electron microscopy, and live-cell confocal microscopy, the authors demonstrate that this module controls a vesicle targeting pathway mediated by the TRAPP-II complex and SM protein Sec1, which ensures glucan synthases Bgs4 and Ags1 are deposited at the division site in a spatiotemporal manner.

      Major comments: The authors report aberrant accumulation of Bgs4 and Ags1 in the center of the septum after actomyosin ring constriction in ync13del cells and detect no overall defects in Bgs1 distribution there (Figure 4). When similar experiments were analyzed in this paper ( https://pmc.ncbi.nlm.nih.gov/articles/PMC6249806/), Bgs1 distribution and level did change in cells lacking Ync13, although these phenotypes of Bgs1 appeared later that that of Bgs4. I wonder whether there could exist a second wave of Bgs1 arrival in ync13del cells at later time points after ring fully constricts. Could this late recruitment of Bgs1 depends on Rng7 and Rng10, since these protein complexes are enriched in the middle of septum of ync13del cells? Or as the authors mentioned in the Discussion, could Rho GTPase regulated by Rga7 GAP also play a role in Bgs1 accumulation or fusion with the septum in the above scenario, if no obvious accumulation of vesicles is observed in ync13del cells with electron microscopy? How does Bgs1 localize in ync13-19 rng10del double?

      Response: We thank the reviewer for this insightful observation. We repeated the experiment to observe the localization of Bgs1 in WT and ync13Δ cells. We confirmed our earlier observation reported in this manuscript that the localization of Bgs1 at rim of the division site and its distribution along the division plane in ync13Δ is not very different from WT, although its intensity is higher and has more variation in ync13Δ cells (Figure above) . As suggested by the reviewer, we did microscopy to test Bgs1 localization in ync13-19 temperature sensitive mutant, rng10Δ, ync13-19 rng10Δ, and WT (Fig. S7). While line scan curves for Bgs1 localization at the division site steep for ync13-19 rng10Δ double mutant, it has no statistically significant difference in FWHM as compared to control WT (Fig. S7). Please note that we used different confocal systems, cameras, and laser powers for Fig. 4, C and E (PerkinElmer UltraVIEW Vox CSUX1) and Fig. S7 (Nikon W1+SoRa), so the FWHMs are not comparable between the two figures.

      To test if there is any second wave of Bgs1 localization at the division site, we tracked the fluorescence intensity of Bgs1 throughout 2 h long movies and plotted the Bgs1 intensity profile at the division site over time. The data clearly show only one peak of Bgs1 and no later accumulation at the division site, although Bgs1 intensity has more variation in ync13-19 and ync13-19 rng10Δ cells and the intensity is higher in ync13-19 rng10Δ cells. All these experiments conclude that Ync13-Rga7-Rng10 module impacts the localization of glucan synthases essential for the secondary septum (Bgs4 and Ags1) but not the primary (Bgs1).

      Assessments of protein abundance by Western blotting (Figure 3C and 3D) can benefit from some quantifications.

      Response: We thank the reviewer for this suggestion. We have now quantified the Western blot bands in Figures 3C and 3D, which have been added as supplementary figures along with the Western blot for Rng10 (Fig. S6, A-C) in the revised figures.

      Minor comments: Based on a series of experiments in which mistargeting Rga7 and Rng10 truncations drive Ync13-tdTomato to mitochondria, the authors suggest that Rga7, Rng10, and Ync13 have multivalent interactions with each other. Previous study (https://pmc.ncbi.nlm.nih.gov/articles/PMC6425953/) demonstrated that in cells co-expressing Tom20-GBP mECitrine-Rng10(751-950), Rga7 was efficiently mistargeted to mitochondria. This raises a possibility that Ync13 mistargeted by mECitrine-Rng10(751-1038) could come from Rga7 that strongly associated with Rng10(751-1038) on mitochondria. I wonder whether the authors could compare some of their truncation mistargeting experiments in the original manuscript and the ones in which either Rga7 or Rng10 is deleted, e.g. Tom20-GBP mECitrine-Rng10(751-1038) experiments in rga7del cells, if cells are still viable in this genetic background.

      Response: We thank the reviewer for this insightful suggestion. We tested the mistargeting of mECitrine-Rng10(751–1038) in rga7Δ tom20-GBP cells and found that Ync13-tdTomato could not be recruited to mitochondria. This indicates that Ync13 cannot interact with Rng10 C-terminus independently of Rga7, supporting the Alphafold3 modeling and our proposed model that Rga7 interacts with Rng10 through the BAR domain while with Ync13 through the GAP domain. We have added the new data to the revised manuscript (Fig. S4H and associate text) and included a brief discussion highlighting that Rga7 is required for the Rng10–Ync13 interaction. We removed the mentioning of multivalent interactions in the manuscript to minimize confusion.

      It is interesting that rga7del rng10del double mutants can survive better in EMM or YES with sorbitol. I wonder this would allow the authors to test whether the interaction between Ync13 and Sec1 is modulated by the presence of Rga7 and Rng10 or even the entire vesicle? Does mistargeted Ync13 overexpressed using the 3nmt1 promoter is still capable of driving Sec1 to mitochondria in rga7del rng10del cells.

      Response: We thank the reviewer for this suggestion. While we did not succeed in constructing the pentamutant deleting both rga7 and rng10 and mislocalizing Ync13 to mitochondria, we were able to make a quadruple mutant deleting rng10 and mislocalizing Ync13 to mitochondria. We tested whether mistargeted Ync13 overexpressed using the 3nmt1 promoter can recruit Sec1 to mitochondria in rng10Δ cells. Our results show that overexpressed Ync13 is still able to drive Sec1 localization to mitochondria without Rng10 (Fig. S2G). This suggests that Rng10 (together with Rga7) primarily functions to recruit and position Ync13 at the division site rather than being strictly required for the interaction between Ync13 and Sec1. This is also consistent with our Pmo25-GBP mislocalization experiments where we found that rga7Δ 3nmt1-mECitrine-ync13 cells even under the repressed condition for the 3nmt1 promoter can partially rescue the lysis phenotype of rga7Δ cells (Figure 6).

      The endogenous level of Ync13 is not particular high. Is this low level of Ync13 crucial for its function? Does mildly elevated level of Ync1 promote vesicle fusion at the closing septum?

      Response: We thank the reviewer for this insightful question. To test if there is a correlation between Ync13 levels and vesicle fusion at the division site, we mildly overexpressed Ync13 from the 3nmt1 promoter in YE5S rich medium without additionally added thiamine to obtain cells with different Ync13 levels (the rich medium has some residual amount of thiamine, which partially represses the nmt1 promoter) and then tracked the Rab11 GTPase Ypt3 labeled vesicles. This resulted in increased levels of Ync13 as well as Ypt3 at the division site (Fig. S8B). We measured the Ync13 intensity at division site and counted the number of Ypt3 vesicles reaching the division site in 2-minute continuous movie at the middle focal plane. We observed that increasing Ync13 level promoted the tethering and accumulation of Ypt3 vesicles at the division site until it reached a plateau (Fig. S8B). Thus, the Ync13 level is important for vesicle fusion at the division site. Collectively, Ync13, working with Rga7 and Rng10, plays an important role in vesicle targeting and fusion on the plasma membrane at the division site during cytokinesis. This is consistent with our results that overexpressed Ync13 can mislocalize Sec1 to mitochondria in rng10Δ (Fig. S2G) and can rescue the rga7Δ (Fig. 6).

      Reviewer #3 (Significance (Required)):

      Most of conclusions are well supported by a combination of methods. Out of curiosity, I wonder how much of Bgs4 or Smi1 detected in Co-IP experiments exist in the vesicle-bound form. The authors propose a very interesting working model that addresses several key challenges in achieving vesicle targeting specificity when timely delivery of various enzymes to their respective spatial locations along the primary and secondary septum must be orchestrated. I think this manuscript will be of interest to a broad audience.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      Reviewing Editor Comments:

      We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we have incorporated them in the revised manuscript. We have edited the text as follows (lines 151-155):“Consequently, we used the total R<sup>2</sup> values to examine the statistical power in our study[42]. However, we acknowledge that the value of post-hoc power calculations is limited, since the statistical power estimated for an observed association is already reflected in the 95% confidence interval presented alongside the point estimate[43].” We have also added supplementary figures 1 and 2.

      We can see that when using the latest HEADSpAcE data we were able to detect BMI-HNC ORs as small as 1.16 with 80% power, while the GAME-ON dataset only permitted the detection of ORs as small as 1.26 using the same BMI instruments (Figure B). We have explained these figures in the results section as follows (lines 257-263): “Using the BMI genetic instruments (total R<sup>2</sup>= 4.8%) and an α of 0.05, we had 80% statistical power to detect an OR as small as 1.16 for HNC risk (Supplementary Figure 1). For WHR (total R<sup>2</sup>= 3.1%) and WC (total R<sup>2</sup>= 4.4%), we could detect odds ratios (ORs) as small as 1.20 and 1.17, respectively. This is an improvement in terms of statistical power compared to the GAME-ON analysis published by Gormley et al.[28], for which there was 80% power to detect an OR as small as 1.26 using the same BMI genetic instruments (Supplementary Figure 2).”

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We have now clarified this in the methods section of the revised manuscript as advised. Lines 165-171:

      “Because the IVW method assumes all genetic variants are valid instruments[44], which is unlikely the case, three pleiotropy-robust two-sample MR methods (i.e., MR-Egger[45], weighted median[46] and weighted mode[47]) were used in sensitivity analyses. When the magnitude and direction of effect estimates are consistent across methods that rely on different assumptions, the main findings are more convincing. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even if they are not equally powered.”

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      We agree that it would be useful to present the univariable MR effect estimates for smoking behaviour and HNC risk along those obtained using multivariable MR. We have now included the univariable MR estimates for both smoking behaviour variables as a note under Supplementary Table 11 and in the manuscript (lines 316-318): “In univariable IVW MR, both CSI and SI were linked to an increased risk of HNC (CSI OR=4.47 per 1-SD higher CSI, 95%CI 3.31–6.03, p<0.001; SI OR=2.07 per 1-SD higher SI 95%CI 1.60–2.68, p<0.001) (Additional File 2: note in Supplementary Table 11).”

      We understand the appeal of conducting stratified MR analyses by smoking status. However, we anticipate such analyses would hinder the interpretation of our findings as they can induce collider bias which could spuriously lead to different effect estimates across strata[12, 13].

      We thank the reviewer/editors for their comment regarding the way we frame of our findings. We have now edited the discussion section to highlight our study results are different to those obtained in studies that do not account for smoking behaviour. Lines 398-401: “With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      Reviewer #1 (Recommendations for the authors):

      The authors do share a table of the percent variance explained of the different genetic instruments, which vary widely, and that table is very welcome because we can get some sense of their utility. The problem is that they don't translate that into a power estimate for the case-control study size that they use. They say that it is the biggest to date, which is good, but without some formal power estimate, it is not particularly reassuring. A framework for MR study power estimates was reported in PMID: 19174578, but that was using very simple MR constructs in use in 2009, and it isn't clear to me if that framework can be used here. That power paper suggests that weak genetic instruments need very large sample sizes, far larger than what is used in the current manuscript. I am unable to estimate the true strength of the instruments used here, and so I am unsure of whether power is an issue or not.

      We have now included power calculations in our manuscript to address the reviewer’s concerns. Nevertheless, as mentioned above, post-hoc power calculations are of limited value, as statistical power is already reflected in the uncertainty around the point estimates (the 95% confidence intervals). Hence, it is important to avoid drawing conclusions regarding the likelihood of true effects or false negatives based on these calculations.

      Although the hypothesis here is that smoking accounts for the apparent BMI association previously reported for HNC, it would have been preferable to see the estimates for their 2 genetic instruments for tobacco alone. The current results only show the BMI instruments alone and then with the tobacco instruments. I would like to see what the risk estimates are for the tobacco instrument alone, so that I can judge for myself what happens in the joint models. As presented, one can only do that for the BMI instruments.

      We thank the reviewer for this comment. The univariable IVW MR estimate of smoking initiation was OR=2.07 (95%CI 1.60 to 2.68, p<0.001), while the one for comprehensive smoking index was OR=4.47 (95%CI 3.31 to 6.03, p<0.001). We have included this information in the manuscript as requested (please see response to reviewing editor above).

      On line 319, they write that "We did not find evidence against bias due to correlated pleiotropy..." I find this difficult to parse, but I think it means that they should believe that correlated pleiotropy remains a problem. So again, they seem to see their primary model as compromised, and so do I. This limitation is again stated by the authors on lines 351-352.

      We apologise if the wording of the sentence was not easy to understand. When using the CAUSE method, we did not find evidence to reject the null hypothesis that the sharing (correlated pleiotropy) model fits the data at least as well as the causal model. In other words, our CAUSE finding and the inconsistencies observed across our other sensitivity analyses led us to believe that our main IVW MR estimate for BMI-HNC was likely biased by correlated pleiotropy. We believe it is important to explore the source of this bias, which is why we used multivariable MR to investigate the direct effect of BMI on HNC risk while accounting for smoking behaviour.

      In the following paragraphs (lines 358-369), the authors state that their findings are consistent with prior reports, but that doesn't seem to be the case if we take their primary BMI instrument as representing the outcome of this manuscript. Here, they find an association between the BMI instrument and HNC risk, but in each of the other papers they present the primary finding was null without the extensive model changes or the aim of accounting for tobacco with another instrument. I don't see that as replication.

      This is a good point. We have now edited the discussion of our manuscript to avoid giving the impression that our findings replicate those from studies that do not account for smoking behaviour in their analyses. We have edited lines 384-401 as follows:

      “Previous MR studies suggest adiposity does not influence HNC risk[27-29]. Gormley et al.[28] did not find a genetically predicted effect of adiposity on combined oral and oropharyngeal cancer when investigating either BMI (OR=0.89 per 1-SD, 95% CI 0.72–1.09, p=0.26), WHR (OR=0.98 per 1-SD, 95% CI 0.74–1.29, p=0.88) or waist circumference (OR=0.73 per 1-SD, 95% CI 0.52–1.02, p=0.07) as risk factors. Similarly, a large two-sample MR study by Vithayathil et al.[29] including 367,561 UK Biobank participants (of which 1,983 were HNC cases) found no link between BMI and HNC risk (OR=0.98 per 1-SD higher BMI, 95% CI 0.93–1.02, p=0.35). Larsson et al.[27] meta-analysed Vithayathil et al.’s[29] findings with results obtained using FinnGen data to increase the sample size even further (N=586,353, including 2,109 cases), but still did not find a genetically predicted effect of BMI on HNC risk (OR=0.96 per 1-SD higher BMI, 95% CI 0.77–1.19, p=0.69). With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      We also deleted part of a sentence in the discussion section, so lines 416-418 now look as follows: “An important strength of our study was that the HEADSpAcE consortium GWAS used had a large sample size which conferred more statistical power to detect effects of adiposity on HNC risk compared to previous MR analyses[27-29].”

      On lines 384-386 they note a strength is that this is the largest study to date, but I would reiterate that larger and more powerful does not equate to adequately powered.

      This is true. We have included power calculations in the manuscript as requested.

      It's well known that different HNC subsites have different etiologies, as they mention on lines 391-392, and it is implicit in their use of data on HPV positive and negative oropharyngeal cancer. They say that they did not find evidence for heterogeneity in this study, but that would only be true for the null BMI instrument. The effect sizes for their smoking instruments are strikingly different between the subsites.

      We agree and are sorry for the confusion we may have caused by the way we worded our findings. We have edited the text to clarify that the lack of subsite heterogeneity only applied to our results for BMI/WHC/WC-HNC risk. Lines 418-424 now read as follows:

      “Furthermore, the availability of data on more HNC subsites, including oropharyngeal cancers by HPV status, allowed us to investigate the relationship between adiposity and HNC risk in more detail than previous MR studies which limited their subsite analyses to oral cavity and overall oropharyngeal cancers[28, 68]. This is relevant because distinct HNC subsites are known to have different aetiologies[69], although we did not find evidence of heterogeneity across subsites in our analyses investigating the genetically predicted effects of BMI, WHR and WC on HNC risk.”

      Finally, the literature on mutational patterns gives us strong reason to believe that HNC caused by tobacco are biologically distinct from tumors not caused by tobacco. The authors report in the introduction that traditional observational studies of BMI and HNC have reported different findings in smokers versus never smokers, so I would assume there is a possibility that the BMI instrument could have different associations with tumors of the tobacco-induced phenotype and tumors with a non-tobacco induced phenotype. I would assume that authors have access to the data on self-reported tobacco use behavior, even if they can't separate these tumors by molecular types. Stratifying their analysis by tobacco users or not might reveal different results with the BMI instrument.

      We appreciate the reviewer’s comment. We agree that it would have been interesting to present stratified analyses by smoking status along our main findings. However, we decided against this because of the risk of inducing collider bias in our MR analyses i.e., where stratifying on smoking status may induce spurious associations between the adiposity instruments and confounding factors. Multivariable MR is considered a better way of investigating the direct effects of an exposure (adiposity) on an outcome (HNC) accounting for a third variable (smoking)[14], which is why we opted for this method instead.

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

      (12) Coscia C, Gill D, Benitez R, Perez T, Malats N, Burgess S: Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol 2022, 37(7):671-682.

      (13) Hamilton FW, Hughes DA, Lu T, Kutalik Z, Gkatzionis A, Tilling K, Hartwig FP, Davey Smith G: Non-linear Mendelian randomization: evaluation of effect modification in the residual and doubly-ranked methods with simulated and empirical examples. Eur J Epidemiol 2025.

      (14) Sanderson E, Davey Smith G, Windmeijer F, Bowden J: An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 2019, 48(3):713-727.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer # 1 (Public review)

      This study aims to elucidate the mechanisms by which stress-induced α2A-adrenergic receptor (α2A-AR) internalization leads to cytosolic noradrenaline (NA) accumulation and subsequent neuronal dysfunction in the locus coeruleus (LC). While the manuscript presents an interesting but ambitious model involving calcium dynamics, GIRK channel rundown, and autocrine NA signaling, several key limitations undermine the strength of the conclusions. 

      (1) First, the revision does not include new experiments requested by reviewers to validate core aspects of the mechanism. Specifically, there is no direct measurement of cytosolic NA levels or MAO-A enzymatic activity to support the link between receptor internalization and neurochemical changes. The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence. 

      Although the reviewer #1 commented that “The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence”, we believe that this comment may be unfair. 

      It may be unfair for the reviewer #1 to neglect our responses to the original reviewer comments regarding the direct measurement of cytosolic NA levels. It is true that none of the recommended methods to directly measure cytosolic NA levels are not feasible as described in the original authors’ response (see the original authors’ response to the comment raised by the Reviewer #1 as Recommendations for the authors (2)). To measure extracellular NA with GRAB-NE photometry, α2A-ARs must be expressed in the cell membrane. GRAB-NE photometry is not applicable unless α2A-ARs are expressed, whereas increases in cytosolic NA levels are caused by internalization of α2A-ARs in our study.

      In our study, we elaborated to detect the change in MAO-A protein with Western blot method, instead of examining MAO-A enzymatic activity. Because the relative quantification of active AEP and Tau N368 proteins by Western blot analysis should accurately reflect the change in the MAO-A enzymatic activity, enzymatic assay may not be necessarily required while we admit the necessity of enzymatic assay to better demonstrate the MAO-A activities as discussed in the previously revised manuscript (R1, page 10, lines 314-315). 

      We used the phrase “beyond the scope of the current study” for “the mechanism how Ca<sup>2+</sup> activates MAO-A” as described in the original authors’ responses (see the original authors’ response to the comment raised by the Reviewer #1 as Weakness (3)). We do not think that this mechanism must be investigated in the present study because the Ca<sup>2+</sup> dependent nature of MAO-A activity is already known (Cao et al., 2007). 

      On the other hand, because it is not possible to measure cytosolic NA levels with currently available methods, the quantification of the connection between α2A-AR internalization and increased cytosolic NA levels must be considered outside the scope of the study. However, our study demonstrated the qualitative relationship between α2A-AR internalization and active-AEP/TauN-368 reflecting increased cytosolic NA levels, leaving “a small gap in the mechanistic chain of evidence.” Therefore, it may be unreasonable to criticize our study as “leaving a significant gap in the mechanistic chain of evidence” with the phrase “beyond the scope of the current study.” 

      (2) Second, the behavioral analysis remains insufficient to support claims of cognitive impairment. The use of a single working memory test following an anxiety test is inadequate to verify memory dysfunction behaviors. Additional cognitive assays, such as the Morris Water Maze or Novel Object Recognition, are recommended but not performed.

      As described in the original authors’ response (see the original authors’ response to the comment raised by the Reviewer #1 as Weakness (4)), we had already done another behavioral test using elevated plus maze (EPM) test. By combining the two tests, it may be possible to more accurately evaluate the results of Y-maze test by differentiating the memory impairment from anxiety. However, the results obtained by these behavioral tests showed that chronic RS mice displayed both anxiety-like and memory impairment-like behaviors. Accordingly, we have softened the implication of anxiety and memory impairment (page 13, lines 396-399) and revised the abstract (page 2, line 59) in the revised manuscript (R2).  

      (3) Third, concerns regarding the lack of rigor in differential MAO-A expression in fluorescence imaging were not addressed experimentally. Instead of clarifying the issue, the authors moved the figure to supplementary data without providing further evidence (e.g., an enzymatic assay or quantitative reanalysis of Western blot, or re-staining of IF for MAO-A) to support their interpretation.

      Because the quantification of MAO-A expression can be performed with greater accuracy by means of Western blot than by immunohistochemistry, we have moved the immunohistochemical results (shown in Figure 5) to the supplemental data (Figure S8) following the suggestion made by the Reviewer #3. As the relative quantification of active AEP and Tau N368 proteins by Western blot analysis may accurately reflect changes in the MAO-A enzymatic activity which is consistent with the result of Western blot analysis of MAO-A, enzymatic assay or re-staining of immunofluorescence for MAO-A may not be necessarily required. We do not think that a new experiment of Western blot analysis is necessary to re-evaluate MAO-A just because of the lack of the less-reliable quantification of immunohistochemical staining.

      (4) Fourth, concerns regarding TH staining remain unresolved. In Figure S7, the α2A-AR signal appears to resemble TH staining, and vice versa, raising the possibility of labeling errors. It is recommended that the authors re-examine this issue by either double-checking the raw data or repeating the immunostaining to validate the staining.

      The reviewer #3 is misunderstanding Figure S7. In Figure S7, there are two types of α2A-AR expressing neurons; one is TH-positive LC neuron and the other is TH-negative neuron in mesencephalic trigeminal nucleus (MTN). This clearly indicates that TH staining is specific. Furthermore, α2A-AR staining was much more extensive in MTN neurons than in LC neurons. Thus, α2A-AR signal is not similar to TH signal and there are no labeling errors, which is also evident in the merged image (Figure S7C).

      (5) Overall, the manuscript offers a potentially interesting framework but falls short in providing the experimental rigor necessary to establish causality. The reliance on indirect reasoning and reorganizing of existing data, rather than generating new evidence, limits the overall impact and interpretability of the study.

      Overall, the reviewer #1 was not satisfied with our revision regardless of the authors’ responses. As detailed above in our responses to the replies (1)~(4), we believe that in the original authors’ responses and in the above-described responses we effectively responded to the criticisms by the reviewer #1.

      Reviewer #2 (Public review): 

      Comments on revisions: 

      The authors have addressed all of the reviewers' comments.

      We appreciate constructive and helpful comments made by the reviewer #2.

      Reviewer #3 (Public review): 

      Weaknesses:  

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain. Below, I outline the key points that should be addressed to make the model convincing.

      Please see the responses to the recommendation for the authors made by reviewer #3.

      Reviewer #3 (Recommendations for the authors):

      (1) Causality across the pathway  

      Each step (α2A internalisation, GIRK rundown, Ca<sup>2+</sup> rise, MAO-A/AEP upregulation) is demonstrated separately, but no experiment links them in a single preparation. Consider in vivo Ca<sup>2+</sup> or GRAB NE photometry during restraint stress while probing α2A levels with i.p. clonidine injection or optogenetic over excitation coupled to biochemical readouts. Such integrated evidence would help to overcome the correlational nature of the manuscript to a more mechanistic study. 

      Authors response: It is not possible to measure free cytosolic NA levels with GRAB NE photometry when α2A AR is internalized as described above (see the response to the comment made by reviewer #1 as the recommendation for the authors).

      The core idea behind my comment, as well as that of Reviewer 1, was to encourage integrating your individual findings into a more cohesive in vivo experiment. Using GRAB-NE to measure extracellular NA could serve as an indirect readout of NA uptake via NAT, and ultimately, cytosolic NA levels. Connecting these experiments would significantly strengthen the manuscript and enhance its overall impact. 

      It may be true that the measurement of extracellular NA could serve as an indirect readout of NA uptake via NAT, and ultimately cytosolic NA levels. However, the reviewer #3 is still misunderstanding the applicability of GRAB-NE method to detect NE in our study. As described in the original authors’ response, there appeared to be no fluorescence probe to label cytosolic NA at present. Especially, the GRAB-NE method recommended by the reviewers #1 and #3 is limited to detect NA only when α2A-AR is expressed in the cell membrane.Therefore, when increases in cytosolic NA levels are caused by internalization of α2A-ARs, NA measurement with GRAB-NE photometry is not applicable.

      (2) Pharmacology and NE concentration  

      The use of 100 µM noradrenaline saturates α and β adrenergic receptors alike. Please provide ramp measurements of GIRK current in dose-response at 1-10 µM NE (blocked by atipamezole) to confirm that the rundown really reflects α2A activity rather than mixed receptor effects. 

      Authors response: It is true that 100 µM noradrenaline activates both α and β adrenergic receptors alike. However, it was clearly showed that enhancement of GIRK-I by 100 µM noradrenaline was completely antagonized by 10 µM atipamezole and the Ca<sup>2+</sup> dependent rundown of NA-induced GIRK-I was prevented by 10 µM atipamezole. Considering the Ki values of atipamezole for α2A AR (=1~3 nM) (Vacher et al., 2010, J Med Chem) and β AR (>10 µM) (Virtanen et al., 1989, Arch Int Pharmacodyn Ther), these results really reflect α2A AR activity but not β AR activity (Figure S5). Furthermore, because it is already well established that NA-induced GIRK-I was mediated by α2A AR activity in LC neurons (Arima et al., 1998, J Physiol; Williams et al., 1985, Neuroscience), it is not necessarily need to re-examine 1-10 µM NA on GIRK-I.

      While the milestone papers by Williams remain highly influential, they should be re-evaluated in light of more recent findings, given that they date back over 40 years. Advances in our understanding now allow for a more nuanced interpretation of some of their results. For example, see McKinney et al. (eLife, 2023). This study demonstrates that presynaptic β-adrenergic receptors-particularly β2-can enhance neuronal excitability via autocrine mechanisms. This suggests that your post-activation experiments using atipamezole may not fully exclude a contribution of β-adrenergic signaling. Such a role might become apparent when conducting more detailed titration experiments.

      The reviewer #3 may be misunderstanding the report by McKinney et al. (eLife, 2013). This paper did not demonstrate that presynaptic β-adrenergic receptors-particularly β2- can enhance neuronal excitability via autocrine mechanisms. It is impossible for LC neurons to increase their excitability by activating β-adrenergic receptors, as we have clearly shown that enhancement of GIRK-I by 100 µM noradrenaline was completely antagonized by 10 µM atipamezole. Considering the difference in Ki values of atipamezole for α2-AR (= 2~4 nM) (Vacher et al., 2010, J Med Chem) and β-AR (>10 µM) (Virtanen et al., 1989, Arch Int Pharmacodyn Ther), such a complete antagonization (of 100 µM NA-induced GIRK-I) by 10 µM atipamezole really reflect α2A-AR activity but not β-AR activity (Figure S5). Furthermore, it is already well established that NA-induced GIRK-I was mediated by α2-AR activity in LC neurons (Arima et al., 1998, J Physiol). McKinney et al. (eLife, 2023) have just found the absence of lateral inhibition on adjacent LC neurons by NA autocrine caused respective spike activity. This has nothing to do with autoinhibition.

      (4) Age mismatch and disease claims 

      All electrophysiology and biochemical data come from juvenile (< P30) mice, yet the conclusions stress Alzheimer-related degeneration. Key endpoints need to be replicated in adult or aged mice, or the manuscript should soften its neurodegenerative scope. 

      Authors response: As described in the section of Conclusion, we never stress Alzheimer-related degeneration, but might give such an impression. To avoid such a misunderstanding, we have added a description “However, the present mechanism must be proven to be valid in adult or old mice, to validate its involvement in the pathogenesis of AD.” (R1, page 14, lines 448-450).

      It would be great to see this experiment performed in aged mice-you are the one who has everything in place to do it right now! 

      In our future separate studies, we would like to prove that the present mechanism is valid in aged mice, to validate its involvement in the pathogenesis of AD. This is partly because the patch-clamp study in aged mice is extremely difficult and takes much time.

      Authors response: In the abstract, you suggest that internalization of α2A-adrenergic receptors could represent a therapeutic target for Alzheimer's disease. "...Thus, it is likely that internalization of α2A-AR increased cytosolic NA, as reflected in AEP increases, by facilitating reuptake of autocrine-released NA. The suppression of α2A-AR internalization may have a translational potential for AD treatment."

      α2A-AR internalization was involved in the degeneration of LC neurons. Because we confirmed that spike-frequency adaptation reflecting α2A-AR-mediated autoinhibition can be induced in adult mice as prominently as in juvenile mice (Figure S10), it is not inadequate to suggest that the suppression of α2A-AR internalization may have a translational potential for anxiety/AD treatment (see Discussion; R2, page 14, lines 445-449).

      (6) Quantitative histology  

      Figure 5 presents attractive images, but no numerical analysis is provided. Please provide ROI-based fluorescence quantification (with n values) or move the images to the supplement and rely on the Western blots. 

      Author response: We have moved the immunohistochemical results in Fig. 5 to the supplement, as we believe the quantification of immunohistochemical staining is not necessarily correct.   

      What do you mean by that " ...immunohistochemical staining is not necessarily correct."  

      It is evident that in terms of quantification, Western blot analysis is a more accurate method than immunohistochemical staining. In this sense, it is the contention of our study that the ROI-based fluorescence quantification of immunohistochemical staining is not necessarily an accurate or correct procedure, compared to the quantification by Western blot analysis.

    1. Author response:

      Notes to Editors

      We previously received comments from three reviewers at Biological Psychiatry, which we have addressed in detail below. The following is a summary of the reviewers’ comments along with our responses.

      Reviewers 1 and 2 sought clearer justification for studying the cognition-mental health overlap (covariation) and its neuroimaging correlates. In the revised manuscripts, we expanded the Introduction and Discussion to explicitly outline the theoretical implications of investigating this overlap with machine learning. We also added nuance to the interpretation of the observed associations.

      Reviewer 1 raised concerns about the accessibility of the machine learning methodology for readers without expertise in this field. We revised the Methods section to provide a clearer, step-by-step explanation of our machine learning approach, particularly the two-level machine learning through stacking. We also enhanced the description of the overall machine learning design, including model training, validation, and testing.

      In response to Reviewer 2’s request for deeper interpretation of our findings and stronger theoretical grounding, we have expanded our discussion by incorporating a thorough interpretation of how mental health indices relate to cognition, material that was previously included only in supplementary materials due to word limit constraints. We have further strengthened the theoretical justification for our study design, with particular emphasis on the importance of examining shared variance between cognition and mental health through the derivation of neural markers of cognition. Additionally, to enhance the biological interpretation of our results, we included new analyses of feature importance across neuroimaging modalities, providing clearer insights into which neural features contribute most to the observed relationships.

      Notably, Reviewer 3 acknowledged the strength of our study, including multimodal design, robust analytical approach, and clear visualization and interpretation of results. Their comments were exclusively methodological, underscoring the manuscript’s quality.

      Reviewer 1:

      The authors try to bridge mental health characteristics, global cognition and various MRI-derived (structural, diffusion and resting state fMRI) measures using the large dataset of UK Biobank. Each MRI modality alone explained max 25% of the cognitionmental health covariance, and when combined together 48% of the variance could be explained. As a peer-reviewer not familiar with the used methods (machine learning, although familiar with imaging), the manuscript is hard to read and I wonder what the message for the field might be. In the end of the discussion the authors state '... we provide potential targets for behavioural and physiological interventions that may affect cognition', the real relevance (and impact) of the findings is unclear to me.

      Thank you for your thorough review and practical recommendations. We appreciate your constructive comments and suggestions and hope our revisions adequately address your concerns.

      Major questions

      (1) The methods are hard to follow for people not in this specific subfield, and therefore, I expect that for readers it is hard to understand how valid and how useful the approach is.

      Thank you for your comment. To enhance accessibility for readers without a machine learning background, we revised the Methods section to clarify our analyses while retaining important technical details needed to understand our approach. Recognizing that some concepts may require prior knowledge, we provide detailed explanations of each analysis step, including the machine learning pipeline in the Supplementary Methods.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.

      To model the relationship between mental health and cognition, we employed Partial Least Squares Regression (PLSR) to predict the g-factor from 133 mental health variables. To model the relationship between neuroimaging data and cognition, we used a two-step stacking approach [15–17,61] to integrate information from 72 neuroimaging phenotypes across three MRI modalities. In the first step, we trained 72 base (first-level) PLSR models, each predicting the g-factor from a single neuroimaging phenotype. In the second step, we used the predicted values from these base models as input features for stacked models, which again predicted the g-factor. We constructed four stacked models based on the source of the base predictions: one each for dwMRI, rsMRI, sMRI, and a combined model incorporating all modalities (“dwMRI Stacked”, “rsMRI Stacked”, “sMRI Stacked”, and “All MRI Stacked”, respectively). Each stacked model was trained using one of four machine learning algorithms – ElasticNet, Random Forest, XGBoost, or Support Vector Regression – selected individually for each model (see Supplementary Materials, S6).

      For rsMRI phenotypes, we treated the choice of functional connectivity quantification method – full correlation, partial correlation, or tangent space parametrization – as a hyperparameter. The method yielding the highest performance on the outer-fold training set was selected for predicting the g-factor (see Supplementary Materials, S5).

      To prevent data leakage, we standardized the data using the mean and standard deviation derived from the training set and applied these parameters to the corresponding test set within each outer fold. This standardization was performed at three key stages: before g-factor derivation, before regressing out modality-specific confounds from the MRI data, and before stacking. Similarly, to maintain strict separation between training and testing data, both base and stacked models were trained exclusively on participants from the outer-fold training set and subsequently applied to the corresponding outer-fold test set.

      To evaluate model performance and assess statistical significance, we aggregated the predicted and observed g_factor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (_r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      (2) If only 40% of the cognition-mental health covariation can be explained by the MRI variables, how to explain the other 60% of the variance? And related to this %: why do the author think that 'this provides us confidence in using MRI to derive quantitative neuromarkers of cognition'?

      Thank you for this insightful observation. Using the MRI modalities available in the UK Biobank, we were able to account for 48% of the covariation between cognition and mental health. The remaining 52% of unexplained variance may arise from several sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research from our group and others has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank.

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the Research Domain Criteria (RDoC) framework, brain circuits represent only one level of neurobiological analysis relevant to cognition. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. We have now incorporated these considerations into the Discussion section.

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Regarding our confidence in using MRI to derive neural markers for cognition, we base this on the predictive performance of MRI-based models. As we note in the Discussion (Line 554: “Consistent with previous studies, we show that MRI data predict individual differences in cognition with a medium-size performance (r ≈ 0.4) [15–17, 28, 61, 67, 68].”), the medium effect size we observed (r ≈ 0.4) agrees with existing literature on brain-cognition relationships, confirming that machine learning leads to replicable results. This effect size represents a moderate yet meaningful association in neuroimaging studies of aging, consistent with reports linking brain to behaviour in adults (Krämer et al., 2024; Tetereva et al., 2022). For example, a recent meta-analysis by Vieira and colleagues (2022) reported a similar effect size (r = 0.42, 95% CI [0.35;0.50]). Our study includes over 15000 participants, comparable to or more than typical meta-analyses, allowing us to characterise our work as a “mega-analysis”. And on top of this predictive performance, we found our neural markers for cognition to capture half of the cognition-mental health covariation, boosting our confidence in our approach.

      Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, et al. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience. 2024;46:283–308.

      Tetereva A, Li J, Deng JD, Stringaris A, Pat N. Capturing brain cognition relationship: Integrating task‐based fMRI across tasks markedly boosts prediction and test‐retest reliability. NeuroImage. 2022;263:119588.

      (3) Imagine that we can increase the explained variance using multimodal MRI measures, why is it useful? What does it learn us? What might be the implications?

      We assume that by variance, Reviewer 1 referred to the cognition-mental health covariation mentioned in point 2) above.

      If we can increase the explained cognition-mental health covariation using multimodal MRI measures, it would mean that we have developed a reasonable neuromarker that is close to RDoC’s neurobiological unit of analysis for cognition. RDoC treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. This means RDoC aims to discover neural markers of cognition that explain the covariation between cognition and mental health. For us, we approach the development of such neural markers using multimodal neuroimaging. We have now explained the motivation of our study in the first paragraph of the Introduction.

      Line 43: “Cognition and mental health are closely intertwined [1]. Cognitive dysfunction is present in various mental illnesses, including anxiety [2, 3], depression [4–6], and psychotic disorders [7–12]. National Institute of Mental Health’s Research Domain Criteria (RDoC) [13,14] treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. In this study, we aim to examine how the covariation between cognition and mental health is reflected in neural markers of cognition, as measured through multimodal neuroimaging.”

      More specific issues:

      Introduction

      (4) In the intro the sentence 'in some cases, altered cognitive functioning is directly related to psychiatric symptom severity' is in contrast to the next sentence '... are often stable and persist upon alleviation of psychiatric symptoms'.

      Thank you for pointing this out. The first sentence refers to cases where cognitive deficits fluctuate with symptom severity, while the second emphasizes that core cognitive impairments often remain stable even during symptom remission. To avoid this confusion, we have removed these sentences.

      (5) In the intro the text on the methods (various MRI modalities) is not needed for the Biol Psych readers audience.

      We appreciate your comment. While some members of our target audience may have backgrounds in neuroimaging, machine learning, or psychiatry, we recognize that not all readers will be familiar with all three areas. To ensure accessibility for those who are not familiar with neuroimaging, we included a brief overview of the MRI modalities and quantification methods used in our study to provide context for the specific neuroimaging phenotypes. Additionally, we provided background information on the machine learning techniques employed, so that readers without a strong background in machine learning can still follow our methodology.

      (6) Regarding age of the study sample: I understand that at recruitment the subjects' age ranges from 40 to 69 years. At MRI scanning the age ranges between about 46 to 82. How is that possible? And related to the age of the population: how did the authors deal with age in the analyses, since age is affecting both cognition as the brain measures?

      Thank you for noticing this. In the Methods section, we first outline the characteristics of the UK Biobank cohort, including the age at first recruitment (40-69 years). Table 1 then shows the characteristics of participant subsamples included in each analysis. Since our study used data from Instance 2 (the second in-person visit), participants were approximately 5-13 years older at scanning, resulting in the age range of 46 to 82 years. We clarified the Table 1 caption as follows:

      Line 113: “Table 1. Demographics for each subsample analysed: number, age, and sex of participants who completed all cognitive tests, mental health questionnaires, and MRI scanning”

      We acknowledge that age may influence cognitive and neuroimaging measures. In our analyses, we intentionally preserved age-related variance in brain-cognition relationships across mid and late adulthood, as regressing out age completely would artificially remove biologically meaningful associations. At the same time, we rigorously addressed the effects of age and sex through additional commonality analyses quantifying age and sex contributions to the relationship between cognition and mental health.

      As noted by Reviewer 1 and illustrated in Figure 8, age and sex shared substantial overlapping variance with both mental health and neuroimaging phenotypes in explaining cognitive outcomes. For example, in Figure 8i, age and sex together accounted for 43% of the variance in the cognition-mental health relationship:

      (2.76 + 1.03) / (2.76 + 1.03 + 3.52 + 1.45) ≈ 0.43

      Furthermore, neuromarkers from the all-MRI stacked model explained 72% of this age/sexrelated variance:

      2.76 / (2.76 + 1.03) ≈ 0.72

      This indicates that our neuromarkers captured a substantial portion of the cognition-mental health covariation that varied with age and sex, highlighting their relevance in age/sex-sensitive cognitive modeling.

      In the Methods, Results, and Discussion, we say:

      Methods

      Line 263: “To understand how demographic factors, including age and sex, contribute to this relationship, we also conducted a separate set of commonality analyses treating age, sex, age2, age×sex, and age2×sex as an additional set of explanatory variables (Fig. 1).”

      Results

      Line 445: “Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship. Multimodal neural marker of cognition based on three MRI modalities (“All MRI Stacked”) explained 72% of this age and sex-related variance (Fig. 8i–l and Table S21).”

      Discussion

      Line 660: “We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.”

      (7) Regarding the mental health variables: where characteristics with positive value (e.g. happiness and subjective wellbeing) reversely scored (compared to the negative items, such as anxiety, addition, etc)?

      We appreciate you noting this. These composite scores primarily represent standard clinical measures such as the GAD-7 anxiety scale and N-12 neuroticism scale. We did not reverse the scores to keep their directionality, therefore making interpretability consistent with the original studies the scores were derived from (e.g., Davis et al., 2020; Dutt et al., 2022). Complete descriptive statistics for all mental health indices and detailed derivation procedures are provided in the Supplementary Materials (S2). On Page 6, Supplementary Methods, we say:

      Line 92: “Composite mental health scores included the Generalized Anxiety Disorder (GAD-7), the Posttraumatic Stress Disorder (PTSD) Checklist (PCL-6), the Alcohol Use Disorders Identification Test (AUDIT), the Patient Health Questionnaire (PHQ-9) [12], the Eysenck Neuroticism (N-12), Probable Depression Status (PDS), and the Recent Depressive Symptoms (RDS-4) scores [13, 14]. To calculate the GAD-7, PCL-6, AUDIT, and PHQ-9, we used questions introduced at the online follow-up [12]. To obtain the N-12, PDS, and RDS-4 scores [14], we used data collected during the baseline assessment [13, 14].

      We subcategorized depression and GAD based on frequency, current status (ever had depression or anxiety and current status of depression or anxiety), severity, and clinical diagnosis (depression or anxiety confirmed by a healthcare practitioner). Additionally, we differentiated between different depression statuses, such as recurrent depression, depression triggered by loss, etc. Variables related to self-harm were subdivided based on whether a person has ever self-harmed with the intent to die.

      To make response scales more intuitive, we recorded responses within the well-being domain such that the lower score corresponded to a lesser extent of satisfaction (“Extremely unhappy”) and the higher score indicated a higher level of happiness (“Extremely happy”). For all questions, we assigned the median values to “Prefer not to answer” (-818 for in-person assessment and -3 for online questionnaire) and “Do not know” (-121 for in-person assessment and -1 for online questionnaire) responses. We excluded the “Work/job satisfaction” question from the mental health derivatives list because it included a “Not employed” response option, which could not be reasonably coded.

      To calculate the risk of PTSD, we used questions from the PCL-6 questionnaire. Following Davis and colleagues [12], PCL-6 scores ranged from 6 to 29. A PCL-6 score of 12 or below corresponds to a low risk of meeting the Clinician-Administered PTSD Scale diagnostic criteria. PCL-6 scores between 13 and 16 and between 17 and 25 are indicative of an increased risk and high risk of PTSD, respectively. A score of above 26 is interpreted as a very high risk of PTSD [12, 15]. PTSD status was set to positive if the PCL-6 score exceeded or was equal to 14 and encompassed stressful events instead of catastrophic trauma alone [12].

      To assess alcohol consumption, alcohol dependence, and harm associated with drinking, we calculated the sum of the ten questions from the AUDIT questionnaire [16]. We additionally subdivided the AUDIT score into the alcohol consumption score (questions 1-3, AUDIT-C) and the score reflecting problems caused by alcohol (questions 4-10, AUDIT-P) [17]. In questions 2-10 that followed the first trigger question (“Frequency of drinking alcohol”), we replaced missing values with 0 as they would correspond to a “Never” response to the first question.

      An AUDIT score cut-off of 8 suggests moderate or low-risk alcohol consumption, and scores of 8 to 15 and above 15 indicate severe/harmful and hazardous (alcohol dependence or moderate-severe alcohol use disorder) drinking, respectively [16, 18]. Subsequently, hazardous alcohol use and alcohol dependence status correspond to AUDIT scores of ≥ 8 and ≥ 15, respectively. The “Alcohol dependence ever” status was set to positive if a participant had ever been physically dependent on alcohol. To reduce skewness, we logx+1-transformed the AUDIT, AUDIT-C, and AUDIT-P scores [17].”

      Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank – development, implementation and results from an online questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open. 2020;6:e18.

      Dutt RK, Hannon K, Easley TO, Griffis JC, Zhang W, Bijsterbosch JD. Mental health in the UK Biobank: A roadmap to selfreport measures and neuroimaging correlates. Hum Brain Mapp. 2022;43:816–832.  

      (8) In the discussion section (page 23, line 416-421), the authors refer to specific findings that are not described in the results section > I would add these findings to the main manuscript (including the discussion / interpretation).

      We appreciate your careful reading. We agree that our original Results section did not explicitly describe the factor loadings for mental health in the PLSR model, despite discussing their implications later in the paper. We needed to include this part of the discussion in the Supplementary Materials to meet the word limit of the original submission. However, in response to your suggestion, we have now added the results regarding factor loadings to the Results section. We also moved the discussion of the association between mental health features and general cognition from the Supplementary Material to the manuscript’s Discussion.

      Results

      Line 298: “On average, information about mental health predicted the g-factor at  R<sup>2</sup><sub>mean</sub> = 0.10 and r<sub>mean</sub> \= 0.31 (95% CI [0.291, 0.315]; Fig. 2b and 2c and Supplementary Materials, S9, Table S12). The magnitude and direction of factor loadings for mental health in the PLSR model allowed us to quantify the contribution of individual mental health indices to cognition. Overall, the scores for mental distress, alcohol and cannabis use, and self-harm behaviours relate positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events relate negatively to cognition.”

      Discussion

      Line 492: “Factor loadings derived from the PLSR model showed that the scores for mental distress, alcohol and cannabis use, and self-harm behaviours related positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events related negatively to the g-factor. Positive PLSR loadings of features related to mental distress may indicate greater susceptibility to or exaggerated perception of stressful events, psychological overexcitability, and predisposition to rumination in people with higher cognition [72]. On the other hand, these findings may be specific to the UK Biobank cohort and the way the questions for this mental health category were constructed. In particular, to evaluate mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress. In this regard, the estimate for mental distress may be more indicative of whether an individual experiencing mental distress had an opportunity or aspiration to visit a doctor and seek professional help [73]. Thus, people with better cognitive abilities and also with a higher socioeconomic status may indeed be more likely to seek professional help.

      Limited evidence supports a positive association between self-harm behaviours and cognitive abilities, with some studies indicating higher cognitive performance as a risk factor for non-suicidal self-harm. Research shows an inverse relationship between cognitive control of emotion and suicidal behaviours that weakens over the life course [73,74]. Some studies have found a positive correlation between cognitive abilities and the risk of nonsuicidal self-harm, suicidal thoughts, and suicidal plans that may be independent of or, conversely, affected by socioeconomic status [75,76]. In our study, the magnitude of the association between self-harm behaviours and cognition was low (Fig. 2), indicating a weak relationship.

      Positive PLSR loadings of features related to alcohol and cannabis may also indicate the influence of other factors. Overall, this relationship is believed to be largely affected by age, income, education, social status, social equality, social norms, and quality of life [79–80]. For example, education level and income correlate with cognitive ability and alcohol consumption [79,81–83]. Research also links a higher probability of having tried alcohol or recreational drugs, including cannabis, to a tendency of more intelligent individuals to approach evolutionary novel stimuli [84,85]. This hypothesis is supported by studies showing that cannabis users perform better on some cognitive tasks [86]. Alternatively, frequent drinking can indicate higher social engagement, which is positively associated with cognition [87]. Young adults often drink alcohol as a social ritual in university settings to build connections with peers [88]. In older adults, drinking may accompany friends or family visits [89,90]. Mixed evidence on the link between alcohol and drug use and cognition makes it difficult to draw definite conclusions, leaving an open question about the nature of this relationship.

      Consistent with previous studies, we showed that anxiety and negative traumatic experiences were inversely associated with cognitive abilities [90–93]. Anxiety may be linked to poorer cognitive performance via reduced working memory capacity, increased focus on negative thoughts, and attentional bias to threatening stimuli that hinder the allocation of cognitive resources to a current task [94–96]. Individuals with PTSD consistently showed impaired verbal and working memory, visual attention, inhibitory function, task switching, cognitive flexibility, and cognitive control [97–100]. Exposure to traumatic events that did not reach the PTSD threshold was also linked to impaired cognition. For example, childhood trauma is associated with worse performance in processing speed, attention, and executive function tasks in adulthood, and age at a first traumatic event is predictive of the rate of executive function decline in midlife [101,102]. In the UK Biobank cohort, adverse life events have been linked to lower cognitive flexibility, partially via depression level [103].

      In agreement with our findings, cognitive deficits are often found in psychotic disorders [104,105]. We treated neurological and mental health symptoms as predictor variables and did not stratify or exclude people based on psychiatric status or symptom severity. Since no prior studies have examined isolated psychotic symptoms (e.g., recent unusual experiences, hearing unreal voices, or seeing unreal visions), we avoid speculating on how these symptoms relate to cognition in our sample.

      Finally, negative PLSR loadings of the features related to happiness and subjective well-being may be specific to the study cohort, as these findings do not agree with some previous research [107–109]. On the other hand, our results agree with the study linking excessive optimism or optimistic thinking to lower cognitive performance in memory, verbal fluency, fluid intelligence, and numerical reasoning tasks, and suggesting that pessimism or realism indicates better cognition [110]. The concept of realism/optimism as indicators of cognition is a plausible explanation for a negative association between the g-factor and friendship satisfaction, as well as a negative PLSR loading of feelings that life is meaningful, especially in older adults who tend to reflect more on the meaning of life [111]. The latter is supported by the study showing a negative association between cognitive function and the search for the meaning of life and a change in the pattern of this relationship after the age of 60 [112]. Finally, a UK Biobank study found a positive association of happiness with speed and visuospatial memory but a negative relationship with reasoning ability [113].”

      (9) In the discussion section (page 24, line 440-449), the authors give an explanation on why the diffusion measure have limited utility, but the arguments put forward also concern structural and rsfMRI measures.

      Thank you for this important observation. Indeed, the argument about voxel-averaged diffusion components (“… these metrics are less specific to the properties of individual white matter axons or bundles, and instead represent a composite of multiple diffusion components averaged within a voxel and across major fibre pathways”) could theoretically apply across other MRI modalities. We have therefore removed this point from the discussion to avoid overgeneralization. However, we maintain our central argument about the biological specificity of conventional tractography-derived diffusion metrics as their particular sensitivity to white matter microstructure (e.g., axonal integrity, myelin content) may make them better suited for detecting neuropathological changes than dynamic cognitive processes. This interpretation aligns with the mixed evidence linking these metrics to cognitive performance, despite their established utility in detecting white matter abnormalities in clinical populations (e.g., Bergamino et al., 2021; Silk et al., 2009). We clarify this distinction in the manuscript.

      Line 572: “The somewhat limited utility of diffusion metrics derived specifically from probabilistic tractography in serving as robust quantitative neuromarkers of cognition and its shared variance with mental health may stem from their greater sensitivity and specificity to neuronal integrity and white matter microstructure rather than to dynamic cognitive processes. Critically, probabilistic tractography may be less effective at capturing relationships between white matter microstructure and behavioural scores cross-sectionally, as this method is more sensitive to pathological changes or dynamic microstructural alterations like those occurring during maturation. While these indices can capture abnormal white matter microstructure in clinical populations such as Alzheimer’s disease, schizophrenia, or attention deficit hyperactivity disorder (ADHD) [117–119], the empirical evidence on their associations with cognitive performance is controversial [114, 120–126].”

      Bergamino M, Walsh RR, Stokes AM. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer’s disease. Sci Rep. 2021;11:6990.

      Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Hum Brain Mapp. 2009;30:2757–2765.

      Reviewer 2:

      This is an interesting study combining a lot of data to investigate the link between cognition and mental health. The description of the study is very clear, it's easy to read for someone like me who does not have a lot of expertise in machine learning.

      We thank you for your thorough review and constructive feedback. Your insightful comments have helped us identify conceptual and methodological aspects that required improvement in the manuscript. We have incorporated relevant changes throughout the paper, and below, we address each of your points in detail.

      Comment 1: My main concern with this manuscript is that it is not yet clear to me what it exactly means to look at the overlap between cognition and mental health. This relation is r=0.3 which is not that high, so why is it then necessary to explain this overlap with neuroimaging measures? And, could it be that the relation between cognition and mental health is explained by third variables (environment? opportunities?). In the introduction I miss an explanation of why it is important to study this and what it will tell us, and in the discussion I would like to read some kind of 'answer' to these questions.

      Thank you. It’s important to clarify why we investigated the relationship between cognition and mental health, and what we found using data from the UK Biobank.

      Conceptually, our work is grounded in the Research Domain Criteria (RDoC; Insel et al., 2010) framework. RDoC conceptualizes mental health not through traditional diagnostic categories, but through core functional domains that span the full spectrum from normal to abnormal functioning. These domains include cognition, negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. Within this framework, cognition is considered a fundamental domain that contributes to mental health across diagnostic boundaries. Meta-analytic evidence supports a link between cognitive functioning and mental health (Abramovitch, et al., 2021; East-Richard, et al., 2020). In the context of a large, population-based dataset like the UK Biobank, this implies that cognitive performance – as measured by various cognitive tasks – should be meaningfully associated with available mental health indicators.

      However, because cognition is only one of several functional domains implicated in mental health, we do not expect the covariation between cognition and mental health to be very high. Other domains, such as negative and positive valence systems, arousal and regulatory systems, or social processing, may also play significant roles. Theoretically, this places an upper bound on the strength of the cognition-mental health relationship, especially in normative, nonclinical samples.

      Our current findings from the UK Biobank reflect this. Most of the 133 mental health variables showed relatively weak individual correlations with cognition (mean r \= 0.01, SD = 0.05, min r \= –0.08, max r \= 0.17; see Figure 2). However, using a PLS-based machine learning approach, we were able to integrate information across all mental-health variables to predict cognition, yielding an out-of-sample correlation of r = 0.31 [95% CI: 0.29, 0.32].  

      We believe this estimate approximates the true strength of the cognition-mental health relationship in normative samples, consistent with both theoretical expectations and prior empirical findings. Theoretically, this aligns with the RDoC view that cognition is one of several contributing domains. Empirically, our results are consistent with findings from our previous mega-analysis in children (Wang et al., 2025). Moreover, in the field of gerontology, an effect size of r = 0.31 is not considered small. According to Brydges (2019), it falls around the 70th percentile of effect sizes reported in gerontological studies and approaches the threshold for a large effect (r \= 0.32). Given that most studies report within-sample associations, our out-of-sample results are likely more robust and generalizable (Yarkoni & Westfall, 2017).

      To answer, “why is it then necessary to explain this overlap with neuroimaging measures”, we again draw on the conceptual foundation of the RDoC framework. RDoC emphasizes that each functional domain, such as cognition, should be studied not only at the behavioural level but also across multiple neurobiological units of analysis, including genes, molecules, cells, circuits, physiology, and behaviour.

      MRI-based neural markers represent one such level of analysis. While other biological systems (e.g., genetic, molecular, or physiological) also contribute to the cognition-mental health relationship, neuroimaging provides unique insights into the brain mechanisms underlying this association – insights that cannot be obtained from behavioural data alone.

      In response to the related question, “Could the relationship between cognition and mental health be explained by third variables (e.g., environment, opportunities)?”, we note that developing a neural marker of cognition capable of capturing its relationship with mental health is the central aim of this study. Using the MRI modalities available in the UK Biobank, we were able to account for 48% of the covariation between cognition and mental health.

      The remaining 52% of unexplained variance may stem from several sources. According to the RDoC framework, neuromarkers could be further refined by incorporating additional neuroimaging modalities (e.g., task-based fMRI, PET, ASL, MEG/EEG, fNIRS) and integrating other units of analysis such as genetic, molecular, cellular, and physiological data.

      Once more comprehensive neuromarkers are developed, capturing a greater proportion of the cognition-mental health covariation, they may also lead to new research direction – to investigate how environmental factors and life opportunities influence these markers. However, exploring those environmental contributions lies beyond the scope of the current study.

      We discuss these considerations and explain the motivation of our study in the revised Introduction and Discussion.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Introduction

      Line 43: “Cognition and mental health are closely intertwined [1]. Cognitive dysfunction is present in various mental illnesses, including anxiety [2, 3], depression [4–6], and psychotic disorders [7–12]. National Institute of Mental Health’s Research Domain Criteria (RDoC) [13,14] treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. In this study, we aim to examine how the covariation between cognition and mental health is reflected in neural markers of cognition, as measured through multimodal neuroimaging.”

      Discussion

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–751.

      Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clinical Psychology Review, 86, 102007.

      East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. Canadian Psychology / Psychologie Canadienne, 61(3), 190–214.

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Brydges CR. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innovation in Aging. 2019;3(4):igz036.

      Yarkoni T, Westfall J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect Psychol Sci. 2017;12(6):1100-1122.

      Comment 2 Title: - Shouldn't it be "MRI markers" (plural)?

      We used the singular form (“marker”) intentionally, as it refers to the composite neuroimaging marker derived from all three MRI modalities in our stacked model. This multimodal marker represents the combined predictive power of all modalities and captures the highest proportion of the mental health-cognition relationship in our analyses.

      Comment 3: Introduction - I miss an explanation of why it is useful to look at cognition-mental health covariation

      We believe we have sufficiently addressed this comment in our response to Reviewer 2, comment 1 above.

      Comment 4: - "Demonstrating that MRI-based neural indicators of cognition capture the covariation between cognition and mental health will thereby support the utility of such indicators for understanding the etiology of mental health" (page 4, line 56-58) - how/why?

      Previous research has largely focused on developing MRI-based neural indicators that accurately predict cognitive performance (Marek et al., 2022; Vieira et al., 2020). Building on this foundation, our findings further demonstrate that the predictive performance of a neural indicator for cognition is closely tied to its ability to explain the covariation between cognition and mental health. In other words, the robustness of a neural indicator – its capacity to capture individual differences in cognition – is strongly associated with how well it reflects the shared variance between cognition and mental health.

      This insight is particularly important within the context of the RDoC framework, which seeks to understand the etiology of mental health through functional domains (such as cognition) and their underlying neurobiological units of analysis (Insel et al., 2010). According to RDoC, for a neural indicator of cognition to be informative for mental health research, it must not only predict cognitive performance but also capture its relationship with mental health.

      Furthermore, RDoC emphasizes the integration of neurobiological measures to investigate the influence of environmental and developmental factors on mental health. In line with this, our neural indicators of cognition may serve as valuable tools in future research aimed at understanding how environmental exposures and developmental trajectories shape mental health outcomes. We discuss this in more detail in the revised Discussion.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–660.

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–751.

      Comment 5: - The explanation about the stacking approach is not yet completely clear to me. I don't understand how the target variable can be the dependent variable in both step one and two. Or are those different variables? It would be helpful to also give an example of the target variable in line 88 on page 5

      Thank you for this excellent question. In our stacking approach, the same target variable, the g-factor, is indeed used across both modeling stages, but with a key distinction in how predictions are generated and integrated.

      In the first-level models, we trained separate Partial Least Squares Regression (PLSR) models for each of the 72 neuroimaging phenotypes, each predicting the g-factor independently. The predicted values from these 72 models were then used as input features for the second-level stacked model, which combined them to generate a final prediction of the g-factor. This twostage framework enables us to integrate information across multiple imaging modalities while maintaining a consistent prediction target.

      To avoid data leakage, both modeling stages were conducted entirely within the training set for each cross-validation fold. Only after the second-level model was trained was it applied to the outer-fold test participants who were not involved in any part of the model training process.

      To improve accessibility, we have revised the Methods section (see Page 10) to clarify this approach, ensuring that the description remains technically accurate while being easier to follow.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.

      To model the relationship between mental health and cognition, we employed Partial Least Squares Regression (PLSR) to predict the g-factor from 133 mental health variables. To model the relationship between neuroimaging data and cognition, we used a two-step stacking approach [15–17,61] to integrate information from 72 neuroimaging phenotypes across three MRI modalities. In the first step, we trained 72 base (first-level) PLSR models, each predicting the g-factor from a single neuroimaging phenotype. In the second step, we used the predicted values from these base models as input features for stacked models, which again predicted the g-factor. We constructed four stacked models based on the source of the base predictions: one each for dwMRI, rsMRI, sMRI, and a combined model incorporating all modalities (“dwMRI Stacked”, “rsMRI Stacked”, “sMRI Stacked”, and “All MRI Stacked”, respectively). Each stacked model was trained using one of four machine learning algorithms – ElasticNet, Random Forest, XGBoost, or Support Vector Regression – selected individually for each model (see Supplementary Materials, S6).

      For rsMRI phenotypes, we treated the choice of functional connectivity quantification method – full correlation, partial correlation, or tangent space parametrization – as a hyperparameter. The method yielding the highest performance on the outer-fold training set was selected for predicting the g-factor (see Supplementary Materials, S5).

      To prevent data leakage, we standardized the data using the mean and standard deviation derived from the training set and applied these parameters to the corresponding test set within each outer fold. This standardization was performed at three key stages: before g-factor derivation, before regressing out modality-specific confounds from the MRI data, and before stacking. Similarly, to maintain strict separation between training and testing data, both base and stacked models were trained exclusively on participants from the outer-fold training set and subsequently applied to the corresponding outer-fold test set.

      To evaluate model performance and assess statistical significance, we aggregated the predicted and observed gfactor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      Comment 6: Methods - It's not clear from the text and Figure 1 which 12 scores from 11 tests are being used to derive the g-factor. Figure 1 shows only 8 bullet points with 10 scores in A and 13 tests under 'Cognitive tests' in B. Moreover, Supplement S1 describes 12 tests and 14 measures (Prospective Memory test is in the text but not in Supplementary Table 1).

      Thank you for identifying this discrepancy. In the original Figure 1b and in the Supplementary Methods (S1), the “Prospective Memory” test was accidentally duplicated, while it was present in the Supplementary Table 1 (Line 53, Supplementary Table 1). We have now corrected both figures for consistency. To clarify: Figure 1a presents the global mental health and cognitive domains studied, while Figure 1b now accurately lists 1) the 12 cognitive scores from 11 tests used to derive the g-factor (with the Trail Making Test contributing two measures – numeric and alphabetic trails) and 2) the three main categories of mental health indices used as machine learning features.

      We also corrected the Supplementary Materials to remove the duplicate test from the first paragraph. In Supplementary Table 1, there were 11 tests listed, and for the Trail Making test, we specified in the “Core measures” column that this test had 2 derivative scores: duration to complete the numeric path (Trail 1) and duration to complete the alphabetic path (Trail 2).

      Supplementary Materials, Line 46: “We used twelve scores from the eleven cognitive tests that represented the following cognitive domains: reaction time and processing speed (Reaction Time test), working memory (Numeric Memory test), verbal and numerical reasoning (Fluid Intelligence test), executive function (Trail Making Test), non-verbal fluid reasoning (Matrix Pattern Completion test), processing speed (Symbol Digit Substitution test), vocabulary (Picture Vocabulary test), planning abilities (Tower Rearranging test), verbal declarative memory (Paired Associate Learning test), prospective memory (Prospective Memory test), and visual memory (Pairs Matching test) [1].”

      Comment 7: - For the mental health measures: If I understand correctly, the questionnaire items were used individually, but also to create composite scores. This seems counterintuitive, because I would assume that if the raw data is used, the composite scores would not add additional information to that. When reading the Supplement, it seems like I'm not correct… It would be helpful to clarify the text on page 7 in the main text.

      You raise an excellent observation regarding the use of both individual questionnaire items and composite scores. This dual approach was methodologically justified by the properties of Partial Least Squares Regression (PLSR), our chosen first-level machine learning algorithm, which benefits from rich feature sets and can handle multicollinearity through dimensionality reduction. PLSR transforms correlated features into latent variables, meaning both individual items and composite scores can contribute unique information to the model. We elaborate on PLSR's mathematical principles in Supplementary Materials (S5).

      To directly address this concern, we conducted comparative analyses showing that the PLSR model (a single 80/20% training/test split), incorporating all 133 mental health features (both items and composites), outperformed models using either type alone. The full model achieved superior performance (MSE = 0.458, MAE = 0.537, \= 0.112, Pearson r = 0.336, p-value = 6.936e-112) compared to using only composite scores (93 features; MSE = 0.461, MAE = 0.538, R<sup>2</sup> = 0.107, Pearson r = 0.328, p-value = 5.8e-106) or only questionnaire items (40 features; MSE = 0.499, MAE = 0.561, R<sup>2</sup> = 0.033, Pearson r = 0.184, p-value = 2.53e-33). These results confirm that including both data types provide complementary predictive value. We expand on these considerations in the revised Methods section.

      Line 123: “Mental health measures encompassed 133 variables from twelve groups: mental distress, depression, clinical diagnoses related to the nervous system and mental health, mania (including bipolar disorder), neuroticism, anxiety, addictions, alcohol and cannabis use, unusual/psychotic experiences, traumatic events, selfharm behaviours, and happiness and subjective well-being (Fig. 1 and Tables S4 and S5). We included both selfreport questionnaire items from all participants and composite diagnostic scores computed following Davis et al. and Dutt et al. [35,36] as features in our first-level (for explanation, see Data analysis section) Partial Least Squares Regression (PLSR) model. This approach leverages PLSR’s ability to handle multicollinearity through dimensionality reduction, enabling simultaneous use of granular symptom-level information and robust composite measures (for mental health scoring details, see Supplementary Materials, S2). We assess the contribution of each mental health index to general cognition by examining the direction and magnitude of its PLSR-derived loadings on the identified latent variables”

      Comment 8: - Results - The colors in Figure 4 B are a bit hard to differentiate.

      We have updated Figure 4 to enhance colour differentiation by adjusting saturation and brightness levels, improving visual distinction. For further clarity, we split the original figure into two separate figures.

      Comment 9: - Discussion - "Overall, the scores for mental distress, alcohol and cannabis use, and self-harm behaviours relate positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events relate negatively to cognition," - this seems counterintuitive, that some symptoms relate to better cognition and others relate to worse cognition. Could you elaborate on this finding and what it could mean?

      We appreciate you highlighting this important observation. While some associations between mental health indices and cognition may appear counterintuitive at first glance, these patterns are robust (emerging consistently across both univariate correlations and PLSR loadings) and align with previous literature (e.g., Karpinski et al., 2018; Ogueji et al., 2022). For instance, the positive relationship between cognitive ability and certain mental health indicators like help-seeking behaviour has been documented in other population studies (Karpinski et al., 2018; Ogueji et al., 2022), potentially reflecting greater health literacy and access to care among cognitively advantaged individuals. Conversely, the negative associations with conditions like psychotic experiences mirror established neurocognitive deficits in these domains.

      As was initially detailed in Supplementary Materials (S12) and now expanded in our Discussion, these findings likely reflect complex multidimensional interactions. The positive loadings for mental distress indicators may capture: (1) greater help-seeking behaviour among those with higher cognition and socioeconomic resources, and/or (2) psychological overexcitability and rumination tendencies in high-functioning individuals. These interpretations are particularly relevant to the UK Biobank's assessment methods, where mental distress items focused on medical help-seeking rather than symptom severity per se (e.g., as a measure of mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress).

      Line 492: “Factor loadings derived from the PLSR model showed that the scores for mental distress, alcohol and cannabis use, and self-harm behaviours related positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events related negatively to the g-factor. Positive PLSR loadings of features related to mental distress may indicate greater susceptibility to or exaggerated perception of stressful events, psychological overexcitability, and predisposition to rumination in people with higher cognition [72]. On the other hand, these findings may be specific to the UK Biobank cohort and the way the questions for this mental health category were constructed. In particular, to evaluate mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress. In this regard, the estimate for mental distress may be more indicative of whether an individual experiencing mental distress had an opportunity or aspiration to visit a doctor and seek professional help [73]. Thus, people with better cognitive abilities and also with a higher socioeconomic status may indeed be more likely to seek professional help.

      Limited evidence supports a positive association between self-harm behaviours and cognitive abilities, with some studies indicating higher cognitive performance as a risk factor for non-suicidal self-harm. Research shows an inverse relationship between cognitive control of emotion and suicidal behaviours that weakens over the life course [73,74]. Some studies have found a positive correlation between cognitive abilities and the risk of nonsuicidal self-harm, suicidal thoughts, and suicidal plans that may be independent of or, conversely, affected by socioeconomic status [75,76]. In our study, the magnitude of the association between self-harm behaviours and cognition was low (Fig. 2), indicating a weak relationship.

      Positive PLSR loadings of features related to alcohol and cannabis may also indicate the influence of other factors. Overall, this relationship is believed to be largely affected by age, income, education, social status, social equality, social norms, and quality of life [79–80]. For example, education level and income correlate with cognitive ability and alcohol consumption [79,81–83]. Research also links a higher probability of having tried alcohol or recreational drugs, including cannabis, to a tendency of more intelligent individuals to approach evolutionary novel stimuli [84,85]. This hypothesis is supported by studies showing that cannabis users perform better on some cognitive tasks [86]. Alternatively, frequent drinking can indicate higher social engagement, which is positively associated with cognition [87]. Young adults often drink alcohol as a social ritual in university settings to build connections with peers [88]. In older adults, drinking may accompany friends or family visits [89,90]. Mixed evidence on the link between alcohol and drug use and cognition makes it difficult to draw definite conclusions, leaving an open question about the nature of this relationship.

      Consistent with previous studies, we showed that anxiety and negative traumatic experiences were inversely associated with cognitive abilities [90–93]. Anxiety may be linked to poorer cognitive performance via reduced working memory capacity, increased focus on negative thoughts, and attentional bias to threatening stimuli that hinder the allocation of cognitive resources to a current task [94–96]. Individuals with PTSD consistently showed impaired verbal and working memory, visual attention, inhibitory function, task switching, cognitive flexibility, and cognitive control [97–100]. Exposure to traumatic events that did not reach the PTSD threshold was also linked to impaired cognition. For example, childhood trauma is associated with worse performance in processing speed, attention, and executive function tasks in adulthood, and age at a first traumatic event is predictive of the rate of executive function decline in midlife [101,102]. In the UK Biobank cohort, adverse life events have been linked to lower cognitive flexibility, partially via depression level [103].

      In agreement with our findings, cognitive deficits are often found in psychotic disorders [104,105]. We treated neurological and mental health symptoms as predictor variables and did not stratify or exclude people based on psychiatric status or symptom severity. Since no prior studies have examined isolated psychotic symptoms (e.g., recent unusual experiences, hearing unreal voices, or seeing unreal visions), we avoid speculating on how these symptoms relate to cognition in our sample.

      Finally, negative PLSR loadings of the features related to happiness and subjective well-being may be specific to the study cohort, as these findings do not agree with some previous research [107–109]. On the other hand, our results agree with the study linking excessive optimism or optimistic thinking to lower cognitive performance in memory, verbal fluency, fluid intelligence, and numerical reasoning tasks, and suggesting that pessimism or realism indicates better cognition [110]. The concept of realism/optimism as indicators of cognition is a plausible explanation for a negative association between the g-factor and friendship satisfaction, as well as a negative PLSR loading of feelings that life is meaningful, especially in older adults who tend to reflect more on the meaning of life [111]. The latter is supported by the study showing a negative association between cognitive function and the search for the meaning of life and a change in the pattern of this relationship after the age of 60 [112]. Finally, a UK Biobank study found a positive association of happiness with speed and visuospatial memory but a negative relationship with reasoning ability [113].”

      Karpinski RI, Kinase Kolb AM, Tetreault NA, Borowski TB. High intelligence: A risk factor for psychological and physiological overexcitabilities. Intelligence. 2018;66:8–23.

      Ogueji IA, Okoloba MM. Seeking Professional Help for Mental Illness: A Mixed-Methods Study of Black Family Members in the UK and Nigeria. Psychol Stud. 2022;67:164–177.

      Comment 10: - All neuroimaging factors together explain 48% of the variance in the cognition-mental health relationship. However, this relationship is only r=0.3 - so then the effect of neuroimaging factors seems a lot smaller… What does it mean?

      Thank you for raising this critical point. We have addressed this point in our response to Reviewer 1, comment 2, Reviewer 1, comment 3 and Reviewer 2, comment 1.

      Briefly, cognition is related to mental health at around r = 0.3 and to neuroimaging phenotypes at around r = 0.4. These levels of relationship strength are consistent to what has been shown in the literature (e.g., Wang et al., 2025 and Vieira et al., 2020). We discussed the relationship between cognition and mental health in our response to Reviewer 2, comment 1 above. In short, this relationship reflects just one functional domain – mental health may also be associated with other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. Moreover, in the context of gerontology research, this effect size is considered relatively large (Brydges et al., 2019).

      We conducted a commonality analysis to investigate the unique and shared variance of mental health and neuroimaging phenotypes in explaining cognition.  As we discussed in our response to Reviewer 1, comment 2, we were able to account for 48% of the covariation between cognition and mental health using the MRI modalities available in the UK Biobank. The remaining 52% of unexplained variance may arise from several sources.

      One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research from our group and others has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank (Tetereva et al., 2025).

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      We have now incorporated these considerations into the Discussion section.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Brydges CR. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innovation in Aging. 2019;3(4):igz036.

      Tetereva A, Knodt AR, Melzer TR, et al. Improving Predictability, Reliability and Generalisability of Brain-Wide Associations for Cognitive Abilities via Multimodal Stacking. Preprint. bioRxiv. 2025;2024.05.03.589404.

      Reviewer 3:

      Buianova et al. present a comprehensive analysis examining the predictive value of multimodal neuroimaging data for general cognitive ability, operationalized as a derived g-factor. The study demonstrates that functional MRI holds the strongest predictive power among the modalities, while integrating multiple MRI modalities through stacking further enhances prediction performance. The inclusion of a commonality analysis provides valuable insight into the extent to which shared and unique variance across mental health features and neuroimaging modalities contributes to the observed associations with cognition. The results are clearly presented and supported by highquality visualizations. Limitations of the sample are stated clearly.

      Thank you once more for your constructive and encouraging feedback. We appreciate your careful reading and valuable methodological insights. Your expertise has helped us clarify key methodological concepts and improve the overall rigour of our study.

      Suggestions for improvement:

      (1) The manuscript would benefit from the inclusion of permutation testing to evaluate the statistical significance of the predictive models. This is particularly important given that some of the reported performance metrics are relatively modest, and permutation testing could help ensure that results are not driven by chance.

      Thank you, this is an excellent point. We agree that evaluating the statistical significance of our predictive models is essential.

      In our original analysis, we assessed model performance by generating a bootstrap distribution of Pearson’s r, resampling the data with replacement 5,000 times (see Figure 3b). In response to your feedback, we have made the following updates:

      (1) Improved Figure 3b to explicitly display the 95% confidence intervals.

      (2) Supplemented the results by reporting the exact confidence interval values.

      (3) Clarified our significance testing procedure in the Methods section.

      We considered model performance statistically significant when the 95% confidence interval did not include zero, indicating that the observed associations are unlikely to have occurred by chance.

      We chose bootstrapping over permutation testing because, while both can assess statistical significance, bootstrapping additionally provides uncertainty estimates in the form of confidence intervals. Given the large sample size in our study, significance testing can be less informative, as even small effects may reach statistical significance. Bootstrapping offers a more nuanced understanding of model uncertainty.

      Line 233: “To evaluate model performance and assess statistical significance, we aggregated the predicted and observed g-factor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      (2) Applying and testing the trained models on an external validation set would increase confidence in generalisability of the model.

      We appreciate this excellent suggestion. While we considered this approach, implementing it would require identifying an appropriate external dataset with comparable neuroimaging and behavioural measures, along with careful matching of acquisition protocols and variable definitions across sites. These challenges extend beyond the scope of the current study, though we fully agree that this represents an important direction for future research.

      Our findings, obtained from one of the largest neuroimaging datasets to date with training and test samples exceeding most previous studies, align closely with existing literature: the predictive accuracy of each neuroimaging phenotype and modality for cognition matches the effect size reported in meta-analyses (r ≈ 0.4; e.g., Vieira et al., 2020). The ability of dwMRI, rsMRI and sMRI to capture the cognition-mental health relationship is, in turn, consistent with our previous work in pediatric populations (Wang et al., 2025; Pat et al., 2022).

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Pat N, Wang Y, Anney R, Riglin L, Thapar A, Stringaris A. Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Hum Brain Mapp. 2022;43:5520–5542.

      (3) The rationale for selecting a 5-by-10-fold cross-validation scheme is not clearly explained. Clarifying why this structure was preferred over more commonly used alternatives, such as 10-by-10 or 5-by-5 cross-validation, would strengthen the methodological transparency.

      Thank you for this important methodological question. Our choice of a 5-by-10-fold crossvalidation scheme was motivated by the need to balance robust hyperparameter tuning with computational efficiency, particularly memory and processing time. Retaining five outer folds allowed us to rigorously assess model performance across multiple data partitions, leading to an outer-fold test set at least n = 4 000 and providing a substantial amount of neuroimaging data involved in model training. In contrast, employing ten inner folds ensured robust and stable hyperparameter tuning that maximizes the reliability of model selection. Thus, the 5-outer-fold with our large sample provided sufficient out-of-sample test set size for reliable model evaluation and efficient computation, while 10 inner folds enabled robust hyperparameter tuning. We now provide additional rationale for this design decision on Page 10.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.”

      (4) A more detailed discussion of which specific brain regions or features within each neuroimaging modality contributed most strongly to the prediction of cognition would enhance neurobiological relevance of the findings.

      Thank you for this thoughtful suggestion. To address this point, we have included feature importance plots for the top-performing neuroimaging phenotypes within each modality (Figure 5 and Figures S2–S4), demonstrating the relative contributions of individual features to the predictive models. While we maintain our primary focus on cross-modality performance comparisons in the main text, as this aligns with our central aim of evaluating multimodal MRI markers at the integrated level, we outline the contribution of neuroimaging features with the highest predictive performance for cognition in the revised Results and Discussion.

      Methods

      Line 255: “To determine which neuroimaging features contribute most to the predictive performance of topperforming phenotypes within each modality, while accounting for the potential latent components derived from neuroimaging, we assessed feature importance using the Haufe transformation [62]. Specifically, we calculated Pearson correlations between the predicted g-factor and scaled and centred neuroimaging features across five outer-fold test sets. We also examined whether the performance of neuroimaging phenotypes in predicting cognition per se is related to their ability to explain the link between cognition and mental health. Here, we computed the correlation between the predictive performance of each neuroimaging phenotype and the proportion of the cognition-mental health relationship it captures. To understand how demographic factors, including age and sex, contribute to this relationship, we also conducted a separate set of commonality analyses treating age, sex, age<sup>2</sup>, age×sex, and age<sup>2</sup>×sex as an additional set of explanatory variables (Fig. 1).”

      Results

      dwMRI

      Line 331: “Overall, models based on structural connectivity metrics performed better than TBSS and probabilistic tractography (Fig. 3). TBSS, in turn, performed better than probabilistic tractography (Fig. 3 and Table S13). The number of streamlines connecting brain areas parcellated with aparc MSA-I had the best predictive performance among all dwMRI neuroimaging phenotypes (R<sup>2</sup><sub>mean</sub> = 0.052, r<sub>mean</sub> = 0.227, 95% CI [0.212, 0.235]). To identify features driving predictions, we correlated streamline counts in aparc MSA-I parcellation with the predicted g_factor values from the PLSR model. Positive associations with the predicted _g-factor were strongest for left superior parietal-left caudal anterior cingulate, left caudate-right amygdala, and left putamen-left hippocampus connections. The most marked negative correlations involved left putamen-right posterior thalamus and right pars opercularis-right caudal anterior cingulate pathways (Fig. 5 and Supplementary Fig. S2).”

      rsMRI

      Line 353: “Among RSFC metrics for 55 and 21 ICs, tangent parameterization matrices yielded the highest performance in the training set compared to full and partial correlation, as indicated by the cross-validation score. Functional connections between the limbic (IC10) and dorsal attention (IC18) networks, as well as between the ventral attention (IC15) and default mode (IC11) networks, displayed the highest positive association with cognition. In contrast, functional connectivity between the limbic (IC43, the highest activation within network) and default mode (IC11) and limbic (IC45) and frontoparietal (IC40) networks, between the dorsal attention (IC18) and frontoparietal (IC25) networks, and between the ventral attention (IC15) and frontoparietal (IC40) networks, showed the highest negative association with cognition (Fig. 5 and Supplementary Fig. S3 and S4)”

      sMRI

      Line 373: “FreeSurfer subcortical volumetric subsegmentation and ASEG had the highest performance among all sMRI neuroimaging phenotypes (R<sup>2</sup><sub>mean</sub> = 0.068, r<sub>mean</sub> = 0.244, 95% CI [0.237, 0.259] and R<sup>2</sup><sub>mean</sub> = 0.059, r<sub>mean</sub> = 0.235, 95% CI [0.221, 0.243], respectively). In FreeSurfer subcortical volumetric subsegmentation, volumes of all subcortical structures, except for left and right hippocampal fissures, showed positive associations with cognition. The strongest relations were observed for the volumes of bilateral whole hippocampal head and whole hippocampus (Fig. 5 and Supplementary Fig. S5 for feature importance maps). Grey matter morphological characteristics from ex vivo Brodmann Area Maps showed the lowest predictive performance (R<sup>2</sup><sub>mean</sub> = 0.008, r<sub>mean</sub> = 0.089, 95% CI [0.075, 0.098]; Fig. 3 and Table S15).”

      Discussion

      dwMRI

      Line 562: “Among dwMRI-derived neuroimaging phenotypes, models based on structural connectivity between brain areas parcellated with aparc MSA-I (streamline count), particularly connections with bilateral caudal anterior cingulate (left superior parietal-left caudal anterior cingulate, right pars opercularis-right caudal anterior cingulate), left putamen (left putamen-left hippocampus, left putamen-right posterior thalamus), and amygdala (left caudate-right amygdala), result in a neural indicator that best reflects microstructural resources associated with cognition, as indicated by predictive modeling, and more importantly, shares the highest proportion of the variance with mental health-g, as indicated by commonality analysis.”

      rsMRI

      Line 583: “We extend findings on the superior performance of rsMRI in predicting cognition, which aligns with the literature [15, 28], by showing that it also explains almost a third of the variance in cognition that mental health captures. At the rsMRI neuroimaging phenotype level, this performance is mostly driven by RSFC patterns among 55 ICA-derived networks quantified using tangent space parameterization. At a feature level, these associations are best captured by the strength of functional connections among limbic, dorsal attention and ventral attention, frontoparietal and default mode networks. These functional networks have been consistently linked to cognitive processes in prior research [127–130].”

      sMRI

      Line 608: “Integrating information about brain anatomy by stacking sMRI neuroimaging phenotypes allowed us to explain a third of the link between cognition and mental health. Among all sMRI neuroimaging phenotypes, those that quantified the morphology of subcortical structures, particularly volumes of bilateral hippocampus and hippocampal head, explain the highest portion of the variance in cognition captured by mental health. Our findings show that, at least in older adults, volumetric properties of subcortical structures are not only more predictive of individual variations in cognition but also explain a greater portion of cognitive variance shared with mental health than structural characteristics of more distributed cortical grey and white matter. This aligns with the Scaffolding Theory that proposes stronger compensatory engagement of subcortical structures in cognitive processing in older adults [138–140].”

      (5) The formatting of some figure legends could be improved for clarity - for example, some subheadings were not formatted in bold (e.g., Figure 2 c)

      Thank you for noticing this. We have updated the figures to enhance clarity, keeping subheadings plain while bolding figure numbers and MRI modality names.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Evidence, reproducibility and clarity

      The manuscript by Egawa and colleagues investigates differences in nodal spacing in an avian auditory brain stem circuit. The results are clearly presented and data are of very high quality. The authors make two main conclusions:

      (1) Node spacing, i.e. internodal length, is intrinsically specified by the oligodendrocytes in the region they are found in, rather than axonal properties (branching or diameter).

      (2) Activity is necessary (we don't know what kind of signaling) for normal numbers of oligodendrocytes and therefore the extent of myelination.

      These are interesting observations, albeit phenomenon. I have only a few criticisms that should be addressed:

      (1) The use of the term 'distribution' when describing the location of nodes is confusing. I think the authors mean rather than the patterns of nodal distribution, the pattern of nodal spacing. They have investigated spacing along the axon. I encourage the authors to substitute node spacing or internodal length for node distribution.

      Thanks for your suggestion to avoid confusion. We used the phrase "nodal spacing" instead of "nodal distribution" throughout the revised manuscript.

      (2) In Seidl et al. (J Neurosci 2010) it was reported that axon diameter and internodal length (nodal spacing) were different for regions of the circuit. Can the authors help me better understand the difference between the Seidl results and those presented here?

      As a key distinction, our study focuses specifically on the main trunk of the contralateral projection of NM axons. This projection features a sequential branching structure known as the delay line, where collateral branches form terminal arbors and connect to the ventral dendritic layer of NL neurons. This structural organization plays a critical role in influencing the dynamic range of ITD detection by regulating conduction delays along the NM axon trunk.

      The study by Seidl et al. (2010) is a pioneering work that measured diameter of NM axon using electron microscopy, providing highly reliable data. However, due to the technical  limitations of electron microscopy, which does not allow for the continuous tracing of individual axons, it is not entirely clear whether the axons measured in the ventral NL region correspond to terminal arbors of collateral branches or the main trunk of NM axons (see Figure 9E, F in their paper). Instead, they categorized axon diameters based on their distance from NL cell layer, showing that axon diameter increases distally (see Figure 9G in their paper). Notably, the diameters of ventral axons located more than 120 μm away from the NL cell layer is almost identical to those in the midline.

      As illustrated in our Figure 4D and Supplementary Video 2, the main trunk of the contralateral NM projection is predominantly located in these distal regions. Therefore, our findings complement those of Seidl et al. (2010) rather than contradicting them. We made this point as clear as possible in text (page 7, line 3).

      (3) The authors looked only in very young animals - are the results reported here applicable only to development, or does additional refinement take place with aging?

      In this study, we examined chick embryos from E9 to just before hatching (E21) and post-hatch chicks up to P9. Chickens begin to perceive sound around E12 and possess sound localization abilities at the time of hatching (Grier et al., 1967) (added to page 4, line 9). Therefore, by E21, the sound localization circuit is largely established.

      On the other hand, additional refinement of the circuit with aging is certainly possible. A key cue for sound localization, interaural time difference (ITD), depends on the distance between the two ears, which increases as the animal grows. As shown in Figure 2G, internodal length increased by approximately 20% between E18 and P9 while maintaining regional differences. Given that NM axons are nearly fully myelinated by E21 (Figure 4D, 6C), this suggests that myelin extends in proportion to the overall growth of the head and brain volume. We described this possibility in text (page 5, line 21)

      Thus, our study covers not only the early stages of myelination but also the post-functional maturation in the sound localization circuit.

      (4) The fact that internodal length is specified by the oligodendrocyte suggests that activity may not modify the location of nodes of Ranvier - although again, the authors have only looked during early development. This is quite different than this reviewer's original thoughts - that activity altered internodal length and axon diameter. Thus, the results here argue against node plasticity. The authors may choose to highlight this point or argue for or against it based on results in adult birds?

      In this study, we demonstrated that although vesicular release did not affect internodal length, it selectively promoted oligodendrogenesis, thereby supporting the full myelination and hence the pattern of nodal spacing along the NM axons. We believe that this finding falls within the broader scope of 'activity-dependent plasticity' involving oligodendrocytes and nodes.

      As summarized in the excellent review by Bonetto et al. (2021), activity-dependent plasticity in oligodendrocytes encompasses a wide range of phenomena, not limited to changes in internodal length but also including oligodendrogenesis. Moreover, the effects of neuronal activity are not uniform but likely depend on the diversity of both neurons and oligodendrocytes. For example, in the mouse visual cortex, activity-dependent myelination occurs in interneurons but not in excitatory neurons (Yang et al., 2020). Additionally, expression of TeNT in axons affected myelination heterogeneously in zebrafish; some axons were impaired in myelination and the others were not affected at all (Koudelka et al., 2016). In the mouse corpus callosum, neuronal activity influences oligodendrogenesis, which in turn facilitates adaptive myelination (Gibson et al., 2014).

      Thus, rather than refuting the role of activity-dependent plasticity in nodal spacing, our findings emphasize the diversity of underlying regulatory mechanisms. We described these explicitly in text (page 10, line 18).

      Significance

      This paper may argue against node plasticity as a mechanism for tuning of neural circuits. Myelin plasticity is a very hot topic right now and node plasticity reflects myelin plasticity. this seems to be a circuit where perhaps plasticity is NOT occurring. That would be interesting to test directly. One limitation is that this is limited to development.

      This paper does not argue against node plasticity, but rather demonstrates that oligodendrocytes in the NL region exhibit a form of plasticity; they proliferate in response to vesicular release from NM axons, yet do not undergo morphological changes, ensuring adequate oligodendrocyte density for the full myelination of the auditory circuit. Thus, activity-dependent plasticity involving oligodendrocytes would contributes in various ways to each neural circuit, which is presumably attributed to the fact that myelination is driven by complex multicellular interactions between diverse axons and oligodendrocytes. Oligodendrocytes are known to exhibit heterogeneity in morphology, function, responsiveness, and gene profiles (Foerster et al., 2019; Sherafat et al., 2021; Osanai et al., 2022; Valihrach et al., 2022), but functional significance of this heterogeneity remains largely unclear. This paper also provides insight into how oligodendrocyte heterogeneity may contribute to the fine-tuning of neural circuit function, adding further value to our findings. Importantly, our study covers the wide range of development in the sound localization circuit, from the pre-myelination (E9) to the postfunctional maturation (P9), revealing how the nodal spacing pattern along the axon in this circuit emerges and matures.

      Reviewer #2:

      Evidence, reproducibility and clarity

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Major points, detailed below, need to be addressed to overcome some limitations of the study.

      Major comments:

      (1) It is essential that the authors validate the efficiency of TeNT to prove that vesicular release is indeed inhibited, to be able to make any claims about the effect of vesicular release on oligodendrogenesis/myelination.

      eTeNT is a widely used genetically encoded silencing tool and constructs similar to the one used in this study have been successfully applied in primates and rodents to suppress target behaviors via genetic dissection of specific pathways (Kinoshita et al., 2012; Sooksawate et al., 2013). However, precisely quantifying the extent of vesicular release inhibition from NM axons in the brainstem auditory circuit is technically problematic.

      One major limitation is that while A3V efficiently infects NM neurons, its transduction efficiency does not reach 100%. In electrophysiological evaluations, NL neurons receive inputs from multiple NM axons, meaning that responses may still include input from uninfected axons. Additionally, failure to evoke synaptic responses could either indicate successful silencing or failure to stimulate NM axons, making a clear distinction difficult. Furthermore, unlike in motor circuits, we cannot assess the effect of silencing by observing behavioral outputs.

      Thus, we instead opted to quantify the precise expression efficiency of GFP-tagged eTeNT in the cell bodies of NM neurons. The proportion of NM neurons expressing GFP-tagged eTeNT was 89.7 ± 1.6% (N = 6 chicks), which is consistent with previous reports evaluating A3V transduction efficiency in the brainstem auditory circuit (Matsui et al., 2012). These results strongly suggest that synaptic transmission from NM axons was globally silenced by eTeNT at the NL region. We described these explicitly in text (page 8, line 2).

      (2) Related to 1, can the authors clarify if their TeNT expression system results in the whole tract being silenced? It appears from Fig. 6 that their approach leads to sparse expression of TeNT in individual neurons, which enables them to measure myelination parameters. Can the authors discuss how silencing a single axon can lead to a regional effect in oligodendrocyte number?

      Figure 6D depicts a representative axon selected from a dense population of GFP-positive axons in a 200-μm-thick slice after A3V-eTeNT infection to bilateral NM. As shown in Supplementary Video 1 and 2, densely labeled GFP-positive axons can be traced along the main trunk. To prevent any misinterpretation, we have revised the description of Figure 6 in the main text and Figure legend (page 31, line 9), and stated the A3V-eTeNT infection efficiency was 89.7 ± 1.6% in NM neurons, as mentioned above. Based on this efficiency, we interpreted that the global occlusion of vesicular release from most of the NM axons altered the pericellular microenvironment of the NL region, which led to the regional effect on the oligodendrocyte density.

      On the other hand, your question regarding whether sparse expression of eTeNT still has an effect is highly relevant. As we also discussed in our reply to comment 4 by Reviewer #1, the relationship between neuronal activity and oligodendrocytes is highly diverse. In some types of axons, vesicular release is essential for normal myelination, and this process was disrupted by TeNT (Koudelka et al., 2016), suggesting that direct interaction with oligodendrocytes via vesicle release may actively promote myelination in these types of axons.

      To clarify whether the phenotype observed in Figure 6 arises from changes in the pericellular microenvironment at the NL region or from the direct suppression of axon-oligodendrocyte interactions, we included a new Supplementary Figure (Figure 6—figure supplement 1). In this figure, we evaluated the node formation on the axon sparsely expressing eTeNT by electroporation into the unilateral NM. The results showed that sparse eTeNT expression did not increase the percentages of heminodes or unmyelinated segments. This finding supports our conclusion that the increased unmyelinated segments by A3V-eTeNT resulted from impaired synaptic transmission at NM terminals and subsequent alterations of  pericellular microenvironment at the NL region.

      (3) The authors need to fully revise their statistical analyses throughout and supply additional information that is needed to assess if their analyses are adequate:

      Thank you for your valuable suggestions to improve the rigor of our statistical analyses. We have reanalyzed all statistical tests using R software. In the revised Methods section and Figure Legends, we have clarified the rationale for selecting each statistical test, specified which test was used for each figure, and explicitly defined both n and N. After reevaluation with the Shapiro-Wilk test, we adjusted some analyses to non-parametric tests where appropriate. However, these adjustments did not alter the statistical significance of our results compared to the original analyses.

      (3.1) the authors use a variety of statistical tests and it is not always obvious why they chose a particular test. For example, in Fig. 2G they chose a Kruskal-Wallis test instead of a two-way ANOVA or MannWhitney U test, which are much more common in the field. What is the rationale for the test choice?

      We have revised the explanation of our statistical test choices to provide greater clarity and precision. For example, in Figure 2G, we first assessed the normality of the data in each of the four groups using the Shapiro-Wilk test, which revealed that some datasets did not follow a normal distribution. Given this, we selected the Kruskal-Wallis test, a commonly used non-parametric test for comparisons across three or more groups. Since the Kruskal-Wallis test indicated a significant difference, we conducted a post hoc Steel-Dwass test to determine which specific group comparisons were statistically significant.

      (3.2) in some cases, the choice of test appears wholly inappropriate. For example, in Fig. 3H-K, an unpaired t-test is inappropriate if the two regions were analysed in the same samples. In Fig. 5, was a ttest used for comparisons between multiple groups in the same dataset? If so, an ANOVA may be more appropriate.

      In the case of Figures 3H-K, we compared oligodendrocyte morphology between regions. However, since the number of sparsely labeled oligodendrocytes differs both between regions and across individual samples, there is no strict correspondence between paired measurements. On the other hand, in Figures 5B, C, and E, we compared the density of labeled cells between regions within the same slice, establishing a direct correspondence between paired data points. For these comparisons, we appropriately used a paired t-test.

      (3.3) in some cases, the authors do not mention which test was used (Fig 3: E-G no test indicated, despite asterisks; G/L/M - which regression test that was used? What does r indicate?)

      We have specified the statistical tests used for each figure in the Methods section and Figure Legends for better clarity. Additionally, we have revised the descriptions for Figure 4G, L, and M and their corresponding Figure Legends to explicitly indicate that Spearman’s rank correlation coefficient (rₛ) was used for evaluation.

      (3.4) more concerningly, throughout the results, data may have been pseudo-replicated. t-tests and ANOVAs assume that each observation in a dataset is independent of the other observations. In figures 1-4 and 6 there is a very large "n" number, but the authors do not indicate what this corresponds to. This leaves it open to interpretation, and the large values suggest that the number of nodes, internodal segments, or cells may have been used. These are not independent experimental units, and should be averaged per independent biological replicate - i.e. per animal (N).

      We have now clarified what “n” represents in each figure, as well as the number of animals (N) used in each experiment, in the Figure Legends.

      In this study, developmental stages of chick embryos were defined by HH stage (Hamburger and Hamilton, 1951), minimizing individual variability. Additionally, since our study focuses on the distribution of morphological characteristics of individual cells, averaging measurements per animal would obscure important cellular-level variability and potentially mislead interpretation of data. Furthermore, we employed a strategy of sparse genetic labeling in many experiments, which naturally results in variability in the number of measurable cells per animal. Given the clear distinctions in our data distributions, we believe that averaging per biological replicate is not essential in this case.

      To further ensure the robustness of our statistical analysis, data presented as boxplots were preliminarily assessed using PlotsOfDifferences, a web-based application that calculates and visualizes effect sizes and 95% confidence intervals based on bootstrapping (https://huygens.science.uva.nl/PlotsOfDifferences/; https://doi.org/10.1101/578575). Effect sizes can serve as a valuable alternative to p-values (Ho, 2018; https://www.nature.com/articles/s41592019-0470-3). The significant differences reported in our study are also supported by clear differences in effect sizes, ensuring that our conclusions remain robust regardless of the statistical approach used.

      If requested, we would be happy to provide PlotsOfDifferences outputs as supplementary source data files, similar to those used in eLife publications, for each figure.

      (3.5) related to the pseudo-replication issue, can the authors include individual datapoints in graphs for full transparency, per biological replicates, in addition or in alternative to bar-graphs (e.g. Fig. 5 and 6).

      We have now incorporated individual data points into the bar graphs in Figures 5 and 6.

      (4) The main finding of the study is that the density of nodes differs between two regions of the chicken auditory circuit, probably due to morphological differences in the respective oligodendrocytes. Can the authors discuss if this finding is likely to be specific to the bird auditory circuit?

      The morphological differences of oligodendrocytes between white and gray matter are well established (i.e. shorter myelin at gray matter), but their correspondence with the nodal spacing pattern along the long axonal projections of cortical neurons is not well understood. Future research may find similarities with our findings. Additionally, as mentioned in the final section of the Discussion, the mammalian brainstem auditory circuit is functionally analogous to the avian ITD circuit. Regional differences in nodal spacing along axons have also been observed in the mammalian system, raising the important question of whether these differences are supported by regional heterogeneity in oligodendrocytes. Investigating this possibility will facilitate our understanding of the underlying logic and mechanisms for determining node spacing patterns along axons, as well as provide valuable insights into evolutionary convergence in auditory processing mechanisms. We described these explicitly in text (page 11, line 34).

      (5) Provided the authors amend their statistical analyses, and assuming significant differences remain as shown, the study shows a correlation (but not causation) between node spacing and oligodendrocyte density, but the authors did not manipulate oligodendrocyte density per se (i.e. cell-autonomously). Therefore, the authors should either include such experiments, or revise some of their phrasing to soften their claims and conclusions. For example, the word "determine" in the title could be replaced by "correlate with" for a more accurate representation of the work. Similar sentences throughout the main text should be amended.

      As you summarized in your comment, our results demonstrated that A3V-eTeNT suppressed oligodendrogenesis in the NL region, leading to a reduction in oligodendrocyte density (Figures 6L, M), which caused the emergence of unmyelinated segments. While this is an indirect manipulation of oligodendrocyte density, it nonetheless provides evidence supporting a causal relationship between oligodendrocyte density and nodal spacing.

      The emergence of unmyelinated segments at the NL region further suggests that the myelin extension capacity of oligodendrocytes differs between regions, highlighting regional differences in intrinsic properties of oligodendrocyte as the most prominent determinant of nodal spacing variation. However, as you correctly pointed out, our findings do not establish direct causation.

      In the future, developing methods to artificially manipulate myelin length could provide a more definitive demonstration of causality. Given these considerations, we have modified the title to replace "determine" with "underlie", ensuring that our conclusions are presented with appropriate nuance.

      (6) The authors fail to introduce, or discuss, very pertinent prior studies, in particular to contextualize their findings with:

      (6.1) known neuron-autonomous modes of node formation prior to myelination, e.g. Zonta et al (PMID 18573915); Vagionitis et al (PMID 35172135); Freeman et al (PMID 25561543)

      (6.2) known effects of vesicular fusion directly on myelinating capacity and oligodendrogenesis, e.g. Mensch et al (PMID 25849985)

      (6.3) known correlation of myelin length and thickness with axonal diameter, e.g. Murray & Blakemore (PMID 7012280); Ibrahim et al (PMID 8583214); Hildebrand et al (PMID 8441812).

      (6.4) regional heterogeneity in the oligodendrocyte transcriptome (page 9, studies summarized in PMID 36313617)

      Thank you for your insightful suggestions. We have incorporated the relevant references you provided and revised the manuscript accordingly to contextualize our findings within the existing literature.

      Minor comments:

      (7) Can the authors amend Fig. 1G with the correct units of measurement, not millimetres.

      Response: 

      Thank you for your suggestion. We have corrected the units in Figure 1G to µm

      (8) The Olig2 staining in Fig 2C does not appear to be nuclear, as would be expected of a transcription factor and as is well established for Olig2, but rather appears to be excluded from the nucleus, as it is in a ring or donut shape. Can the authors comment on this?

      Oligodendrocytes and OPCs have small cell bodies, often comparable in size to their nuclei. The central void in the ring-like Olig2 staining pattern appears too small to represent the nucleus. Additionally, a similar ring-like appearance is observed in BrdU labeling (Figure 5G), suggesting that this staining pattern may reflect nuclear morphology or other structural features.

      Significance

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

      The main finding of our study is that the primary determinant of the biased nodal spacing pattern in the sound localization circuit is the regional heterogeneity in the morphology of oligodendrocytes due to their intrinsic properties (e.g., their ability to produce and extend myelin sheaths) rather than the density of the cells. This was based on our observations that a reduction of oligodendrocyte density by A3V-eTeNT expression caused unmyelinated segments but did not increase internodal length (Figure 6), further revealing the importance of oligodendrocyte density in ensuring full myelination for the axons with short internodes. Thus, we think that our study could propose the significance of oligodendrocyte heterogeneity in the circuit function as well as in the nodal spacing using experimental manipulation of oligodendrocyte density. 

      Reviewer #3:

      Evidence, reproducibility and clarity

      The authors have investigated the myelination pattern along the axons of chick avian cochlear nucleus. It has already been shown that there are regional differences in the internodal length of axons in the nucleus magnocellularis. In the tract region across the midline, internodes are longer than in the nucleus laminaris region. Here the authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons. However, the demonstration falls rather short of being convincing. I have some major concerns:

      (1) The authors neglect the possibility that nodal cluster may be formed prior to myelin deposition. They have investigated stages E12 (no nodal clusters) and E15 (nodal cluster plus MAG+ myelin). Fig. 1D is of dubious quality. It would be important to investigate stages between E12 and E15 to observe the formation of pre-nodes, i.e., clustering of nodal components prior to myelin deposition.

      Thank you for your insightful comment regarding the potential role of pre-nodal clusters in determining internodal length. Indeed, studies in zebrafish have suggested that pre-nodal clustering of node components prior to myelination may prefigure internodal length (Vagionitis et al., 2022). We have incorporated a discussion on whether such pre-nodal clusters could contribute to regional differences in nodal spacing in our manuscript (page 9, line 35).

      Whether pre-nodal clusters are detectable before myelination appears to depend on neuronal subpopulation (Freeman et al., 2015). To investigate the presence of pre-nodal clusters along NM axons in the brainstem auditory circuit, we previously attempted to visualize AnkG signals at E13 and E14. However, we did not observe clear structures indicative of pre-nodal clusters; instead, we only detected sparse fibrous AnkG signals with weak Nav clustering at their ends, consistent with hemi-node features. This result does not exclude the possibility of pre-nodal clusters on NM axons, as the detection limit of immunostaining cannot be ruled out. In brainstem slices, where axons are densely packed, nodal molecules are expressed at low levels across a wide area, leading to a high background signal in immunostaining, which may mask weak pre-nodal cluster signals prior to myelination. Regarding the comment on Figure 1D, we assume you are referring to Figure 2D based on the context. The lack of clarity in the high-magnification images in Figure 2D results from both the high background signal and the limited penetration of the MAG antibody. Furthermore, we are unable to verify Neurofascin accumulation at pre-nodal clusters, as there is currently no commercially available antibody suitable for use in chickens, despite our over 20 years of efforts to identify one for AIS research. Therefore, current methodologies pose significant challenges in visualizing pre-nodal clusters in our model. Future advancements, such as exogenous expression of fluorescently tagged Neurofascin at appropriate densities or knock-in tagging of endogenous molecules, may help overcome these limitations.

      However, a key issue to be discussed in this study is not merely the presence or absence of prenodal clusters, but rather whether pre-nodal clusters—if present—would determine regional differences in internodal length. To address this possibility, we have added new data in Figure 6I, measuring the length of unmyelinated segments that emerged following A3V-eTeNT expression.

      If pre-nodal clusters were fixed before myelination and predetermined internodal length, then the length of unmyelinated segments should be equal to or a multiple of the typical internodal length. However, our data showed that unmyelinated segments in the NL region were less than half the length of the typical NL internodal length, contradicting the hypothesis that fixed pre-nodal clusters determine internodal length along NM axons in this region.

      (2) The claim that axonal diameter is constant along the axonal length need to be demonstrated at the EM level. This would also allow to measure possible regional differences in the thickness of the myelin sheath and number of myelin wraps.

      As mentioned in our reply to comment 2 by Reviewer #1, the diameter of NM axons was already evaluated using electron microscopy (EM) in the pioneering study by Seidl et al., (2010). Additionally, EM-based analysis makes it difficult to clearly distinguish between the main trunk of NM axons and thin collateral branches at the NL region. Accordingly, we did not do the EM analysis in this revision. 

      In Figure 4, we used palGFP, which is targeted to the cell membrane, allowing us to measure axon diameter by evaluating the distance between two membrane signal peaks. This approach minimizes the influence of the blurring of fluorescence signals on diameter measurements. Thus, we believe that our method is sufficient to evaluate the relative difference in axon diameters between regions and hence to show that axon diameter is not the primary determinant of the 3-fold difference in internodal length between regions. 

      (3) The observation that internodal length differs is explain by heterogeneity of sources of oligodendrocyte is not convincing. Oligodendrocytes a priori from the same origin remyelinate shorter internode after a demyelination event.

      The heterogeneity in oligodendrocyte morphology would reflect differences in gene profiles, which, in turn, may arise from differences in their developmental origin and/or pericellular microenvironment of OPCs. We made this point as clear as possible in Discussion (page 9, line 21).

      Significance

      The authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The paper sets out to examine the social recognition abilities of a 'solitary' jumping spider species. It demonstrates that based on vision alone spiders can habituate and dishabituate to the presence of conspecifics. The data support the interpretation that these spiders can distinguish between conspecifics on the basis of their appearance.

      We appreciate the reviewer’s summary. We indeed aimed at investigating the social recognition abilities of the solitary jumping spider (Phidippus regius), using visual cues alone. By employing a habituation-dishabituation paradigm, well-established in developmental psychology, we found support for the interpretation that these spiders can distinguish between conspecifics based on their appearance, as the reviewer noted.

      Strengths:

      The study presents two experiments. The second set of data recapitulates the findings of the first experiment with an independent set of spiders, highlighting the strength of the results. The study also uses a highly quantitative approach to measuring relative interest between pairs of spiders based on their distance.

      We appreciate the reviewer's acknowledgement of the strengths of our study. The second set of data underscores the robustness and reliability of the results. Additionally, however, the second experiment served the purpose of disentangling whether the habituation effect observed over sessions was caused by ‘physical’ or ‘cognitive’ fatigue by employing ‘long-term’ dishabituation trials at the end of Session 3. These trials are critical in our study as they help to differentiate between recognition of individual identities versus recognition of familiar individuals (as opposed to unfamiliar ones) and to determine if the observed effects are due to ‘general habituation’ or ‘specific recognition’. We will elaborate on this further below in this revision.

      As stated by the reviewer, we employed a highly quantitative approach to measure relative interest between pairs of spiders based on their distance, providing precise and objective data to support our conclusions.

      Weaknesses:

      The study design is overly complicated, missing key controls, and the data presented in the figures are not clearly connected to the study. The discussion is challenging to understand and appears to make unsupported conclusions.

      While we acknowledge that the study design is indeed complex, this complexity is essential for conducting a well-controlled and balanced experiment regarding the experimental conditions.  

      The habituation-dishabituation paradigm is a well-established paradigm in developmental psychology with non-verbal infants. It is understood that during the habituation phase, an individual's attention to a repeated stimulus decreases as they engage in information processing and form a mental representation of it. As the stimulus becomes familiar, it loses its novelty and interest. When a new stimulus is introduced, a recovery of attention suggests that the individual has compared this new stimulus to the stored memory of the habituation stimulus and detected a difference. This process suggests that the individual not only remembered the original stimulus but also recognized the new one as distinct (for a review Kavšek & Bornstein, 2010).

      This paradigm has also been extensively applied in animal research, where, like infants, nonverbal subjects rely on recognition and discrimination processes to demonstrate their cognitive abilities. The use of this paradigm dates back to seminal studies such as Humphrey (1974), which explored the perceptual world of monkeys, illustrating how species and individuals are perceived and recognized. In another previous study (Dahl, Logothetis, and Hoffman, 2007), we utilized an even more complex experimental design that incorporated dedicated baseline trials for both habituation and dishabituation phases, which was well-received despite its complexity. In the current study, we contrast dishabituation and habituation trials directly, creating a sequential cascade where each trial is evaluated against the preceding one as its baseline.

      On the basis of these arguments, we respectfully decline the claim that this paradigm is inappropriate or lacks key controls. Our study design, though complex, is rigorously grounded in established methodologies and offers a robust framework for exploring individual recognition in Phidippus regius.

      However, we take the reviewer’s comments seriously and are committed to identifying and addressing the aspects in our manuscript that may have led to misunderstandings. We clarify these areas in our revision of the manuscript. Modifications were made in the Introduction, Methods, and Discussion sections.

      Dahl, C. D., Logothetis, N. K., & Hoffman, K. L. (2007). Individuation and holistic processing of faces in rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 274(1622), 2069-2076.

      Humphrey, N. K. (1974). Species and individuals in the perceptual world of monkeys. Perception, 3(1), 105-114.

      Kavšek, M., & Bornstein, M. H. (2010). Visual habituation and dishabituation in preterm infants: A review and meta-analysis. Research in developmental disabilities, 31(5), 951-975.

      (1) Study design: The study design is rather complicated and as a result, it is difficult to interpret the results. The spiders are presented with the same individual twice in a row, called a habituation trial. Then a new individual is presented twice in a row. The first of these is a dishabituation trial and the second is another habituation trial (but now habituating to a second individual). This is done with three pairings and then this entire structure is repeated over three sessions. 

      While we acknowledge that the design is complex, this complexity is essential for conducting a well-controlled experiment, as described earlier. As the reviewer noted, our design involves presenting the same individual to the focal spider twice in a row (habituation trial), followed by a new individual (dishabituation trial), and then repeating this structure. This approach is fundamental to the habituation-dishabituation paradigm, which allows us to systematically compare the responses to a familiar individual with those elicited by a novel one. If the spiders exhibit different behaviours in terms of the distance they maintain when encountering the same individual versus a new one, it indicates that they are processing the stimuli differently, consistent with recognition memory. This differential response is a key indicator that the spiders can distinguish between familiar and unfamiliar individuals, demonstrating not only a decrease in interest or engagement due to repeated exposure but also a cognitive process where the lack of a matching memory template triggers a distinct behavioural response when confronted with novel stimuli.

      By repeating this sequence two more times (Session 2 and 3), we aim to assess the consistency of this recognition process over time. If the focal spider does not remember the individuals from the previous session (one hour ago), we expect consistent behavioural responses across sessions. Conversely, if there is a decrease in response magnitude but the overall response patterns are maintained, we can infer that the focal spider recognizes the previously presented individuals and exhibits habituation, reflected in reduced response intensity. In other words, over sessions and repeated exposure to the same individuals, the memory traces become more firmly established, leading to a situation where a dishabituation trial introduces less novelty, as the spider's recognition of previously encountered individuals becomes more robust and consistent to the point where “habituation” and “dishabituation” trials become indistinguishable, as observed in Session 3. This method allows us to assess the duration of identity recognition in these spiders, indicating how long the memory of specific individuals persists. 

      All of these outcomes were anticipated before we began Experiment 1. Given that the results aligned with our predictions, we then sought to determine whether the observed reduction in the magnitude of the effect (i.e., the difference between habituation and dishabituation trials) was due to a physical fatigue effect, where the spiders might simply be getting tired, or a cognitive fatigue effect, where the spiders recognized the individuals and as a result did not exhibit any novelty response. To address this, we replicated the experiment with a new group of spiders and introduced special (long-term dishabituation) trials at the end, where the focal spider was presented with a novel spider. 

      These extra trials allowed us to disentangle the nature of the diminishing response across repeated sessions: a lack of dishabituation (remaining distant) would suggest general physical fatigue, whereas a strong dishabituation response (approaching closely) to the novel spider would indicate cognitive fatigue, thereby confirming that the spiders were indeed recognizing the familiar individuals throughout the experiment. 

      In light of these considerations, we believe that the complexity of our design is not only justified but absolutely necessary to rigorously test the cognitive capabilities of the spiders. Nonetheless, we understand the need for clarity in presenting our findings and are committed to refining our manuscript to better communicate the rationale and results of our study.

      The data appear to show the strong effects of differences between habituation and dishabituation trials in the first session. The decrease in differential behavior between the socalled habituation and dishabituation trials in sessions 2 and 3 is explained as a consequence of the spiders beginning to habituate in general to all of the individuals. 

      The key question, as mentioned above, is to determine the underlying cause of this general habituation across sessions. Specifically, we aim to differentiate between two potential causes: physical fatigue, where the spiders may simply become less responsive due to the demands of the three-hour testing period, or cognitive fatigue, where the repeated exposure to the same individuals leads to a decreased response because the spiders have started to recognize these individuals over multiple repetitions.

      To address this, we replicated the experiment and introduced each focal spider to a new individual in what we termed "long-term dishabituation" trials. By comparing the spiders' responses to these novel individuals with their responses in earlier trials, we sought to better understand the underlying mechanisms of habituation and the duration of individual recognition. The strong dishabituation response observed in these trials is indicative of cognitive fatigue, supporting the presence of recognition memory rather than a general physical fatigue effect.

      The claim that the spiders remember specific individuals is somewhat undercut because all of the 'dishabituation' trials in session 2 are toward spiders they already met for 14 minutes previously but seemingly do not remember in session 2. 

      We appreciate the reviewer’s comment regarding the claim that spiders do not remember specific individuals. This assessment does not align with the rationale of our experiment. The reviewer noted that the dishabituation trials in session 2 involved spiders previously encountered and suggested that the lack of a clear memory response might undercut the claim of specific individual recognition. 

      However, as we explained earlier, we expect habituation in Session 2 relative to Session 1 precisely because spiders recognize each other in Session 2. If there were no such habituation in Sessions 2 or 3, it would suggest that the spiders’ recognition memory does not persist beyond one hour. 

      Additionally, it is important to correct the timing noted by the reviewer: each individual spider reencounters the same spider exactly one hour later, not 14 minutes. This is detailed in Table 2 of the manuscript, which outlines that each trial lasts 7 minutes, with a 3-minute visual separation between trials. With six trials per session, this totals to 1 hour per session. Thus, every pair of spiders re-encounters exactly 1 hour after their last interaction.

      Again, it is important to clarify that the observed decrease in differential behaviour is not indicative of a failure to remember specific individuals. Rather, it reflects a systematic pattern of habituation, which is a common and expected outcome in such paradigms. This systematic decrease in response strength suggests that the spiders recognize the previously encountered individuals and becoming less responsive over repeated exposures, consistent with the process of habituation. In different terms, the repeated exposure to the same individuals leads to more firmly established memory traces, leading to a situation where a dishabituation trial introduces less novelty, as the spider's recognition of previously encountered individuals becomes more robust and consistent.

      Based on the explanations provided above, we respectfully reject the claim that “the spiders remember specific individuals is somewhat undercut […]”. In contrast, this claim is incorrect, as the exact opposite is true. The very strength of our study lies in demonstrating that spiders possess robust recognition memory, as evidenced by a clear dissociation of habituation and dishabituation trials in Session 1, followed by a gradually diminishing effect over Session 2 and 3 as the spiders are increased exposed to the same individuals: Furthermore, the strong rebound from habituation observed in long-term dishabituation trials, where the spiders were exposed to novel individuals. 

      This misunderstanding suggests that we should take additional care in the revised manuscript to clarify our explanations and provide more detail, ensuring that the rationale behind our experimental design and findings are communicated effectively.

      In session 3 it is ambiguous what is happening because the spiders no longer differentiate between the trial types. This could be due to fatigue or familiarity. 

      The reviewer proposes that the absence of differentiation between 'habituation' and 'dishabituation' trials in Session 3 might be attributed to either fatigue or familiarity. We interpret "fatigue" as what we have termed the “physical fatigue effect” and "familiarity" as “cognitive fatigue effect.” In this context, we concur with the reviewer’s observation, and this very line of reasoning prompted us to conduct a further experiment following the outcome of Experiment 1.

      A second experiment is done to show that introducing a totally novel individual, recovers a large dishabituation response, suggesting that the lack of differences between 'habituation' and 'dishabituation' trials in session 3 is the result of general habituation to all of the spiders in the session rather than fatigue. As mentioned before, these data do support the claim that spiders differentiate among individuals.

      As the reviewer rightly noted, we addressed these possibilities in our second experiment by introducing a completely novel individual to the spiders, which resulted in a strong dishabituation response. This outcome suggests that the lack of differentiation in Session 3 is more likely due to cognitive habituation rather than physical fatigue. The robust response to novel individuals demonstrates that the spiders are capable of distinguishing between familiar and unfamiliar individuals, suggesting that the reduced differentiation is a consequence of habituation from repeated encounters with the same individuals. 

      We appreciate the reviewer's recognition that these findings support the conclusion that spiders are capable of differentiating between individual conspecifics.

      Additionally, it is important to clarify the structure of our sessions. Each of the 6 trials lasts 7 minutes with a 3-minute visual separation, resulting in a total of 1 hour per session. This ensures that each pair of spiders is encountered exactly one hour later, which controls for the timing and allows us to evaluate the spiders' recognition memory over repeated sessions.

      In summary, while the data show a decrease in differential behaviour between habituation and dishabituation trials in Session 2 and 3, the results from our second experiment support the interpretation that this is due to ‘cognitive habituation’ (familiarization) rather than ‘physical fatigue’ (general habituation). This habituation effect underscores the spiders' ability to recognize and become familiar with specific individuals over time, reinforcing our conclusion that they can differentiate among individuals.

      The data from session 1 are easy to interpret. The data from sessions 2 and 3 are harder to understand, but these are the trials in which they meet an individual again after a substantial period of separation. 

      The data from Session 1 are straightforward to interpret, showing clear differences between habituation and dishabituation trials. However, the data from Sessions 2 and 3 are more complex, as these sessions involve the spiders re-encounter individuals after a 1-hour period of separation. Importantly, the outcome is not an artefact in our experiment, but the consequence of a deliberate choice in the experimental design to assess whether spiders can recognise each other after this duration. We believe that this complexity aligns with our expectations, based on the assumption that spiders can recognise each other after one hour. The observed pattern of habituation in Sessions 2 and 3 suggests that the spiders retain memory of the individuals, leading to decreased responsiveness upon repeated encounters. This interpretation is further supported by the Experiment 2, which introduced a novel individual and elicited a strong dishabituation response. This finding confirms that the reduced differentiation in later sessions is due to cognitive habituation rather than physical fatigue, supporting the conclusion that recognition memory last at least one hour.

      We hope this explanation clarifies our findings and the rationale behind our relatively complex experimental design choice. 

      Other studies looking at recognition in ants and wasps (cited by the authors) have done a 4 trial design in which focal animal A meets B in the first trial, then meets C in the second trial, meets B again in the third trial, and then meets D in the last trial. In that scenario trials 1, 2, and 4 are between unfamiliar individuals and trial 3 is between potentially familiar individuals. In both the ants and wasps, high aggression is seen in species with and without recognition on trial 1, with low aggression specifically for trials with familiar individuals in species with recognition. Across different tests, species or populations that lack recognition have shown a general reduction in aggression towards all individuals that become progressively less aggressive over time (reminiscent of the session 2 and 3 data) while others have maintained modest levels of aggression across all individuals. The 4 session design used in those other studies provides an unambiguous interpretation of the data while controlling for 'fatigue'. 

      We acknowledge that there are multiple ways to design experiments to test recognition memory. In fact, we considered using the paradigm similar to the one proposed by the reviewer and used in studies like Dreier et al., which involves a series of trials with unfamiliar and familiar individuals over extended intervals. We then, however, opted for a more complex design to rigorously assess how habituation and recognition memory develop over repeated sessions with shorter intervals.

      In the following, we would like to describe the advantages and disadvantages of both paradigms and outline how we ended up using the more complex version:

      Advantages of our paradigm: 

      As pointed out, by repeating the sequence in exactly similar manner (every same pair of spiders reoccurs after exactly 1 and 2 hours), we can comprehensively evaluate the effect of habituation over multiple exposures. This allows us to assess the extent of the spiders’ memory, when a spider shows stronger habituation to individuals that were novel in Session 1 but “familiar” by the time they encounter them again in Session 2. To achieve this, we need to ensure that each trial and visual separation is precisely timed, ensuring consistent intervals between encounters. As a consequence, each individual spider undergoes the exact same experimental protocol. Most critically, however, are the novel individuals presented after Session 3 (long-term dishabituation trials) that help differentiate between cognitive habituation and physical fatigue.  Disadvantages of our paradigm:

      The sequences of habituation and dishabituation trials may make the design more complex, as pointed out by the reviewer. As a consequence, the interpretation will become more difficult. However, the data perfectly align with our predictions, and the outcomes were as anticipated in two independently run experiments with two groups of spiders. This highlights the reliability of our experimental design and robustness of our findings.

      Advantages of the 4-trial paradigm proposed by the reviewer:

      Clearly, the structure of the proposed design is simpler, making interpretation easier. The paradigm also accommodates longer intervals between trials (e.g., 24 hours). Longer intervals could theoretically have been applied in our study. (However, we chose not to leave the spiders in the experimental box longer than necessary, opting instead to return them to their home containers for the night to ensure their well-being. And, a 24-hour interval targets a different phase in the process of long-term memory, but more to this topic further below.)

      Disadvantages of the 4-trial paradigm proposed by the reviewer:

      Strictly replicating the 4-trial design would result in one familiar encounter versus three unfamiliar ones. This imbalance might introduce bias and limit the robustness of the measurements. Additionally, the design provides less data overall, as the focal individual will be confronted with three other individuals, who will then be excluded from further testing as focal subjects themselves. In contrast, our design ensures a balanced number of familiar0020(habituation) and novel encounters (dishabituation) for each focal individual, allowing for more efficient and comprehensive data collection without excluding individuals from further testing.

      Given the aforementioned considerations, we determined that the advantages of our experimental design, in particular the assessment of a cognitive fatigue effect when encountering the same individuals again, outweigh those of the proposed 4-trial design. The mentioned limitations of the 4-trial design, such as the potential for bias and less comprehensive data collection, do not justify re-running the study, especially when the best case scenario is fewer insights than our already existing findings. Our current paradigm yielded results that align perfectly with our predictions, offering a thorough and reliable understanding of recognition memory and habituation in spiders. Therefore, we believe our approach provides a more complete and robust answer to our research questions.

      However, we acknowledge that there might be insufficient information in the manuscript addressing the rationale behind our design choices, and we will revise the manuscript to provide a clearer explanation of why our approach is well suited to answering the research questions at hand.

      That all trials in sessions 2 and 3 are always with familiar individuals makes it challenging to understand how much the spiders are habituating to each other versus having some kind of associative learning of individual identity and behavior.

      We understand the reviewer's concern that having all trials in Sessions 2 and 3 involve familiar individuals could make it challenging to distinguish between general habituation and associative learning of individual identities. In our study, we contrast habituation and dishabituation trials: If general habituation were occurring, we would expect uniformly reduced responses (around the zero line) to all individuals over time, indicating that the spiders are getting used to any individual regardless of their specific identity. However, this is not the case. Our data show that while the responses in Session 2 are reduced in effect size compared to Session 1, they are not flat (around the zero line). This indicates that the spiders still differentiate between a repetition of a spider identity (habituation trials) and two different spider identities (dishabituation trials), albeit with a reduced response strength. The systematicity in the data suggests that the spiders are not merely habituating to any individual, but are instead retaining some level of recognition between specific individuals.

      Only by Session 3 do the spiders fully habituate to the point where the responses to habituation and dishabituation trials converge, indicating a complete habituation effect. The introduction of novel individuals in our long-term dishabituation trials further supports the idea that the spiders are recognizing specific individuals rather than exhibiting general habituation. If the spiders were experiencing general habituation, we would not expect the strong dishabituation response observed in our study.

      The data presentation is also very complicated. How is it the case that a negative proportion of time is spent? The methods reveal that this metric is derived by comparing the time individuals spent in each region relative to the previous time they saw that individual. 

      We understand the reviewer's concern regarding the complexity of the data presentation and the calculation of the negative proportion of time. Regarding the complexity of the design, we have already justified our choice of a more intricate experimental setup. This complexity is necessary for accurately assessing recognition memory and habituation over repeated sessions. 

      The metric is derived by comparing the time individuals spent in each region (relative to the transparent front panel) in the current trial (n) relative to the previous trial (n-1). With multiple trials, this results in a cascade of trials and conditions. This method was established in

      Humphrey’s and our previous study (Humphrey, 1974; Dahl, Logothetis, Hoffman, 2007), where we demonstrated its effectiveness in assessing individuation of faces in macaque monkeys.  

      Also in our current experimental design, each current trial is contrasted with the preceding one, allowing us to compare distributions of distances taken in two trials. In this context, every preceding trial serves as baseline for every current trial. 

      Figure 1 of the manuscript, illustrates the structure and analysis of the trials,

      Panel a depicts the baseline, habituation, and dishabituation trials, where spiders are exposed to different conspecifics.

      Baseline (left panel, red): When two spiders are visually exposed to each other for the first time, it is expected that they will explore each other closely, exhibiting high levels of proximity (initial exploratory behaviour).

      Habituation (centre panel, green): When the same spiders are reintroduced in a subsequent round of exposure, it is anticipated that they will exhibit reduced exploratory behaviour and maintain a greater distance compared to the baseline trial, if they recognize each other from the previous encounter (indicative of habituation).

      Panel b (upper and middle panels; red and green): Demonstrates the theoretical assumptions and expected changes in behaviour:

      By subtracting the distribution of distances in the baseline trial from the habituation trial, we generate a delta distribution. This delta distribution reveals negative values near the transparent panel (indicating reduced proximity in the habituation trial) and positive values at mid- to fardistances (indicating increased distancing behaviour). This delta distribution is also what is reported in Figure 2. 

      Dishabituation: In this trial, a new spider (different from the one in the habituation trial) is introduced. The dishabituation trial will be considered in contrast to the habituation trial described above. If the spider recognizes the new individual as different, it is expected to show increased exploratory behaviour and reduced distance, similar to the initial baseline trial.

      By subtracting the distribution of distances in the habituation trial from the dishabituation trial, we obtain another delta distribution. This delta distribution should reveal positive values near the transparent panel (indicating increased proximity in the dishabituation trial) and negative values at mid- to far-distances (indicating decreased proximity compared to the habituation trial).

      We hope this clarifies the rationale behind our data presentation and the methodological approach we employed. We have revised the figure to enhance its clarity and make it more intuitive for the reader.

      Dahl, C. D., Logothetis, N. K., & Hoffman, K. L. (2007). Individuation and holistic processing of faces in rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 274(1622), 2069-2076.

      Humphrey, N. K. (1974). Species and individuals in the perceptual world of monkeys. Perception, 3(1), 105-114.

      At the very least, data showing the distribution of distances from the wall would be much easier to interpret for the reader.

      We understand the reviewer's concern that data showing the distribution of distances from the wall would be much easier to interpret for the reader. We initially consider that but came to the conclusion that this approach is not straightforward. For instance, if both spiders are positioned at the very front but in different corners, the distance to the panel would be very small, but the distance between the spiders would be large. Thus, using distances from the wall could misrepresent the actual spatial distribution between the spiders.

      (2) "Long-term social memory": It is not entirely clear what is meant by the authors when they say 'long-term social memory', though typically long-term memory refers to a form of a memory that requires protein synthesis.  

      To address this conceptually, we used the term "long-term social memory" to describe the spiders' ability to recognize and remember individual conspecifics over multiple experimental sessions. While social memory refers to the ability of an individual to recognize other individuals within a social context, long-term memory typically involves the retention of information over extended periods. Recognizing that the term “long-term social memory” is not commonly used, we have revised the manuscript to use the more standard term “long-term memory.”

      While the precise timing of memory formation varies across species and contexts, a general rule is that long-term memory should last for > 24 hours (e.g., Dreier et al 2007 Biol Letters). The longest time that spiders are apart in this trial setup is something like an hour. There is no basis to claim that spiders have long-term social memory as they are never asked to remember anyone after a long time apart.

      We appreciate the reviewer’s feedback regarding the term "long-term social memory." The statement "long-term memory should last for > 24 hours" is a generalisation in discussions about memory. It oversimplifies a more complex topic. That is, long-term memory is typically distinguished from short-term memory by its persistence over time, often lasting from hours to a lifetime. However, the exact duration that qualifies memory as "long-term" varies depending on the context, model species, and type of memory. In studies involved in synaptic plasticity (LTP), the object might indeed be to look at memory that persists for at least 24 hours as a criterion for long-term memory. In studies of cellular and/or molecular mechanisms where the stabilization and consolidation of memory traces over time are key areas of interest this 24-hour interval is very common. But, defining long-term memory strictly by a 24-hour duration is by no means universally accepted nor does it apply across all fields of study.

      To clarify, long-term memory is a process involving consolidation starting within minutes to hours after learning. Clearly, full consolidation can take longer, while memory persisting 24 hours is considered fully consolidated. But this does not mean that memory lasting less than 24 hours are not part of long-term memory. 

      In fact, Atkinson and Shiffrin (1969) proposed that information entering short-term memory remains there for about 20 to 30 seconds before being displaced due to space limitations. During this brief interval, initial encoding processes begin transferring information to long-term memory, establishing an initial memory trace. This transfer is not indicative of full consolidation but represents the initial "laying down" of the memory trace (encoding). In our study, the focal spider’s brain forms initial memory traces of the individuals it encounters. This process continues during the period of visual separation. Upon re-encountering the same individual a few minutes later, the spider accesses the initial memory trace stored in long-term memory. This trace is fragile and not fully consolidated. The re-encounter acts as a rehearsal, reactivating specific memory traces and potentially strengthening them through additional encoding processes, allowing the spider to recognize the individual even an hour later.

      According to Markowitsch (2013), initial encoding in long-term memory begins within seconds to minutes. It is also important to note that we argue for identity recognition rather than identity recall. Recognition involves correctly identifying a stimulus when it is presented again, while recall requires the volitional generation of information without an external stimulus. Thus, recall may rely on deeper forms of memory consolidation than recognition.

      Is protein synthesis required for long-term memory? 

      The role of protein synthesis in long-term memory has been extensively studied. According to Castellucci et al. (1978), explicit memory comprises a short-term phase that does not require protein synthesis and a long-term phase that does. Hebbian learning in its initial phase (early LTP) does not necessarily require protein synthesis. This phase involves the rapid strengthening of synapses through existing proteins and signaling pathways, such as the activation of NMDA receptors and the influx of Ca2+ ions. For the changes to persist (late LTP), protein synthesis is important. This phase involves the production of new proteins that contribute to long-term structural changes at the synapse, such as the growth of new synaptic connections or the stabilization of existing ones.

      This differentiation between the early and late phases of LTP highlights that long-term memory can begin forming without immediate protein synthesis. Our study focuses on this early phase of memory encoding, which involves the initial formation of memory traces that do not yet depend on protein synthesis. 

      It is however worth noting that recent research suggests that there is an early phase of protein synthesis (within minutes to hours) through the activation of immediate early genes (IEGs) and transcription factors. In this context, protein synthesis supports initial synaptic modifications. What the reviewer refers to is the consolidation phase (late phase), where continued synthesis of proteins induces structural changes at synapses, leading to the formation of new synaptic connections. In our study, it is plausible to assume that an early form of protein synthesis may contribute to stabilizing the initial memory traces during the encoding phase. However, whether or not protein synthesis occurred in our spiders is beyond the scope of this investigation and was not specifically addressed.

      The critical aspect of our study is that the information transitioned from short-term memory to long-term memory during an early encoding phase, allowing recall after an hour. Due to the inherent limitations and transient nature of the short-term memory, it is implausible for spiders to retain these memory representations solely within the short-term memory for such durations. Our findings suggest that the initial encoding processes were robust enough to transfer these experiences into long-term memory, where they were stabilized and could be accessed later. 

      In sum, it is important to note that long-term memory is a dynamic process, and while testing after 24 hours is a convention in some studies, this timing is arbitrary and not universally applicable to all contexts or species. The more critical consideration here is that we are dealing with a species where no prior evidence of long-term memory exists. Debating a 24-hour delay or the specifics of protein synthesis, while potentially interesting for future studies, detracts from the true significance of our findings. Our study is the first to show something akin to long-term memory representations in this species and this should remain in our focus.

      Shiffrin, R. M., & Atkinson, R. C. (1969). Storage and retrieval processes in long-term memory. Psychological review, 76(2), 179. 

      Markowitsch, H. J. (2013). Memory and self–Neuroscientific landscapes. International Scholarly Research Notices, 2013(1), 176027.

      Castellucci, V. F., Carew, T. J., & Kandel, E. R., 1978. Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science, 202(4374), 1306-1308.

      The odd phrasing of the 'long-term dishabutation' trial makes it seem that it is testing a longterm memory, but it is not. The spiders have never met. The fact that they are very habituated to one set of stimuli and then respond to a new stimulus is not evidence of long-term memory. To clearly test memory (which is the part really lacking from the design), the authors would need to show that spiders - upon the first instance of re-encountering a previously encountered individual are already 'habituated' to them but not to some other individuals. The current data suggest this may be the case, but it is just very hard to interpret given the design does not directly test the memory of individuals in a clear and unambiguous manner.

      While we appreciate the reviewer's feedback, we believe there may have been some misunderstanding regarding the term “long-term dishabituation.” The introduction of novel individuals at the end of Session 3 was not intended to test long-term memory by having spiders recognize these novel individuals. Instead, it aimed to investigate the nature of the habituation observed over the three sessions.

      The novel individuals introduced at the end of Session 3 serve the purpose to differentiate between general habituation (a decline in response due to repeated exposure to any stimuli) and specific habituation (recognition and reduced response to previously encountered individuals). The novel spiders have never been encountered before, so the focal spiders cannot have prior representations of them. Thus, the strong dishabituation response to these novel individuals indicates that the habituation observed earlier is not due to a general fatigue effect or loss of interest but rather a specific habituation effect to the familiar individuals. By showing such strong and increased response to novel individuals, the study demonstrates that the spiders' increasingly reduced responses in Sessions 2 and 3 are not merely due to a general decrease in responsiveness but suggest cognitive habituation. This cognitive habituation implies that the spiders remember the familiar individuals (as each of them occurred three times across the three sessions), a process that relies on long-term memory. Therefore, while the novel spiders themselves are not a direct test of long-term memory, the use of these novel spiders helps us infer that the habituation observed over the three sessions is indeed due to the formation of long-term memory traces.

      In other words, the organism detects and processes the novel stimulus as different from the habituated one. In our study, if a spider showed a strong dishabituation response to a novel individual introduced at the end of Session 3, it would indicate that the spider had formed specific representations of the individuals they encountered during the three sessions. These representations allow the spiders to recognise the novel individuals as different, leading to renewed interest and a stronger behavioural response. It is the absence of a prior representation for the novel spiders that triggers this dishabituation response. Since the novel spider does not match any stored representations of the previously encountered spiders, the focal spider responds more strongly.

      The introduction of novel individuals at the end of Session 3 helps clarify that the increasing habituation observed in Session 2 and 3 is specific to familiar individuals, indicating cognitive habituation. This supports the presence of long-term memory processes in the spiders, as they can distinguish between previously encountered individuals and new ones. The habituationdishabituation paradigm thus effectively demonstrates the spiders' ability to form and reactivate encoded memory traces, providing clear evidence of recognition memory. 

      For these reasons, we are convinced that our interpretation is accurate and hope this clarification renders the additional request for an entirely new experiment unnecessary.

      (3) Lack of a functional explanation and the emphasis on 'asociality': It is entirely plausible that recognition is a pleitropic byproduct of the overall visual cognition abilities in the spiders. 

      We agree with the reviewer that it is essential to consider the broader context of individual recognition and its potential adaptive significance. The possibility that recognition in jumping spiders could be a pleiotropic byproduct of their advanced visual cognition abilities is indeed a plausible explanation and has been discussed in our manuscript.

      However, the discussion that discounts territoriality as a potential explanation is not well laid out. First, many species that are 'asocial' nevertheless defend territories. It is perhaps best to say such species are not group living, but they have social lives because they encounter conspecifics and need to interact with them.

      The reviewer also correctly points out that many 'asocial' species still defend territories and have social interactions. Our use of the term 'asocial' was meant to indicate that jumping spiders do not live in cohesive social groups, but we acknowledge that they do have social lives in terms of interactions with conspecifics. It is more accurate to describe these spiders as non-groupliving, yet socially interactive species. A better term is “non-social” to refer to the jumping spider as a species that do not live in stable social groups and do not exhibit associated behaviours, such as cooperative behaviours. This also would imply that individuals still interact with conspecifics, especially in contexts like mating, territorial disputes or aggression. We, thus, change the term from “asocial” to “non-social” in the manuscript.  

      Indeed, there are many examples of solitary living species that show the dear enemy effect, a form of individual recognition, towards familiar territorial neighbors. The authors in this case note that territorial competition is mediated by the size or color of the chelicerae (seemingly a trait that could be used to distinguish among individuals). Apparently, because previous work has suggested that territorial disputes can be mediated by a trait in the absence of familiarity has led them to discount the possibility that keeping track of the local neighbors in a potentially cannibalistic species could be a sufficient functional reason. In any event, the current evidence presented certainly does not warrant discounting that hypothesis.

      The “dear enemy effect”, where solitary living species recognize and show reduced aggression towards familiar territorial neighbors, is a relevant consideration. This effect demonstrates that individual recognition can have significant functional implications even in species that are not group-living. We will elaborate on this effect in the revised manuscript to provide a more comprehensive discussion.

      The reviewer mentioned that territorial disputes can be mediated by the size or color of the chelicerae, potentially serving as a feature for individual recognition. Our intention was not to discount the role of such traits but to highlight that the level of identity recognition we observed represents subordinate classification. This is different from the basic-level classification, such as distinguishing between male and female based on chelicerae colour. While we acknowledge that colour can be an important feature for identity discrimination, our findings suggest that individual recognition in jumping spiders goes beyond simple colour differentiation. 

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors investigated whether a salticid spider, Phidippus regius, recognizes other individuals of the same species. The authors placed each spider inside a container from which it could see another spider for 7 minutes, before having its view of the other spider occluded by an opaque barrier for 3 minutes. The spider was then either presented with the same individual again (habituation trial) or a different individual (dishabituation trial). The authors recorded the distance between the two spiders during each trial. In habituation trials, the spiders were predicted to spend more time further away from each other and, in dishabituation trials, the spiders were predicted to spend more time closer to each other. The results followed these predictions, and the authors then considered whether the spiders in habituation trials were generally fatigued instead of being habituated to the appearance of the other spider, which may have explained why they spent less time near the other individual. The authors presented the spiders with a different (novel) individual after a longer period of time (which they considered to be a long-term dishabituation trial), and found that the spiders switched to spending more time closer to the other individual again during this trial. This suggested that the spiders had recognized and had habituated to the individual that they had seen before and that they became dishabituated when they encountered a different individual.

      We appreciate the reviewer's detailed summary of our study. The reviewer's summary accurately captures the essence of our experimental design, predictions, and findings.

      Strengths:

      It is interesting to consider individual recognition by Phidippus regius. Other work on individual recognition by an invertebrate has been, for instance, known for a species of social wasp, but Phidippus regius is a different animal. Importantly and more specifically, P. regius is a salticid spider, and these spiders are known to have exceptional eyesight for animals of their size, potentially making them especially suitable for studies on individual recognition. In the current study, the results from experiments were consistent with the authors' predictions, suggesting that the spiders were recognizing each other by being habituated to individuals they had encountered before and by being dishabituated to individuals they had not encountered before. This is a good start in considering individual recognition by this species.

      We appreciate the reviewer's positive summary and acknowledgment of the strengths of our study. We would like to point out some more details: 

      While the exceptional eyesight of salticid spiders is indeed a significant factor, our study reaches deeper in terms of processing. We do not argue at the level of sensation rather than at the level of perception. Even more, identity recognition is a higher-level perceptual process. This distinction is crucial: we are not merely examining the spiders' sensory capabilities (such as good eye sight), but rather how their brains interpret and represent what they “see”. This involves a cognitive process where the sensory input (sensation) is processed and integrated into meaningful constructs (perception) and memorised in form of representations. 

      Our study also suggests that P. regius engages in “higher-level” perceptual processes. This most-likely involves complex representations of individual conspecifics, which in mammalian brains are associated with regions such as the central inferior temporal (cIT) and anterior inferior temporal (aIT) areas. We provide evidence that these spiders do not just sense visual stimuli but interpret and recognize individual identities, indicating sophisticated perceptual and cognitive abilities. In other words, the spiders do not merely respond to visual stimuli in a reflexive manner, but rather engage in sophisticated perceptual and cognitive processes that allow them to recognize and distinguish between individual identities. This indicates that the spiders are not simple Braitenberg vehicles reacting to stimuli, but are thinking organisms capable of complex mental representations. This resonates with current trends in animal cognition research, which increasingly recognize some level of consciousness and advanced cognitive abilities across a wide range of animal species. Moreover, this aligns with the growing interest and recognition of spider cognition, where research begins to provide evidence for the cognitive complexity and perceptual capabilities of these often underestimated creatures (Jackson and Cross, 2011). 

      Jackson, R. R., & Cross, F. R. (2011). Spider cognition. Advances in insect physiology, 41, 115174.

      Weaknesses:

      The experiments in this manuscript (habituation/dishabituation trials) are a good start for considering whether individuals of a salticid species recognize each other. I am left wondering, however, what features the spiders were specifically paying attention to when recognizing each other. The authors cited Sheehan and Tibbetts (2010) who stated that "Individual recognition requires individuals to uniquely identify their social partners based on phenotypic variation." Also, recognition was considered in a paper on another salticid by Tedore and Johnsen (2013).

      Tedore, C., & Johnsen, S. (2013). Pheromones exert top-down effects on visual recognition in the jumping spider Lyssomanes viridis. The Journal of Experimental Biology, 216, 1744-1756. doi: 10.1242/jeb.071118 

      In this elegant study, the authors presented spiders with manipulated images to find out what features matter to these spiders when recognizing individuals.

      The reviewer raises an important point regarding the specific features that Phidippus regius might be paying attention to when recognizing individual conspecifics. Our study indeed cited Sheehan and Tibbetts (2010) to highlight the importance of phenotypic variation in individual recognition. Additionally, we referenced the work by Tedore and Johnsen (2013) on visual recognition in another salticid species, which suggests that multiple sensory modalities, including visual and pheromonal cues, may be involved in the recognition process. While our current study focused on demonstrating that Phidippus regius can recognize individual conspecifics, we acknowledge that it does not specifically identify the phenotypic features involved in this recognition. 

      Part of the problem with using two living individuals in experiments is that the behavior of one individual can influence the behavior of the other, and this can bias the results.  

      We appreciate the reviewer's observation regarding the potential bias introduced by using two living individuals in experiments, as the behaviour of one individual can indeed influence the behaviour of the other. We shared this concern initially; however, the consistency of the data with our hypotheses suggests that this potential bias did not adversely affect the validity of our findings, rendering the concern largely illusory at least in the context of our study.

      We opted for the living-individual paradigm for the following reasons:

      There is a growing trend in ethological as well as animal cognition research towards more ecologically valid and biologically relevant settings, while simultaneously advancing the precision and quantification of the data collected. This is referred to as computational ethology.

      This approach advocates for assessing behaviour in environments that more closely resemble natural conditions, rather than relying solely on sterile and artificial experimental setups. The rationale is that such naturalistic arenas allow animals to exhibit a broader range of behaviours and interactions, providing a more accurate reflection of their cognitive and social abilities. The challenge, however, lies in navigating the inherent tradeoff between the strict control offered by standardized procedures and the ecological validity of more naturalistic interactions.

      By allowing two spiders to confront each other, we aimed to capture authentic behavioural responses while maintaining a degree of experimental standardization through the use of a controlled setup. Our approach ensures that the behaviours observed are not merely artifacts of an artificial environment but are representative of genuine social interactions. Also, to minimize potential biases arising from mutual behavioural influences, we employed a controlled and repeatable experimental environment. 

      We believe that the chosen approach provides a meaningful balance (in the above-mentioned trade-off) between ecological validity and experimental rigour. By combining a standardized environment with the naturalistic interaction of real spiders, we ensured that our findings are both scientifically robust and biologically relevant.

      However, this issue can be readily avoided because salticids are well known, for example, to be highly responsive to lures (e.g. dead prey glued in lifelike posture onto cork disks) and to computer animation. 

      While it is true that salticid spiders are responsive to lures and computer animations, we carefully considered the most appropriate and ecologically valid approach for our study. Our aim was to capture genuine behavioural patterns in a context that closely mimics the natural encounters these spiders experience.

      Additionally, creating comparable video stimuli of spiders presents its own set of challenges: Video recordings or computer animations may not fully capture the nuanced behaviours and subtle variations that occur during real-life interactions. There is also a risk that such stimuli could be perceived differently by the spiders, potentially introducing new biases or confounding factors.

      Scientific progress is not made by merely relying on previously established paradigms, especially when they may not be suitable for the specific context of a study. While alternative methods like lures or computer animations can be valuable in certain situations, our approach was deliberately chosen to best capture the naturalistic and interactive aspects of spider behaviour.

      These methods have already been successful and helpful for standardizing the different stimuli presented during many different experiments for many different salticid spiders, and they would be helpful for better understanding how Phidippus regius might recognize another individual on the basis of phenotypic variation. There are all sorts of ways in which a salticid might recognize another individual. Differences in face or body structure, or body size, or all of these, might have an important role in recognition, but we won't know what these are using the current methods alone. Also, I didn't see any details about whether body size was standardized in the current manuscript.

      As mentioned previously, the goal of our study was to demonstrate that identity recognition occurs in spiders. This alone is of significant importance, as it challenges existing assumptions about the cognitive capabilities of small-brained animals. We did not aim at providing a proximate explanation (mechanism) for identity recognition in spiders.

      The problem with what the reviewer suggested is this: As long as we do not have conclusive evidence that spiders recognize individual conspecifics, any attempt to design and manipulate stimuli would lack a solid foundation. Without understanding whether spiders have this capability, we cannot make informed decisions about which features or characteristics to manipulate in stimuli. In other words, this uncertainty means we lack a starting point for our assumptions, making it nearly impossible to create stimuli that would be useful or relevant in testing identity recognition.

      Additionally, it is nearly impossible to artificially generate a stimulus set that encompasses the natural variance in features that spiders use for visual individuation. There is no guarantee that artificial stimuli, such as lures or computer animations, would capture the relevant features that spiders use in natural interactions.

      In other words, the question how Phidippus regius recognizes another individual will be subject of further investigation. In this study, we focus on whether or not they individuate others.  

      For another perspective, my thoughts turn to a paper by Cross et al.

      Cross, F. R., Jackson, R. R., & Taylor, L. A. (2020). Influence of seeing a red face during the male-male encounters of mosquito-specialist spiders. Learning & Behavior, 48, 104-112. doi: 10.3758/s13420-020-00411-y

      These authors found that males of Evarcha culicivora, another salticid species that is known to have a red face, become less responsive to their own mirror images after having their faces painted with black eyeliner than if their faces remained red. In all instances, the spiders only saw their own mirror images and never another spider, and these results cannot be interpreted on the basis of habituation/dishabituation because the spiders were not responding differently when they simply saw their mirror image again. Instead, it was specifically the change to the spider's face which resulted in a change of behavior. The findings from this paper and from Tedore and Johnsen can help give us additional perspectives that the authors might like to consider. On the whole, I would like the authors to further consider the features that P. regius might use to discern and recognize another individual.

      We acknowledge that identifying the specific features used by P. regius for identity recognition is a valuable direction for future research. However, we must emphasise that without first establishing whether spiders are capable of individuating each other, it would be premature and challenging to determine the specific features they rely on for this process. A lack of response to certain features could either suggest that those features are not relevant or, more critically, that the spider does not recognize individual identities at all. Thus, our initial focus on demonstrating identity recognition is essential before delving into the specific cues or characteristics involved.

      While the call for addressing the proximate causation of identity recognition in jumping spiders is valid, we need to also reiterate the significance of our findings and why they stand on their own merit:

      Our study demonstrates for the first time that Phidippus regius can systematically individuate conspecifics, showing habituation within short intervals (10 minutes) and over longer intervals (1 hour). This behaviour is not due to general habituation or physical fatigue but is a result of cognitive habituation, as illustrated by the spiders' response to novel individuals introduced after repeated encounters with familiarized ones. 

      What are the implications of this? Our findings indicate that these spiders possess long-term memory and form representations that can be reactivated after an hour. While this is most-likely not fully consolidated memory formation (see our reply to Reviewer 1), it represents an encoded long-term memory. This implies that small-brained animals can remember, represent, and potentially build internal mental images, which are crucial for sophisticated cognitive processing. 

      Reviewer #3 (Public Review):

      Summary:

      Jumping spiders (family Salticidae) have extraordinarily good eyesight, but little is known about how sensitive these small animals might be to the identity of other individuals that they see. Here, experiments were carried out using Phidippus regius, a salticid spider from North America. There were three steps in the experiments; first, a spider could see another spider; then its view of the other spider was blocked; and then either the same or a different individual spider came into view. Whether it was the same or a different individual that came into view in the third step had a significant effect on how close together or far apart the spiders positioned themselves. It has been demonstrated before that salticids can discriminate between familiar and unfamiliar individuals while relying on chemical cues, but this new research on P. regius provides the first experimental evidence that a spider can discriminate by sight between familiar and unfamiliar individuals.

      Clark RJ, Jackson RR (1995) Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology and Evolution 7:185-190

      We appreciate the reviewer's comprehensive summary and acknowledgment of the significance of our findings.

      Strengths:

      This work is a useful step toward a fuller understanding of the perceptual and cognitive capacities of spiders and other animals with small nervous systems. By providing experimental evidence for a conclusion that a spider can, by sight, discriminate between familiar and unfamiliar individuals, this research will be an important milestone. We can anticipate a substantial influence on future research.

      We appreciate the reviewer’s recognition of the strengths and significance of our study. We are pleased that the reviewer considers our research an important milestone. Our findings indeed suggest that even animals with relatively simple nervous systems can perform complex cognitive tasks, which has substantial implications for the broader study of animal cognition.

      As pointed out by the reviewer, we also hope that our study will have a substantial influence on future research. By establishing a methodology and providing clear evidence of visual discrimination, we aim to encourage further investigations into the cognitive abilities of jumping spiders and other arthropods. Future research can build on our findings to explore the specific visual cues and mechanisms involved in individual recognition (as Reviewer 2 pointed out), as well as the ecological and evolutionary implications of these abilities.

      Weaknesses:

      (1) The conclusions should be stated more carefully.

      We agree that clarity in our conclusions is paramount. We will revise the manuscript to ensure that our conclusions are presented with precision and appropriately reflect the data. Specifically, we will emphasize the evidence supporting our findings of visual individual recognition and clarify the limitations and scope of our conclusions to avoid any potential overstatements.

      (2) It is not clearly the case that the experimental methods are based on 'habituation (learning to ignore; learning not to respond). Saying 'habituation' seems to imply that certain distances are instances of responding and other distances are instances of not responding but, as a reasonable alternative, we might call distance in all instances a response. However, whether all distances are responses or not is a distracting issue because being based on habituation is not a necessity.

      We appreciate the reviewer's feedback and understand the concern regarding the use of the term 'habituation.' We agree that all distances maintained by the spiders are active responses and reflect their behavioral decisions based on perception and recognition of the other individual. We recognize that all distances are responses and interpret these as the spiders’ “active decisions”, modulated by their recognition of the same or different individuals. 

      The terms 'habituation' and 'dishabituation' are used to label trial types for ease of discussion and to describe the expected behavioural modulation.

      (3) Besides data related to distances, other data might have been useful. For example, salticids are especially well known for the way they communicate using distinctive visual displays and, unlike distance, displaying is a discrete, unambiguous response.

      We appreciate the reviewer’s suggestion to incorporate data on visual displays, which are indeed well-known communication methods among salticids. We agree that visual displays are discrete and unambiguous responses that could provide additional insights into the spiders' recognition abilities.

      Our primary focus on distance measurements was driven by the need to quantify behaviour in a continuous and scalable manner, that is, how spiders modulate their proximity based on familiarity with other individuals.

      We acknowledge the potential value of including visual display measurments; however, in our study, we aimed to establish a foundational understanding of recognition behaviour through proximity measures first. Also, capturing diplays requires a different experimental paradigm, where the displays are clearly visible and analyzable. 

      (4) Methods more aligned with salticids having extraordinarily good eyesight would be useful. For example, with salticids, standardising and manipulating stimuli in experiments can be achieved by using mounts, video playback, and computer-generated animation.

      There is no doubt that salticids have excellent eyesight. However, our study focuses on higherlevel perceptual processes that require complex brain analysis, not just visual acuity. The goal was to investigate whether spiders can individuate and recognize conspecifics, which involves interpreting visual information and forming long-term representations.

      Clearly, methods like video playback and computer animations are useful in controlled settings, where the spider is mounted, but they pose challenges for our specific research question. At this stage of research, we lack precise knowledge of which visual features are critical for individual recognition in spiders, making it difficult to design effective artificial stimuli. 

      Our primary objective was to determine if spiders can individuate others. Before exploring the proximate mechanisms of how they individuate others, it was essential to establish that they have this capability. This foundational question needed to be addressed before delving into more detailed mechanistic studies.

      (5) An asocial-versus-social distinction is too imprecise, and it may have been emphasised too much. With P. regius, irrespective of whether we use the label asocial or social, the important question pertains to the frequency of encounters between the same individuals and the consequences of these encounters.

      Our intent was to convey that P. regius does not live in cohesive social groups but does engage in individual interactions that can have significant behavioral consequences. We will revise the manuscript to reduce the emphasis on the asocial-versus-social distinction. As discussed above, we also will change the term “asocial” to “non-social” in the manuscript.

      (6) Hypotheses related to not-so-strictly adaptive factors are discussed and these hypotheses are interesting, but these considerations are not necessarily incompatible with more strictly adaptive influences being relevant as well.

      We appreciate the reviewer's observation regarding the discussion of hypotheses related to notso-strictly adaptive factors. We agree that our considerations of these factors do not preclude the relevance of more strictly adaptive influences.

      We will revise the manuscript to explicitly discuss how our findings can be interpreted in the context of adaptive hypotheses. This will provide a more comprehensive understanding of the evolutionary significance of individual recognition in P. regius. Modifications were made in the Discussion section.

      In the following, we comment on issues not mentioned in the “public reviews” section.

      Reviewer #1 (Recommendations For The Authors):

      (1) I would suggest conducting experiments that actually test for recognition memory, as this seems to be a claim that the authors make. Following the ant studies by Dreier cited in this manuscript would be sufficient to test for memory. Given the relative simplicity of the measures being taken (location of spiders), this would seem like a very simple addition that would provide a much stronger and more readily interpreted dataset.

      As previously explained in our detailed responses (public reviews), we believe that the current design effectively addresses the questions at hand. Our approach, using a habituationdishabituation paradigm, provides robust evidence for recognition memory within the framework of early long-term memory.

      Additionally, we have explained why using the distance to the panel as a measure is not appropriate in this context. Specifically, using such a measure can misrepresent the actual interests of the spiders in each other.

      While we acknowledge the merits of the ant studies by Dreier, our current design allows for a detailed understanding of the spiders' recognition capabilities over short (10 min) and slightly longer intervals (up to one hour). This is sufficient to demonstrate the presence of recognition memory without the necessity of further experiments. The observed patterns of habituation and dishabituation responses in our study clearly indicate that the spiders can distinguish between familiar and novel individuals, which supports our claims.

      Given these points, we respectfully maintain that the current data and experimental design are adequate to support our findings and provide a comprehensive understanding of recognition memory in Phidippus regius.

      (2) The writing is rather impenetrable. The results explain the basic finding in terms of statistical variables rather than simply stating the results. A clear and straightforward statement such as 'the spiders showed reduced interest upon habituation trials, indicating xyz' (and then citing the stats) is preferable to the introduction of results as a statistical model. The statistical model is a means of assessing the results. It is not the result. Describe the data.

      We tried to improve that in the current version.

      (3) Showing more straightforward data such as distance from the joint barrier would make the paper much easier to understand.

      This paper has been on bioRxiv for some time and my guess is that it has ended up here because it is having trouble in review. Collecting new data that more directly test the question at hand, presenting the data in a more direct manner, and more critically evaluating your own claims will improve the paper.

      While it is true that the paper has been on bioRxiv for a while, this submission marks the first instance where it has undergone peer review. Prior to this, the manuscript was submitted to other journals but was not reviewed.

      We hope the explanations provided in the “public reviews” section, along with the revised manuscript, sufficiently clarify our study and its conclusions. We believe the current data robustly address the research questions, and as outlined in our detailed responses, we have critically evaluated our claims and presented the data clearly. Given these clarifications, we do not see the necessity for new experiments as the existing data adequately support our findings. We trust that these revisions and explanations will clarify any misunderstandings.

      I am totally sold that the spiders are paying attention to identity at some level. The key now is to understand what that actually means in terms of recognition (i.e. memory of individuals) not just habituation.

      We appreciate the reviewer’s emphasis on the distinction between habituation and memorybased individual recognition. As detailed in the preceding discussion, we have taken great care to clarify how our paradigm distinguishes simple habituation effects from true memory for individual identity. We trust that the preceding sections make clear how our findings go beyond simple habituation to establish genuine individual recognition.

      Reviewer #2 (Recommendations For The Authors):

      Aside from the comments in the public review, I have some additional comments that the authors may wish to consider.

      Numerous times in the manuscript, the authors mentioned that recognizing individuals requires recognition memory. This seems rather obvious, and I wonder if the authors could instead be more precise about what they mean by 'recognition memory'?

      Recognition memory refers to the cognitive ability to identify a previously encountered stimulus, an individual, or events as familiar. It involves both encoding and retrieval processes, allowing an organism to distinguish between novel and familiar stimuli. This form of memory is a fundamental component of cognitive functioning and is supported by neural mechanisms that, in the mammal brain, involve the hippocampus and other brain regions associated with memory processing. 

      In our study, we aimed to test whether Phidippus regius recognizes conspecifics, or, in other words, utilizes recognition memory to distinguish between familiar and unfamiliar conspecifics. With the habituation - dishabituation paradigm, we assessed the spiders' ability to recognize previously encountered individuals and demonstrate memory retention over short (10 min) and extended periods (1 hour).

      Encoding: In the initial trial, when a spider encounters an individual for the first time (Figure 1A, “Baseline” or “Dishabituation” for every following trial), it encodes the visual information related to that specific individual. This encoding process involves creating a memory trace of the individual's phenotypic characteristics.

      Storage: During the visual separation period, this encoded information is stored in the spider's memory system. The memory trace, though initially fragile, starts to stabilize over the separation period. Whether or not this leads to some form of consolidated memory remains unaddressed. This aspect was highlighted by the first reviewer, but our focus is on the early process rather than on late processes, such as consolidation. 

      Retrieval: In the subsequent trial, when the same individual is presented again, the spider retrieves the stored memory trace. If the spider recognizes the individual, its behaviour reflects habituation, indicating memory retrieval. Conversely, when a novel individual is introduced, the lack of stored memory trace triggers a different behavioural response, indicating dishabituation. This differential response demonstrates the spider's ability to distinguish between familiar and unfamiliar individuals. This differential response is also key to understanding the nature of habituation over the three sessions, as introducing novel spiders leads to a significant dishabituation response after the three sessions in Experiment 2.

      In Line 39, the authors state that they used "a naturalistic experimental procedure". I would like to know how this experiment is 'naturalistic'. The authors' use of an arena does not appear naturalistic, or something the spiders would encounter in the wild.

      We appreciate the reviewer's comment regarding our use of the term 'naturalistic'. We acknowledge that the experimental arena itself does not replicate the conditions found in the wild. Our approach aimed to incorporate elements of natural behaviour by allowing two spiders to freely move and interact within the controlled environment. This approach aligns with principles from computational ethology, which seeks to balance the trade-off between repeatability/standardization and observing free, naturalistic behaviour. By using this paradigm, we aimed to capture behaviours that closely resemble those exhibited in their natural habitat. This setup was chosen to balance the need for ecological validity with the requirements for standardized data collection. 

      Also, and this point has been raised above, by observing the spiders' natural interactions without restraining them or using artificial stimuli like computer animations, we aimed to capture behaviours that closely resemble their natural responses to conspecifics. In contrast, we would not have any clear expectations regarding responses to arbitrarily designed artificial stimuli. This method provides a more ecologically valid assessment of the spiders' recognition abilities.

      There are a few details wrong in Line 41. 'Salticidae' is a family name and shouldn't be italicized. Also, the sentence suggests that there is a spider called a 'jumping spider' in the family Salticidae, which is technically called Phidippus regius. To clarify, all spiders in the family Salticidae are known as jumping spiders, and one species of jumping spiders is called Phidippus regius.

      We will correct this in the manuscript to accurately reflect the classification and terminology. Thank you for pointing out these inaccuracies.

      A manuscript on individual recognition by a salticid should include citations to earlier papers that have already considered individual recognition by salticids. As well as the paper by Tedore and Johnsen (2013), the authors should be aware of the following papers.

      Clark, R. J., & Jackson, R. R. (1994). Portia labiata, a cannibalistic jumping spider, discriminates between its own and foreign egg sacs. International Journal of Comparative Psychology, 7, 3843.

      Clark, R. J., & Jackson, R. R. (1994). Self-recognition in a jumping spider: Portia labiata females discriminate between their own draglines and those of conspecifics. Ethology, Ecology & Evolution, 6, 371-375.

      Clark, R. J., & Jackson, R. R. (1995). Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology & Evolution, 7, 185-190.

      We appreciate the reviewer's suggestion to include citations to these earlier papers. We will add the recommended references to provide a comprehensive background.

      In Line 203, I would not consider "interaction with human caretakers and experimenters" to be a form of behavioral enrichment. This kind of interaction has the potential to be stressful for the spiders, rather than enriching. I suggest deleting that part of the sentence.

      We appreciate the reviewer's feedback and agree that interactions with human caretakers and experimenters might not always be enriching and could potentially be stressful for the spiders. We will remove that part of the sentence to better reflect the intended meaning.

      Reviewer #3 (Recommendations For The Authors):

      This manuscript is useful and interesting, and I predict that it will be influential, but more attention should be given to stating the objective and conclusion accurately and clearly. As I understand it, the objective was to investigate a specific hypothesis: that Phidippus regius has a capacity to identify conspecific individuals as particular individuals (i.e., individual identification). Strong evidence supporting this hypothesis being true would be especially remarkable because I am unaware of any published work having shown evidence of a spider expressing this specific perceptual capacity.

      Thank you for recognizing the significance and potential influence of our manuscript. We agree that clearly stating the objective and conclusions is essential for conveying the importance of our findings. Our results provide robust evidence supporting the hypothesis that Phidippus regius can recognize and remember individual conspecifics. We will revise the manuscript to more clearly highlight the objective and our conclusions, emphasizing the novel evidence for individual identification in these spiders.

      Based on reading this manuscript and based on my understanding of the meaning of 'individual identification', it seems to me that the hypothesis that P. regius has a capacity for individual identification might or might not be true, and the experiments in this manuscript cannot tell us which is the case. 

      We respectfully disagree with the reviewer's assessment. Our experiments were carefully designed to test whether P. regius has the capacity for individual identification, and our results provide clear evidence supporting this hypothesis. The systematic differences in the spiders' behaviour when encountering familiar versus novel individuals indicate that they can recognize and remember specific conspecifics. We will revise the manuscript to ensure that the evidence and conclusions are stated more clearly to address any potential misunderstandings.

      Determining which is the case would have required research that made better use of the literature, and displayed more critical thinking. addressed credible alternative hypotheses and adopted experimental methods that focused more strictly on individual identification. 

      The distinction between whether P. regius has a capacity for individual identification is not ambiguous in our study. Our findings clearly demonstrate this capacity through systematic behavioural responses to familiar versus novel individuals. As pointed out above, the experimental procedure might be complex, but results are systematic despite this complexity. The experiments were designed to directly address the hypothesis of individual identification, and the data robustly support our conclusions. While considering alternative hypotheses is important, the results we present provide a coherent and compelling case for individual identification in P. regius. We will ensure our manuscript clearly articulates this narrative and the supporting evidence.

      At the same time, I also appreciate that asking for all of that at once would be asking for too much. As I see it, this manuscript tells us about research that moves us closer to a clear focus on the details and questions that will matter in the context of considering a hypothesis that is strictly about individual identification. More importantly, I think this research reveals a perceptual capacity that is remarkable even if it is not strictly a capacity for individual identification.

      We understand the desire for a more focused exploration of individual identification with paradigms more familiar to the reviewers and we acknowledge that further detailed studies could enhance our understanding of this capacity. However, our findings do indeed suggest that Phidippus regius exhibits a remarkable perceptual capacity for recognizing and remembering individual conspecifics. The systematic behavioural responses observed in our experiments strongly indicate that these spiders possess the ability for individual recognition. While our study may not have explored every potential detail (e.g. which features are most crucial for the memory matching processes), the evidence we present robustly supports the conclusion of individual identification.

      We acknowledge that it is indeed valuable to follow established paradigms and build upon the frameworks that have been used successfully in similar species and studies. These paradigms provide a solid foundation for scientific inquiry and allow for comparability across different research efforts. However, it is equally important to acknowledge and explore alternative approaches. Scientific progress is driven not only by replication but also by innovation. By employing new paradigms, researchers can uncover novel insights and push the boundaries of current understanding. The paradigm we used in our study, while different from those traditionally applied to similar research, is not an invention but a well-established method in various domains. It represents an innovative application in the context of our specific research questions, offering a fresh perspective and contributing to the advancement of the field.

      As I understand it, 'individual identification' means identifying another individual as being a particular individual instead of a member of a larger set (or 'class') of individuals. An 'individual' is a set containing a single individual. Interesting examples of identifying members of larger sets include discriminating between familiar and unfamiliar individuals. In the context of the specific experiments in this manuscript, familiar-unfamiliar discrimination means discriminating between recently-seen and not-so-recently-seen individuals. My impression is that the experiments in this manuscript have given us a basis for concluding that P. regius has a capacity for familiarunfamiliar (recently seen versus not so recently seen) discrimination. If this is the case, then I think this is the conclusion that should be emphasised. This would be an important conclusion.

      I appreciate that, depending on how we use the words, familiar-unfamiliar discrimination might be construed as being 'individual identification'. An individual is identified as 'the individual recently seen'. As a casual way of speaking, it can be reasonable to call this 'individual identification'. The difficulty comes from the way calling this 'individual identification' can suggest something more than has been demonstrated. To navigate through this difficulty, we need an expression to use for a capacity that goes beyond familiar-unfamiliar discrimination. In the context of this manuscript about P. regius, we need expressions that will make it easy to consider two things. One of these things is a capacity for familiar-unfamiliar discrimination. The other is the capacity to identify another individual as being a particular individual.

      We appreciate the reviewer's insightful comments on the distinction between familiar-unfamiliar discrimination and individual identity recognition. Our study indeed focuses on demonstrating that Phidippus regius can recognize and remember individual conspecifics, providing evidence for individual identity recognition.

      Two specific behavioural hallmarks that speak against familiarity recognition:

      First, the significant dishabituation response to novel individuals introduced after multiple sessions underscores the specificity of the recognition. This shows that the spiders' habituation is not general but specific to familiar individuals. 

      Second, the pattern of habituation over the sessions provides further evidence: We observed the strongest systematic modulation in Session 1, a reduced modulation in Session 2, and a further diminished effect in Session 3. If the spiders were only responding based on familiarity, we would expect a more drastic decrease, resulting in a washed-out non-effect by Session 2. However, the continued, though diminishing, differentiation between habituation and dishabituation trials across sessions indicates that the spiders are not merely responding to a general sense of familiarity but are engaging in individual recognition. In other words, the spiders' ability to distinguish between familiar and novel individuals even after repeated exposures suggests that they are not just recognizing a familiar status but are identifying specific individuals.

      Things people do might help clarify what this means. People have an extraordinary capacity for identifying other individuals as particular individuals. Often this is based on giving each other names. Imagine we are letting somebody see photographs and asking them to identify who they see. The answer might be, 'somebody familiar' or 'somebody I saw recently' (familiar-unfamiliar discrimination); or the question might be answered by naming a particular individual (individual identification).

      We appreciate the reviewer's efforts to clarify the distinction between familiar-unfamiliar discrimination and individual recognition using human examples. However, we believe this comparison might not fully capture the complexity of individual recognition in non-human animals. 

      Familiarity recognition refers to recognizing someone as having been seen or encountered before without necessarily distinguishing them from others in the same category. On the other hand, identity recognition involves recognizing a specific individual based on unique characteristics (or features). In humans, this often involves naming, but more critically, like in most animals, it involves recognizing visual, auditory, chemical or other sensory cues. In animals, including spiders, individual recognition does not involve and let alone rely on naming but on the ability to distinguish between individuals based on sensory cues and learnt associations. This is a valid and well-documented form of individual recognition across many species.

      Individual recognition does not require naming or the assignment of a referential label. Animals can distinguish between specific individuals based on previously perceived and stored features and characteristics. Naming is the exception rather than the rule in the animal kingdom. Only a few species, such as humans and maybe certain cetaceans, use naming for identity recognition. This is an evolutionary rarity and not the standard mechanism for individual recognition, which primarily relies on sensory cues and learnt associations. Furthermore, the mechanism of recognition in both humans and animals involves a complex process of matching incoming sensory and perceptual information with stored memory representations. Naming is merely a tool for communication, allowing us to convey which individual we are referring to. It is not the mechanism by which recognition occurs. The core of individual recognition is this matching process, where sensory cues (visual, auditory, chemical, etc.) are compared to memory traces of previously encountered individuals. Therefore, the suggestion that individual identification necessitates naming misrepresents the actual cognitive processes involved. 

      We can think of individual identification being based on more fine-grained discrimination (with this, set size = one), with familiar-unfamiliar discrimination being more coarse-grained discrimination (with this, set size can be more than one). Restricting the expression 'individual identification' to instances of having the capacity to identify another individual as being a particular individual (set size = one) is better aligned with normal usage of this expression.

      Absolutely, the distinction between fine-grained and coarse-grained discrimination aligns with the concept of different category levels, such as basic and subordinate levels, put forward by Eleanor Rosch (e.g. Rosch, 1973). In the context of individual recognition, fine-grained discrimination (where set size = one) refers to the ability to identify a specific individual based on unique characteristics. This is referred to as subordinate level categorization. Coarse-grained discrimination (where set size can be more than one) refers to recognizing someone as familiar without distinguishing them from others in the same category, more similar to basic level categorization. 

      Rosch, E.H. (1973). "Natural categories". Cognitive Psychology. 4 (3): 328–50.doi:10.1016/0010-0285(73)90017-0

      There is a strong emphasis on an asocial-social distinction in this manuscript. It seems to me that this needs to be focused more clearly on the specific factors that would make a capacity for individual identification beneficial. In the context of this manuscript, the term 'social' may suggest too much. It seems to me that the issue that matters the most is whether individuals live in situations where important encounters occur frequently between the same individuals. Irrespective of whether other notions of the meaning of 'social' also apply, there are salticids that live in aggregated situations where they frequently have important encounters with each other. This is the case with Phidippus regius in the field in Florida, but I realize that there may not be much published information about the natural history of this salticid. Even so, there are salticids to which the word 'social' has been applied in published literature.

      We appreciate the reviewer's comments on the asocial-social distinction and we agree that this terminology might need refinement. Our intent was not to categorize Phidippus regius rigidly but to explore the contextual factors influencing the benefits of individual identification. The critical factor in our study is indeed the frequency and importance of encounters between individuals, rather than a broader social structure. We will revise the manuscript to reflect this more nuanced perspective, focusing on the ecological validity of our experimental design and the adaptive significance of individual recognition in environments where repeated encounters can occur.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging.

      Thank you so much for your review and comments.

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion).

      Thank you so much for your review and comments. As the reviewer pointed out, LC3-II/LC3- I ratio changes do not necessarily indicate autophagy defects. However, since p62 accumulation (Figure 2B, 2E, 3E, Figure 8C, Figure 9C), these results collectively suggest that autophagy is lowered.

      As the reviewer pointed out and we described in v2, milton knockdown, eIF2β overexpression and heterozygosity increase LC3-I abundance. We do not know how these conditions increase LC3-I at this moment. We will investigate the cause of the increase in LC3-I by milton knockdown and how it contribute to impaired autophagy. We added this discussion as:

      Lines 388-393; ‘Our results also suggest that milton knockdown and overexpression of eIF2β affect autophagy via increased LC3-I abundance (Figures 2 and 7), suggesting an unconventional mechanism of autophagy suppression. To our knowledge, the roles of eIF2β in aging and autophagy independent of ISR have not been reported. Our results revealed a novel function of eIF2β to maintain proteostasis during aging, while further investigation is required to elucidate underlying mechanisms.’

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      Thank you for pointing it out. Plots of the 21-day-old proteome results was included in the main figure (Figure 4C) in v2. In this revision, we further analyzed age-dependent changes of eIF2β levels by western blotting (Figure 4G). We found that eIF2β levels increased during aging until 49-day-old then reduced at 63-day-old (Figure 4G in the revised manuscript). At the young age, eIF2β levels were higher in milton knockdown brain compared to the control , and eIF2β levels were lower in milton knockdown brains than those in the control. These results suggest that milton knockdown accelerates age-dependent changes in eIF2β. We added these results and discussion in the revised manuscript.

      Lines 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      Lines 363-368: ‘We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude.’Our new data indicate that eIF2β levels increase during aging in control flies until 49-day-old, then reduce at 63-day-old (included as Figure 4G in the revised manuscript). These age- dependent changes might explain the reduction in eIF2β levels in Milton knockdown compared to the control in middle age: higher eIF2β levels in milton knockdown flies at a young age than control and lower eIF2β levels in the middle-aged flies may reflect premature aging.

      We included these sentences in the discussion section:

      Lines 240-243:‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day-old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’


      With our new data, we revised some of our responses to the first round of reviewer’s comments.

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging. To further support the authors' claims, several improvements are necessary, particularly in the methods of quantification and the points that should be demonstrated quantitatively. It is crucial to investigate the correlation between aging and the proteins eIF2β and eIF2α.

      Thank you so much for your review and comments. We included analyses of protein levels of eIF2α, eIF2β, and eIF2γ at 7 days and 21 days (Figure 4D). The manuscript was revised as below;

      Lines 246-249 ‘As for the other subunits of eIF2 complex, proteome analysis did not detect a significant difference in the protein levels of eIF2α and eIF2γ between milton knockdown and control flies at 7 and 21 days (Figure 4D).’

      NEW TEXT: We analyzed age-dependent changes of eIF2β levels in more detail by western blotting (Figure 4G). We found that eIF2β levels increased during aging until 49-day-old then reduced at 63-day-old (Figure 4G in the revised manuscript). At the young age, eIF2β levels were higher in milton knockdown brain compared to the control , and eIF2β levels were lower in milton knockdown brains than those in the control. These results suggest that Milton knockdown accelerates age-dependent changes in eIF2β.. We added these results and discussion in the revised manuscript.

      NEW TEXT: Lines 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      NEW TEXT: Lines 363-368: ‘We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude.’

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion). In the text, the authors simply state the observation of their LC3 blotting. The manuscript lacks an explanation of how to evaluate the LC3-II/LC3-I ratio. Also, the manuscript lacks an elaboration on what the results of the LC3 blotting indicate about the state of autophagy by the depletion of axonal mitochondria.

      Thank you for pointing it out, and we apologize for an insufficient description of the result. We included quantitation of the levels of LC3-I and LC3-II in Figures 2A, 2D, 3D, 7B (Figure 6B in the previous version), and 8B (Figure 7B in the previous version). As the reviewer pointed out, LC3-II/LC3-I ratio changes do not necessarily indicate autophagy defects. However, since p62 accumulation (Figure 2B, 2E, 3E, 7C (Figure 6C in the previous version), 8C (Figure 7C in the previous version)), these results collectively suggest that autophagy is lowered. We revised the manuscript to include this discussion as below:

      Lines 174-186 ‘During autophagy progression, LC3 is conjugated with phosphatidylethanolamine to form LC3-II, which localizes to isolation membranes and autophagosomes. LC3-I accumulation occurs when autophagosome formation is impaired, and LC3-II accumulation is associated with lysosomal defects31,32. p62 is an autophagy substrate, and its accumulation suggests autophagic defects31,32. We found that milton knockdown increased LC3-I, and the LC3-II/LC3-I ratio was lower in milton knockdown flies than in control flies at 14-day-old (Figure 2A). We also analyzed p62 levels in head lysates sequentially extracted using detergents with different stringencies (1% Triton X-100 and 2% SDS). Western blotting revealed that p62 levels were increased in the brains of 14-day-old of milton knockdown flies (Figure 2B). The increase in the p62 level was significant in the Triton X-100- soluble fraction but not in the SDS-soluble fraction (Figure 2B), suggesting that depletion of axonal mitochondria impairs the degradation of less-aggregated proteins.’

      Line 189-190: 'At 30 day-old, LC3-I was still higher, and the LC3-II/LC3-I ratio was lower, in milton knockdown compared to the control (Figure 2D).’

      Line 202-203: ‘However, in contrast with milton knockdown, Pfk knockdown did not affect the levels of LC3-I, LC3-II or the LC3-II/LC3-I ratio (Figure 3D).’

      Line 279-285: ‘Neuronal overexpression of eIF2β increased LC3-II, while the LC3-II/LC3-I ratio was not significantly different (Figure 7A and B). Overexpression of eIF2β significantly increased the p62 level in the Triton X-100-soluble fraction (Figure 7C, 4-fold vs. control, p <0.005 (1% Triton X-100)) but not in the SDS-soluble fraction (Figure 7C, 2-fold vs. control, p\= 0.062 (2% SDS)), as observed in brains of milton knockdown flies (Figure 2B). These data suggest that neuronal overexpression of eIF2β accumulates autophagic substrates.’

      Line 311-319: ‘Neuronal knockdown of milton causes accumulation of autophagic substrate p62 in the Triton X-100-soluble fraction (Figure 2B), and we tested if lowering eIF2β ameliorates it. We found that eIF2β heterozygosity caused a mild increase in LC3-I levels and decreases in LC3-II levels, resulting in a significantly lower LC3-II/LC3-I ratio in milton knockdown flies (Figure 8B). eIF2β heterozygosity decreased the p62 level in the Triton X- 100-soluble fraction in the brains of milton knockdown flies (Figure 8C). The p62 level in the SDS-soluble fraction, which is not sensitive to milton knockdown (Figure 2B), was not affected (Figure 8C). These results suggest that suppression of eIF2β ameliorates the impairment of autophagy caused by milton knockdown.’

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      NEW TEXT: Thank you for pointing it out. We included plots of the 21-day-old proteome results as a part of the main figure (Figure 4C). As the reviewer pointed out, eIF2β protein levels are lower in milton knockdown background at the 21-day-old compared to the control. Since a reduction in the eIF2_β_ ameliorated milton knockdown-induced locomotor defects in aged flies (Figure 7D), the reduction in eIF2β observed in the 21-day-old milton knockdown flies is not likely to negatively contribute to milton knockdown-induced defects. Our new data indicate that eIF2β levels increase during aging in control flies until 49-day-old, then reduce at 63-day-old (included as Figure 4G in the revised manuscript). These age-dependent changes might explain the reduction in eIF2β levels in Milton knockdown compared to the control in middle age: higher eIF2β levels in milton knockdown flies at a young age than control and lower eIF2β levels in the middle-aged flies may reflect premature aging.

      NEW TEXT: We included these sentences in the discussion section:

      NEW TEXT: Lines 240-243:‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      NEW TEXT: Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day-old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      The manuscript consists of several weaknesses in its data and explanation regarding translation.

      (1) The authors are likely misunderstanding the effect of phosphorylation of eIF2α on translation. The P-eIF2α is inhibitory for translation initiation. However, the authors seem to be mistaken that the down-regulation of P-eIF2α inhibits translation.

      We are sorry for our insufficient explanation in the previous version. As the reviewer pointed out, it is well known that the phosphorylated form of eIF2α inhibits translation initiation. Neuronal knockdown of milton caused a reduction in p-eIF2α (Figure 5D and E (Figure 4J and K in the previous version)), and it also lowered translation (Figure 6 (Figure 5 in the previous version)); the relationship between these two events is currently unclear. We do not think that a reduction in the p-eIF2α suppressed translation; rather, we propose that the unbalance of expression levels of the components of eIF2 complexes negatively affects translation. We revised discussion sections to describe our interpretation more in detail as below:

      Line 374-384: ‘eIF2β is a component of eIF2, which meditates translational regulation and ISR initiation. When ISR is activated, phosphorylated eIF2α suppresses global translation and induces translation of ATF4, which mediates transcription of autophagy-related genes39,40. Since ISR can positively regulate autophagy, we suspected that suppression of ISR underlies a reduction in autophagic protein degradation. We found neuronal knockdown of milton reduced phosphorylated eIF2α, suggesting that ISR is reduced (Figure 5). However, we also found that global translation was reduced (Figure 6). Increased levels of eIF2β might disrupt the eIF2 complex or alter its functions. The stoichiometric mismatch caused by an imbalance of eIF2 components may inhibit ISR induction. Supporting this model, we found that eIF2β upregulation reduced the levels of p-eIF2α (Figure 7).’We have revised the graphical abstract and removed the eIF2 complex since its role in the loss of proteostasis caused by milton knockdown has not been elucidated yet.

      (2) The result of polysome profiling in Figure 4H is implausible. By 10%-25% sucrose density gradient, polysomes are not expected to be observed. The authors should have used a gradient with much denser sucrose, such as 10-50%.

      Thank you for pointing it out. It was a mistake of 10-50%, and we apologize for the oversight. It was corrected (Figure 6 (Figure 5 in the previous version)).

      (3) Also on the polysome profiling, as in the method section, the authors seemed to fractionate ultra-centrifuged samples from top to bottom and then measured A260 by a plate reader. In that case, the authors should have provided a line plot with individual data points, not the smoothly connected ones in the manuscript.

      Thank you for pointing it out. We revised the graph (Figure 6 (Figure 5 in the previous version)).

      (4) For both the results from polysome profiling and puromycin incorporation (Figure 4H and I), the difference between control siRNA and Milton siRNA are subtle, if not nonexistent. This might arise from the lack of spatial resolution in their experiment as the authors used head lysate for these data but the ratio of Phospho-eIF2α/eIF2α only changes in the axons, based on their results in Figure 4E-G. The authors could have attempted to capture the spatial resolution for the axonal translation to see the difference between control siRNA and Milton siRNA.

      Thank you for your comment. We agree that it would be an interesting experiment, but it will take a considerable amount of time to analyze axonal translation with spatial resolution. We will try to include such analyses in the future. For this manuscript, we revised the discussion section to include the reviewer's suggestion as below;

      Lines 355-357: ‘Further analyses to dissect the effects of milton knockdown on proteostasis and translation in the cell body and axon by experiments with spatial resolution would be needed.’

      Recommendations for the authors:

      From the Reviewing Editor:

      As the Reviewing Editor, I have read your manuscript and the associated peer reviews. I have concerns about publishing this work in its current form. I think that your manuscript cannot claim to have found a novel function of eIF2beta because of technical uncertainties and conceptual problems that should be addressed.

      Thank you so much for your review and comments. We addressed all the concerns raised by the reviewers. Point-by-point responses are listed below.

      First, your manuscript is based partly on what appears to be a mistaken understanding of the mechanistic basis of the ISR. Specifically, eIF2 is a heterotrimeric complex of alpha, beta, and gamma subunits. When eIF2a is phosphorylated, the heterotrimer adopts a new conformation. This conformation directly binds and inhibits eIF2B, the decameric GEF that exchanges the GDP bound to the gamma subunit of the eIF2 complex for GTP. Unless I misunderstood your paper, you seem to propose that decreasing levels of phospho-eIF2a will inhibit translation, but this is backward from what we know about the ISR.

      Thank you for your insightful comment, and we are sorry for the confusion. We did not mean to propose that decreasing levels of phospho-eIF2_a_ inhibits translation. We apologize for our insufficient explanation, which might have caused a misunderstanding (Lines 312-318 in the original version). We agree with the reviewer that ‘mismatch due to elevated eIF2-beta could change the behavior of the ISR’. We revised the text in the result section as follows:

      Lines 263-268 (in the Result section) ‘Phosphorylation of eIF2α induces conformational changes in the eIF2 complex and inhibits global translation36. To analyze the effects of milton knockdown on translation, we performed polysome gradient centrifugation to examine the level of ribosome binding to mRNA. Since p-eIF2α was downregulated, we hypothesized that milton knockdown would enhance translation. However, unexpectedly, we found that milton knockdown significantly reduced the level of mRNAs associated with polysomes (Figure 6A and B).’

      Lines 374-384 (in the Discussion section): ‘eIF2β is a component of eIF2, which meditates translational regulation and ISR initiation. When ISR is activated, phosphorylated eIF2α suppresses global translation and induces translation of ATF4, which mediates transcription of autophagy-related genes39,40. Since ISR can positively regulate autophagy, we suspected that suppression of ISR underlies a reduction in autophagic protein degradation. We found neuronal knockdown of milton reduced phosphorylated eIF2α, suggesting that ISR is reduced (Figure 5). However, we also found that global translation was reduced (Figure 6). Increased levels of eIF2β might disrupt the eIF2 complex or alter its functions. The stoichiometric mismatch caused by an imbalance of eIF2 components may inhibit ISR induction. Supporting this model, we found that eIF2β upregulation reduced the levels of p-eIF2α (Figure 7).’

      It may be possible that a stoichiometric mismatch due to elevated eIF2-beta could change the behavior of the ISR, but your paper doesn't adequately address the expression levels of all three eIF2 subunits: alpha, beta, and gamma. The proteomic data shown in Fig 4B is unconvincing on its own because the changes in the beta subunit are subtle. The Western blot in Figure 4C suggests that the KD changes the mass or mobility of the beta subunit, and most importantly, there are no Western blots measuring the levels of eIF2a, eIF2a-phospho, or eIF2-gamma.

      We appreciate the reviewer’s comment and agree that the stoichiometric mismatch due to elevated eIF2β may interfere with ISR. We found overexpression of eIF2β lowered p-eIF2 alpha (Figure S2 in V1), which supports this model. We included this data in the main figure in the revised manuscript (Figure 7D) and revised the text as below:

      Lines 286-289: ‘Since milton knockdown reduced the p-eIF2α level (Figure 5E), we asked whether an increase in eIF2β affects p-eIF2α. Neuronal overexpression of eIF2β did not affect the eIF2α level but significantly decreased the p-eIF2α level (Figure 7D and E).’

      Expression data of eIF2α and eIF2γ from proteomic analyses has been extracted from proteome analyses and included as a table (Figure 4D). Western blots of phospho-eIF2a (Figure S1 in V1) in the main figure (Figure 5B). The result section was revised as below;

      Lines 246-249: ‘As for the other subunits of eIF2 complex, proteome analysis did not detect a significant difference in the protein levels of eIF2α and eIF2γ between milton knockdown and control flies at 7 and 21 days (Figure 4D).’

      NEW TEXT: We also analyzed age-dependent changes of eIF2β by western blotting and found that eIF2β increased during aging until 49-day-old. We included this result as Figure 4G and added these sentences in the result section:

      NEW TEXT: Line 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.

      Reviewer #1 (Recommendations For The Authors):

      L125-128: In this section, while the efficiency of Milton knockdown is referenced from a previous publication, it is necessary to also mention that the Miro knockdown has been similarly reported in the literature. Additionally, the Methods section lacks details on the Miro RNAi line used, and Table 2 does not include the genotype for Miro RNAi. This information should be included for clarity and completeness.

      Thank you for pointing it out. Knockdown efficiency with this strain has been reported (Iijima- Ando et al., PLoS Genet, 2012). We revised the text to include citation and knockdown efficiency as follows:

      Lines 136-147: ‘There was no significant increase in ubiquitinated proteins in milton knockdown flies at 1-day old, suggesting that the accumulation of ubiquitinated proteins caused by milton knockdown is age-dependent (Figure S1). We also analyzed the effect of the neuronal knockdown of Miro, a partner of milton, on the accumulation of ubiquitin-positive proteins. Since severe knockdown of Miro in neurons causes lethality, we used UAS-Miro RNAi strain with low knockdown efficiency, whose expression driven by elav-GAL4 caused 30% reduction of Miro mRNA in head extract24. Although there was a tendency for increased ubiquitin- positive puncta in Miro knockdown brains, the difference was not significant (Figure 1B, p>0.05 between control RNAi and Miro RNAi). These data suggest that the depletion of axonal mitochondria induced by milton knockdown leads to the accumulation of ubiquitinated proteins before neurodegeneration occurs.’

      L132-L136: The current phrasing in this section suggests an increase in ubiquitinated proteins for both Milton and Miro knockdowns. However, since there is no significant difference noted for Miro, it is incorrect to state an increase in ubiquitin-positive puncta. Furthermore, combining the results of Milton knockdown to claim an increase in ubiquitinated proteins prior to neurodegeneration is misleading. At the very least, the expression here needs to be moderated to accurately reflect the findings.

      Thank you for pointing it out. We revised the text as above.

      L137-L141: Results in Figure 1 indicate that Milton knockdown leads to an increase in ubiquitinated proteins at 14 days, while Miro knockdown shows no difference from the control at either 14 or 30 days. Conversely, both the control and Miro exhibit an increase in ubiquitinated proteins with aging, but this trend does not seem to apply to Milton knockdown. This observation suggests that Milton KD may not affect the changes in protein quality control associated with aging. It implies that Milton's function might be more related to protein homeostasis in younger cells, or that changes due to aging might overshadow the effects of Milton knockdown. These interpretations should be included in the Results or Discussion sections for a more comprehensive analysis.

      NEW TEXT: Thank you for your insightful comment. As you mentioned, the accumulation of ubiquitinated proteins significantly increases only in young flies. Age-related pathways, such as immune responses, are highlighted in young milton knockdown flies but not in the aged flies. Our new result indicates that eIF2β increases during aging in control flies (included as Figure 4G in the revised manuscript), and upregulation of eIF2β in milton knockdown is only observed at a young age. These results suggest that milton knockdown does not increase the magnitude of age-dependent changes but accelerates their onset. We revised the text to include those points as follows:

      NEW TEXT: Lines 152-153: ‘These results suggest that depletion of axonal mitochondria may have more impact on proteostasis in young neurons than in old neurons.’

      NEW TEXT: Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day- old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4 and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      L143 : Please remove the erroneously included quotation mark.

      Thank you for pointing it out. We corrected it.

      L145-L147:

      While it is understood that Milton knockdown results in a reduction of mitochondria in axons, as reported previously and seemingly indicated in Figure 1E, this paper repeatedly refers to axonal depletion of mitochondria. Therefore, it would be beneficial to quantitatively assess the number of mitochondria in the axonal terminals located in the lamina via electron microscopy. Such quantification would robustly reinforce the argument that mitochondrial absence in axons is a consequence of Milton knockdown.

      Thank you for pointing it out. We included quantitation of the number of mitochondria in the synaptic terminals (Figure 1E).

      The text and figure legend was revised accordingly:

      Lines 156-157: ‘As previously reported24, the number of mitochondria in presynaptic terminals decreased in milton knockdown (Figure 1E).’

      The knockdown of Milton is known to reduce mitochondrial transport from an early stage, but what about swelling? By observing swelling at 1 day and 14 days, it may be possible to confirm the onset of swelling and discuss its correlation with the accumulation of ubiquitinated proteins.

      Quantitation of axonal swelling has also been included (Figure 1F).

      We appreciate the reviewer's comments on the correlation between the accumulation of ubiquitinated proteins and axonal swelling. Axonal swelling was not observed at 3-days-old (Iijima-Ando et al., PLoS Genetics, 2012), indicating that axonal swelling is an age-dependent event. Dense materials are found in swollen axons more often than in normal axons, suggesting a positive correlation between disruption of proteostasis and axonal damage. It would be interesting to analyze the time course of events further; however, we feel it is beyond the scope of this manuscript. We revised the text to include this discussion as:

      Lines 157-160: ‘The swelling of presynaptic terminals, characterized by the enlargement and roundness, was not reported at 3-day-old24 but observed at this age with about 4% of total presynaptic terminals (Figure 1F, asterisks).’

      Lines 162-167: ‘Dense materials are rarely found in age-matched control neurons, indicating that milton knockdown induces abnormal protein accumulation in the presynaptic terminals (Figure 1G and H). In milton knockdown neurons, dense materials are found in swollen presynaptic terminals more often than in presynaptic terminals without swelling, suggesting a positive correlation between the disruption of proteostasis and axonal damage (Figure 1G).’

      Lines 369-371: ‘Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      L147-L151: Though Figures 1F and 1G provide qualitative representations, it is advisable to quantitatively assess whether dense materials significantly accumulate. Such quantitative analysis would be required to verify the accumulation of dense materials in the context of the study.

      Thank you for pointing it out. We included quantitation of the number of neurons with dense material (Figure 1G). We revised the manuscript as follows:

      Line 162-164: ‘Dense materials are rarely found in age-matched control neurons, indicating that milton knockdown induces abnormal protein accumulation in the presynaptic terminals (Figure 1G and H).’

      Regarding Figure 1B, C:

      Even though the count of puncta in the whole brain appears to be fewer than 400, the magnification of the optic lobe suggests a substantial presence of puncta. Please clarify in the Methods section what constitutes a puncta and whether the quantification in the whole brain is based on a 2D or 3D analysis. Detail the methodology used for quantification.

      Thank you for your comment. We revised the method section to include more details as below:

      Lines 440-443: ‘Quantitative analysis was performed using ImageJ (National Institutes of Health) with maximum projection images derived from Z-stack images acquired with same settings. Puncta was identified with mean intensity and area using ImageJ.’

      What about 1-day-old specimens? Does Milton knockdown already show an increase in ubiquitinated protein accumulation at this early stage? Investigating whether ubiquitin-protein accumulation is involved in aging promotion or is already prevalent during developmental stages is a necessary experiment.

      Thank you for your comment. We carried out immunostaining with an anti-ubiquitin antibody in the brains at 1-day-old. No significant difference was detected between the control and milton knockdown. This result has been included as Figure S1 in the revised manuscript. The result section was revised as below:

      Line 136-139 ‘There was no significant increase in ubiquitinated proteins in milton knockdown flies at 1-day old, suggesting that the accumulation of ubiquitinated proteins caused by milton knockdown is age-dependent (Figure S1).’

      For Figure 1E: In the Electron Microscopy section of the Methods, define how swollen axons were identified and describe the quantification methodology used.

      Thank you for your comment. Swollen axons are, unlike normal axons, round in shape and enlarged. We revised the text as below;

      Lines 157-160: ‘The swelling of presynaptic terminals, characterized by the enlargement and roundness, was not reported at 3-day-old24 but observed at this age with about 4% of total presynaptic terminals (Figure 1F, asterisks).’

      Lines 689-691, Figure 1 legend: ‘Swollen presynaptic terminals (asterisks in (F)), characterized by the enlargement and higher circularity, were found more frequently in milton knockdown neurons.’

      L218-L219: Throughout the text, the expression 'eIF2β is "upregulated" in response to Milton knockdown' is frequently used. However, considering the presented results, it might be more accurate to interpret that under the condition of Milton knockdown, eIF2β is not undergoing degradation but rather remains stable.

      Thank you for pointing it out. We replaced ‘upregulated’ with ‘increased’ throughout the text.

      L234-L235: On what basis is the conclusion drawn that there is a reduction? Given that three experiments have been conducted, it would be possible and more convincing to quantify the results to determine if there is a significant decrease.

      Thank you for pointing it out. We quantified the AUC of polysome fraction and carried out a statistical analysis. There is a significant decrease in polysome in milton knockdown, and this result has been included in Figure 5B. We revised the figure and the legend accordingly.

      L236: 5H-> 4H

      Thank you for pointing it out, and we are sorry for the confusion. We corrected it.

      L238-L239: Since there is no significant difference observed, it may not be accurate to interpret a reduction in puromycin incorporation.

      Thank you for pointing it out. As described above, quantification of polysome fractions showed that milton knockdown significantly reduced polysome (Figure 6B (Figure 5B in the previous version)). We revised the manuscript as below;

      Lines 267-268: ‘However, unexpectedly, we found that milton knockdown significantly reduced the level of mRNAs associated with polysomes (Figure 6A and B).’

      Figure 5D and Figure 6D: Climbing assays have been conducted, but I believe experiments should also be performed to examine whether overexpression or heterozygous mutants of eIF2β induce or suppress degeneration.

      Thank you for pointing it out. We analyzed the eyes with eIF2β overexpression for neurodegeneration. Although there was a tendency of elevated neurodegeneration in the retina with eIF2β overexpression, the difference between control and eIF2β overexpression did not reach statistical significance (Figure S2). This result has been included as Figure S2 in the revised manuscript, and the following sentences have been included in the text:

      Lines 292-297: ‘We asked if eIF2β overexpression causes neurodegeneration, as depletion of axonal mitochondria in the photoreceptor neurons causes axon degeneration in an age- dependent manner24. eIF2β overexpression in photoreceptor neurons tends to increase neurodegeneration in aged flies, while it was not statistically significant (p>0.05, Figure S2).’

      L271-L272: The results in Figure 6B are surprising. I anticipated a greater increase compared to the Milton knockdown alone. While p62 appears to be reduced, it is not clear why these results lead to the conclusion that lowering eIF2β rescues autophagic impairment. Please add a discussion section to address this point.

      Thank you for pointing it out. We apologize for the unclear description of the result. Milton knockdown flies show p62 accumulation (Figure 2), and deleting one copy of eIF2beta in milton knockdown background reduced p62 accumulation (Figure 8C (Figure 7C in the previous version)). We revised the text as below:

      Lines 311-319: ‘Neuronal knockdown of milton causes accumulation of autophagic substrate p62 in the Triton X-100-soluble fraction (Figure 2B), and we tested if lowering eIF2β ameliorates it. We found that eIF2β heterozygosity caused a mild increase in LC3-I levels and decreases in LC3-II levels, resulting in a significantly lower LC3-II/LC3-I ratio in milton knockdown flies (Figure 8B). eIF2β heterozygosity decreased the p62 level in the Triton X-100-soluble fraction in the brains of milton knockdown flies (Figure 8C). The p62 level in the SDS-soluble fraction, which is not sensitive to milton knockdown (Figure 2B), was not affected (Figure 8C). These results suggest that suppression of eIF2β ameliorates the impairment of autophagy caused by milton knockdown.’

      L369: Please specify the source of the anti-ubiquitin antibody used.

      Thank you for pointing it out. We included the antibody information in the method section.

      Figure 7: While the relationship between Milton knockdown and the eIF2β and eIF2α proteins has been elucidated through the authors' efforts, I would like to see an investigation into whether eIF2β is upregulated and eIF2α phosphorylation is reduced in simply aged Drosophila. This would help us understand the correlation between aging and eIF2 protein dynamics.

      Thank you for your comment. We agree that it is an important question, and we are working on it. However, we feel that it is beyond the scope of the current manuscript.

      L645-L646: If the mushroom body is identified using mito-GFP, then include mito-GFP in the genotype listed in Supplementary Table 2.

      We are sorry for the oversight. We corrected it in Supplementary Table 2.

      Additionally, while it is presumed that the mito-GFP signal decreases in axons with Milton RNAi, how was the lobe tips area accurately selected for analysis? Please include these details along with a comprehensive description of the quantification methodology in the Methods section.

      Thank you for your comment. Although the mito-GFP signal in the axon is weak in the milton knockdown neurons, it is sufficient to distinguish the mushroom body structure from the background. We revised the method section to include this information in the method section:

      Line 443-447: ‘For eIF2α and p-eIF2α immunostaining, the mushroom body was detected by mitoGFP expression.’

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      I am impressed with the thoroughness with which the authors addressed my concerns. I don't have any further concerns and think that this paper makes an interesting and significant contribution to our understanding of VWM. I would only suggest adding citations to the newly added paragraph where the authors state "It could be argued that preparatory attention relies on the same mechanisms as working memory maintenance." They could cite work by Bettencourt and Xu, 2016; and Sheremata, Somers, and Shomstein (2018).

      We thank the reviewer for the positive feedback. We have now cited the referenced work in the manuscript (Page. 19, Line 371).

      Reviewer #2 (Public review):

      Overall, I think that the authors' revision has addressed most, if not all, of my major concerns noted in my previous comments. The results appear convincing and I do not have additional comments.

      We thank the reviewer for the positive feedback and are pleased that the revision addressed the major concerns.

      Reviewer #3 (Public review):

      (1) The authors addressed most of my previous concerns and provided additional data analysis. They conducted further analyses to demonstrate that the observed changes in network communication are associated with behavioral RTs, supporting the idea that the impulse-driven sensory-like template enhances informational connectivity between sensory and frontoparietal areas, and relates to behavior.

      We are pleased that the revision addressed the major concerns.

      (2) I would like to further clarify my previous points regarding the definition of the two types of templates and the evidence for their coexistence. The authors stated that the sensory-like template likely existed in a latent state and was reactivated by visual pings, proposing that sensory and non-sensory templates coexist. However, it remains unclear whether this reflects a dynamic switch between formats or true coexistence. If the templates are non-sensory in nature, what exactly do they represent? Are they meant to be abstract or conceptual representations, or, put simply, just "top-down attentional information"? If so, why did the generalization analysestraining classifiers on activity during the stimulus selection period and testing on preparatory activity-fail to yield significant results? While the stimulus selection period necessarily encodes both target and distractor information, it should still contain attentional information. I would appreciate more discussion from this perspective.

      We thank the reviewer for the helpful clarification of previous comments. Since we addressed similar comments from Reviewer 2 (Point 2) in the previous round, our response below may appear somewhat repetitive. First, regarding whether our findings reflect a dynamic switch between non-sensory and sensory-like template, or the ‘coexistence’ of two template formats, we acknowledge that the temporal limitations of fMRI prevent us from directly testing dynamic representations. However, several aspects of our data favor the latter interpretation: (1) our key findings remained consistent in the subset of participants (N=14) who completed both No-Ping and Ping sessions in counterbalanced order. This makes it unlikely that participants systematically switched cognitive strategies (e.g., using non-sensory templates in the No-Ping session versus sensory-like templates in the Ping session) in response to the taskirrelevant, uninformative visual impulse; (2) while we agree that the temporal dynamics between the two templates remain unclear, it is difficult to imagine that orientation-specific templates observed in the Ping session emerged de novo from purely non-sensory templates and an exogenous ping. In other words, if there is no orientation information at all to begin with, how does it come into being from an orientation-less external ping? A more parsimonious explanation is that orientation information was already present in a latent format and was activated by the ping, in line with the models of “activity-silent” working memory. However, since the detailed circuit-level mechanism underlying such reactivation remain unclear, we acknowledge that this interpretation warrants direct investigation in future studies. This point is discussed in the main texts (Page 19-20, Line 389-402). 

      Second, while our data cannot definitively determine the nature of the non-sensory template, we consider categorical coding a plausible candidate based on prior visual search studies. For instance, categorical attributes (e.g., left-tilted vs. right-tilted) have been shown to effectively guide attention in orientation search tasks (Wolfe et al., 1992), similar to our paradigm. Further, categorical templates are more tolerant of stimulus variability, making them well-suited to our task, which involved trial-by-trial variations in target orientation around a reference (see Page 21, Line 427- 437 for more detailed discussions).

      Third, the lack of generalization from stimulus selection to preparatory attention in the Ping session may relate to the limited overlap in shared information between these two periods. Neural activity during stimulus selection encodes sensory information about both orientations, along with sensory-like attentional signals (as indicated by the attention decoding and crosstask generalization from perception task to the stimulus-selection period). In contrast, preparatory activity likely involves a dominant non-sensory template, a latent sensory-like template, and residual sensory effects from the impulse stimulus. The limited overlap in sensory-like attentional signals may therefore be insufficient to support generalization across the two periods.

      Reviewer #2 ( Recommendations for the authors)

      I think the central prediction of greater pattern similarity between 'attend leftward' and 'perceived leftward' in the ping session in comparison to the no-ping session (the same also holds for 'attend rightward' and 'perceived rightward' could be directly examined by a two-way ANOVA (session × the attend orientation is the same/different from the perceived orientation) for each ROI (V1 and EVC). A three-way ANOVA might complicate readers' intuitive understanding of the implications of the statistical results.

      We thank the reviewer for the suggestion. Following the reviewer’s suggestion, we defined a new condition label based on orientation consistency between attended and perceived orientations: (1) same orientation: averaging “attend leftward/perceive leftward” and “attend rightward/perceive rightward”; and (2) different orientation: averaging “attend leftward/perceive rightward” and “attend rightward/perceive leftward”. A two-way mixed ANOVA (session × orientation consistency) on Mahalanobis distance revealed a main effect of orientation consistency in V1 (F(1,38) = 4.21, p = 0.047, η<sub>p</sub><sup>2</sup> = 0.100), indicating that activity patterns were more similar when attended and perceived orientations matched. No significant main effect of session was found (p = 0.923). Importantly, a significant interaction was found in V1 (F(1,38) = 5.00, p = 0.031, η<sub>p</sub><sup>2</sup> = 0.116), suggesting that visual impulse enhanced the similarity between preparatory attentional template and the perception of corresponding orientation. In EVC, the same analysis revealed only a main effect of orientation consistency (F(1,38) = 5.87, p = 0.020, η<sub>p</sub><sup>2</sup> = 0.134), with no significant other effects (ps > 0.240). The interaction results were consistent with those reported in the original three-way ANOVA. We have now replaced the previous analysis with the new one in the main texts (Page 11-12, Line 231-242).

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Yamazaki et al. conducted multiple microscopy-based GFP localization screens, from which they identified proteins that are associated with PM/cell wall damage stress response. Specifically, the authors identified that bud-localized TMD-containing proteins and endocytotic proteins are associated with PM damage stress. The authors further demonstrated that polarized exocytosis and CME are temporally coupled in response to PM damage, and CME is required for polarized exocytosis and the targeting of TMD-containing proteins to the damage site. From these results, the authors proposed a model that CME delivers TMD-containing repair proteins between the bud tip and the damage site.

      Strengths:

      Overall, this is a well-written manuscript, and the experiments are well-conducted. The authors identified many repair proteins and revealed the temporal coordination of different categories of repair proteins. Furthermore, the authors demonstrated that CME is required for targeting of repair proteins to the damage site, as well as cellular survival in response to stress related to PM/cell wall damage. Although the roles of CME and bud-localized proteins in damage repair are not completely new to the field, this work does have conceptual advances by identifying novel repair proteins and proposing the intriguing model that the repairing cargoes are shuttled between the bud tip and the damaged site through coupled exocytosis and endocytosis.

      Weaknesses:

      While the results presented in this manuscript are convincing, they might not be sufficient to support some of the authors' claims. Especially in the last two result sessions, the authors claimed CME delivers TMD-containing repair proteins from the bud tip to the damage site. The model is no doubt highly possible based on the data, but caveats still exist. For example, the repair proteins might not be transported from one localization to another localization, but are degraded and resynthesized. Although the Gal-induced expression system can further support the model to some extent, I think more direct verification (such as FLIP or photo-convertible fluorescence tags to distinguish between pre-existing and newly synthesized proteins) would significantly improve the strength of evidence.

      Major experiment suggestions:

      (1) The authors may want to provide more direct evidence for "protein shuttling" and for excluding the possibility that proteins at the bud are degraded and synthesized de novo near the damage site. For example, if the authors could use FLIP to bleach bud-localized fluorescent proteins, and the damaged site does not show fluorescent proteins upon laser damage, this will strongly support the authors' model. Alternatively, the authors could use photo-convertible tags (e.g., Dendra) to differentiate between pre-existing repair proteins and newly synthesized proteins.

      (2) In line with point 1, the authors used Gal-inducible expression, which supported their model. However, the author may need to show protein abundance in galactose, glucose, and upon PM damage. Western blot would be ideal to show the level of full-length proteins, or whole-cell fluorescence quantification can also roughly indicate the protein abundance. Otherwise, we cannot assume that the tagged proteins are only expressed when they are growing in galactose-containing media.

      (3) Similarly, for Myo2 and Exo70 localization in CME mutants (Figure 4), it might be worth doing a western or whole-cell fluorescence quantification to exclude the caveat that CME deficiency might affect protein abundance or synthesis.

      (4) From the authors' model in Figure 7, it looks like the repair proteins contribute to bud growth. Does laser damage to the mother cell prevent bud growth due to the reduction of TMD-containing repair proteins at the bud? If the authors could provide evidence for that, it would further support the model.

      (5) Is the PM repair cell-cycle-dependent? For example, would the recruitment of repair proteins to the damage site be impaired when the cells are under alpha-factor arrest?

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The small conductance calcium-activated potassium channel 2 (SK2) is an important drug target for treating neurological and cardiovascular diseases. However, structural information on this subtype of SK channels has been lacking, and it has been diOicult to draw conclusions about activator and inhibitor binding and action in the absence of structural information.

      Here the authors set out to (1) determine the structure of the transmembrane regions of a mammalian SK2 channel, (2) determine the binding site of apamin, a historically important SK2 inhibitor whose mode of action is unclear, and (3) use the structural information to generate a novel set of activators/inhibitors that selectively target SK2.

      The authors largely achieved all the proposed goals, and they present their data clearly.

      Unable to solve the structure of the human SK2 due to excessive heterogeneity in its cytoplasmic regions, the authors create a chimeric construct using SK4, whose structure was previously solved, and use it for structural studies. The data reveal a unique extracellular structure formed by the S2-S3 loop, which appears to directly interact with the selectivity filter and modulate its conductivity. Structures of SK2 in the absence and presence of the activating Ca2+ ions both possess non-K+-selective/conductive selectivity filters, where only sites 3 and 4 are preserved. The S6 gates are captured in closed and open states, respectively. Apamine binds to the S2-S3 loop, and unexpectedly, induces a K+ selective/conductive conformation of the selectivity filter while closing the S6 gate.

      Through high-throughput screening of small compound libraries and compound optimization, the group identified a reasonably selective inhibitor and a related compound that acts as an activator. The characterization shows that these compounds bind in a novel binding site. Interestingly, the inhibitor, despite binding in a site diOerent from that of apamine, also induces a K+ selective/conductive conformation of the selectivity filter while the activator induces a non-K+ selective/conductive conformation and an open S6 gate.

      The data suggest that the selectivity filter and the S6 gate are rarely open at the same time, and the authors hypothesize that this might be the underlying reason for the small conductance of SK2. The data will be valuable for understanding the mechanism of SK2 channel (and other SK subtypes).

      Overall, the data is of good quality and supports the claims made by the authors. However, a deeper analysis of the cryo-EM data sets might yield some important insights, i.e., about the relationship between the conformation of the selectivity filter and the opening of the S6 gate.

      We attempted focused 3D classification to identify subsets of particles with the S6 open and the SF in a conductive state but were not able to isolate such a particle class. This indicates that either none or a very small percentage of particles exists in a fully conductive state. This sentence was included in the results section: 

      “Focused 3D classification of the S3-S4 linker was unsuccessful in identifying particles subsets with a dilated extracellular constriction suggesting that either none or a very small percentage of Ca<sup>2+</sup>-bound SK2-4 is in a conductive state”

      Some insight and discussion about the allosteric networks between the SF and the S6 gate would also be a valuable addition.

      The extracellular constriction is in the same non-conductive conformation in the Ca<sup>2+</sup> bound and Ca<sup>2+</sup> -free SK2-4 structures suggesting that the conformation of S3-S4 linker/SF and the S6 are not allosterically coupled. We predict that Ca<sup>2+</sup> opens the intracellular gate and another physiological factor (not yet identified) promotes extracellular gate opening. These sentences were added to the results and discussion: “This along with the similar conformation of the S3-S4 linker in the Ca<sup>2+</sup> -bound and Ca<sup>2+</sup> -free states of SK2-4 suggest that Ca<sup>2+</sup> -dependent intracellular gate dynamics are not coupled to the conformation of the S3-S4 linker. Other yet to be identified physiological factors may be required to dilate the extracellular constriction.”

      “Alternatively, other physiological factors, such as PIP2[46,47] or protein-protein interactions[48-50], may exist in live cells that modulate the interaction between S3-S4 linker and the selectivity filter.”

      Reviewer #2 (Public review):

      Summary:

      The authors have used single-particle cryoEM imaging to determine how small-molecule regulators of the SK channel interact with it and modulate their function.

      Strengths:

      The reconstructions are of high quality, and the structural details are well described.

      Weaknesses:

      The electrophysiological data are poorly described. Several details of the structural observations require a mechanistic context, perhaps better relating them to what is known about SK channels or other K channel gating dynamics.

      As recommended, additional details for electrophysiological data were added to the results, methods, and figure legends for clarification.  

      The most pressing point I have to make, which could help improve the manuscript, relates to the selectivity filter (SF) conformation. Whether the two ion-bound state of SK2-4 (Figure 4A) represents a non-selective, conductive SF occluded by F243 or represents a C-type inactivated SF, further occluded by F243, is unclear. It would be important to discuss this. Reconstructions of Kv1.3 channels also feature a similar configuration, which has been correlated to its accelerated C-type inactivation.

      Structural overlays of Ca<sup>2+</sup> bound SK2-4, HCN, and C-type inactivated Kv1.3 selectivity filters demonstrate that each have conformational diVerences and it is diVicult to definitively determine if the SK2-4 selectivity filter is in a non-selective conformation like HCN or a C-type inactivated conformation like Kv1.3. Based on the number of ions observed in the filter and the position of Tyr361 we believe the selectivity filter most closely resembles that of HCN. Importantly, the selectivity filter conformation observed in the SK2-4 Ca<sup>2+</sup> -bound and Ca<sup>2+</sup> -free structures is ultimately nonconductive due to the Phe243 extracellular constriction blocking K<sup>+</sup> eVlux. 

      A comparison of the SK2-4 selectivity filter to HCN and C-type inactivated Kv1.3 was included in Figure 4 and this sentence was included in the results section:

      “The selectivity filter of SK2-4 resembles that of to HCN in both the position of Tyr361 and the number of K<sup>+</sup> coordination sites (Fig 4E,F,G,H)”

      Furthermore, binding of a toxin derivative to Kv1.3 restores the SF into a conductive form, though occluded by the toxin. It appears that apamin binding to SK2-4 might be doing something similar. Although I am not sure whether SK channels undergo C-type inactivation like gating, classical MTS accessibility studies have suggested that dynamics of the SF might play a role in the gating of SK channels. It would be really useful (if not essential) to discuss the SF dynamics observed in the study and relate them better to aspects of gating reported in the literature.

      Extracellular toxin binding to SK2-4 and K<sub>v</sub>1.3 induce a conformational change in the selectivity filter to produce a canonical K<sup>+</sup> selective structure with four coordination sites. However, the mechanism by which the toxins produce the conformational change is diVerent. For SK2-4, apamin interacts primarily with S3-S4 linker residues and induces a shift in the S3-S4 linker away from the pore axis. This in turn prevents the hydrogen bonds between Arg240 and Tyr245 of the S3-S4 linker and Asp363 at the C-terminus of the selectivity filter to produce a selectivity filter conformation with four K<sup>+</sup> coordination sites. For K<sub>v</sub>1.3, the sea anemone toxin ShK binds directly to the C-terminus of the selectivity filter disrupting interactions required for the C-type inactivated structure and thereby inducing the conformational change. These sentences were added to the results:

      “Toxin induced selectivity filter conformational change has also been reported for K<sub>v</sub 1.3 with the sea anemone toxin ShK. However, unlike apamin binding to SK2-4, ShK binds directly to the K<sub>v</sub> 1.3 selectivity filter to convert a C-type inactivated conformation to a canonical K<sup>+</sup> selective structure with four coordination sites [39,40]. The change in selectivity filter conformation in apamin-bound SK2-4 seems to be driven instead by the weakening of interactions between the selectivity filter and the S3-S4 linker.”

      The SF of K channels, in conductive states, are usually stabilized by an H-bond network involving water molecules bridged to residues behind the SF (D363 in the down-flipped conformation and Y361). Considering the high quality of the reconstructions, I would suspect that the authors might observe speckles of density (possibly in their sharpened map) at these sites, which overlap with water molecules identified in high-resolution X-ray structures of KcsA, MthK, NaK, NaK2K, etc. It could be useful to inspect this region of the density map.

      We did not observe strong density near Y361 or D363 that could be confidently model as water. However, in the structures of SK2-4 bound to apamin and compound 1 Tyr361 in the selectivity filter rotates 180° and forms a hydrogen bond with Thr355 in the pore helix. The homologous hydrogen bond is also observed in SK4 and the conductive/ K<sup>+</sup> selective selectivity filter conformation of Kv1.3.  The rotation of Tyr361 to form a hydrogen bond with Thr355, reorientation of Asp363 and Trp350 into hydrogen bonding position, and the presence of four K<sup>+</sup> coordination sites upon binding of apamin and compound 1 strongly suggest that the selectivity filter is in a K<sup>+</sup> selective/conductive conformation. The Tyr361/Thr355 hydrogen bond is now described in the paper and shown in Figures 4D, 5D, and S6F.

      Reviewer #3 (Public review):

      This is a fundamentally important study presenting cryo-EM structures of a human small conductance calcium-activated potassium (SK2) channel in the absence and presence of calcium, or with interesting pharmacological probes bound, including the bee toxin apamin, a small molecule inhibitor, and a small molecule activator. As eOorts to solve structures of the wild-type hSK2 channel were unsuccessful, the authors engineered a chimera containing the intracellular domain of the SK4 channel, the subtype of SK channel that was successfully solved in a previous study (reference 13). The authors present many new and exciting findings, including opening of an internal gate (similar to SK4), for the first time resolving the S3-S4 linker sitting atop the outer vestibule of the pore and unanticipated plasticity of the ion selectivity filter, and the binding sites for apamin, one new small molecule inhibitor and another small molecule activator. Appropriate functional data are provided to frame interpretations arising from the structures of the chimeric protein; the data are compelling, the interpretations are sound, and the writing is clear. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will be valuable for future drug development targeting SK channels.

      The following are suggestions for strengthening an already very strong and solid manuscript:

      (1) It would be good to include some information in the text of the results section about the method and configuration used to obtain electrophysiological data and the limitations. It is not until later in the text that the Qube instrument is mentioned in the results section, and it is not until the methods section that the reader learns it was used to obtain all the electrophysiological data. Even there, it is not explicitly mentioned that a series of diOerent internal solutions were used in each cell where the free calcium concentration was varied to obtain the data in Figure1C. Also, please state the concentration of free calcium for the data in Figure 1B.

      As recommended, additional details for electrophysiological data were added to the results, methods, and figure legends for clarification.  

      (2) The authors do a nice job of discussing the conformations of the selectivity filter they observed here in SK as they relate to previous work on NaK and HCN, but from my perspective the authors are missing an opportunity to point out even more striking relationships with slow C-type inactivation of the selectivity filter in Shaker and Kv1 channels. C-type inactivation of the filter in Shaker was seen in 150 mM K using the W434F mutant (PMC8932672) or in 4 mM K for the WT channel (PMC8932672), and similar results have been reported for Kv1.2 (PMC9032944; PMC11825129) and for Kv1.3 (PMC9253088; PMC8812516) channels. For Kv1.3, C-type inactivation occurs even in 150 mM K (PMC9253088; PMC8812516). Not unlike what is seen here with apamin, binding of the sea anemone toxin (ShK) with a Fab attached (or the related dalazatide) inserts a Lys into the selectivity filter and stabilizes the conducting conformation of Kv1.3 even though the Lys depletes occupancy of S1 by potassium (PMC9253088; PMC8812516). Or might the conformation of the filter be controlled by regulatory processes in SK2 channels? I think connecting the dots here would enhance the impact of this study, even if it remains relatively speculative.

      Please see the response to reviewer 2’s comments for a comparison of the selectivity filter structure between SK2-4 and C-type inactivated K<sub>v</sub>1.3 and a discussion of toxin induced selectivity filter conformational change.

      What is known about how the functional properties of SK2 channels (where the filter changes conformation) diOer from SK4, where the filter remains conducting (reference 13)? Is there any evidence that SK2 channels inactivate?

      Compared with SK4, SK2 has some unique properties such as lower conductance and the ability to switch between low- and high-open probability states. Mutation of Phe243 suggests that the S3-S4 linker conformation contributes to the low conductance. This is included in the discussion.

      “Such a mechanism may explain some properties of SK2 that are not observed in SK4, which lacks an S3-S4 linker, such as its low conductance (~10 pS) and the ability to switch between low- and high-open probability states[3,4]. Indeed, mutation of Phe243 in rat SK2 produced a 2-fold increase in channel conductance[5].”

      Or might the conformation of the filter be controlled by regulatory processes in SK2 channels? I think connecting the dots here would enhance the impact of this study, even if it remains relatively speculative.

      Please see the response to reviewer 1’s comments for a discussion of the potential physiological role of the S3-S4 linker/extracellular constriction and its mechanism for opening.

      Reviewer #1 (Recommendations for the authors):

      I enjoyed reading your paper and am intrigued by your findings on the selectivity filter of SK2. I've got a few recommendations for data analysis and a couple of questions that might contribute to the discussion.

      In your Ca2+-bound dataset, have you tried to parse out any alternative conformations (e.g., by using 3D classification, or 3D variability)? Do you think there might be a small(er) population of particles that adopt a fully open conformation? If you haven't done this already, I would recommend doing so. You have a rather large number of particles in your final 3D reconstruction (~660k), so there might be some hidden conformations that could contribute to our understanding of the system.

      I would recommend doing the same for your compound 4-bound data set.

      Please see above for response to this recommendation.

      Do you think apamine works solely as a pore blocker, or does its binding perhaps also aOect the S6 gate via allosteric networks (perhaps the same ones that induce the formation of the K+ conductive SF through binding of compound 1 above the S6 gate?)?

      Apamin binding does not change the conformation of the pore helices (S5 or S6) and thus we believe it acts primarily as a pore blocker. The following was added to the results section:

      “Overall, the apamin-bound SK2-4/CaM structure resembles Ca<sup>2+</sup>-bound SK2-4. The Nterminal lobe of CaM engages with the S<sub>45</sub> A helix, the S5 and S6 helices adopt a similar conformation, and the intracellular gate Val390 is open with a radius of 3.5 Å (Fig 2D). The most significant conformational change is in the position of the S3-S4 linker, which shifts ~2 Å away from the pore axis to accommodate apamin binding.”

      Is there a mechanistic explanation for why it might be diOicult/energetically costly for the SF to be conductive and the S6 gate to be open at the same time?

      Not to our knowledge.

      I also have these minor recommendations:

      -In all figures showing density, include the threshold/sigma value at which density is shown.

      -For all ligands and ions, include half-map data.

      Sigma values were added for all figures legends displaying cryoEM density. The displayed maps are the sharpened full maps.

      Reviewer #2 (Recommendations for the authors):

      Is it possible to provide a structure-sequence guided explanation for the diOerent aOinity of compound 1 for SK2 vs SK4?

      Yes. The following is now included in the results section and a panel was added to Figure S6D.

      “However, for SK4 Thr212 replaces SK2 Ser318 and Trp216 (homologous to SK2 Trp322) is conserved but adopts a diVerent rotamer conformation (Fig S6D). Both changes occlude the compound 1 binding site in SK4 and would likely reduce compound 1 potency on SK4 as observed in the functional data.”

      Is it possible to propose a model of modulation by compound 1/4 where the authors can comment on the conformational dependence of compound binding? That is, do they bind exclusively to the identified conformational states of the channel, or are they able to bind to both closed and open channels, but bias one state over the other?

      The clash between compound 1 and Thr386 in the open conformation of the S6 helices suggests that compound 1 would preferentially bind to closed state of SK2. Similarly, the clash between compound 4 and Ile380 in the closed conformation of the S6 helices suggests that compound 4 would preferentially bind to the open state of SK2. This was included in the discussion:

      “This proposed mechanism of modulation suggests that compound 1 may bind preferentially to the closed conformation of the S6 helices and compound 4 may bind preferentially to the open conformation of the S6 helices.” 

      Please provide the calcium concentration used to generate the data in Figure 1B. The calcium concentration is now stated in the legend for Fig 1B:

      “Intracellular solution contains 2 µM Ca<sup>2+</sup> based on calculation using Maxchelator (see methods)”

      Essential and critically important descriptions of experiments in Figure 7A are lacking. It would be essential to describe properly, with care, what the currents and the conditions of measurements are. If these currents are obtained by subtracting leak currents by adding other drugs, it would be good to comment on whether the latter compete with compounds 1/4.

      As recommended, additional details for electrophysiological data were added to the results, methods, and figure legends for clarification. SK currents were obtained by subtracting leak currents by adding UCL1684 only at the end of experiments. UCL1684 is not expected to interfere with eVect of compound 1 or 4 given diVerent binding sites and mechanisms.  

      If Compound 1 changes the structure of the SF (Figure 6F), would it also promote apamin binding? Given that both these agents produce a similar change in the SF, could each favor the binding of the other?

      Since apamin binds to the S3-S4 linker it is unlikely that the selectivity filter conformational change observed in the compound 1 bound structure would aVect apamin binding.

    1. These temporary limitations will pass. The physics engines thatunderpin VR are improving. In years to come, the headsets will getsmaller, and we will transition to glasses, contact lenses, and eventuallyretinal or brain implants. The resolution will get better, until a virtualworld looks exactly like a nonvirtual world. We will figure out how tohandle touch, smell, and taste. We may spend much of our lives in theseenvironments, whether for work, socializing, or entertainment.

      Its so crazy to me how much VR can and will change the world. I think that its really cool to use as a fun game or activity but I do not think that it should be incorporated into everyday life. I feel as though its going to make the world into such a fake environment and ruin true socialness and connection.

    2. Reality exists, independently of us. The truthmatters. There are truths about reality, and we can try to find them.Even in an age of multiple realities, I still believe in objective reality.

      I find it interesting to sya that reality exists just independently of us. I mean everyone lives a completely different live and we tend to forget that. This can also be referred to as sonder. I think sonder can also be applied to concept of if virtual reality is reality and where the truths are within reality. If reality is just wihin our minds, how does one go about trying to find out what is true? Just by living? I think we can create certain realties in our brain that may or may not come true.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      It seems as if the main point of the paper is about the new data related to rat fish although your title is describing it as extant cartilaginous fishes and you bounce around between the little skate and ratfish. So here's an opportunity for you to adjust the title to emphasize ratfish is given the fact that leader you describe how this is your significant new data contribution. Either way, the organization of the paper can be adjusted so that the reader can follow along the same order for all sections so that it's very clear for comparative purposes of new data and what they mean. My opinion is that I want to read, for each subheading in the results, about the the ratfish first because this is your most interesting novel data. Then I want to know any confirmation about morphology in little skate. And then I want to know about any gaps you fill with the cat shark. (It is ok if you keep the order of "skate, ratfish, then shark, but I think it undersells the new data).

      The main points of the paper are 1) to define terms for chondrichthyan skeletal features in order to unify research questions in the field, and 2) add novel data on how these features might be distributed among chondrichthyan clades. However, we agree with the reviewer that many readers might be more interested in the ratfish data, so we have adjusted the order of presentation to emphasize ratfish throughout the manuscript.

      Strengths:

      The imagery and new data availability for ratfish are valuable and may help to determine new phylogenetically informative characters for understanding the evolution of cartilaginous fishes. You also allude to the fossil record.

      Thank you for the nice feedback.

      Opportunities:

      I am concerned about the statement of ratfish paedomorphism because stage 32 and 33 were not statistically significantly different from one another (figure and prior sentences). So, these ratfish TMDs overlap the range of both 32 and 33. I think you need more specimens and stages to state this definitely based on TMD. What else leads you to think these are paedomorphic? Right now they are different, but it's unclear why. You need more outgroups.

      Sorry, but we had reported that the TMD of centra from little skate did significantly increase between stage 32 and 33. Supporting our argument that ratfish had features of little skate embryos, TMD of adult ratfish centra was significantly lower than TMD of adult skate centra (Fig1).  Also, it was significantly higher than stage 33 skate centra, but it was statistically indistinguishable from that of stage 33 and juvenile stages of skate centra.  While we do agree that more samples from these and additional groups would bolster these data, we feel they are sufficiently powered to support our conclusions for this current paper.

      Your headings for the results subsection and figures are nice snapshots of your interpretations of the results and I think they would be better repurposed in your abstract, which needs more depth.

      We have included more data summarized in results sub-heading in the abstract as suggested (lines 32-37).

      Historical literature is more abundant than what you've listed. Your first sentence describes a long fascination and only goes back to 1990. But there are authors that have had this fascination for centuries and so I think you'll benefit from looking back. Especially because several of them have looked into histology and development of these fishes.

      I agree that in the past 15 years or so a lot more work has been done because it can be done using newer technologies and I don't think your list is exhaustive. You need to expand this list and history which will help with your ultimate comparative analysis without you needed to sample too many new data yourself.

      We have added additional recent and older references: Kölliker, 1860; Daniel, 1934; Wurmbach, 1932; Liem, 2001; Arratia et al., 2001.

      I'd like to see modifications to figure 7 so that you can add more continuity between the characters, illustrated in figure 7 and the body of the text.

      We address a similar comment from this reviewer in more detail below, hoping that any concerns about continuity have been addressed with inclusion of a summary of proposed characters in a new Table 1, re-writing of the Discussion, and modified Fig7 and re-written Fig7 legend.

      Generally Holocephalans are the outgroup to elasmobranchs - right now they are presented as sister taxa with no ability to indicate derivation. Why isn't the catshark included in this diagram?

      While a little unclear exactly what was requested, we restructured the branches to indicate that holocephalans diverged earlier from the ancestors that led to elasmobranchs. Also in response to this comment, we added catshark (S. canicula) and little skate (L. erinacea) specifically to the character matrix.

      In the last paragraph of the introduction, you say that "the data argue" and I admit, I am confused. Whose data? Is this a prediction or results or summary of other people's work? Either way, could be clarified to emphasize the contribution you are about to present.

      Sorry for this lack of clarity, and we have changed the wording in this revision to hopefully avoid this misunderstanding.

      Reviewer #2 (Public Review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues.

      many thanks for the kind words

      I have, however, some comments. Some information is lacking and should be added to the manuscript text. I also suggest changes in the result and the discussion section of the manuscript.

      Introduction:

      The reader gets the impression almost no research on chondrichthyan skeletal tissues was done before the 2010 ("last 15 years", L45). I suggest to correct that and to cite also previous studies on chondrichthyan skeletal tissues, this includes studies from before 1900.

      We have added additional older references, as detailed above.

      Material and Methods:

      Please complete L473-492: Three different Micro-CT scanners were used for three different species? ScyScan 117 for the skate samples. Catshark different scanner, please provide full details. Chimera Scncrotron Scan? Please provide full details for all scanning protocols.

      We clarified exact scanners and settings for each micro-CT experiment in the Methods (lines 476-497).

      TMD is established in the same way in all three scanners? Actually not possible. Or, all specimens were scanned with the same scanner to establish TMD? If so please provide the protocol.

      Indeed, the same scanner was used for TMD comparisons, and we included exact details on how TMD was established and compared with internal controls in the Methods. (lines 486-488)

      Please complete L494 ff: Tissue embedding medium and embedding protocol is missing. Specimens have been decalcified, if yes how? Have specimens been sectioned non-decalcified or decalcified?

      Please complete L506 ff: Tissue embedding medium and embedding protocol is missing. Description of controls are missing.

      Methods were updated to include these details (lines 500-503).

      Results:

      L147: It is valuable and interesting to compare the degree of mineralisation in individuals from the three different species. It appears, however, not possible to provide numerical data for Tissue Mineral Density (TMD). First requirement, all specimens must be scanned with the same scanner and the same calibration values. This in not stated in the M&M section. But even if this was the case, all specimens derive from different sample locations and have, been preserved differently. Type of fixation, extension of fixation time in formalin, frozen, unfrozen, conditions of sample storage, age of the samples, and many more parameters, all influence TMD values. Likewise the relative age of the animals (adult is not the same as adult) influences TMD. One must assume different sampling and storage conditions and different types of progression into adulthood. Thus, the observation of different degrees of mineralisation is very interesting but I suggest not to link this observation to numerical values.

      These are very good points, but for the following reasons we feel that they were not sufficiently relevant to our study, so the quantitative data for TMD remain scientifically valid and critical for the field moving forward.  Critically, 1) all of the samples used for TMD calculations underwent the same fixation protocols, and 2) most importantly, all samples for TMD were scanned on the same micro-CT scanner using the same calibration phantoms for each scanning session.  Finally, while the exact age of each adult was not specified, we note for Fig1 that clear statistically significant differences in TMD were observed among various skeletal elements from ratfish, shark, and skate.  Indeed, ratfish TMD was considerably lower than TMD reported for a variety of fishes and tetrapods (summarized in our paper about icefish skeletons, who actually have similar TMD to ratfish: https://doi.org/10.1111/joa.13537).

      In  , however, we added a caveat to the paper’s Methods (lines 466-469), stating that adult ratfish were frozen within 1 or 2 hours of collection from the wild, staying frozen for several years prior to thawing and immediate fixation.

      Parts of the results are mixed with discussion. Sometimes, a result chapter also needs a few references but this result chapter is full of references.

      As mentioned above, we reduced background-style writing and citations in each Results section.

      Based on different protocols, the staining characteristics of the tissue are analysed. This is very good and provides valuable additional data. The authors should inform the not only about the staining (positive of negative) abut also about the histochemical characters of the staining. L218: "fast green positive" means what? L234: "marked by Trichrome acid fuchsin" means what? And so on, see also L237, L289, L291

      We included more details throughout the Results upon each dye’s first description on what is generally reflected by the specific dyes of the staining protocols. (lines 178, 180, 184, 223, 227, and 243-244)

      Discussion

      Please completely remove figure 7, please adjust and severely downsize the discussion related to figure 7. It is very interesting and valuable to compare three species from three different groups of elasmobranchs. Results of this comparison also validate an interesting discussion about possible phylogenetic aspects. This is, however, not the basis for claims about the skeletal tissue organisation of all extinct and extant members of the groups to which the three species belong. The discussion refers to "selected representatives" (L364), but how representative are the selected species? Can there be a extant species that represents the entire large group, all sharks, rays or chimeras? Are the three selected species basal representatives with a generalist life style?

      These are good points, and yes, we certainly appreciate that the limited sampling in our data might lead to faulty general conclusions about these clades.  In fact, we stated this limitation clearly in the Introduction (lines 126-128), and we removed “representative” from this revision.  We also replaced general reference to chondrichthyans in the Title by listing the specific species sampled.  However, in the Discussion, we also compare our data with previously published additional species evaluated with similar assays, which confirms the trend that we are concluding.  We look forward to future papers specifically testing the hypotheses generated by our conclusions in this paper, which serves as a benchmark for identifying shared and derived features of the chondrichthyan endoskeleton.

      Please completely remove the discussion about paedomorphosis in chimeras (already in the result section). This discussion is based on a wrong idea about the definition of paedomorphosis. Paedomorphosis can occur in members of the same group. Humans have paedormorphic characters within the primates, Ambystoma mexicanum is paedormorphic within the urodeals. Paedomorphosis does not extend to members of different vertebrate branches. That elasmobranchs have a developmental stage that resembles chimera vertebra mineralisation does not define chimera vertebra centra as paedomorphic. Teleost have a herocercal caudal fin anlage during development, that does not mean the heterocercal fins in sturgeons or elasmobranchs are paedomorphic characters.

      We agree with the reviewer that discussion of paedomorphosis should apply to members of the same group.  In our paper, we are examining paedomorphosis in a holocephalan, relative to elasmobranch fishes in the same group (Chrondrichthyes), so this is an appropriate application of paedomorphosis.  In response to this comment, we clarified that our statement of paedomorphosis in ratfish was made with respect to elasmobranchs (lines 37-39; 418-420).

      L432-435: In times of Gadow & Abott (1895) science had completely wrong ideas bout the phylogenic position of chondrichthyans within the gnathostomes. It is curious that Gadow & Abott (1895) are being cited in support of the paedomorphosis claim.

      If paedomorphosis is being examined within Chondrichthyes, such as in our paper and in the Gadow and Abbott paper, then it is an appropriate reference, even if Gadow and Abbott (and many others) got the relative position of Chondrichthyes among other vertebrates incorrect.

      The SCPP part of the discussion is unrelated to the data obtained by this study. Kawaki & WEISS (2003) describe a gene family (called SCPP) that control Ca-binding extracellular phosphoproteins in enamel, in bone and dentine, in saliva and in milk. It evolved by gene duplication and differentiation. They date it back to a first enamel matrix protein in conodonts (Reif 2006). Conodonts, a group of enigmatic invertebrates have mineralised structures but these structure are neither bone nor mineralised cartilage. Cat fish (6 % of all vertebrate species) on the other hand, have bone but do not have SCPP genes (Lui et al. 206). Other calcium binding proteins, such as osteocalcin, were initially believed to be required for mineralisation. It turned out that osteocalcin is rather a mineralisation inhibitor, at best it regulates the arrangement collagen fiber bundles. The osteocalcin -/- mouse has fully mineralised bone. As the function of the SCPP gene product for bone formation is unknown, there is no need to discuss SCPP genes. It would perhaps be better to finish the manuscript with summery that focuses on the subject and the methodology of this nice study.

      We completely agree with the reviewer that many papers claim to associate the functions of SCPP genes with bone formation, or even mineralization generally.  The Science paper with the elephant shark genome made it very popular to associate SCPP genes with bone formation, but we feel that this was a false comparison (for many reasons)!  In response to the reviewer’s comments, however, we removed the SCPP discussion points, moving the previous general sentence about the genetic basis for reduced skeletal mineralization to the end of the previous paragraph (lines 435-439).  We also added another brief Discussion paragraph afterwards, ending as suggested with a summary of our proposed shared and derived chondrichthyan endoskeletal traits (lines 440-453).

      Reviewer #1 (Recommendations For The Authors):

      Further Strengths and Opportunities:

      Your headings for the results subsection and figures are nice snapshots of your interpretations of the results and I think they would be better repurposed in your abstract, which needs more depth. It's a little unusual to try and state an interpretation of results as the heading title in a results section and the figures so it feels out of place. You could also use the headings as the last statement of each section, after you've presented the results. In order I would change these results subheadings to:

      Tissue Mineral Density (TMD)

      Tissue Properties of Neural Arches

      Trabecular mineralization

      Cap zone and Body zone Mineralization Patterns

      Areolar mineralization

      Developmental Variation

      Sorry, but we feel that summary Results sub-headings are the best way to effectively communicate to readers the story that the data tell, and this style has been consistently used in our previous publications.  No changes were made.

      You allude to the fossil record and that is great. That said historical literature is more abundant than what you've listed. Your first sentence describes a long fascination and only goes back to 1990. But there are authors that have had this fascination for centuries and so I think you'll benefit from looking back. Especially because several of them have looked into histology of these fishes. You even have one sentence citing Coates et al. 2018, Frey et al., 2019 and ørvig 1951 to talk about the potential that fossils displayed trabecular mineralization. That feels like you are burying the lead and may have actually been part of the story for where you came up with your hypothesis in the beginning... or the next step in future research. I feel like this is really worth spending some more time on in the intro and/or the discussion.

      We’ve added older REFs as pointed out above.  Regarding fossil evidence for trabecular mineralization, no, those studies did not lead to our research question.  But after we discovered how widespread trabecular mineralization was in extant samples, we consulted these papers, which did not focus on the mineralization patterns per se, but certainly led us to emphasize how those patterns fit in the context of chondrichthyan evolution, which is how we discussed them.

      I agree that in the past 15 years or so a lot more work has been done because it can be done using newer technologies. That said there's a lot more work by Mason Dean's lab starting in 2010 that you should take a look at related to tesserae structure... they're looking at additional taxa than what you did as well. It will be valuable for than you to be able to make any sort of phylogenetic inference as part of your discussion and enhance the info your present in figure 7. Go further back in time... For example:

      de Beer, G. R. 1932. On the skeleton of the hyoid arch in rays and skates. Quarterly

      Journal of Microscopical Science. 75: 307-319, pls. 19-21.

      de Beer, G. R. 1937. The Development of the Vertebrate Skull. The University Press,Oxford.

      Indeed, we have read all of Mason’s work, citing 9 of his papers, and where possible, we have incorporated their data on different species into our Discussion and Fig7.  Thanks for the de Beer REFs.  While they contain histology of developing chondrichthyan elements, they appear to refer principally to gross anatomical features, so were not included in our Intro/Discussion.

      Most sections with in the results, read more like a discussion than a presentation of the new data and you jump directly into using an argument of those data too early. Go back in and remove the references or save those paragraphs for the discussion section. Particularly because this journal has you skip the method section until the end, I think it's important to set up this section with a little bit more brevity and conciseness.  For instance, in the first section about tissue mineral density, change that subheading to just say tissue mineral density. Then you can go into the presentation of what you see in the ratfish, and then what you see in the little skate, and then that's it. You save the discussion about what other elasmobranch's or mineralizing their neural arches, etc. for another section.

      We dramatically reduced background-style writing and citations in each Results section (other than the first section of minor points about general features of the ratfish, compared to catshark and little skate), keeping only a few to briefly remind the general reader of the context of these skeletal features.

      I like that your first sentence in the paragraph is describing why you are doing. a particular method and comparison because it shows me (the reader) where you're sampling from. Something else is that maybe as part of the first figure rather than having just each with the graph have a small sketch for little skate and catch shark to show where you sampled from for comparative purposes. That would relate back, then to clarifying other figures as well.

      done (also adding a phylogenetic tree).

      Second instance is your section on trabecular mineralization. This has so many references in it. It does not read like results at all. It looks like a discussion. However, the trabecular mineralization is one of the most interesting aspect of this paper, and how you are describing it as a unique feature. I really just want a very clear description of what the definition of this trabecular mineralization is going to be.

      In addition to adding Table 1 to define each proposed endoskeletal character state, we have changed the structure of this section and hope it better communicates our novel trabecular mineralization results.  We also moved the topic of trabecular mineralization to the first detailed Discussion point (lines 347-363) to better emphasize this specific topic.

      Carry this reformatting through for all subsections of the results.

      As mentioned above, we significantly reduced background-style writing and citations in each Results section.

      I'd like to see modifications to figure 7 so that you can add more continuity between the characters, illustrated in figure 7 and the body of the text. I think you can give the characters a number so that you can actually refer to them in each subsection of the results. They can even be numbered sequentially so that they are presented in a standard character matrix format, that future researchers can add directly to their own character matrices. You could actually turn it into a separate table so it doesn't taking up that entire space of the figure, because there need to be additional taxa referred to on the diagram. Namely, you don't have any out groups in figure 7 so it's hard to describe any state specifically as ancestral and wor derived. Generally Holocephalans are the outgroup to elasmobranchs - right now they are presented as sister taxa with no ability to indicate derivation. Why isn't the catshark included in this diagram?

      The character matrix is a fantastic idea, and we should have included it in the first place!  We created Table 1 summarizing the traits and terminology at the end of the Introduction, also adding the character matrix in Fig7 as suggested, including specific fossil and extant species.  For the Fig7 branching and catshark inclusion, please see above. 

      You can repurpose the figure captions as narrative body text. Use less narrative in the figure captions. These are your results actually, so move that text to the results section as a way to truncate and get to the point faster.

      By figure captions, we assume the reviewer refers to figure legends.  We like to explain figures to some degree of sufficiency in the legends, since some people do not read the main text and simply skim a manuscript’s abstract, figures, and figure legends.  That said, we did reduce the wording, as requested.

      More specific comments about semantics are listed here:

      The abstract starts negative and doesn't state a question although one is referenced. Potential revision - "Comprehensive examination of mineralized endoskeletal tissues warranted further exploration to understand the diversity of chondrichthyans... Evidence suggests for instance that trabecular structures are not common, however, this may be due to sampling (bring up fossil record.) We expand our understanding by characterizing the skate, cat shark, and ratfish... (Then add your current headings of the results section to the abstract, because those are the relevant takeaways.)"

      We re-wrote much of the abstract, hoping that the points come across more effectively.  For example, we started with “Specific character traits of mineralized endoskeletal tissues need to be clearly defined and comprehensively examined among extant chondrichthyans (elasmobranchs, such as sharks and skates, and holocephalans, such as chimaeras) to understand their evolution”.  We also stated an objective for the experiments presented in the paper: “To clarify the distribution of specific endoskeletal features among extant chondrichthyans”. 

      In the last paragraph of the introduction, you say that "the data argue" and I admit, I am confused. Whose data? Is this a prediction or results or summary of other people's work? Either way, could be clarified to emphasize the contribution you are about to present.

      Sorry for this lack of clarity, and we have changed the wording in this revision to hopefully avoid this misunderstanding.

      In the second paragraph of the TMD section, you mention the synarcual comparison. I'm not sure I follow. These are results, not methods. Tell me what you are comparing directly. The non-centrum part of the synarcual separate from the centrum? They both have both parts... did you mean the comparison of those both to the cat shark? Just be specific about which taxon, which region, and which density. No need to go into reasons why you chose those regions here.. Put into methods and discussion for interpretation.

      We hope that we have now clarified wording of that section.

      Label the spokes somehow either in caption or on figure direction. I think I see it as part of figure 4E, I, and J, but maybe I'm misinterpreting.

      Based upon histological features (e.g., regions of very low cellularity with Trichrome unstained matrix) and hypermineralization, spokes in Fig4 are labelled with * and segmented in blue.  We detailed how spokes were identified in main text (lines 241-243; 252-254) and figure legend (lines 597-603). 

      Reviewer #2 (Recommendations For The Authors):

      Other comments

      L40: remove paedomorphism

      no change; see above

      L53: down tune languish, remove "severely" and "major"

      done (lines 57-59)

      L86: provide species and endoskeletal elements that are mineralized

      no change; this paragraph was written generally, because the papers cited looked at cap zones of many different skeletal elements and neural arches in many different species

      L130: remove TMD, replace by relative, descriptive, values

      no change; see above

      L135: What are "segmented vertebral neural arches and centra" ?

      changed to “neural arches and centra of segmented vertebrae” (lines 140-141)

      L166: L168 "compact" vs. "irregular". Partial mineralisation is not necessarily irregular.

      thanks for pointing out this issue; we changed wording, instead contrasting “non-continuous” and “continuous” mineralization patterns (lines 171-174)

      L192: "several endoskeletal regions". Provide all regions

      all regions provided (lines 198-199)

      L269: "has never been carefully characterized in chimeras". Carefully means what? Here, also only one chimera is analyses, not several species.

      sentence removed

      302: Can't believe there is no better citation for elasmobranch vertebral centra development than Gadow and Abott (1895)

      added Arriata and Kolliker REFs here (lines 293-295)

      L318 ff: remove discussion from result chapter

      references to paedomorphism were removed from this Results section

      L342: refer to the species studied, not to the entire group.

      sorry, the line numbering for the reviewer and our original manuscript have been a little off for some reason, and we were unclear exactly to which line of text this comment referred.  Generally in this revision, however, we have tried to restrict our direct analyses to the species analyzed, but in the Discussion we do extrapolate a bit from our data when considering relevant published papers of other species.

      346: "selected representative". Selection criteria are missing

      “selected representative” removed

      L348: down tune, remove "critical"

      Done

      L351: down tune, remove "critical"

      done

      L 364: "Since stem chondrichthyans did not typically mineralize their centra". Means there are fossil stem chondrichthyans with full mineralised centra?

      Re-worded to “Stem chondrichthyans did not appear to mineralize their centra” (lines 379)

      L379: down tune and change to: "we propose the term "non-tesseral trabecular mineralization. Possibly a plesiomorphic (ancestral) character of chondrichthyans"

      no change; sorry, but we feel this character state needs to be emphasized as we wrote in this paper, so that its evolutionary relationship to other chondrichthyan endoskeletal features, such as tesserae, can be clarified.

      L407: suggests so far palaeontologist have not been "careful" enough?

      apologies; sentence re-worded, emphasizing that synchrotron imaging might increase details of these descriptions (lines 406-408)

      414: down tune, remove "we propose". Replace by "possibly" or "it can be discussed if"

      sentence re-worded and “we propose” removed (lines 412-415)

      L420: remove paragraph

      no action; see above

      L436: remove paragraph

      no action; see above

      L450: perhaps add summery of the discussion. A summery that focuses on the subject and the methodology of this nice study.

      yes, in response to the reviewer’s comment, we finished the discussion with a summary of the current study.  (lines 440-453)

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03094

      Corresponding author(s): Saurabh S. Kulkarni

      1. General Statements

      We thank the reviewers for their strong praise of the manuscript, highlighting its rigor, depth, and conceptual importance. They consistently described the study as a beautiful, fascinating, and conceptually strong piece of work that addresses a timely question in multiciliated cells. They also noted the high quality of the data, careful quantification, and the use of multiple genetic and pharmacological approaches, all of which improve the reproducibility and credibility of the findings. Importantly, they emphasized the novelty of discovering a direct mechanistic link between Piezo1-mediated mechanotransduction and Foxj1-driven transcriptional control of multiciliation, representing a significant breakthrough for both the cilia field and mechanobiology more broadly. Collectively, these strengths highlight the manuscript’s wide impact and make it highly suitable for publication in a high-impact journal.

      2. Description of the planned revisions

      Reviewer #1:


      There are two experiments that would significantly strengthen these claims.

      • First if their model is correct then even short term treatment with Yoda1 should induce the pathway and effect centriole numbers. While I appreciate the challenge of long term Yoda1 treatment its not clear to me why it would be needed if short term treatment is setting off the transcriptional cascade. Yoda is used throughout the paper to induce all the pathways but we don't know if it actually induces the phenotype. I think this should be addressed with either short term treatments or a dose response to find a dose that does not lead to skin pealing. It is hard to ignore this obvious deficiency.
      • Second, the model predicts that all of this is to regulate Foxj1 levels to regulate the subtle balance between cell size and centriole number. If this is correct, then the overexpression of Foxj1 should have a profound effect on centriole number in multiciliated cells. This is such an easy experiment that would validate many of the claims. RESPONSE:

      We recognize that the reviewer is asking us to test the sufficiency of the pathway with these comments: “If their model is correct, then they should be able to activate the pathway in one way or another to stimulate centriole number. This is a significant limitation to their overall model.” And “If this is correct, then the overexpression of Foxj1 should have a profound effect on centriole number in multiciliated cells.”

      To address reviewers’ suggestions, we will perform the following experiments.

      1. A brief exposure (15 and 30 mins) to Yoda1 and wait for 3 hours to examine changes in centriole amplification. This will avoid skin peeling from long-term exposure.
      2. A brief exposure to Yoda1 (15 mins) followed by a 30-minute wait period, and the cycle repeats a total of 4 times for a total of 3 hours to examine centriole amplification.
      3. The above two experiments will also be done in a constitutively active-Yap background to increase the probability that synergistic activation can lead to centriole amplification.
      4. Although Foxj1 is essential for multiciliogenesis, it is not sufficient to induce multiciliogenesis, as shown by multiple previous studies. Therefore, we do not expect overexpression of Foxj1 to have a profound effect on centriole number. While we will conduct the experiments because we truly want to address the suggestions and gain insight into the answers ourselves, we respectfully ask the Reviewer to consider the following responses to their concern.

      Yoda1 sufficiency: We agree that testing whether acute Yoda1 treatment can induce centriole amplification is an important question. We will conduct experiments with short-pulse and cyclic Yoda1 exposure, including in a constitutively active-YAP background (listed above), to address this possibility. However, several challenges complicate interpretation: (i) PIEZO1 adapts and desensitizes upon activation, (ii) transient signaling may be sufficient to cause secondary signaling but insufficient to drive stable transcriptional programs required for amplification, and (iii) centriole number is inherently variable, making modest effects difficult to resolve. However, we must recognize that failure to observe sufficiency under these conditions would not invalidate the model for two reasons: 1) absence of evidence is not evidence of absence, and thus, we may not have found the right experimental design. 2) PIEZO1–YAP is a necessary input but not sufficient on its own, as elaborated below. For both reasons, we are very careful about the interpretation of results in the manuscript, which shows that this pathway is necessary for centriole amplification using loss-of-function approaches.

      Foxj1 overexpression: Foxj1 is a well-established regulator essential for motile and multiciliogenesis across species (Xenopus, zebrafish, mouse). Loss of Foxj1 reduces cilia number in MCCs, but its activation alone does not have a profound effect on ciliogenesis/cilia number in MCCs. This is because Foxj1 is a part of a larger network essential for multiciliogenesis. This parallels the behavior of other transcriptional regulators, such as Myb, where loss of function impairs centriole amplification, but overexpression does not drive the formation of supernumerary centrioles. Both studies are seminal discoveries in the field of ciliogenesis, but they did not demonstrate the sufficiency of these molecules/pathways. Thus, our results, demonstrating that Foxj1 is necessary to induce tension-dependent centriole amplification, are significant, as the reviewer mentioned. The lack of Foxj1 sufficiency to induce centriole amplification is not a deficiency of the study, but rather evidence that Foxj1 is a part of a larger network essential for tension-dependent centriole amplification.

      Necessity versus sufficiency: We respectfully emphasize that sufficiency is not a prerequisite for demonstrating the significance of a pathway. Mechanochemical signaling is inherently complex, involving many mechanosensitive proteins and pathways. In our case, mechanical stretch increases centriole amplification, with PIEZO1–YAP signaling identified as a key mediator. However, we do not claim that PIEZO1–YAP alone is sufficient. Other pathways, including cadherin-mediated junctions, F-actin–myosin contractility, integrin–focal adhesion signaling, and nuclear mechanotransduction, likely contribute and may regulate unique downstream effectors that collectively promote centriole amplification. Therefore, PIEZO1–YAP should be regarded as one essential component within a larger network.


      __TIMELINE: __We will perform these additional proposed experiments. Since the first author, a postdoctoral researcher on this manuscript, has started a new job and will be coming in on weekends to complete the experiments, we estimate it will take approximately 2-3 months to finish them.


      Reviewer #2:

      1. Considering the Yap-piezo mechanism of action, the authors' logic for the selection of myb, foxj, plk4 and ccno as transcriptional targets is clear, but the HCR-derived signal and the differences seen in the yap morphants are not very strong, notwithstanding the statistical significance. There appear to be distinct subgroups within the treated populations (in Figure S6B, although these data seem quite different in Fig. 7H, so a comment on the technical differences might be helpful), so that the extent to which Yap1 regulates (Myb-)Foxj1 expression in MCCs is not clearly demonstrated by this experiment. Related to this point, it is unclear why 20-25% of the yap1/ piezo1 MO-treated embryos do not show a decline in FOXj1 in Fig. 6, given the qualitative nature of the scoring. Assuming the KD penetrance would vary on a cell-to-cell basis, rather than an embryo-to-embryo basis, this may suggest that there are additional relevant targets (some of which are discussed by the authors). Single-cell analysis might be a way to address this; however, this is not a trivial experiment, it might be sufficient to include a caveat in the text. Furthermore, the conclusion that Foxj1 regulates centriole amplification in a tension-dependent manner is well-supported by the data.

      RESPONSE: We appreciate the reviewer’s thoughtful observation. Differences in the expression of Foxj1 from experiment to experiment are possible due to a combination of factors, including heterogeneity in MCC development across embryos, slightly different embryonic stages, differences in embryo quality between fertilizations, and variability in morpholino delivery and knockdown penetrance, which can occur both across embryos and on a cell-to-cell basis within an embryo. We also note that technical aspects of HCR RNA-FISH, such as proteinase K treatment and washing steps, can affect signal intensity, potentially contributing to the appearance of distinct subgroups within treated populations.

      We agree that single-cell analysis would be a powerful way to dissect these differences, but as the reviewer notes, this is not a trivial experiment and is beyond the scope of the present study. We have therefore added clarifications in the text and discussion to acknowledge these sources of variability and to highlight the possibility of parallel pathways regulating foxj1 expression.

      ********************************************

      Controls for the knockdowns by the various MOs should be provided.

      RESPONSE: We appreciate the reviewer’s comment. The piezo1 MO has been previously established in Kulkarni et al. (2021). Additionally, the current manuscript includes MO control experiments for both erk2 and yap1, through KD at the 1-cell stage using the MO oligonucleotide, followed by mosaic-rescue with the respective WT RNA constructs (mCherry-ERK2 and yap1-GFP) and a nuclear tracer molecule such as H2B-RFP (Fig. 5, E-H, Fig. S5, C&D, Fig. 3, D-F). The mosaic-rescue is a robust experiment that provides an internal control within the same embryo, thereby avoiding differences that may arise due to embryo-to-embryo variability, embryo quality, or differences in fertilization batches. This approach also serves as a valuable tool for detecting cell-autonomous effects, providing a clear readout against uninjected neighboring cells, as the injected cells are labeled with a tracer. We will perform a similar mosaic-rescue experiment for the foxj1 MO.

      TIMELINE: We will conduct mosaic-rescue experiments for the foxj1 MO. We will need 1 month to complete the experiment.

      ********************************************

      __Minor comments:

      __

      Autocorrection of ERK1/2 or MEK1/2 pathways to 1/2 should be avoided. – We are unclear on this comment. Can reviewer please clarify what they mean.


      Reviewer # 3

      Major concerns

      1- The presented data do not yet establish a specific, direct pathway linking mechanotransduction to centriole number, because the molecular players tested (PIEZO1, Ca²⁺, PKC, ERK, YAP, Foxj1) are highly pleiotropic. As such, the observed centriole number phenotypes, and some of the major conclusions, could be indirect. It is therefore critical to test the specificity and causality of the proposed pathway. This could be done with the authors' own strategies and/or with the following potential approaches:

      • Genetic dependency and sufficiency tests: It could be shown that Yoda1 has no effect in PIEZO1 loss-of-function MCCs, and that wild-type PIEZO1, but not conductance-ad PIEZO1 pore mutants restores Yoda1 responsiveness across centriole number, pERK, and YAP readouts. For example, PIEZO1 C terminus was shown to govern Ca²⁺ influx and ERK1/2 activation. Comparing full length PIEZO1 with a C terminal deletion in MCC restricted rescue; loss of rescue of centriole amplification and ERK/YAP activation with the C terminal deletion can provide a genetics anchored specificity test beyond broad inhibitors.

      RESPONSE:

      • To address the reviewer’s concern, we will test whether Yoda1 affects ERK and Yap activation when Piezo1 is depleted. We appreciate the reviewer’s thoughtful suggestion to employ genetic rescue experiments with Piezo1 mutants. Unfortunately, these are not technically feasible in Xenopus, as the Piezo1 coding sequence is exceptionally large (~7.5 kb)____, and repeated attempts by our group to generate and express stable, translatable transcripts have been unsuccessful. To address genetic dependency and specificity despite these technical barriers, we have employed a combination of orthogonal strategies that together provide strong genetic and mechanistic evidence:

      • Mosaic loss-of-function experiments (Fig. 1) demonstrate that Piezo1 regulates centriole number in a cell-autonomous manner, ruling out global epithelial or indirect tissue-wide effects.

      • Pharmacological activation/inhibition with Piezo1-specific agonist (Yoda1) and inhibitors (GSMTx4, gadolinium) produced consistent phenotypes, including activation of downstream ERK and YAP readouts. Notably, Yoda1 is a Piezo-specific agonist, not a broad pharmacological agent.
      • Downstream pathway dissection (calcium chelation, PKC inhibition, ERK2 depletion, and YAP1 knockdown/rescue) consistently converges on the same phenotypes, reduced centriole amplification and altered Foxj1 expression, providing multiple independent lines of evidence that the Piezo1–Ca²⁺–PKC–ERK–YAP axis specifically controls centriole number.
      • Positive feedback regulation of Piezo1 expression by YAP/Foxj1 (Fig. 7) further strengthens the argument for a pathway-specific role rather than pleiotropic, indirect effects. Taken together, while full-length Piezo1 rescue experiments are technically not possible in Xenopus due to gene size constraints, our data employ state-of-the-art genetic, pharmacological, and orthogonal functional assays to rigorously test pathway specificity. These complementary approaches provide compelling evidence for the causal role of Piezo1-mediated mechanotransduction in centriole number control in MCCs.

      • Downstream bypass/rescue experiments: In PIEZO1 loss-of-function or BAPTA conditions, can enforcing MEK/ERK activation or YAP rescue centriole number defect? Conversely, can MEK inhibitors block Yoda1-induced effects.

      RESPONSE: We appreciate the reviewer’s insightful questions.

      • We will express CA Yap in the Piezo1 KD background to assess if we can rescue centriole number. We also note that the converse experiment has already been performed in our study: 1) PKC inhibition abolishes Yoda1-induced ERK phosphorylation and nuclear localization (Fig. 2), 2) both MEK inhibition and ERK2 depletion block Yoda1-induced Yap activation and nuclear entry (Figs. 4, S2). Thus, we have directly demonstrated that MEK inhibition prevents Yoda1-induced effects, satisfying this aspect of the reviewer’s concern.

      ********************************************

      2- Image quantification and analysis must be described in greater detail in the Methods section, as they are central to the major conclusions of the manuscript. For example, the authors should explain how nuclear, cytoplasmic, and centriole segmentation were performed, and how relative protein levels in the nucleus versus the cytoplasm (e.g., YAP, volume- or area-based) were quantified. Specifically, the thresholds and segmentation criteria applied to different cellular structures under various conditions, as well as the use of Imaris and other software, should be clearly detailed.

      RESPONSE: We will describe the methods in greater detail.

      ********************************************

      3- PIEZO1 mRNA was shown to incrase in a Foxj1 linked feedback loop. Does this increase translate into an increase in total protein levels?

      RESPONSE: If the reviewer is referring to Figure 7B, that is the Piezo1 antibody, so yes, the Piezo1 protein levels have increased.

      If the reviewer is referring to Figure 7C and D, we show that loss of Foxj1 leads to a reduction in Piezo1 mRNA expression.

      ********************************************

      4- Is the proposed signaling cascade active in mammalian multiciliated cells (e.g., airway epithelium). If possible, testing this by using one of the major players of the pathway as a readout such as as ERK phosphorylation, YAP nuclear localization in mammalian MCCs will reveal whether regulation of centriole number through this pathway is conserved and would strengthen the generality.


      RESPONSE: We agree with the reviewer that testing conservation of this pathway in mammalian MCCs is of great interest. Indeed, another group is currently investigating the role of Yap in the mammalian airway epithelium; in their temporally controlled Yap knockout model (the global Yap KO being embryonic lethal), they observed that Yap loss led to a reduction in centriole number. To avoid overlap and direct competition with this ongoing work, we chose to focus our efforts on Xenopus.

      Importantly, Xenopus has become a widely recognized and powerful system for MCC biology, enabling mechanistic dissection of centriole amplification and ciliogenesis. Several key discoveries in the field, including the identification of MCIDAS as a master regulator of MCC fate, were first made in Xenopus before being validated in mammals. Similarly, our study provides a mechanistic framework in Xenopus that can inform and guide ongoing studies in the mammalian airway.

      ********************************************

      5- Throughout the results section, there are multiple times where authors raised specific hypothesis about their data (e.g. foxj1 regulation of number control, apical actin/YAP). However, they have not tested them. These hypothesis are very exciting and if possible, testing experimentally, would strengthen the conclusions associated with them.

      RESPONSE: We are not sure what the reviewer means here by “authors raised specific hypothesis about their data (e.g., foxj1 regulation of number control, apical actin/YAP). However, they have not tested them”,

      BECAUSE:

      • Foxj1 regulation of centriole number: We demonstrate a clear reduction in centriole number upon Foxj1 depletion, and importantly, we extend this finding by showing that the reduction is tension-dependent (Fig. 6). We will perform a rescue assay to demonstrate the specificity.
      • Foxj1 and YAP: We never claimed that Foxj1 regulates YAP expression, and this is not part of our proposed model. Instead, our data show that Piezo1–ERK–YAP signaling regulates Foxj1
      • Foxj1 and apical actin: Foxj1 regulation of apical F-actin has already been established in prior work, and in our study, we clearly observe reduced apical actin intensity in Foxj1-depleted MCCs (Fig. 6). To further strengthen this conclusion, we will provide a quantitative analysis of apical actin intensity in Foxj1 morphants. ********************************************

      __TIMELINE: __We will perform these additional proposed experiments. Since the first author, a postdoc on this manuscript, has started a new job and will be coming in on weekends to finish the experiments, we estimate it will take approximately 2-3 months to complete them.

      Minor comments

      MCC vs non MCC identification (Fig. 1): Clarify how non MCCs were distinguished from MCCs (e.g. markers/criteria). – Can the reviewer please clarify which panel or panels? Or provide more specific text that needs to be changed.

      Add the Kintner group reference linking motile cilia number and centriole number in Xenopus MCCs.– Can the reviewer clarify where and which reference? Thank you.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      Reviewer 2

      Major comments:

      1. It should be clarified whether the immunoblots and the related quantitations in Figs. 2 and S2 are all from separate blots/ exposures. If so, they are not useful as controls, and these blots should be repeated with the relevant samples analyzed in parallel. Size markers and labels should be included (2B, 2G; S2B and S2G). An increase in total ERK would alter the interpretation of the increase in nuclear pERK in the IF experiments. RESPONSE: We thank the reviewer for raising this important point regarding clarification of the immunoblots. All experimental groups were analyzed in parallel with their corresponding controls. Because the primary antibodies for pERK and ERK were both raised in rabbit, we optimized our workflow to prevent protein loss during stripping and to ensure accurate visualization. Specifically, lysates from each experimental group were loaded in duplicate on the same gel, separated by a molecular weight ladder that served as a reference point. After transfer, the blot was cut along the ladder, and the two halves were processed in parallel: one probed with anti-pERK and the other with anti-ERK. This strategy ensured that all samples from a single experiment (e.g., Control and Yoda1-treated groups) were analyzed under identical conditions, with staining and imaging performed together at the same exposure. To enhance clarity, we have provided this data as __uncut, full-length __as Supplemental Figure 7 (Figure S7) in the revised revision.

      ********************************************

      Minor comments:

      1. Reference list should be checked for completeness; some citations lack journal/ volume/ page/ year details. – We have corrected the references.
      2. An 'overexposed' version of the image selected for centrioles in Figure 5F might be included with the Chibby-BFP at the same level as in the other figures. At present, the Yap KD cell in the image appears to have normal centrioles; this is potentially confusing, even though the authors clearly explain the matter in the text. – __We have added a new panel to Fig. 5F to avoid confusion.

      __ 3. It might be clearer to present injected/ uninjected in the same orientation in Fig. 6A and B. – __Unfortunately, that is not possible because the injected and uninjected sides are left and right, and they cannot be in the same orientation.

      __ 4. Figure 7B lacks the schematic described in the figure legend. – We have removed the Schematic sentence from the figure legend. That was an error on our side. Thank you for catching it.


      Reviewer 3


      1. Abstract: "how MCCs regulate centriole/cilia numbers remains a major knowledge gap" overstates the field; please soften to reflect recent advances (mechanics/apical area scaling; PIEZO1 implication). – We changed the text to “incompletely understood”.
      2. GsMTx4 rationale: State that GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (including PIEZO1) and justify its use alongside Yoda1.– GsMTx4 was used in the previous manuscript, and its use was justified there. Here, we are only comparing the results. However, we have added a sentence describing what GSMTx4 is. We have also included a sentence explaining the use of Yoda1. “GsMTx4, a spider venom peptide used in our previous study, inhibits cationic mechanosensitive channels, including Piezo1.”

      “For this experiment, we used the Piezo1 channel-specific chemical agonist, Yoda1, to increase the sensitivity of Piezo1 and upregulate calcium entry into cells”

      Timeline statement: "Centriole amplification to migration and apical docking takes ~4-5 h (personal observation)" is not appropriate; either cite time lapse literature or include your own time lapse data.– We have added a reference that showed imaging for 2 hours, but it was not enough to capture the entire process from intercalation to maturation, so we also kept “personal observation” still in the manuscript. We are unaware of any study that has done time-lapse imaging for 4 hours to capture the entire process of centriole amplification.

      Redundancy: The description of Yoda1 as a channel specific agonist is repeated; keep only once.- Removed

      "WT yap1 GFP construct previously used by Dr. Lance Davidson ..." should move construct description to Methods and keep only the citation in Results.– We moved it to Methods.

      "(Unpublished data; Dr. Mahjoub)" should be removed unless data are shown.- Removed

      Replace "as shown previously in our eLife paper" with "as we previously showed or shown previously (Kulkarni et al., 2021)".– We have made the change.

      The two hypotheses for how Foxj1 could regulate number under tension (actin remodeling vs. transcriptional control of amplification genes) belong in the Discussion unless tested. Moreover, the part on the discussion on yap sequestration by apical actin and the two possibilities presented also should go do discussion. – We have moved both to the discussion section.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      Reviewer 3

      1- The hypothesis about the centriole pool of Piezo as the mechnosensor for centriole number regulation is very exciting and novel. Can localization controlled variants be used to test whether a centriole associated pool directly senses tension for number control (for example, centrosome targeted PIEZO1 via a PACT tag). Alternatively, broad cellular Ca sensors (GcaMP) or centrosome proximal Ca sensors (e.g., PACT GCaMP) can be used detect local calcium microdomains during tethering or Yoda1 treatment.

      RESPONSE: We appreciate the reviewer's curiosity and excitement; however, these experiments will not alter the conclusion of this paper and will be part of the next study, which aims to delve deeper into how different pools of Piezo1 at centrioles versus cell junctions function in MCCs. To that point, we had thought about these experiments. As mentioned earlier, the Piezo1 coding sequence is exceptionally large (~7.5 kb)____, and repeated attempts by our group to generate and express stable, translatable transcripts have been unsuccessful. Thus, the idea of centrosome-targeted PIEZO1 via a PACT is very exciting; however, it is not technically feasible. Beyond size, PIEZO1 is a trimeric, large plasma-membrane mechanosensitive channel that requires proper ER processing and bilayer incorporation. PACT localizes cargo to the centriole/pericentriolar material, not a membrane compartment; thus, a PACT-anchored PIEZO1 would be membrane-mismatched and almost certainly nonfunctional even if expressed/

      Second, Centrosome-proximal GCaMP (PACT-GCaMP) would show correlation, not causation. This experiment does not address the question “centriole pool of Piezo as the mechanosensor for centriole number regulation”. It will only show if the Ca2+ influx is happening at the basal bodies, but not whether and how that Ca2+ is essential for centriole amplification. For this purpose, we will need to find a way to block Ca2+ influx specifically at basal bodies, rather than junctions, which will require extensive controls.

      We do not claim that any specific Piezo1 or Ca2+ pool is critical for controlling centriole number and thus the suggested experiment would not alter the manuscript's conclusions. We therefore view the above as exciting future directions rather than prerequisites.

      ********************************************

      2- Because the proposed pathway is tension-sensing and YAP pathway is tightly linked to the actin cytoskeleton, the role of actin cysoskeleton in the proposed pathway should be tested directly. The authors mention different hypothesis around actin but has not tested them in the manuscript. For example, actin-depedent sequestration of Yap at the apical surface is intriguing. Does actin polymerization induced by drugs release Yap from the apical surface?

      RESPONSE: We would like to thank the reviewer for their suggestion. As per the reviewers' suggestion, we have moved this section to discussion, stating that “In the future, we plan to address this question by examining how Yap is sequestered by apical actin.”.

      However, we appreciate the reviewer’s enthusiasm and would like to share some experiments we are thinking/planning of to test the hypothesis.

      We plan to examine if the actin polymerization or contractility is responsible for Yap sequestration/release from the apical surface with the following experiments: 1) if the Yap is displaced by Jasplakinolide treatment, which stabilizes filamentous actin, 2) use of ROCK inhibitor to decrease contractility in the absence or presence of Yoda1, 3) Use genetic constructs such as Shroom3 to increase ROCK-mediated contractility to observe changes in Yap localization and dynamics.

      Although these experiments are interesting, they do not alter the conclusion of the current manuscript, and they represent future directions for our research.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Summary: The authors have previously published Mass-spectrometry data that demonstrates a physical interaction between Sall4 and the BAF chromatin complex in iPSC derived neurectodermal cells that are a precursor cell state to neural crest cells. The authors sought to understand the basis of this interaction and investigate the role of Sall4 and the BAF chromatin remodelling complex during neural crest cell specification. The authors first validate this interaction with a co-IP between ARID1B subunit and Sall4 confirming the mass spec data. The authors then utilise in silico modelling to identify the specific interaction between the BAF complex and Sall4, suggesting that this contact is mediated through the BAF complex member DPF2. To functionally validate the role of Sall4 during neural crest specification, the authors utilsie CRISPR-Cas9 to introduce a premature stop codon on one allele of Sall4 to generate iPSCs that are haploinsufficient for Sall4. Due to the reports of Sall4's role in pluripotency, the authors confirm that this model doesn't disrupt pluripotent stem cells and is viable to model the role of Sall4 during neural crest induction. The authors expand this assessment of Sall4 function further during their differentiation model to cranial neural crest cells, assessing Sall4 binding with Cut+Run sequencing, revealing that Sall4 binds to motifs that correspond to key genes in neural crest differentiation. Moreover, reduction in Sall4 expression also reduces the binding of the BAF complex, through Cut and Run for BRG1. Overall, the authors then propose a model by which Sall4 and BRG1 bind to and open enhancer regions in neurectodermal cells that enable complete differentiation to cranial neural crest cells.

      Overall, the data is clear and reproducible and offers a unique insight into the role of chromatin remodellers during cell fate specification.

      We thank the Reviewer for the nice words of appreciation of our manuscript.

      However, I have some minor comments.

      1- Using AlphaFold in silico modelling, he authors propose the interaction between the BAF complex with Sall4 is mediated by DPF2, but don't test it. Does a knockout, or knockdown of DPF2 prevent the interaction?

      We agree with the Reviewer that we are not functionally validating our computational prediction that DPF2 is the specific BAF subunit directly linking SALL4 with BAF. We chose not to perform the validation experiment for two main reasons:

      1) This would be outside of the scope of the paper. In fact, from a mechanistic point of view, we have confirmed via both Mass-spectrometry and co-IP with ARID1B that SALL4 and BAF interact in our system. Moreover, mechanistically we also extensively demonstrate that the interaction with SALL4 is required to recruit BAF at the neural crest induction enhancers and we further demonstrate that depletion of SALL4 impairs this. In our view, this was the focus of the manuscript. On the other hand, detecting with certainty which BAF subunit mediates the interaction with SALL4 would be outside the scope of the paper.

      2) Moreover, after careful consideration, we don’t think that even a knock-out of DPF2 would provide a definite answer to which exact BAF subunit mediates the interaction with SALL4. In fact, knock out of DPF2 could potentially disrupt BAF assembly or stability, and this could result in a disruption of the interaction with SALL4 even if DPF2 is not the very subunit mediating it (in other words the experiment could provide a false positive result). In our opinion, the only effective experiment would be mutating the DPF2 residues that we computationally predicted as responsible for the interaction with SALL4, but again this would be very laborious and out of the scope.

      That being said, we agree with the Reviewer that while the SALL4-BAF interaction was experimentally validated with robust approaches, the role of DPF2 in the interaction was only computationally predicted, which comes as a limitation of the study. We have now added a dedicated paragraph in the discussion to acknowledge such limitation.

      2- OPTIONAL: Does knockout of DPF2 phenocopy the Sall4 ko? This would be very interesting to include in the manuscript, but it would perhaps be a larger body of work.

      See point-1.

      3- Figure 1, the day of IP is not clearly described until later in the test. please outline during in the figure.

      We thank the Reviewer for pointing this out. This has been fixed.

      3- What is the expression of Sall1 (and other Sall paralogs) during differentiation. The same with the protein levels of Sall4, does this remain at the below 50%, or is this just during pluripotency?

      As Recommend by the Reviewer, we have performed time-course WB of SALL1 and SALL4. These experiments revealed that SALL1 remains very lowly expressed in wild-type conditions across time points and all the way through differentiation until CNCC (See updated supplementary Fig. S9). This is consistent with previous studies that demonstrated that SALL4, but not SALL1, is required for early mammalian development (see for example Miller et al. 2016, Development, and Koulle et al. 2025, Biorxiv). We performed the same time-course WB for SALL4 which revealed that SALL4 expression progressively decreases after day-5 (as expected) and it’s very low at CNCC stage (day-14), therefore we would expect the KO to remain at even lower level at this stage.

      4- The authors hypothesise that Sall4 binds to enhancers- with the criteria for an enhancer being that these peaks > 1KB from the TSS are enhancers. Can this be reinforced by overlaying with other ChIP tracks that would give more confidence in this? There are several datasets from Joanna Wysocka's lab that also utilise this protocol which can give you more evidence to reinforce the claim and provide further detail as to the role of Sall4.

      We thank the Reviewer for this great suggestion. As recommended, we have used publicly available ChIP-seq data generated by the Wysocka lab (H3K4me1, H3K4m3) and also generated new H3K27ac CHIP-seq data as well. These experiments and analyses confirmed that these regions are putative CNCC enhancers (and a minority of them putative promoters), decorated with H3K4me1 and with progressive increase in H3K27ac after CNCC induction (day-5). See new Supplementary Figure S6.

      5- The authors state that cells fail to become cranial neural crest cells, however they do not propose what the cells do instead. do they become neural? Or they stay at pluriopotent, which is one option given the higher expression of Nanog, OCT4 and OTX2 that are all expressed in pluripotent stem cells.

      We think that it is likely a mix of both. There is a mixed bag of expression of pluripotency markers, but also high expression of neuroectodermal markers. This suggests that most cells safely reach the neuroectodermal stage but fail to go beyond that, while some of the cells simply do not differentiate or regress back to pluripotency. We would rather refrain on overinterpreting what the KO-cells become, as it is likely an aberrant cell type, but following the Reviewer’s indication we have added a paragraph in the discussion to speculate on this.

      6- In general, I would like to see the gating strategy and controls for the flow cytometry in a supplemental figure.

      As Recommended by the Reviewer, we have added the gating strategy in the Supplementary Fig. S4.

      7- For supplementary figure 1- please include the gene names in the main image panels rather than just the germ layer.

      Done. The figure is now Supplementary Figure S3 since two supplementary figures were added before.


      Reviewer #2

      Summary In this manuscript, the authors build on their previous work (Pagliaroli et al., 2021) where they identified an interaction between the transcription factor SALL4 and the BAF chromatin remodeling complex at Day-5 of an iPSC to CNCC differentiation protocol. In their current work, the authors begin by exploring this interaction further, leveraging AlphaFold to predict interaction surfaces between SALL4 and BAF complex members, considering both SALL4 splice isoforms: a longer SALL4A (associated with developmental processes) and a shorter SALL4B (associated with pluripotency). They propose that SALL4A may interact with DPF2, a BAF complex member, in an isoform-dependent manner. The authors next explore the role of SALL4 in craniofacial development, motivated by patient heterozygous loss of function mutations, leveraging iPSC cells with an engineered SALL4 frameshift mutation (SALL4-het-KO). Using this model, the authors first demonstrate that a reduced expression of SALL4 does not impact the iPSC identity, perhaps due to compensation via upregulation of SALL1. Upon differentiation to neuroectoderm, SALL4 haploinsufficiency causes a reduction in newly accessible sites which are associated with a reduction in SALL4 binding and therefore a loss of BAF complex recruitment. Interestingly, however, there were few transcriptional changes at this stage. Later in the CNCC differentiation at Day-14 when the wildtype cells have switched expression of CNCC markers, the SALL4-het-KO cells fail to switch cadherin expression associated with a transition from epithelial to mesenchymal state, and fail to induce CNCC specification and post-migratory markers. Together the authors propose that SALL4 recruits BAF to CNCC enhancers as early as the neuroectodermal stage, and failure of BAF recruitment in SALL4-het-KO lines results in a loss of open chromatin at regulatory regions required later for induction of the CNCC programme. The failure of the later differentiation is compelling in the light of the early stages of the differentiation progressing normally, and the authors outline an interesting proposed mechanism whereby SALL4 recruits BAF to remodel chromatin ahead of CNCC enhancer activation, a model that can be tested further in future work. The link between SALL4 DNA binding and BAF recruitment is nicely argued, and very interesting as altered chromatin accessibility at Day 5 in the neuroectodermal stage is associated with only few changes in gene expression, while gene expression is greatly impacted later in the CNCC stage at Day 14. The in silico predictions of SALL4-BAF interaction interfaces are perhaps less convincing, requiring experimental follow-up outside the scope of this paper. Some of the associated figures could perhaps be moved to the supplement to enhance the focus on the later functional genomics experiments.

      We thank the Reviewer for the nice words of appreciation of our manuscript.

      Major comments

      1. A lot of emphasis is placed on the AlphaFold predictions in Figure 1, however the predictions in Figure 1B appear to be mostly low or very low confidence scores (coloured yellow and orange). It is unclear how much weight can be placed on these predictions without functional follow-up, e.g. mutating certain residues and showing impact on the interaction by co-IP. The latter parts of the manuscript are much better supported experimentally, and therefore perhaps some of the Figure 1 could move to a Supplemental Figure (e.g. the right-hand part of 1B, and the lower part of Figure 1C showing SALL4B predicted interactions). The limitations of AlphaFold predictions should be acknowledged and the authors should discuss how these predicted interactions could be experimentally explored further in the future.

      As recommended by the Reviewer, we have moved part of the AlphaFold predictions to Supplementary Figure S1, and we added a paragraph in the discussion to acknowledge the limitations of AlphaFold.

      The authors only show data for one heterozygous knockout clone for SALL4. It is usual to have more than one clone to mitigate potential clonal effects. The authors should comment why they only have one clone and include any data for a second clone for key experiments if they already have this. Alternatively, the authors could provide any quality control information generated during production of this line, for example if any additional genotyping was performed.

      We apologize for the confusion and for our lack of clarify on this. We have used two clones (one generated with a 11 bp deletion, one with a 19 bp deletion, both in exon-1, see also the point 6 of your minor points). The two clones were used as biological replicates, so for example the two ATAC-seq replicates performed in each time point were performed with the two different clones, and the three RNA-seq replicates were performed with two technical replicates of the clone with the 11bp deletion and one replicate with the clone with 19 bp deletion. We have clarified this in the methods section of the manuscript and added a Supplementary Figure (S2) showing the editing strategy for the two clones. Thank you for catching it.

      The authors show all genomics data (ATAC-seq, CUT&RUN and ChIP-seq) as heatmaps and average profiles. It would be valuable to see some representative loci for the ATAC seq (perhaps along with SALL4 and BRG1 recruitment) at some representative and interesting loci.

      As recommended by the Reviewer, we have added Genome Browser screenshots of representative loci in Fig. 6.

      Figure 4A. The schematic could be improved by including brightfield or immunofluorescent images at the three stages of the differentiation. Are the iPS cells seeded as single cells, or passaged as colonies before starting the differentiation. Further details are required in the methods to clarify how the differentiation is performed, for example at what Day are the differentiating cells passaged, this is not shown on the schematic in Figure 4A.

      As recommended, we added IF images in the Fig. 4A schematic, and added more details in the methods.

      There is likely some heterogeneity of cell types in the differentiation at Day 5 and Day 14. Can the authors comment on this from previous publications or perhaps conduct some IF for markers to demonstrate what proportions of cells are neuroectoderm at Day 5 and CNCCs at Day 14.

      The differentiation starts with single cells that aggregate to form neuroectodermal clusters, as per original protocol. The CNCCs that we obtain with this protocol homogeneously express CNCC markers, as shown by IF of SOX9 in Fig. 4A. For the day-5, as recommended we have added IF for PAX6 also showing homogeneous expression (Fig. 4A).

      For the motif analysis for Day 5-specific SALL4 binding sites (Figure 4E), was de novo motif calling performed? Were any binding sites reminiscent of a SALL4 binding site observed (e.g. an AT-rich motif)? Could the authors comment on this in the text - if there is no SALL4 binding motif, does this suggest SALL4 is recruited indirectly to these sites via interaction with another transcription factor for example?

      Similar to SALL4, SALL1 also recognizes AT-rich motifs. However, while we found AT-rich motifs as enriched in our day-5 motif analysis (in the regions that gain SALL4 binding upon differentiation), the enrichment is not particularly strong, and several other motifs are significantly more enriched, suggesting that, like the Reviewer mentioned, SALL4 might be recruited indirectly at these sites by other factors. We have added a paragraph on this in the discussion.

      Does SALL1 remain upregulated at Day-5 and Day-14 of the differentiation for the SALL4-het-KO line? Are binding sites known for this TF and were they detected in the motif analysis performed? Further discussion of the impact of the overexpression of SALL1 on the phenotypes observed is warranted - e.g. for Figure 5F, could the sites associated with a gain of BRG1 peaks upon loss of SALL4 be associated with SALL1 being upregulated and 'hijacking' BAF recruitment to distinct sites associated with nervous system development? Is SALL1 still upregulated at Day 5?

      As mentioned above, SALL1 also recognizes AT-rich motifs but similar to SALL4 also binds unspecifically, likely in cooperation with other TFs. Like the Reviewer suggested, it is certainly possible that some of the sites associated with a gain of BRG1 peaks upon loss of SALL4 could be associated with SALL1 being upregulated and 'hijacking' BAF recruitment to distinct sites. While this is speculative, we have added a paragraph on this in the discussion.

      Related to the point above, SALL4A is proposed to have an isoform-specific interaction with the BAF complex. It would be valuable to plot SALL4A and SALL4B expression from the available RNA-seq data at Day 0, 5 and 14 to explore whether stage-specific isoform expression matches with the proposed role of SALL4A to interact with BAF at Day 5. It could be valuable to also look at expression of SALL1, 2 and 3 across the time course to see whether additional compensation mechanisms are at play during the differentiation.

      Thanks for suggesting this. We performed a time course analysis of isoform specific gene expression, which showed that SALL4B expression remains low throughout differentiation, while SALLA4A expression increases upon differentiation cues and it remains at high levels until the end. We have added this to supplementary Fig. S9. Moreover, we have performed an additional experiment, using pomalidomide, which is a thalidomide derivative that selectively degrades SALL4A but not SALL4B. Notably, SALL4A degradation recapitulated the main findings obtained with the CRISPR-KO of SALL4, further supporting that SALL4A is the isoform involved in CNCC induction (see new Fig. 8).

      At line 264, The authors state "SALL4 recruits the BAF complex at CNCC developmental enhancers to increase chromatin accessibility". Given that this analysis is performed at Day 5 of the differentiation, which is labelled as neuroectoderm what evidence do the authors have that these are specifically CNCC enhancers? Statements relating to enhancers should generally be re-phrased to putative enhancers (as no functional evidence is provided for enhancer activity), and further evidence could be provided to support that these are CNCC-specific regulatory elements, e.g. showing representative gene loci from CNCC-specific genes. Discussion of the RNA-seq presented in Supplementary Figure 2B may also be appropriate to introduce here given that large numbers of accessible chromatin sites are detected while the expression of very few genes is impacted, suggesting these sites may become active enhancers at a later developmental stage.

      As also recommended by the other Reviewer, to further characterize these sites, we have used publicly available histone modification CHIP-seq data (H3K4me1, H3K4me3) generated by the Wysocka lab (H3K4me1, H3K4m3) and also generated new H3K27ac CHIP-seq data as well. These experiments and analyses confirmed that these regions are putative CNCC enhancers (and a minority of them putative promoters), all decorated with H3K4me1, and all showing progressive increase in H3K27ac after CNCC induction (day-5). See new Supplementary Figure S6.

      1. Do any of the putative CNCC enhancers detected at Day 5 as being sensitive to SALL4 downregulation and loss of BAF recruitment overlap with previously tested VISTA enhancers (https://enhancer.lbl.gov/vista/)?

      Yes, we have found examples of overlap and have included two of them in the updated Figure 6 as Genome Browser screenshots.

      Minor comments

      1. The authors are missing references in the introduction "a subpopulation of neural crest cells that migrate dorsolaterally to give rise to the cartilage and bones of the face and anterior skull, as well as cranial neurons and glia".

      Fixed, thank you.

      The discussion of congenital malformations associated with SALL4 haploinsufficiency is brief in the introduction. From OMIM, SALL4 heterozygous mutations are implicated with the condition Duane-radial ray syndrome (DRRS) with "upper limb anomalies, ocular anomalies, and, in some cases, renal anomalies... The ocular anomalies usually include Duane anomaly". That Duane anomaly is one phenotype among a number for patients with SALL4 haploinsufficiency could be clarified in the introduction. Of note, this is stated more clearly in the discussion but needs re-wording in the introduction.

      Done, thank you.

      The statements "show that the SALL4A isoform directly interacts with the BAF complex subunit DPF2 through its zinc-finger-3 domain" and "this interaction occurs between the zinc-finger-cluster-3 (ZFC3) domain of SALL4A and the plant homeodomains (PHDs) of DPF2" in the introduction appear overstated and should be toned down. To show this the authors would need to mutate or delete the proposed important zinc-finger domains from SALL4A, which is outside the scope of this work. Notably, this is less strongly-stated elsewhere in the manuscript, e.g "predict that this interaction is mediated by the BAF subunit DPF2", Line 162.

      Done, thank you.

      Could the authors clarify why 3 Alphafold output models are shown for SALL4B in Figure 1C, and only one output model for SALL4A?

      AlphaFold3 produces five separate predicted models per protein combination (e.g., Model_1 … Model_4), each derived from slightly different network parameters or initializations. The final output prioritizes the model with the highest confidence score. This multi-model strategy enables the identification of the most robust conformation while providing a measure of structural uncertainty (as per GitHub documentation for AlphaFold3). wE have conducted the same analysis for SALL4A as we did for SALL4B. Specifically, SALL4A interacts with the AT-rich DNA in models 0, 1, and 2, therefore models 3 and 4 were excluded. When analysing models 1 and 2, we found a higher number of residues involved in the interaction (>800 instead of 396). Similarly to model 0, only the interactions between residues belonging to an annotated functional domain (ZFs and PHDs) were considered.

      In Model 1: SALL4A and DPF2 interact mainly through ZF6 and 7, and not 5 as Model 0.

      In Model 2: SALL4A and DPF2 interact mainly through ZF5 and 6, and not 7 as Models 0. In contrast, this model shows an interaction with ZF1 not shown in the other two models, but with a higher PAE (31 average compared to 25 to 27 average of the other two ZFs.

      Therefore, we considered Model 0 as it is the model with higher confidence and representative of all significant models (includes ZF5, 6, and 7).

      Line 121. The authors state "DPF2, a broadly expressed BAF subunit,", but don't show expression during their CNCC differentiation. It would be good to include expression of DPF2 in Figure 1E.

      Done, thank you.

      The text states "a 11 bp deletion within the 3'-terminus of exon 1 of SALL4", while the figure legend states, "Sanger sequencing confirming the 19 bp deletion in one allele of SALL4 is displayed". The authors should clarify this disparity and experimentally confirm the deletion, e.g. by TA-cloning the two alleles and sequencing these separately to show that one allele is wildtype and the other has a frameshift deletion.

      We apologize for the confusion. As stated above (point-2 of the major comments), we have used two clones (one generated with a 11 bp deletion, one with a 19 bp deletion, both in exon-1, see also the point 6 of your minor points). The two clones were used as biological replicates (see response above for details). The deletion for both clones was experimentally confirmed by Sanger sequencing by the company that generated the lines for us (Synthego). The strategy for the two clones is now shown also in Supplementary Fig. S2.

      The authors generate an 11-bp (or 19-bp?) deletion in exon-1 - it would be valuable to include a discussion whether patients have been identified with deletions and frame-shift mutations in this region of SALL4 exon-1. And also clarify, if not clearly stated in the text, that both SALL4A and SALL4B will be impacted by this mutation. Are there examples of patient mutations which only impact SALL4A?

      As requested, we have added a discussion paragraph to discuss this. And, yes, both SALL4A and SALL4B are impacted by both deletions in both clones (11 bp and 19 bp deletion).

      Regarding patient variants on exon-1 and patient variants that only impact SALL4A. We could only find one published pathogenic 170bp deletion in exon 1 (VCV000642045.7). The majority of the pathogenic or likely pathogenic variances are located on exon2. In particular, of the 63 reported pathogenic (or likely pathogenic) clinical variants, 42 were located on exon 2. Among these, 28 are located in the portion shared by both SALL4A and SALL4B, while the remaining 14 were SALL4A specific.

      For the SALL4 blots in Figure 2B, is the antibody expected to detect both isoforms (SALL4A and SALL4B), and which isoform is shown? If two isoforms are detected, they should both be presented in the figure.

      Yes, the antibody detects both isoforms, and we now present both in the figure 2, as recommended.

      SALL4 expression should be shown for Figure 2C to see whether the >50% down-regulation of SALL4 at the protein level may be partially driven by transcriptional changes.

      Done, thank you. As expected, we observed the SALL4 mRNA expression in the KO line is comparable to wild-type conditions, but still this results in a significant decrease of the SALL4 protein level likely because of autoregulatory mechanisms coupled with non-sense mediated decay of the mutated allele. Also, we note that SALL4 usually makes homodimers, therefore lack of sufficient amount of protein could also lead to degradation of the monomers.

      The number of experimental replicates should be indicated in all figure legends where relevant. Raw data points should be plotted visibly over the violin plots (e.g. Figure 2C).

      Done, thank you.

      For Figure 3A, the images of the DAPI and NANOG/OCT4 staining should be shown separately in addition to the overlay.

      Done, thank you.

      The metric 'Corrected Total Cell Fluorescence (CTCF)' should be described in the methods. The number of images used for the quantification in Figure 3A should be

      Done, thank you.

      Figure 3C - what are the 114 differentially expressed genes? Some interesting genes could be labelled on the plot and the data used to generate this plot should be included as a Supplementary Table. Supplementary Tables should similarly be provided for Figure 6C, Day 14 and Supplementary Figure 2B, Day 5.

      As recommended, we have highlighted some interesting genes in the volcano plot and also included all the expression data for all genes in Supplementary Table S3.

      Figure 4B. The shared peaks are not shown. For completeness, it would be ideal to show these sites also.

      Done, thank you.

      Figure 4C is difficult to interpret. Why is the plot asymmetric to the left versus right? What does the axis represent - % of binding sites?

      The asymmetry is due to the fact that there is a larger number of peaks that are downstream of the TSS than peaks that are upstream of TSS. This is consistent with the fact that many SALL4 peaks are in introns, likely representing intronic enhancers.

      Line 224-225. What do n= 3,729 and n= 6,860 refer to? There appear to be many more binding sites indicated in Figure 4B, therefore these numbers cannot represent 86% and 97% of sites?

      Thank you for pointing this out, we should have specified in the text. Those numbers refer to the genes whose TSS is closest to each SALL4 peak. Notably, multiple peaks can share the same closest TSS, hence the discrepancy between # of peaks and # of nearest genes.

      Raw numbers:

      • Day-0 RAW = 6,104 (peaks = 6,114);
      • Day-5 RAW = 17,131 (peaks = 17,137). Now raw data reported in Supplementary Table 4.

      Figure 4E. Several TFs mentioned in the text (Line 243) are not shown in the figure, it would be good to show all TFs motifs mentioned in the text in this figure. Again, there is no mention of whether a sequence-specific motif is detected for SALL4 (e.g. an AT-rich sequence) from this motif analysis.

      Done, thank you. An AT-rich sequence, resembling the SALL4 motif, was detected in a small minority of sites (this is now shown in Supplementary Figure S5), suggesting that SALL4 engages chromatin in a broad manner, going beyond its preferred motif, possibly in cooperation with other TFs. This is consistent with many studies that in mESCs have shown that SALL4 binds at OCT4/NANOG/SOX2 target motifs. This is now discussed in a dedicated paragraph in the discussion.

      Figure 4G. How was the ATAC-seq data normalized for the WT and SALL4-het-KO lines for this comparison? The background levels of accessibility seem quite different in Replicate 1.

      The bigwigs used to make the heatmaps are normalized by sequencing depth using the Deeptools Suite (normalization by RPKM).

      Figures 5B-C could be exchanged to flow better with the text. A Venn diagram could be included to show the overlap between the sites losing BRG1 in SALL4-het-KO (13,505 sites) and the Day5-specific SALL4 sites (17,137 sites).

      Done, thank you.

      At Day 5, the authors suggest a shift towards neural differentiation. It could be interesting for the authors to perform qRT-PCR at Day 5 for some neural markers or look in the Day 14 data for markers of neural differentiation at the expense of CNCC markers.

      See updated Supplementary Fig. S8, where we show timecourse expression of several genes, including neural markers.

      Is the data used to plot Figure 5D the same as Figure 4G. If so, why is only one replicate shown in Figure 5D?

      Only one replicate was shown in the main figure purely for lack of space, but the experiment was replicated twice (with the two different clones), and the results were exactly the same. See plots below for your convenience:

      Figure 6A. How many replicates are shown? If n=2, boxplots are not an appropriate to represent the distribution of the data. Please include n= X in the figure legend and plot the raw data points also.

      Done, thank you, and as suggested we are no longer using boxplots for this panel.

      Figure 6B. What is the significance of CD99 for CNCC differentiation?

      Figure 6F. No error bars are shown, how many replicates were performed for this time couse? The linear regression line does not appear to add much value and could be removed.

      As suggested, we have removed these plots and replaced them with individual genes plots, which include error bars. See updated Supplementary Figure S8.

      At line 304, the authors state "while SALL4-het-KO showed a significant downregulation of these genes". Perhaps 'failed to induce these genes' may be more accurate unless they were expressed at Day 5 and downregulated at Day 14.

      Done, thank you.

      Lines 332-335. The genes selected for pluripotency, neural plate border, CNCC specification could be plotted separately in the Supplement to show individual gene expression dynamics.

      Done, thank you, see point 24.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      In this manuscript, Singh, Wu and colleagues explore functional links between septins and the exocyst complex. The exocyst in a conserved octameric complex that mediates the tethering of secretory vesicles for exocytosis in eukaryotes. In fission yeast cells, the exocyst is necessary for cell division, where it localizes mostly at the rim of the division plane, but septins, which localize in a similar manner, are non-essential. The main findings of the work are that septins are required for the specific localization of the exocyst to the rim of the division plane, and the likely consequent localization of the glucanase Eng1 at this same location, where it is known to promote cell separation. In the absence of septins, the exocyst still localizes to the division plane but is not restricted to the rim. They also show some defects in the localization of secretory vesicles and glucan synthase cargo. They further propose that interactions between septins and exocysts are direct, as shown through Alphafold2 predictions (of unclear strength) and clean coIP experiments. 

      Strengths: 

      The septin, exocyst and Eng1 localization data are well supported, showing that the septin rim recruits the exocyst and (likely consequently) the Eng1 glucanase at this location. One major finding of the manuscript is that of a physical interaction between septins and exocyst subunits. Indeed, many of the coIPs supporting this discovery are very clear. 

      Weaknesses: 

      I am less convinced by the strength of the physical interaction of septins with the exocyst complex. Notably, one important open question is whether septins interact with the intact exocyst complex, as claimed in the text, or whether the interactions occur only with individual subunits. The two-hybrid and coIP data only show weak interactions with individual subunits, and some coIPs (for instance Sec3 and Exo70 with Spn1 and Spn4) are negative, suggesting that the exocyst complex does not remain intact in these experiments.

      Given the known structure of the full exocyst complex and septin filaments (at least in S. cerevisiae), the Alphafold2 predicted structure could be used to probe whether the proposed interaction sites are compatible with full complex formation.  

      We thank the reviewer for these important and insightful comments. We agree that our current data, particularly the data from yeast two-hybrid and co-immunoprecipitation (coIP) assays, primarily reveal interactions between individual septin and exocyst subunits, and do not conclusively demonstrate binding of septins to the fully assembled exocyst complex. We realize this as a key limitation and have revised the manuscript text accordingly to clarify this point.

      We also appreciate the reviewer’s suggestion to use structural prediction to further assess their interaction plausibility. We have now employed the full Saccharomyces cerevisiae exocyst complex (with 4.4 Å resolution) published by the Guo group (Mei et al., 2018) to examine the interfaces of septin and the exocyst interactions, assuming that the S. pombe exocyst has the similar structure. We focused on checking all the interacting residues on the exocyst complex and septins from our AlphaFold modeling to determine whether these predicted interactions are structurally compatible. Our analysis reveals that majority subunit interactions are sterically feasible, while a few would likely require partial disassembly or flexible conformations. These new insights have been added to the revised Results and Discussion sections (Figure Supplement S4, S5 and Videos 4-7).

      While we cannot fully resolve whether septins engage with the whole exocyst complex versus selected subunits, our combined data support a model that septins scaffold or spatially regulate the exocyst localization at the division site, potentially through dynamic and multivalent interactions. We now explicitly state this more cautious interpretation in the revised manuscript.

      Mei, K., Li, Y., Wang, S., Shao, G., Wang, J., Ding, Y., Luo, G., Yue, P., Liu, J.-J., Wang, X. and Dong, M.-Q., Wang, H-W, Guo W. 2018. Cryo-EM structure of the exocyst complex. Nature Struct & Mol. Biol, 25(2), pp.139-146.

      The effect of spn1∆ on Eng1 localization is very clear, but the effect on secretory vesicles (Ypt3, Syb1) and glucan synthase Bgs1 is less convincing. The effect is small, and it is not clear how the cells are matched for the stage of cytokinesis. 

      For localizations and quantifications of Eng1, Ypt3, Syb1, and Bgs1 shown in Figures 6 and 7, cells with a closed septum (at or after the end of contractile-ring constriction) were quantified or highlighted. To quantify their fluorescence intensity at the division site using line scan, the line width used was 3 pixels. For Syb1 (Figure 6D), we quantified cells at the end of ring constriction (when Rlc1-tdTomato constricted to a dot) in the middle focal plane. The exact same lines were drawn in both Rlc1 and Syb1 channels. The center of line scan was defined as the pixel with the brightest Rlc1 value. All data were aligned by the center and plotted. For Bgs1 (Figure 7A), we quantified the cells that Rlc1 signal had disappeared from the division site. The line was drawn in the Bgs1 channel in the middle focal plane. The center of line scan was defined as the pixel with the brightest Bgs1 value.

      All data were aligned by the center and plotted. These details were added to the Materials and Methods.

      Reviewer #2 (Public Review): 

      Summary: 

      This interesting study implicates the direct interaction between two multi-subunit complexes, known as the exocyst and septin complexes, in the function of both complexes during cytokinesis in fission yeast. While previous work from several labs had implicated roles for the exocyst and septin complexes in cytokinesis and cell separation, this study describes the importance of protein:protein interaction between these complexes in mediating the functions of these complexes in cytokinesis. Previous studies in neurons had suggested interactions between septins and exocyst complexes occur but the functional importance of such interactions was not known. Moreover, in baker's yeast where both of these complexes have been extensively studied - no evidence of such an interaction has been uncovered despite numerous studies which should have detected it. Therefore while exocyst:septin interactions appear to be conserved in several systems, it appears likely that budding yeast are the exception--having lost this conserved interaction. 

      Strengths: 

      The strengths of this work include the rigorous analysis of the interaction using multiple methods including Co-IP of tagged but endogenously expressed proteins, 2 hybrid interaction, and Alphafold Multimer. Careful quantitative analysis of the effects of loss of function in each complex and the effects on localization and dynamics of each complex was also a strength. Taken together this work convincingly describes that these two complexes do interact and that this interaction plays an important role in post Golgi vesicle targeting during cytokinesis. 

      Weaknesses: 

      The authors used Alphafold Multimer to predict (largely successfully) which subunits were most likely to be involved in direct interactions between the complexes. It would be very interesting to compare this to a parallel analysis on the budding yeast septin and exocyst complexes where it is quite clear that detectable interactions between the exocyst and septins (using the same methods) do not exist. Presumably the resulting pLDDT scores will be significantly lower. These are in silico experiments and should not be difficult to carry out. 

      We thank the reviewer for this insightful suggestion. To assess the specificity of the predicted interactions between septins and the exocyst complex in S. pombe, we performed a comparative AlphaFold2 analysis using some of the homologous subunits from Saccharomyces cerevisiae. We modeled two interactions between Cdc10-Sec5 and Cdc10-Sec15 (Cdc10 is the Spn2 homolog) using the same pipeline and parameters at the time when we did the modeling for S. pombe. We did not find interactions between them using the criteria we used for the fission yeast proteins in this study. These results support the notion that the predicted septin–exocyst interactions in S. pombe are not generalizable to budding yeast. Unfortunately, we did not test all other combinations at that time and the AlphaFold2 platform is not available to us now (showing system error messages when we tried recently). We thank the reviewer again for this helpful suggestion, which should strengthen the evolutionary interpretation of the septin-exocyst interactions once it is able to be systematically carried out.

      Reviewer #3 (Public Review): 

      Septins in several systems are thought to guide the location of exocytosis, and they have been found to interact with the exocyst vesicle-tethering complex in some cells. However, it is not known whether such interactions are direct or indirect. Moreover, septin-exocyst physical associations were not detected in several other systems, including yeasts, making it unclear whether such interactions reflect a conserved septin-exocytosis link or whether they may missed if they depend on septin polymerization or association into higher-order structures. Singh et. al., set out to define whether and how septins influence the exocyst during S. pombe cytokinesis. Based on three lines of evidence, the authors conclude that septins directly bind to exocyst subunits to regulate localization of the exocyst and vesicle secretion during cytokinesis. The conclusions are consistent with the data presented, but some interpretations need to be clarified and extended: 

      (1) The first line of evidence examines septin and exocyst localization during cytokinesis in wild-type and septin-mutant or exocyst-mutant yeast. Quantitative imaging convincingly shows that the detailed localization of the exocyst at the division site is perturbed in septin mutants, and that this is accompanied by modest accumulation of vesicles and vesicle cargos. Whether that is sufficient to explain the increased thickness of the division septum in septin mutants remains unclear.

      The modest accumulation of vesicles and vesicle cargos at the division site is one of the reasons for the increased thickness of the division septum in septin mutants. It is more likely that the misplaced exocyst can still tether vesicles along the division plane (less likely at the rim) without septins. Due to the lack of the glucanase Eng1 at the rim of the division plane in septin mutants, daughter-cell separation is delayed and then cells continue to thicken the septum. We have added these points to the Discussion.

      (2) The second line of evidence involves a comprehensive Alphafold2 analysis of potential pair-wise interactions between septin and exocyst subunits. This identifies several putative interactions in silico, but it is unclear whether the identified interaction surfaces would be available in the full septin or exocyst complexes.  

      We thank the reviewer for raising this important point. We fully agree that a key limitation of pairwise AlphaFold predictions is that they do not account for the higher-order structural context of multimeric protein complexes, such as septin hetero-oligomers or the assembled exocyst complex. As a result, some of the predicted interfaces could indeed be conformationally restricted in the native state.

      To address this concern, we predicted the S. pombe exocyst and septin structures using AlphaFold3. We mapped predicted contact residues onto the predicted structure. Most predicted interfaces (86% for the exocyst and 86-96% for septins) appear to be located on accessible surfaces in the assembled complexes (Figure supplement S4, S5, videos 4 - video 7), suggesting that these interactions are sterically plausible. We have added this important caveat to the text of the revised manuscript highlighting the interface accessibility within the assembled complexes. We appreciate the reviewer’s insight, which helped us strengthen the interpretation and limitations of the AlphaFold-based analysis.

      (3) The third line of evidence uses co-immunoprecipitation and yeast two hybrid assays to show that several physical interactions predicted by Alphafold2 can be detected, leading the authors to conclude that they have identified direct interactions. However, both methods leave open the possibility that the interactions are indirect and mediated by other proteins in the fission yeast extract (co-IP) or budding yeast cell (two-hybrid). 

      We thank the reviewer for this important clarification. We agree that coimmunoprecipitation (co-IP) and yeast two-hybrid (Y2H) assays cannot conclusively distinguish between direct and indirect interactions. As the reviewer points out, co-IPs may reflect associations mediated by bridging proteins within the fission yeast extract, and Y2H readouts can be influenced by fusion context or endogenous host proteins. In our manuscript, we have now revised the relevant statements in the Results and Discussion sections to clarify that the observed associations are consistent with direct interactions predicted by AlphaFold2, but cannot alone establish direct binding. We have also tempered our terminology—substituting phrases such as “direct interaction” with “physical association consistent with direct binding,” where appropriate.

      (4) Based on prior studies it would be expected that the large majority of both septins and exocyst subunits are present in cells and extracts as stoichiometric complexes. Thus, one would expect any septin-exocyst interaction to yield associations detectable with multiple subunits, yet co-IPs were not detected in some combinations. It is therefore unclear whether the interactions reflect associations between fully-formed functional complexes or perhaps between transient folding intermediates. 

      We thank the reviewer for this thoughtful observation. We agree that both septins and exocyst subunits are generally understood to exist in cells as stable, stoichiometric complexes, and that interactions between fully assembled complexes might be expected to yield co-immunoprecipitation signals involving multiple subunits from each complex. However, it was also found that >50% of septins Spn1 and Spn4 are in the cytoplasm even during cytokinesis when the septin double rings are formed (Table 1 of Wu and Pollard, Science 2005, PMID: 16224022). Thus, it is possible that there are pools of free septin and exocyst subunits in the cytoplasm, which were detected in our Co-IP assays. 

      In our experiments, we observed selective co-IP signals between certain septin and exocyst subunits, while other combinations did not yield detectable interactions. We believe these findings could reflect several other possibilities besides the possible interactions among the free subunits in the cytoplasm:

      (1) Some interactions may only be strong enough between specific subunits at exposed interfaces under the Co-IP conditions, rather than through wholesome complex–complex interactions;

      (2) The detergent and/or salt conditions used in our co-IPs may disrupt labile complex interfaces or partially dissociate multimeric assemblies.

      To address this concern, we now include in the Discussion a paragraph highlighting the possibility that some of the observed interactions may not reflect binding between fully assembled, functional complexes. Notably, most detected interactions pairs are consistent with the AlphaFold predictions, which suggest specific subunit interfaces may be responsible for mediating contact. While we cannot fully resolve whether septins engage with the whole exocyst complex versus selected subunits, our combined data supports a model that septins scaffold or spatially regulate the exocyst localization at the division site, potentially through dynamic and multivalent interactions. We now explicitly state this more cautious interpretation in the revised manuscript. Future biochemical studies using native complex purifications, cross-linking mass spectrometry, or in vitro reconstitution with fully assembled septin and exocyst complexes, or in vivo FRET assays will be essential to clarify whether the interactions we observe occur between intact assemblies or intermediate forms.

      Reviewer #1 (Recommendations for the Authors): 

      A major finding from the manuscript is the description of physical interaction of septin subunits with exocyst subunits. The analysis starts from Alphafold2 predictions, shown in Figures 3 and S3. However, some of the most useful metrics of Alphafold, the PAE plot and the pTM and ipTM values, are not provided. It is thus very difficult to estimate the value of the predicted structures (which are also obscured by all side chains). The power of a predicted structure is that it suggests binding interfaces, which is not explored here. At the very least, it would not be difficult to examine whether the proposed binding interfaces are free in the septin filaments and octameric exocyst complex. 

      Please also see response to reviewer #1 (Public Review).

      We thank the reviewer for these very helpful suggestions. We agree that inclusion of AlphaFold2 model confidence metrics—specifically the Predicted Aligned Error (PAE) plots, as well as pTM and ipTM values—is essential for evaluating the reliability of the predicted septin–exocyst interfaces.

      In the revised manuscript, we have now included the PAE plots (Figure 3 and Supplementary S3) and summarizes the pTM scores for each predicted septin–exocyst subunit pair. We also provide a short description of these metrics in the figure legend to help guide interpretation. The old Alphafold2 version (alphafold2advanced) that we used doesn’t give iPTM score, so are not included. However, according to our methodology, we only counted the interacting residues which have pLDDT scores >50%, predicting the resulting iPTM score should not be very weak.

      In addition, we have updated Figures 3 and S3 to show simplified ribbon diagrams of the interface regions, with side chains hidden by default and selectively displayed only at predicted interaction hotspots. This improves structural clarity and makes the interface regions easier to interpret. We mentioned in the Discussion that the preliminary studies show that the predicted interacting interfaces of Sec15 and Sec5 with septin subunits are accessible for interaction in the whole exocyst complex. The new Figure Supplement S4 and S5 and Videos 4-7 now show the interface residues of both the exocyst and septins that are involved in the interactions.

      Two further points on the interaction: 

      The 2H interaction data is not very convincing. The insets showing beta-gal assays do not look very different from the negative control (compare for instance in panel 4E the Sec15BD alone, last column, with the Sec15-BD in combination with Spn4-AD, third column: roughly same color), which suggests it is mostly driven by autoactivation of Sec15-BD. Providing growth information in addition to beta-gal may be helpful. 

      We appreciate the reviewer’s close evaluation of the yeast two-hybrid (Y2H) assay data, and we agree that the signals observed in the Spn4–Sec15 combination is indeed weak. Unfortunately, we did not perform growth assays. However, we would like to clarify that this is consistent with the nature of the interactions that we are investigating. The interaction between individual septin and exocyst subunits is not strong and/or transient as supported by the weak interactions by Co-IP experiments. Given the exocyst only tethers/docks vesicles on the plasma membrane for tens of seconds before vesicle fusion, the multivalent interactions between septins and the exocyst should be very dynamic and not be too strong. 

      As evidenced by our Co-IP experiments and multivalent interactions predicted by Alphafold2, the interaction between Spn4 and Sec15 is detectable but weak, suggesting that this may be a low-affinity or transient interaction. Given that Y2H assays have known limitations in detecting such low-affinity interactions—especially those that depend on conformational context or are not optimal in the yeast nucleus—it is perhaps not surprising that the X-gal color development is subtle. These limitations of the Y2H system have been well-documented (e.g., Braun et al., 2009; Vidal & Fields, 2014), particularly for interactions with affinities in the micromolar range or those requiring conformational specificity. Therefore, the weak signal observed is in line with expectations for a lowaffinity, transient interaction such as between Spn4 and Sec15.

      Vidal, M. and Fields, S., 2014. The yeast two-hybrid assay: still finding connections after 25 years. Nature methods, 11(12), pp.1203-1206.

      Braun, P., Tasan, M., Dreze, M., Barrios-Rodiles, M., Lemmens, I., Yu, H., Sahalie, J.M., Murray, R.R., Roncari, L., De Smet, A.S. and Venkatesan, K., 2009. An experimentally derived confidence score for binary protein-protein interactions. Nature methods, 6(1), pp.91-97.

      In the coIP experiments, I am confused by the presence of tubulin signal in some of the IPs. For instance, in Fig 4B, but not 4D, where the same Sec15-GFP is immunoprecipitated. There is also a signal in 4C but not 4A. This needs to be clarified. 

      The presence of tubulin in some immunoprecipitates is not unexpected, particularly in experiments involving cytoskeleton-associated proteins such as septins and exocyst subunits. The occasional presence of tubulin in our co-IP samples is consistent with well-documented reports showing tubulin as a frequent non-specific co-purifying protein, particularly under native lysis conditions used to preserve large complexes (Vega and Hsu, 2003; Gavin et al., 2006; Mellacheruvu et al., 2013; Hein et al., 2015). The CRAPome database and quantitative interactomics studies highlight tubulin as one of the most common background proteins in affinity-based workflows. Importantly, tubulin was used as a loading control but not as a marker for interaction in our study, and its variable presence does not reflect a specific interaction with Sec15-GFP or other bait proteins, and we have clarified this point in the revised figure legend.

      Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B. and Edelmann, A., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), pp.631-636.

      Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y. and Halim, V.A., 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods, 10(8), pp.730736.

      Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F. and Hyman, A.A., 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), pp.712-723.

      Vega, I.E., Hsu, S.C. 2003. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport, 14, pp.31-37.

      Regarding the localization of Ypt3 and Syb1 in WT and spn1∆ in Figure 6C-D and Bgs1 in Figure 7A, it would help to add a contractile ring marker to be able to match the timing of cytokinesis between WT and mutants and ensure that cells of same stage are compared (and add some quantification for Ypt3). In fact, in Figure 7A, next to the cells being pointed at, there are very similar localizations of Bgs1 in WT and spn1∆ at the rim of the ingressing septum, which makes me wonder how the quantified cells were chosen. 

      For localizations and quantifications of Eng1, Ypt3, Syb1, and Bgs1 shown in Figures 6 and 7, cells with a closed septum (at or after the end of contractile-ring constriction) were quantified or highlighted. To quantify their fluorescence intensity at the division site using line scan, the line width used was 3 pixels. For Syb1 (Figure 6D), we quantified cells at the end of ring constriction (when Rlc1-tdTomato constricted to a dot) in the middle focal plane. The exact same lines were drawn in both Rlc1 and Syb1 channels. The center of line scan was defined as the pixel with the brightest Rlc1 value. All data were aligned by the center and plotted. For Bgs1 (Figure 7A), we quantified the cells that Rlc1 signal had disappeared from the division site. The line was drawn in the Bgs1 channel in the middle focal plane. The center of line scan was defined as the pixel with the brightest Bgs1 value. All data were aligned by the center and plotted. These details were added to the Materials and Methods.

      Finally, the manuscript would benefit from some figure reorganization/compaction. Unless work on the binding interfaces is added, Figure 3 and S3 could be removed and summarized by providing the pTM and ipTM values of the predicted interactions. Figure 5 could be combined with Figure 2, as it is essentially a repeat with additional exocyst subunits. 

      Because the binding interfaces are added, we keep the original Figures 3 and S3. The experiments in Figure 5 could not be performed before the interaction tests between septins and the exocyst. Thus, to aid the flow of the story, we keep Figures 2 and 5 separated.

      Minor comments: 

      The last sentence of the first paragraph of the results does not make much sense at this point of the paper. After the first paragraph, there is no evidence that colocalization would be required for proper function.  

      We agree that the sentence in question may have overstated the functional implications of colocalization too early in the Results section, before presenting supporting evidence. Our intention was to introduce the hypothesis that spatial proximity between septins and exocyst subunits may be relevant for their coordination during cytokinesis, which we examine in later figures. We have revised the sentence to more accurately reflect the observational nature of the data at this stage in the manuscript as below:

      "These observations suggest the spatial proximity between septins and the exocyst during certain stage of cytokinesis, raising the possibility of their functional coordination, which we would further investigate below."

      What is the indicated n in Figure 6B? Number of cells? 

      Yes, the n in Figure 6B refers to the thin sections of electron microscopy quantified in the analysis. We have now updated the figure legend to explicitly state this for clarity.

      The causal inference made between the alteration of Exocyst localization in septin mutants and the thicker septum is possible, but by no means certain. It should be phrased more cautiously. 

      We agree that our original phrasing may have overstated the causal relationship between altered exocyst localization in septin mutants and septum thickening. Our data supports a correlation between these phenotypes, but additional experiments would be required to establish direct causality.

      To reflect this, we have revised the relevant sentence in the Discussion to read:

      “The modest accumulation of vesicles and vesicle cargos at the division site is one of the reasons for the increased thickness of the division septum in septin mutants. It is more likely that the misplaced exocyst can still tether vesicles along the division plane without septins. Due to the lack of the glucanase Eng1 at the rim of the division plane in septin mutants, daughter-cell separation is delayed and then cells continue to thicken the septum.”

      Reviewer #2 (Recommendations for the Authors): 

      (1) In the display of the AlphaFold Model for the interactions (Figure 3 and Supplemental Figure 3) it is difficult to identify which subunits are where. Residue numbers and subunits should be labeled and only side chains important for the interactions should be present in the model. 

      We appreciate this valuable suggestion. We agree that clearer visual labeling is essential for interpreting the predicted interactions and have revised Figures 3 and S3 accordingly to improve readability and emphasize key structural features.

      Specifically, we have:

      • Labeled each subunit with its name and color-coded consistently across panels.

      •  Annotated key interface residues with residue numbers directly in the figure.

      • Removed non-interacting side chains to declutter the model and highlight only those involved in predicted interactions as well as expanded the figure legend for explanation.

      (2) In Table 1 the column label "Genetic Interaction at 25C" is confusing when synthetic growth defects are shown with a "plus". Rather this column could be labeled "Growth of double mutants at 25C" and then designate the relative growth rate observed at 25C as in Table 2. Designating a negative effect on growth with a plus is confusing. 

      Thanks for the thoughtful suggestions. We have made the suggested changes by deleting the last column so that Tables 1 and 2 are consistent.

      (3) In Figure 4, why is tubulin being co-immunoprecipitated in two of the four anti-GFP IPs? Are the IPs dirty and if so why does it vary between the four experiments? If they are dirty can the non-specific tubulin be removed by additional washes with IP buffer or conversely is it necessary to do minimal washes in order to detect the exocyst-septin interaction by coIP? A comment on this would be helpful. 

      The presence of tubulin in some immunoprecipitates is not unexpected, particularly in experiments involving cytoskeleton-associated proteins such as septins and exocyst subunits. The occasional presence of tubulin in our co-IP samples is consistent with welldocumented reports showing tubulin as a frequent non-specific co-purifying protein, particularly under native lysis conditions used to preserve large complexes (Vega and Hsu, 2003; Gavin et al., 2006; Mellacheruvu et al., 2013; Hein et al., 2015). The CRAPome database and quantitative interactomics studies highlight tubulin as one of the most common background proteins in affinity-based workflows. Importantly, tubulin was used as a loading control but not marker for interaction in our study, and its variable presence does not reflect a specific interaction with Sec15-GFP or other bait proteins, and we have clarified this point in the revised figure legend.

      Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B. and Edelmann, A., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), pp.631-636.

      Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y. and Halim, V.A., 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods, 10(8), pp.730736.

      Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F. and Hyman, A.A., 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), pp.712-723.

      Vega, I.E., Hsu, S.C. 2003. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport, 14, pp.31-37. 

      In response to the second part of reviewer’s comment, we washed the pulldown product for 5 times each time with 1 ml IP buffer at 4ºC. We used this standard protocol for all the Co-IP experiments to detect the interaction between different septin-exocyst subunits. So, we are not sure if and how more washes or more stringent buffer conditions can interfere with detection of the interactions.

      Reviewer #3 (Recommendations for the Authors): 

      In addition to the issues noted in the public review, there were some confusing findings and references to previous literature that merit further consideration or discussion: 

      • The current gold standard for validating Alphafold predictions involves making targeted mutants suggested by the structural predictions. The absence of any such validation weakens the conclusions significantly. 

      We agree that the targeted mutagenesis based on AlphaFold2-predicted interaction interfaces represents a powerful approach to experimentally validate the in silico models. While we did not pursue structure-guided mutagenesis in this study, our goal was to identify putative interactions between septin and exocyst subunits as a foundation for future functional work. Our current conclusions are intentionally limited to proposing putative interfaces, supported by co-immunoprecipitation and genetic interaction data.

      We recognize that direct validation of specific contact residues would significantly strengthen the model. Accordingly, we have revised the Discussion to explicitly state this limitation and to note that structure-based mutagenesis will be an important next step to test the functional relevance of predicted interactions. We have added the following statement:

      “Future studies are needed to refine the residues involved in the interactions because the predicted interacting residues from AlphaFold are too numerous. However, it is encouraging that most of the predicted interacting residues are clustered in several surface patches. Experimental validation through targeted mutagenesis is an important next step.”

      • Much of the writing appears to imply that differences in mutant phenotypes indicate differences in septin (or exocyst) subunit behaviors/functions. However, my reading of the work in budding yeast is that such differences reflect the partial functionality that can be conferred by aberrant partial septin complexes that assemble and may polymerize in mutants lacking different subunits. In this view, which is supported by data showing that essentially all septins are in stoichiometric octameric complexes in cells, the wild-type functions are all mediated by the full complex. Similarly, the separate exocyst subunit localizations based on tagged Sec3 (Finger et al) were not supported by later work from the Brennwald lab with untagged Sec3, and the idea that different exocyst subunits may function separately from the full complex has very limited support in yeast. I would suggest that the text be edited to better reflect the literature, or that different views be better justified. 

      Thanks for the suggestions. We have revised the text accordingly.

      • The comprehensive set of Alphafold2 predictions is a major strength of the paper, but it is unclear to this reader whether the multiple predicted interactions truly reflect multivalent multimode interactions or whether many (most?) predictions would not be consistent with interactions between full complexes and may not indicate physiological interactions. Better discussion of these issues is needed to interpret the findings. 

      We appreciate the reviewer’s suggestion to use structural prediction to further assess interaction plausibility. We have now employed the full Saccharomyces cerevisiae exocyst complex (with 4.4 Å resolution) published by the Guo group to examine the interfaces of septins and the exocyst interactions, assuming that the S. pombe exocyst has the similar structure. We mapped predicted contact residues onto the predicted structure. Most predicted interfaces (86% for the exocyst and 86-96% for septins) appear to be located on accessible surfaces in the assembled complexes (Figure supplement S4, S5, videos 4 - video 7), suggesting that these interactions are sterically plausible. We have added this important caveat to the text of the revised manuscript highlighting the interface accessibility within the assembled complexes. We appreciate the reviewer’s insight, which helped us strengthen the interpretation and limitations of the AlphaFold-based analysis.

      • Some but not all co-IP blots appear to show tubulin (negative control) coming down with the GFP pull-downs. Why is that, and what does it imply for the reliability of the co-IP protocol? 

      The presence of tubulin in some immunoprecipitates is not unexpected, particularly in experiments involving cytoskeleton-associated proteins such as septins and exocyst subunits. The occasional presence of tubulin in our co-IP samples is consistent with welldocumented reports showing tubulin as a frequent non-specific co-purifying protein, particularly under native lysis conditions used to preserve large complexes (Vega and Hsu, 2003; Gavin et al., 2006; Mellacheruvu et al., 2013; Hein et al., 2015). The CRAPome database and quantitative interactomics studies highlight tubulin as one of the most common background proteins in affinity-based workflows. Importantly, tubulin was used as a loading control but not a marker for interaction in our study, and its variable presence does not reflect a specific interaction with Sec15-GFP or other bait proteins, and we have clarified this point in the revised figure legend.

      Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B. and Edelmann, A., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), pp.631-636.

      Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y. and Halim, V.A., 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods, 10(8), pp.730736.

      Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F. and Hyman, A.A., 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), pp.712-723.

      Vega, I.E., Hsu, S.C. 2003. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport, 14, pp.31-37.

      • Why were two different protocols used for different yeast-two-hybrid analyses? 

      The purpose of using two protocols was to test which protocol is more reliable and sensitive.

      • The different genetic interactions between septin and exocyst mutants when combined with TRAPP-II mutants merits further discussion: might the difference reflect relocation of exocyst from rim to center in septin mutants versus inactivation of exocyst in exocyst mutants? 

      We appreciate this insightful comment and agree that this distinction is likely meaningful. The reviewer correctly notes that septin mutants may not abolish exocyst function but rather cause its spatial mislocalization: from the rim to the center of the division site, whereas the exocyst mutants likely result in partial or complete loss of vesicle tethering activity at the plasma membrane.

      To address this important nuance, we have expanded the Discussion as follows:

      “The genetic interactions between mutations in the exocyst and septins when combined with TRAPP-II mutants may reflect fundamentally different consequences for compromising the exocyst function (Tables 1 and 2). In septin mutants, the exocyst complex still localizes to the division site but is mispositioned from the rim to the center of the division plane. This mislocalization allows partial retention of exocyst function, leading to very mild synthetic or additive defects when combined with compromised TRAPP-II trafficking and tethering. In contrast, in exocyst subunit mutants, the exocyst becomes partial or non-functional, resulting in a more severe loss of exocyst activity. These differing consequences could explain the qualitative differences in genetic interactions observed with TRAPP-II mutants (Tables 1 and 2). Thus, septins and the exocyst also work in different genetic pathways for certain functions in fission yeast cytokinesis.”

      • The vesicle accumulation in septin mutants was quite modest. Does that imply that most vesicles are still fusing in the septum? Further discussion would be beneficial to understand what the authors think this means. 

      We thank the reviewer for this important point. We agree that the modest vesicle accumulation observed in septin mutants suggests that a significant proportion of vesicles continue to successfully fuse at the division site, even in the absence of fully functional septin structures.

      We now discuss this in greater detail in the revised manuscript:

      “The relatively modest vesicle accumulation in septin mutants suggests that septins are not absolutely required for vesicle tethering or fusion per se at the division site. Instead, septins primarily function to spatially organize the targeting sites of exocyst-directed vesicles by stabilizing the localization of the exocyst at the rim of the cleavage furrow. In septin mutants, mislocalization of the exocyst reduces the spatial precision of membrane insertion but still permits vesicle tethering and fusion, albeit in a less controlled manner. Thus, septins likely play a modulatory rather than essential role in exocytic vesicle delivery during cytokinesis. This interpretation aligns with our localization and genetic interaction data, which indicates that septins act as scaffolds to optimize secretion geometry, rather than as core components of the fusion machinery.”

      • It was unclear to this reader why relocation of some exocyst complexes from the rim to the center of the septal region would lead to dramatic thickening of the septum. Further discussion would be beneficial to understand what the authors think this means. 

      The modest accumulation of vesicles and vesicle cargos at the division site is one of the reasons for the increased thickness of the division septum in septin mutants. It is more likely that the misplaced exocyst can still tether vesicles along the division plane without septins. Because of the lack of glucanase Eng1 at the rim of the division plane in septin mutants, daughter-cell separation is delayed and then cells continue to thicken the septum. We have added these points to the Discussion.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors make a bold claim that a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) causes slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

      Weaknesses:

      (1) The title refers to the "precuneus-hippocampus" network. A clear definition of what is meant by this terminology is lacking. More importantly, mechanistic evidence that the precuneus and the hippocampus are involved in the potential effects of stimulation remains unconvincing.

      Thank you for the observation. We believe that the evidence collected supports our state relative to the stimulation of the precuneus and the involvement of the hippocampus. In particular, given the existing evidence on TMS methodology and precuneus non-invasive stimulation (see Koch et al., Brain, 2022, Koch et al., Alzheimer's research & therapy, 2025), the computation of the biophysical model with the E-field we produced (see Biophysical modeling and E-field calculation section in the supplementary information), together with the individual identification of the precuneus through the RM (see iTBS+γtACS neuromodulation protocol and MRI data acquisition in the main text), we can reasonably assume that the individually identified PC was stimulated.

      As we acknowledged in the Limitations section, we cannot entirely rule out the possibility that our results might also reflect stimulation of more superficial parietal regions adjacent to the precuneus. Nor do we provide direct evidence of microscopic changes in the precuneus following stimulation. However, the results we provide in terms of changes in precuneus oscillatory activity and precuneus-hippocampi connectivity sustain both our thesis of the precuneus stimulation and of hippocampi involvement in the stimulation effects.

      Despite this consideration, we agree on the fact that a clear definition of what is meant by the terminology “precuneus-hippocampus network” is lacking. Moreover, since our data and previous evidence sustain the notion of PC stimulation, while this study does not produce direct evidence of the hippocampi stimulation - but only of the effect of the neuromodulation protocol on its connection with the precuneus, we soften the claim in the title. We remove the mention of the precuneus-hippocampus network so that the modified title will be as follows: “Dual transcranial electromagnetic stimulation of the precuneus boosts human long-term memory.”

      (2) The question of the extent to which the stimulation approach and the stimulation parameters used in these experiments causes specific and functionally relevant neural effects remains open. Invasive recordings that could address this question remain out of the scope of this non-invasive study. The authors conducted scalp EEG experiments in an attempt to address this question using non-invasive methods. However, the results shown in Fig. 3 are unclear. The results are inconsistently reported in units of microvolts squared in some panels (3A, 3B) and in units of microvolts in other panels (3C). Also, there is insufficient consideration of potential contamination by signal components reflecting eye movements, other muscle artifacts, or another volume-conducted signal reflecting aggregate activity inside the brain.

      As you correctly noted, Figure 3 presents results obtained from the TMS–EEG recordings. However, there is no inconsistency regarding the measurement units, as we are referring to two distinct indices: one in the frequency domain—oscillatory power shown in Figures 3A and 3B, expressed in microvolts squared (μV<sup>²</sup>)—and one in the time domain—the TMS-evoked potential shown in Figure 3C, expressed in microvolts (μV).

      Regarding the concern about artifacts, this is an important issue on which our group has a strong expertise, having published well-established, highly cited procedures on how to record and clean TMS-EEG signals (e.g., Casula et al., Clinical Neurophysiology, 2017; Rocchi et al., Brain Stimulation, 2021). In the current study, we adopted a well-established and rigorous approach for both data acquisition and preprocessing. This ensured that the recorded TMS–EEG signals were not contaminated by physiological or electrical artifacts.

      As regards the recording procedure, all participants were instructed to fixate on a black cross to minimize eye movements. To avoid auditory-related components caused by the TMS click, we adopted an ad-hoc procedure optimized for TMS-EEG recordings (Rocchi et al., Brain Stimulation, 2021). First, participants were given earphones that continuously played an ad-hoc masking noise composed of white noise mixed with specific time-varying frequencies of the TMS click (Rocchi et al., Brain Stimulation, 2021). The masking noise volume was adjusted to ensure that participants could not detect the TMS click, or as much as tolerated (always below 90 dB). To further reduce the impact of the TMS click on the EEG signal, we placed ear defenders (SNR=30) on top of the earphones. Please see TMS–EEG data acquisition section in the main text.

      As regards the offline cleaning process, we applied Independent Component Analysis (INFOMAX-ICA) to the EEG data to identify and remove components associated with muscle activity, eye movements, blinking, and residual TMS-related artifacts, in line with the most recent guidelines on TMS–EEG preprocessing (Hernandez-Pavon et al., Brain Stimulation, 2023). Specifically, for TMS-related muscle artefacts, we strictly followed the criteria based on their scalp topography, spectral content, timing, and amplitude, which we published in a paper focused on this topic (Casula et al., Clinical Neurophysiology, 2017). We add this detail in the TMS–EEG preprocessing and analysis section in the supplementary information (lines 119-120).

      (3) Figure 3 indicates "Precuneus oscillatory activity ...", but evidence that the activity presented reflects precuneus activity is lacking. The maps shown at the bottom of Figure 3C suggest that the EEG signals recorded with scalp EEG reflect activity generated across a wide spatial range, with a peak encompassing at least tens of centimeters. Thus, evidence that effects specifically reflect precuneus activity, as the paper's title and text throughout the manuscript suggest, is lacking.

      We believe there may have been a misunderstanding. As indicated in the figure caption, panels A and B represent oscillatory activity, whereas panel C displays the TMS-evoked potentials (TEPs). Therefore, the topographical maps mentioned (i.e., those in panel C) did not refer to oscillatory activity, but to differences in TEP amplitude. Specifically, the topographies shown in Figure 3C illustrate statistically significant differences in TEP amplitudes between post-stimulation time points (T1—immediately after stimulation, and T2—20 minutes after stimulation) and the pre-stimulation baseline (T0).

      In this figure, we focused our analysis on a cluster of electrodes overlying the individually identified precuneus, capturing EEG responses to single TMS pulses delivered to that target. This approach, widely used in previous literature (e.g., Koch et al., NeuroImage, 2018; Casula et al., Annals of Neurology, 2022; Koch et al., Brain, 2022; Maiella et al., Clinical Neurophysiology, 2024; Koch et al., Alzheimer’s Research & Therapy, 2025), supports the interpretation that the observed responses reflect precuneus-related activity. Furthermore, the wide spatial range change you mention proved to be statistically different only when conducting the TMS-EEG over the precuneus (i.e., administering the TMS single pulse over the precuneus) and not when performing it over the left parietal cortex. We modified the discussion section in the main text to make it more clear (lines 196-199).

      “Moreover, we observed specific cortical changes in the posteromedial parietal areas, as evidenced by the whole-brain analysis conducted on TMS-EEG data when performed over the precuneus and the absence of effect when TMS-EEG was performed on the lateral posterior parietal cortex used as a control condition.”

      That said, we do not state that the effects observed specifically reflect the precuneus activity; indeed, we think the effect of the stimulation is broader, as discussed in the Discussion section. We rather sustain, in line with the literature (Koch et al., Neuroimage 2018; Koch et al., Brain, 2022; Koch et al., Alzheimer's research & therapy, 2025), the idea that the effects observed are a consequence of the precuneus stimulation by the dual stimulation.

      (4) The paper as currently presented (e.g., Figure 3) also lacks rigorous evidence of relevant oscillatory activity. Prior to filtering EEG signals in a particular frequency band, clear evidence of oscillations in the frequency band of interest should be shown (e.g., demonstration of a clear peak that emerges naturally in the frequency range of interest when spectral analysis is applied to "raw" signals). The authors claim that gamma oscillations change because of the stimulation, but a clear peak in the gamma range prior to stimulation is not apparent in the data as currently presented. Thus, the extent to which spectral measurements during stimulation reflect physiological gamma oscillations remains unclear.

      If we understand correctly, your concern relates to the lack of a clear gamma peak before neuromodulation, which may suggest uncertainty about the observed changes in gamma oscillatory activity. Is that correct?

      First, it is important to underline that the natural frequency typically observed in the precuneus falls within the beta range, not the gamma range (see Rosanova et al., Journal of Neuroscience, 2009; Casula et al., Annals of Neurology, 2022). This explains why a prominent gamma peak is not expected at baseline (T0).

      Differently, our neuromodulatory protocol was specifically aimed at boosting gamma oscillatory activity given its well-established role in learning and memory processes (Griffiths & Jensen, Trends in Neurosciences, 2023). Thus, to assess the effect of the neuromodulatory protocol, we compared the oscillatory activity before (T0) and after stimulation (T1 and T2), which showed a clear increase in the gamma band. This effect is visible in the raw oscillatory power plot and is most clearly represented in Figure 3B, where the gamma band emerged as the only frequency range showing significant changes across time points.

      (5) Concerns remain regarding the rigor of statistical analyses in the revised manuscript (see also point 8 below). Figure 3B shows an undefined statistical test with p<0.05. The statistical test that was used is not explained. Also, a description of how corrections for multiple comparisons were made is missing. Figures 3A and 3C are not accompanied by statistics, making the results difficult to interpret. For Figure 4C, a claim was made based on a significant p-value for one statistical test and a non-significant p-value in another test. This is a common statistical mistake (see Figure 1 and accompanying discussion in Makin and Orban de Xivry (2019) Science Forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife 8:e48175).

      All statistical tests are described in the Statistical Analysis section of the main text. Specifically, to assess cortical oscillation changes in Experiment 3, we conducted repeated-measures ANOVAs with stimulation condition (iTBS+γtACS vs. iTBS+sham-tACS) and time (ΔT1 = T1–T0; ΔT2 = T2–T0) as within-subject factors, for each frequency band. To further explore the effects of stimulation at each time point, we performed paired t-tests with Bonferroni correction for multiple comparisons. A one-tailed hypothesis was adopted, based on our a priori prediction of gamma-band increase derived from previous work (Maiella et al., 2022).

      Please note that Figures 3A and 3C are purely descriptive and are therefore not accompanied by statistical tests. Figure 3A shows the full spectral profile across frequencies and conditions, while statistical significance for these data is reported in Figure 3B. Similarly, the upper part of Figure 3C displays the TMS-evoked potential (TEP) in the precuneus, while the statistical comparison of TEP amplitudes across time points is shown in the lower part of Figure 3C.

      Regarding Figure 4C and the article you cited, are you referring to the error described as “Interpreting comparisons between two effects without directly comparing them”? If we understand correctly, this refers to the mistake of inferring an effect by observing that a significant result occurs in one condition or group, while the corresponding result in another condition or group is not significant, without directly testing the difference between them.

      In the case of Experiment 4, which investigates fMRI effects and is illustrated in Figure 4, we employed a general linear model that explicitly modeled both conditions and time points, allowing for a direct statistical comparison. Therefore, the connectivity effect reported does not fall into the category of the error you mentioned.

      Importantly, Figure 4C does not depict the effect of the neuromodulatory protocol itself. Rather, its purpose is to show that, within the real stimulation condition, there is a correlation between the observed effect and the integrity of the bilateral Middle Longitudinal Fasciculus. No conclusions or assumptions were made based on the absence of a significant correlation in the sham condition. However, since it was an exploratory analysis, we decided to soften our claims relative to the neural mechanism in the discussion section of the main text (lines 241-246).

      (6) In the second question posed in the original review, I highlighted that it was unclear how such stimulation would produce memory enhancement. The authors replied that, in the absence of mechanisms, there are many other studies that suffer from the same problem. This raises the question of placebo effects. The paper does not sufficiently address or discuss the possibility that any potential stimulation effects may reflect placebo effects.

      We agree with the reviewer on the potential role of a placebo effect in our study. For this reason, our experimental study had several stimulation conditions, including a placebo condition, which corresponded to the sham iTBS-sham tACS condition, which did not produce any effect.

      (7) The third major concern in the original review was the lack of evidence for a mechanism that is specific to the precuneus. Evidence for specific involvement of the precuneus remains lacking in the revised manuscript. The authors state: "the non-invasive stimulation protocol was applied to an individually identified precuneus for each participant". However, the meaning of this statement is unclear. Specifically, it is unclear how the authors know that they are specifically targeting the precuneus. Without directly recording from the precuneus and directly demonstrating effects, which is outside of the scope of the study, specific involvement of the precuneus seems speculative. Also, it does not seem as though a figure was included in the paper to show how the stimulation protocol specifically targets the precuneus. In their response to the original reviews, the authors state that posterior medial parietal areas are the only regions that show significant differences following the stimulation, but they did not cite a specific figure, or statistics reported in the text, that show this. In any event, posterior medial parietal areas encompass a wide area of the brain, so this would still not provide evidence for an effect specifically involving the precuneus.

      We respectfully disagree with the claim that targeting the precuneus in our study is speculative. The statement that “without directly recording from the precuneus and directly demonstrating effects, which is outside the scope of the study, specific involvement of the precuneus seems speculative” would, by that logic, implicitly call into question a large body of cognitive neuroscience research employing non-invasive techniques such as EEG and fMRI.

      Our methodological approach—combining MRI-guided stimulation, biophysical modeling, and TMS–EEG—is well established and widely used for targeting and studying the role of specific cortical regions, including the precuneus (e.g., Wang et al., Science, 2014; Koch et al., NeuroImage, 2018; Casula et al., Annals of Neurology, 2022, 2023; Koch et al., Brain, 2022; Maiella et al., Clinical Neurophysiology, 2024; Koch et al., Alzheimer’s Research & Therapy, 2025).

      In line with previously published protocols (Santarnecchi et al., Human Brain Mapping, 2018; Özdemir et al., PNAS, 2020; Mantovani et al., Journal of Psychiatric Research, 2021), we identified individual targets (i.e., the precuneus) for each participant based on structural and resting-state functional MRI data (see MRI Data Acquisition and Preprocessing section in the main text). This target was then accurately localized using MRI-guided stereotaxic neuronavigation, ensuring reproducible and anatomically precise stimulation across subjects.

      Finally, concerning the last comment about the lack of figures/statistics showing how the stimulation protocol targets the precuneus and the specificity of the effect observed, we would like to let the focus go over:

      Figure 3 in the main text, where we show the results of the TME-EEG over the posterior medial parietal areas;

      Figure S1 in the supplementary information, which shows with the e-fied simulation how the stimulation protocol targets the brain;

      the Precuneus iTBS+γtACS increases gamma oscillatory activity section in the main text results, where we report the results of the statistical analysis of the TMS-EEG conducted over the precuneus and the left posterior parietal cortex, used as a control condition to test for the specificity of the neuromodulation protocol.

      (8) Regarding chance levels, it is unfortunate that the authors cannot quantify what chance levels are in the immediate and delayed recall conditions. This makes interpretation of the results challenging. In the immediate and delayed conditions, the authors state that the chance level is 33%. It would be useful to mark this in the figures. If I understand correctly, chance is 33% in Fig. 2A. If this is the case and if I am interpreting the figure correctly:

      Gray bars for the sham condition appear to be below chance (~20-25%). Why is this condition associated with an accuracy level that is lower than chance?

      Cyan bars and red bars do not appear to be significantly different from chance (i.e., 33%), with red slightly higher than cyan. What statistic was performed to obtain the level of significance indicated in the figure? The highest average value for the red condition appears to be around 35%. More details are needed to fully explain this figure and to support the claims associated with this figure.

      The immediate and recall conditions you mention correspond to a free recall task. In this case, the notion of a fixed "chance level" is not straightforward as it would be in recognition or forced-choice paradigms, which is why we did not quantify it at first. I will now try to explain this extensively.

      Unlike multiple-choice tasks, where participants select the answer from a limited set of alternatives and the probability of a correct response by chance can be precisely quantified (e.g., 33% in a 3-alternative forced choice), free recall involves the spontaneous retrieval of items from memory without external cues or predefined options. As such, the response range in free recall is essentially unconstrained, encompassing the entire vocabulary of the participant.

      Because of this open-ended nature, the probability of correctly recalling a studied item purely by chance is exceedingly low and could be approximated to zero. Also, in our task, participants had to correctly recollect both name and occupation, doubling the possibility of the answers.

      This assumption is further supported by the fact that random guesses in free recall are unlikely to match any of the studied items, given the vast number of possible alternatives. As a result, performance above zero can be reasonably interpreted as reflecting genuine memory retrieval, rather than random guessing.

      As regards statistics, repeated-measures ANOVAs with stimulation condition as a within-subject factor (i.e., iTBS+γtACS; iTBS+sham-tACS; sham-iTBS+sham-tACS) for each dependent variable (see statistical analysis section in main text).

      (9) In the revised version of the paper, the authors did not address concerns associated with the block design (please see question 4d in the original review).

      We are sorry for the misunderstanding. We did not address your concerns related to block design since it does not apply to our study. As reported in the paper you mentioned in the original review, block design involves data collection performed in response to different stimuli of a given class presented in succession. If this is the case, it does not correspond to our experimental design since both TMS-EEG and fMRI were conducted in the resting state (i.e., without the presentation of stimuli) on different days according to the different randomized stimulation conditions.  

      In sum, this study presents an admirable aspirational goal, the notion that a non-invasive stimulation protocol could modulate activity in specific brain regions to enhance memory. However, the evidence presented at the behavioral level and at the mechanistic level (e.g. the putative involvement of specific brain regions) remains unconvincing.

      We hope our response will be carefully considered, fostering a constructive exchange and leading to a reassessment of your evaluation.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Borghi and colleagues provides evidence that the combination of intermittent theta burst TMS stimulation and gamma transcranial alternating current stimulation (γtACS) targeting the precuneus increases long-term associative memory in healthy subjects compared to iTBS alone and sham conditions. Using a rich dataset of TMS-EEG and resting-state functional connectivity (rs-FC) maps and structural MRI data, the authors also provide evidence that dual stimulation increased gamma oscillations and functional connectivity between the precuneus and hippocampus. Enhanced memory performance was linked to increased gamma oscillatory activity and connectivity through white matter tracts.

      Strengths:

      The combination of personalized repetitive TMS (iTBS) and gamma tACS is a novel approach to targeting the precuneus, and thereby, connected memory-related regions to enhance long-term associative memory. The authors leverage an existing neural mechanism engaged in memory binding, theta-gamma coupling, by applying TMS at theta burst patterns and tACS at gamma frequencies to enhance gamma oscillations. The authors conducted a thorough study that suggests that simultaneous iTBS and gamma tACS could be a powerful approach for enhancing long-term associative memory. The paper was well-written, clear, and concise.

      Comments on Revision:

      I thank the authors for their thoughtful responses to my first review and their inclusion of more detailed methodological discussion of their rationale for the stimulation protocol conditions and timing. Regarding the apparent difference in connectivity at baseline between conditions, the explanation that this is due to intrinsic dynamics, state, or noise implies the baseline is reflecting transient changes in dynamics rather than a true or stable baseline. Based on this, it looks like iTBS solely is significantly greater than the baseline before the iTBS and γtACS condition but maybe not that much lower than post-stimulation period for iTBS and γtACS. A longer baseline period should be used to ensure transient states are not driving baseline levels such that these endogenous fluctuations would average out. This also raises questions about whether the effect of iTBS and γtACS or iTBS alone are dependent on the intrinsic state at the time when stimulation begins. Their additional clarification of memory scoring is helpful but also reveals that the effect of dual iTBS+γtACS specifically on the association between faces and names is just significant. This modest increase in associative memory should be taken into consideration when interpreting these findings.

      We thank the reviewer for the feedback. We fully agree that considering baseline dynamics is critical when assessing the neurophysiological and connectivity effects of stimulation protocols.

      In Experiments 3 and 4, baseline measurements were specifically included in our design to account for the possibility that intrinsic dynamics, state, or noise could influence the observed effects of neuromodulation. Indeed, if we had compared only post-stimulation connectivity between the real and sham conditions, the effects might have appeared larger. The inclusion of baseline measurements allows us to contextualize and better isolate the neuromodulatory impact by controlling such endogenous fluctuations. Importantly, the fMRI connectivity measurements, which comprise the baseline, are derived from 10-minute BOLD signal acquisitions, which help mitigate the influence of transient fluctuations and provide a quite stable estimate of intrinsic connectivity.

      Moreover, regarding the possibility that stimulation effects may depend on the intrinsic state at stimulation onset, we hypothesize that gamma-frequency entrainment induced by tACS could reduce the variability of intrinsic dynamics, promoting a more stable neural state that is favorable for the induction of long-term plasticity.

      As regards the memory scoring, we would like to clarify that the significant improvement observed in the dual iTBS+γtACS condition does not pertain solely to the face–name association. Rather, it concerns the more demanding task of recalling the association between face, name, and occupation. While we agree that the observed effect could be considered modest, it is worth noting that it follows from only 3 minutes of stimulation.

      Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they find that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increases gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments. It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. In the revised manuscript, the authors provide post-hoc sensitivity analyses that help contextualize the strength of the findings.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in separate experiments, but readers should keep in mind that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      We thank the reviewer for the feedback.

      Reviewer #1 (Recommendations for the authors):

      I suggest:

      (1) Removing all mechanistic claims about the precuneus and hippocampus.

      We soften our claims about the precuneus-hippocampus network.

      (2) Repeating and focusing on the behavioral experiments with a much larger number of images and stronger statistical power to try to demonstrate a compelling behavioral correlate of the proposed stimulation protocol.

      We clarified the misunderstanding relative to the chance level of the behavioral experiments raised by the reviewer.

      Reviewer #2 (Recommendations for the authors):

      Use longer baseline to establish stable gamma level for comparisons in Figure 3

      If we understand correctly, you propose to increase the baseline to establish the gamma oscillatory activity as expressed in Figure 3 (showing the results of experiment 3). Is that right? In the figure, you see a baseline of -100; 0ms, which we use for a merely graphical reason, since no activity is usually observable before the TMS pulse. However, to establish the level of gamma, we used a larger baseline correction ranging from -700 ms to -300 ms (i.e., 400ms). We added this important information in the cortical oscillation section of the supplementary information (lines 134-135).

      Reviewer #3 (Recommendations for the authors):

      I think that the authors did a great job responding to the concerns raised by the reviewers. All of my own comments have been satisfactorily addressed. I will update my public review to be more concise, so that it only includes the overall assessment of the manuscript, including the strengths and weaknesses, but without the requests for clarification. Strengths and weaknesses remain largely the same, as the authors did not conduct additional experiments.

      Thank you.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary:

      In this study, López-Jiménez and colleagues demonstrated the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

      Strengths:

      The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

      Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

      We thank the Reviewer for their enthusiasm on technical aspects of this paper, regarding both the automated microscopy pipeline coupled with artificial intelligence and the click-chemistry based approaches to dissect DNA replication and protein synthesis by microscopy.

      Weaknesses:

      There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

      The immortalized cell line HeLa is widely regarded as a paradigm to study infection by Shigella and other intracellular pathogens. However, we agree that future studies beyond the scope of this work should include other cell lines (eg. epithelial cells of colonic origin, macrophages, primary cells). 

      The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608). This paper should be discussed and cited in the discussion.

      We appreciate the Reviewer’s concern about the lack of follow up work on observations of host DNA and protein synthesis arrest upon Shigella infection, which will be the focus of future studies. We acknowledge the recent work of Zhang et al. (Cell Reports, 2024) considering their similar results on protein translation arrest, and this reference has been more fully discussed in the revised version of the manuscript.

      Reviewer #2 (Public Review):

      Summary:

      Septin caging has emerged as one of the innate immune responses of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single-cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains, or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      We thank the Reviewer for their positive comments, and for highlighting the strength of our imaging and analysis pipeline to analyse Shigella-septin interactions.

      Weaknesses:

      As the main aim of the manuscript is to describe the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

      The main objective of this manuscript is the development of imaging and analysis tools to study Shigella infection, and in particular, Shigella interactions with the septin cytoskeleton. In future work we will provide more mechanistic insight with novel experiments and broader applicability, using different cell lines (in agreement with Reviewer 1), mutants or clinical isolates of Shigella and different bacteria species (eg. Listeria, Salmonella, mycobacteria).

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses high-content imaging and advanced image-analysis tools to monitor the infection of epithelial cells by Shigella. They perform some analysis on the state of the cells (through measurements of DNA and protein synthesis), and then they focus on differential recruitment of Sept7 to the bacteria. They link this recruitment with the activity of the bacterial T3SS, which is a very interesting discovery. Overall, I found numerous exciting elements in this manuscript, and I have a couple of reservations. Please see below for more details on my reservations. Nevertheless, I think that these issues can be addressed by the authors, and doing so will help to make it a convincing and interesting piece for the community working on intracellular pathogens. The authors should also carefully re-edit their manuscript to avoid overselling their data (see below for issues I see there). I would consider taking out the first figure and starting with Figure 3 (Figure 2 could be re-organized in the later parts)- that could help to make the flow of the manuscript better.

      Strengths:

      The high-content analysis including the innovative analytical workflows are very promising and could be used by a large number of scientists working on intracellular bacteria. The finding that Septins (through SEPT7) are differentially regulated through actively secreting bacteria is very exciting and can steer novel research directions.

      We thank the Reviewer for their constructive feedback and excitement for our results, including our findings on T3SS activity and Shigella-septin interactions. In accordance with the Reviewer’s comments, we avoid overselling our data in the revised version of the manuscript.

      Weaknesses:

      The manuscript makes a connection between two research lines (1: Shigella infection and DNA/protein synthesis, 2: regulation of septins around invading Shigella) that are not fully developed - this makes it sometimes difficult to understand the take-home messages of the authors.

      We agree that the manuscript is mostly technical and therefore some of our experimental observations would benefit from follow up mechanistic studies in the future. We highlight our vision for broader applicability in response to weaknesses raised by Reviewer 2.

      It is not clear whether the analysis that was done on projected images actually reflects the phenotypes of the original 3D data. This issue needs to be carefully addressed.

      We agree with the Reviewer that characterizing 3D data using 2D projected images has limitations.

      We observe an increase in cell and nuclear surface that does not strictly imply a change in volume. This is why we measure Hoechst intensity in the nucleus using SUM-projection (as it can be used as a proxy of DNA content of the cell). However, we agree that future use of other markers (such as fluorescently labelled histones) would make our conclusions more robust.

      Regarding the different orientation of intracellular bacteria, we agree that investigation of septin recruitment is more challenging when bacteria are placed perpendicular to the acquisition plane. In a first step, we trained a Convolutional Neural Network (CNN) using 2D data, as it is easier/faster to train and requires fewer annotated images. In doing so, we already managed to correctly identify 80% of Shigella interacting with septins, which enabled us to observe higher T3SS activity in this population. In future studies, we will maximize the 3D potential of our data and retrain a CNN that will allow more precise identification of Shigella-septin interactions and in depth characterization of volumetric parameters.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) To conclude that cell volume is indeed increased, the investigators should consider staining the cells with markers that demarcate cell boundaries and/or are confined to the cytosol, i.e., a cell tracker dye.

      Staining using our SEPT7 antibody enables us to define cell boundaries for cellular area measurements (Novel Figure 1 - figure supplement 1A). However, we agree with the Reviewer that staining cells with additional markers (such as a cell tracker dye) would be required to conclude that cell volume is increased. We therefore adjust our claims in the main text (lines 107-115 and 235-246).

      (2) Line 27: I understand what is meant by "recruited to actively pathogenic bacteria with increased T3SS activation." However, one could argue that there are many different roles of the intracytosolic bacteria in pathogenesis in terms of pathogenesis, not just actively secreting effectors.

      T3SS secretion by cytosolic bacteria is tightly regulated and both T3SS states (active, inactive) likely contribute to the pathogenic lifestyle of S. flexneri. In agreement with this, we removed this statement from the manuscript (lines 27, 225 and 274).

      (3) Line 88: Please clarify in the text that HeLa cells are being studied.

      We explicitly mention that the epithelial cell line we study is HeLa in the main text (line 93), in addition to the Materials and methods (line 328).

      (4) Line 97: is it possible to quantify the average distance of the nuclei from the cell perimeter? This would help provide some context as to what it means to be a certain distance from the nucleus, i.e., is there another way to point out that distance from nuclei correlates with movement inward post-invasion at the periphery?

      To provide more context to the inward movement of bacteria to the cell centre, we provide calculations based on measurements in Figure 1G, I. If we approximate geometric shape of both cells and nucleus to a circle, the median radius of a HeLa cell is 31.1 µm<sup>2</sup> (uninfected cell) and 36.3 µm<sup>2</sup> (infected cell). Similarly, the median radius of the nucleus is 22.2 µm<sup>2</sup> (uninfected cell) and 24.57 µm<sup>2</sup> (infected cell).

      However, we note that Figure 1F shows distance of bacteria to the centroid of the cell, which is the geometric centre of the cell, and which does not necessarily coincide with the geometric centre of the nucleus. We also note that nuclear area increases with infection (in a bacterial dose dependent manner). Finally, we note that these measurements are performed on max projections of 3D Z-stacks. In this case we cannot fully appreciate distance to the nucleus for bacteria located above it.

      (5) Lines 212-213 - there is no Figure 9A, B - I think this should be Figure 7A, B.

      Text has been updated (lines 216-217).

      Reviewer #2 (Recommendations For The Authors):

      Testing the analysis pipeline as a proof-of-concept question such as the comparison of caging around the laboratory strain as compared to one or a few clinical isolates or mutants of interest would help stress the relevance of this new, remarkable tool.

      We thank the Reviewer for their enthusiasm.

      Future research in the Mostowy lab will capitalise on the high-content tools generated here to explore the frequency and heterogeneity of septin cage entrapment for a wide variety of S. flexneri mutants and Shigella clinical isolates.

      The sentence in line 215 ends with "in agreement with" followed by a reference.

      Text has been updated (line 219).

      The sentence in line 217 on the correlation between caging and T3SS is not very clear.

      Text has been clarified (lines 221-223).

      There is a typo in line 219 : "protrusSions"

      Text has been updated (line 223).

      Reviewer #3 (Recommendations For The Authors):

      Major points

      The quantitative analysis approach in Figure 1 has multiple issues. Some examples:<br /> (1) How was the cell area estimated? Normally, a marker for the whole cell (CellMask or similar) or cells expressing GFP would be good indicators. Here it is not clear to me what was done.

      The cell area was estimated using SEPT7 antibody staining which is enriched under the cell cortex. CellProfiler was used to segment cells based on SEPT7 staining, using a propagation method from the identified nucleus based on Otsu thresholding. To provide more clarity on how this was performed, we now include a new figure (Figure 1- figure supplement 1A) showing a representative image of HeLa cells stained with SEPT7 and the corresponding cell segmentation performed with CellProfiler software, together with an updated figure legend explaining the procedure (lines 784–787).

      (2) The authors use Hoechst and integrated z-projections (Figure 1 S1) as a proxy to estimate nuclear volume. Hoechst staining depends on the organization of the DNA within the nucleus and I find that the authors need to do better controls to estimate nuclear size - this would be possible with cells expressing fluorescently labeled histones, or even better with a fluorescently tagged nuclear pore/envelope marker. The current quantification approach is misleading.

      We understand Reviewer #3’s concerns about using Hoechst staining as a proxy of nuclear volume, due to potential differences in DNA organisation within the nucleus.

      Following the recommendation of Reviewer #3 in the following point 3, text has been updated (lines 107–115 and 235-246).

      (3) Was cell density assessed for the measurements? If cells are confluent, bacteria could spread between cells within 3 hrs, if cells are less dense, this does not occur. When epithelial cells are infected for some hours, they have the tendency to round up a bit (and to appear thicker in z), but a bit smaller in xy. My suggestion to the authors (as they use these findings to follow up with experiments on the underlying processes) would be to tone down their statements - eg, Hoechst staining could be simply indicated as altered, but not put in a context of size (this would require substantial control experiments).

      Local cell density was not directly measured, but the experiment was set up to infect at roughly 80% confluency (cells were seeded at 10<sup>4</sup> cells/well 2 days prior to infection in a 96-well microplate, as described in the Materials and methods section) and to ensure bacterial spread between cells.

      In agreement with Reviewer #3 we tone down statements in the main text (see response to point 2 above).

      In addition, I found Figure 1 (and parts of Figure 2) disconnected from the rest of the manuscript, and it may even be an idea to take it out of the manuscript (that could also help to deal with my feedback relating to Figure 1). I would suggest starting the manuscript with the current Figure 3 and building the biological story with a stronger focus on SEPT7 (and its links with T3 secretion and actively pathogenic bacteria) from there on. As it stands, the two parts of the manuscript are not well connected.

      We carefully considered this comment but following revisions we have not reorganised the manuscript. We believe that high-content characterisation of S. flexneri infection in Figure 1 and 2 provides insightful information about changes in host cells in response to infection. Following this, we move onto characterising intracellular bacteria (and in particular those entrapped in septin cages) in the second part of the manuscript (Figure 3-7). Similar methods were used to analyse both host and bacterial cells and results obtained offer complementary views on host-pathogen interactions.

      My major reservation with the experimental work of the current version of the manuscript relates to Figure 5: The analysis of the septin phenotypes in Figure 5 seems to be problematic - to me, it appears that analysis and training were done on projected image stacks. As bacteria are rod-shaped their orientation in space has an enormous impact on how the septin signal appears in a projection - this can lead to wrong interpretation of the phenotypes. The authors need to do some quantitative controls analyzing their data in 3D. To be more clear: the example "tight" (second row) shows a bacterium that appears short. It may be that it's actually longer if one looks in 3D, and the septin signal could possibly fall in the category "rings" or even "two poles".

      The deep learning training and subsequent analysis of septin-cage entrapment is done on projected Z-stacks, which presents limitations. Future work in the Mostowy lab will exploit this first study and dive deeper into 3D aspects of the data.

      To address Reviewer #3’s concern, we include a sentence explaining that this analysis was performed using 2D max projections (lines 708 and 724), as well as acknowledging its limitations in the main text (lines 259-262).

      Minor points

      The scale bar in Fig 1 is very thin.

      We corrected the scale bar in Fig. 1 to make it more visible.

      Could it be that Figure 1F is swapped with Figure1E in the description?

      Descriptions for Figure 1E and F are correct.

      Line 27: what does "actively pathogenic bacteria" mean? I propose to change the term.

      We agree with Reviewer #3 that “actively pathogenic bacteria” should be removed from the text. This update is also in agreement with Reviewer #1 (see Reviewer #1 point 2).

      Line 28: "dynamics" can be confusing as it relates to dynamic events imaged by time-lapse.

      Although we are making a snapshot of the infection process at 3 hpi, we capture asynchronous processes in both host and bacterial cells (eg. host cells infected with different bacterial loads, bacterial cells undergoing actin polymerisation or septin cage entrapment). We agree that we are not following dynamics of full events over time. However, our high content approach enables us to capture different stages of dynamic processes. To avoid confusion, we replace “dynamics” by “diverse interactions” (line 28), and we discuss the importance of follow-up studies studying microscopy timelapses (line 274).

      Paragraph 59 following: the concept of heterogeneity was investigated in some detail for viral infection by the Pelkmans group (PMID: 19710653) using advanced image analysis tools. Advanced machine-learning-based analysis was then performed on Salmonella invasion by Voznica and colleagues (PMID: 29084895). It would be great to include these somewhat "old" works here as they really paved the way for high-content imaging, and the way analyses were performed then should be also discussed in light of how analyses can be performed now with the approaches developed by the authors.

      We agree. These landmark studies have now been included in the main text (lines 71-74).

      Line 181: I do not know what "morphological conformations" means, perhaps the authors can change the wording or clarify.

      We substituted the phrase “morphological conformations” by “morphological patterns” to improve clarity in the main text (lines 185).

      The authors claim (eg in the abstract) that they are measuring the dynamic infection process. To me, it appears that they look at one time-point, so no dynamic information can be extracted. I suggest that the authors tone down their claims.

      Please note our response above (Minor points, Line 28) which also refers to this question.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments:

      (1) The gel quality in Figure 1 is inconsistent for different samples, with some bands not well resolved (e.g., for pUL11, GAPDH, or pUL20).

      We thank the reviewer for their suggestion. We tried to resolve the bands several times, but unfortunately this was the best outcome we could achieve.

      (2) The manuscript would benefit from a summary figure or table to concisely present the findings for each protein. It is a large body of manuscript, and a summary figure showing the discovered function would be great.

      We thank the reviewer for their suggestion. We have created a summary table (Table 2).

      (3) Figure 2 lacks clarity on the type of error bars used (range, standard error, or standard deviation). It says, however, range, and just checking if this is what the authors meant.

      We thank the reviewer for double-checking, but it is meant to be range, as reported in the legend. We used range because there are only two data points for each time point, which are insufficient to calculate standard deviation or standard error.

      (4) The manuscript could be improved by including details on how the plasma membrane boundary was estimated from the saturated gM-mCherry signal. An additional supplementary figure with the data showing the saturation used for the boundary definition would be helpful.

      We appreciate the suggestion and have included an example of how saturated gM-mCherry signal was used to delineate the cytoplasm in Supp. Fig. 4A.

      (5) Additional information or supplementary figures on the mask used to filter the YFP signal for Figure 4 would be helpful.

      Thanks, we have adapted the text in the results section to clarify: “eYFP-VP26 signal was manually inspected to determine threshold values that filtered out background and included pixels containing individual or clustered puncta that represent capsids.”

      (6) The figure legends could include information about which samples are used for comparison for significance calculations. As the colour of the brackets is different from the compared values (dUL34), it would be great to have this information in the figure legend.

      Thanks, we have adapted Fig. 4B to make the colour of the brackets match the colour used for the ΔUL34 mutant, and we have included labels next to the brackets for clarity. We have applied similar adjustments to Fig. 5D & E and Supp. Fig. 4C.

      (7) In Figure 5B, the association between YFP and mCherry signals is difficult to assess due to the abundance of mCherry signal; single-channel and combined images might improve visualization.

      Thanks, we have provided split and combined channel views in Supp. Fig. 4B to improve visualization.

      (8) In Figure 6D, staining for tubulin could help identify the cytoskeleton structures involved in the observed virus arrays.

      We thank the reviewer for their suggestion, which we think would be interesting future work to build on the current study. Given the competitive nature of access to the cryoSIM and cryoSXT, CLXT, including staining for tubulin was outside the scope of additional experiments we were able to conduct at this time.

      (9) It is unclear in Figure 6D if the microtubule-associated capsids are with the gM envelope or not, as the signal from mCherry is quite weak. It could be made clearer with the split signals to assess the presence of both viral components.

      We have provided split channels to the figure to aid with visualization.

      (10) The representation of voxel intensity in Figure 8 is somewhat confusing. Reversion of the voxel intensity representation to align brighter values with higher absorption, which would simplify interpretation.

      We thank the reviewer for this suggestion. In contrast to fluorescence microscopy where high intensities reflect signal, low intensities represent signal (absorbance of X-rays) in cryoSXT. We respectfully decided not to reverse the values, as we believe that could cause more confusion. We have instead added a black-to-white gradient bar to illustrate that low voxel intensities correspond to dark signal in Fig 8.

      (11) The visualization in panel I of Figure 8 might benefit from a more divergent colormap to better show the variation in X-ray absorbance.

      We thank the reviewer for their suggestion. We experimented with a few different colour schemes but concluded that the current one produced the clearest results and was most accessible for color-blind viewers.

      (12) Figure 9 would be enhanced by images showing the different virus sizes measured for the comparative study, which would help assess the size differences between different assembly stages.

      We thank the reviewer for their suggestion and have included images to accompany the graph.

      Overall, this is an excellent manuscript and an enjoyable read. It would be interesting to see this approach applied to the study of other viruses, providing valuable insights before progressing to high-resolution methods.

      Reviewer #2 (Public review):

      Summary:

      For centuries, humans have been developing methods to see ever smaller objects, such as cells and their contents. This has included studies of viruses and their interactions with host cells during processes extending from virion structure to the complex interactions between viruses and their host cells: virion entry, virus replication and virion assembly, and release of newly constructed virions. Recent developments have enabled simultaneous application of fluorescence-based detection and intracellular localization of molecules of interest in the context of sub-micron resolution imaging of cellular structures by electron microscopy.

      The submission by Nahas et al., extends the state-of-the-art for visualization of important aspects of herpesvirus (HSV-1 in this instance) virion morphogenesis, a complex process that involves virus genome replication, and capsid assembly and filling in the nucleus, transport of the nascent nucleocapsid and some associated tegument proteins through the inner and outer nuclear membranes to the cytoplasm, orderly association of several thousand mostly viral proteins with the capsid to form the virion's tegument, envelopment of the tegumented capsid at a virus-tweaked secretory vesicle or at the plasma membrane, and release of mature virions at the plasma membrane.

      In this groundbreaking study, cells infected with HSV-1 mutants that express fluorescently tagged versions of capsid (eYFP-VP26) and tegument (gM-mCherry) proteins were visualized with 3D correlative structured illumination microscopy and X-ray tomography. The maturation and egress pathways thus illuminated were studied further in infections with fluorescently tagged viruses lacking one of nine viral proteins.

      Strengths:

      This outstanding paper meets the journal's definitions of Landmark, Fundamental, Important, Valuable, and Useful. The work is also Exceptional, Compelling, Convincing, and Solid. The work is a tour de force of classical and state-of-the-art molecular and cellular virology. Beautiful images accompanied by appropriate statistical analyses and excellent figures. The numerous complex issues addressed are explained in a clear and coordinated manner; the sum of what was learned is greater than the sum of the parts. Impacts go well beyond cytomegalovirus and the rest of the herpesviruses, to other viruses and cell biology in general.

      Reviewer #3 (Public review):

      Summary:

      Kamal L. Nahas et al. demonstrated that pUL16, pUL21, pUL34, VP16, and pUS3 are involved in the egress of the capsids from the nucleous, since mutant viruses ΔpUL16, ΔpUL21, ΔUL34, ΔVP16, and ΔUS3 HSV-1 show nuclear egress attenuation determined by measuring the nuclear:cytoplasmic ratio of the capsids, the dfParental, or the mutants. Then, they showed that gM-mCherry+ endomembrane association and capsid clustering were different in pUL11, pUL51, gE, gK, and VP16 mutants. Furthermore, the 3D view of cytoplasmic budding events suggests an envelopment mechanism where capsid budding into spherical/ellipsoidal vesicles drives the envelopment.

      Strengths:

      The authors employed both structured illumination microscopy and cellular ultrastructure analysis to examine the same infected cells, using cryo-soft-X-ray tomography to capture images. This combination, set here for the first time, enabled the authors to obtain holistic data regarding a biological process, as a viral assembly. Using this approach, the researchers studied various stages of HSV-1 assembly. For this, they constructed a dual-fluorescently labelled recombinant virus, consisting of eYFP-tagged capsids and mCherry-tagged envelopes, allowing for the independent identification of both unenveloped and enveloped particles. They then constructed nine mutants, each targeting a single viral protein known to be involved in nuclear egress and envelopment in the cytoplasm, using this dual-fluorescent as the parental one. The experimental setting, both the microscopic and the virological, is robust and well-controlled. The manuscript is well-written, and the data generated is robust and consistent with previous observations made in the field.

      Weaknesses:

      It would be helpful to find out what role the targeted proteins play in nuclear egress or envelopment acquisition in a different orthoherpesvirus, like HSV-2. This would confirm the suitability of the technical approach set and would also act as a way to validate their mechanism at least in one additional herpesvirus beyond HSV-1. So, using the current manuscript as a starting point and for future studies, it would be advisable to focus on the protein functions of other viruses and compare them.

      We appreciate the suggestion and agree that this would be a great starting point for future studies. At present, we do not have a panel of mutant viruses in HSV-2 or another orthoherpesvirus, and it would be significant work to generate them, so we consider this outside the scope of the current study.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) There are enough uncommon abbreviations in the text to justify the inclusion of an abbreviation list.

      We thank the reviewer for the suggestion, but we define all uncommon abbreviations at first mention and an abbreviations list is not part of eLife’s house style.

      (2) The complex paragraph on p. 7 would be much easier to digest if broken into smaller chunks. Consider similar treatment for other lengthy landmark-free blocks of text, e.g., the one that begins on p. 14. Subheadings would help.

      We thank the reviewer for this suggestion. We have divided large paragraphs into more easily digestible chunks throughout the manuscript, for example in the discussion where the previous monolithic 3rd paragraph has been divided into five shorter, focussed paragraphs.

      (3) Table 1 needs units.

      We thank the reviewer for noticing our omission and apologise for the oversight - the table has been updated accordingly.

      Reviewer #3 (Recommendations for the authors):

      (1) Toward the end of the manuscript, I missed some lines attempting to speculate on the origin/nature of the spherical/ellipsoidal vesicles providing the envelopment. Would it be possible to incorporate this in the Discussion section?

      Thank you for noticing that omission. We have now included a few lines speculating that they may represent recycling endosomes, trans-Golgi network vesicles, or a hybrid compartment.

      (2) I congratulate the authors. The work is robust, and I personally highlight the way they managed to include others' results merged with their own, providing a complete view of the story.

      We thank the reviewer for their kind words.

      Note to editors

      In addition to these responses to the reviewer’s comments, we have also now included in the methods section details of the Tracking of Indels by Decomposition (TIDE) analysis we performed (data in Supplementary Figure 3) that was omitted by mistake from the original submission.

    1. But a multithreaded story can offer many voices at once without giving any one of them the last word. This is a reassuring format for encountering a traumatic event because it allows plenty of room for conflicting emotions.

      Here the author is contrasting linear story telling and multithread story telling. This can show how a single version of an event may feel limiting, specifically in context of trauma. The multithreaded version can validate and express multiple perspectives and emotions which I think relates nicely to Hana Feels as we experienced multiple perspectives which I thought helped the story develop.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):

      Women are less likely to submit their papers to highly influential journals (e.g., Nature, Science and PNAS).

      Women are more likely to cite the demands of co-authors as a reason why they didn't submit to highly influential journals.

      Women are also more likely to say that they were advised not to submit to highly influential journals.

      The paper highlights an important point, namely that the submission behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists' careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates - or a lack thereof - should not be automatically interpreted as as evidence for or against discrimination (broadly defined) in the peer review process.

      Major comments

      What do you mean by bias?

      In the second paragraph of the introduction, it is claimed that "if no biases were present in the case of peer review, then we should expect the rate with which members of less powerful social groups enjoy successful peer review outcomes to be proportionate to their representation in submission rates." There are a couple of issues with this statement.

      First, the authors are implicitly making a normative assumption that manuscript submission and acceptance rates *should* be equalised across groups. This may very well be the case, but there can also be valid reasons - even when women are not intrinsically better at research than men - why a greater fraction of female-authored submissions are accepted relative to male-authored submissions (or vice versa). For example, if men are more likely to submit their less ground-breaking work, then one might reasonably expect that they experience higher rejection rates compared to women, conditional on submission.

      We do assume that normative statement: unless we believe that men’s papers are intrinsically better than women’s papers, the acceptance rate should be the same. But the referee is right: we have no way of controlling for the intrinsic quality of the work of men and women. That said, our manuscript does not show that there is a different acceptance rate for men and women; it shows that women are less likely to submit papers to a subset of journals that are of a lower Journal Impact Factor, controlling for their most cited paper, in an attempt to control for intrinsic quality of the manuscripts.

      Second, I assume by "bias", the authors are taking a broad definition, i.e., they are not only including factors that specifically relate to gender but also factors that are themselves independent of gender but nevertheless disproportionately are associated with one gender or another (e.g., perhaps women are more likely to write on certain topics and those topics are rated more poorly by (more prevalent) male referees; alternatively, referees may be more likely to accept articles by authors they've met before, most referees are men and men are more likely to have met a given author if he's male instead of female). If that is the case, I would define more clearly what you mean by bias. (And if that isn't the case, then I would encourage the authors to consider a broader definition of "bias"!)

      Yes, the referee is right that we are taking a broad definition of bias. We provide a definition of bias on page 3, line 92. This definition is focused on differential evaluation which leads to differential outcomes. We also hedge our conversation (e.g., page 3, line 104) to acknowledge that observations of disparities may only be an indicator of potential bias, as many other things could explain the disparity. In short, disparities are a necessary but insufficient indicator of bias. We add a line in the introduction to reinforce this. The only other reference to the term bias comes on page 10, line 276. We add a reference to Lee here to contextualize.

      Identifying policy interventions is not a major contribution of this paper

      I would take out the final sentence in the abstract. In my opinion, your survey evidence isn't really strong enough to support definitive policy interventions to address the issue and, indeed, providing policy advice is not a major - or even minor - contribution of your paper. (Basically, I would hope that someone interested in policy interventions would consult another paper that much more thoughtfully and comprehensively discusses the costs and benefits of various interventions!) While it's fine to briefly discuss them at the end of your paper - as you currently do - I wouldn't highlight that in the abstract as being an important contribution of your paper.

      We thank the referee for this comment. While we agree that our results do not lead to definitive policy interventions, we believe that our findings point to a phenomenon that should be addressed through policy interventions. Given that some interventions are proposed in our conclusion, we feel like stating this in the abstract is coherent.

      Minor comments

      What is the rationale for conditioning on academic rank and does this have explanatory power on its own - i.e., does it at least superficially potentially explain part of the gender gap in intention to submit?

      Thank you for this thoughtful question. We conditioned on academic rank in all regression analyses to account for structural differences in career stage that may potentially influence submission behaviors. Academic rank (e.g., assistant, associate, full professor) is a key determinant of publishing capacity and strategic considerations, such as perceived likelihood of success at elite journals, tolerance for risk, and institutional expectations for publication venues.

      Importantly, academic rank is also correlated with gender due to cumulative career disadvantages that contribute to underrepresentation of women at more senior levels. Failing to adjust for rank would conflate gender effects with differences attributable to career stage. By including rank as a covariate, we aim to isolate gender-associated patterns in submission behavior within comparable career stages, thereby producing a more precise estimate of the gender effect.

      Regarding explanatory power, academic rank does indeed contribute significantly to model fit across our analyses, indicating that it captures meaningful variation in submission behavior. However, even after adjusting for rank, we continue to observe significant gender differences in submission patterns in several disciplines. This suggests that while academic rank explains part of the variation, it does not fully account for the gender gap—highlighting the importance of examining other structural and behavioral factors that shape the publication trajectory.

      Reviewer #2 (Public review):

      Basson et al. present compelling evidence supporting a gender disparity in article submission to "elite" journals. Most notably, they found that women were more likely to avoid submitting to one of these journals based on advice from a colleague/mentor. Overall, this work is an important addition to the study of gender disparities in the publishing process.

      I thank the authors for addressing my concerns.

      Reviewer #4 (Public review):

      Main strengths

      The topic of the MS is very relevant given that across the sciences/academia, genders are unevenly represented, which has a range of potential negative consequences. To change this, we need to have the evidence on what mechanisms cause this pattern. Given that promotion and merit in academia are still largely based on the number of publications and the impact factor, one part of the gap likely originates from differences in publication rates of women compared to men.

      Women are underrepresented compared to men in journals with a high impact factor. While previous work has detected this gap and identified some potential mechanisms, the current MS provides strong evidence that this gap might be due to a lower submission rate of women compared to men, rather than the rejection rates. These results are based on a survey of close to 5000 authors. The survey seems to be conducted well (though I am not an expert in surveys), and data analysis is appropriate to address the main research aims. It was impossible to check the original data because of the privacy concerns.

      Interestingly, the results show no gender bias in rejection rates (desk rejection or overall) in three high-impact journals (Science, Nature, PNAS). However, submission rates are lower for women compared to men, indicating that gender biases might act through this pathway. The survey also showed that women are more likely to rate their work as not groundbreaking and are advised not to submit to prestigious journals, indicating that both intrinsic and extrinsic factors shape women's submission behaviour.

      With these results, the MS has the potential to inform actions to reduce gender bias in publishing, but also to inform assessment reform at a larger scale.

      I do not find any major weaknesses in the revised manuscript.

      Reviewer #4 (Recommendations for the authors):

      (1) Colour schemes of the Figures are not adjusted for colour-blindness (red-green is a big NO), some suggestions can be found here https://www.nceas.ucsb.edu/sites/default/files/2022-06/Colorblind%20Safe%20Color%20Schemes.pdf

      We appreciate the suggestion. We’ve adjusted the colors in the manuscript to be color-blind friendly using one of the colorblind safe palettes suggested by the reviewer.

      (2) I do not think that the authors have fully addressed the comment about APCs and the decision to submit, given that PNAS has publication charges that amount to double of someone's monthly salary. I would add a sentence or two to explain that publication charges should not be a factor for Nature and Science, but might be for PNAS.

      While APCs are definitely a factor affecting researchers’ submission behavior, it is mostly does so for lower prestige journals rather than for the three elite journals analyzed here. As mentioned in the previous round of revisions, Nature and Science have subscription options. And PNAS authors without funding have access to waivers: https://www.pnas.org/author-center/publication-charges

      (3) Line 268, the first suggestion here is not something that would likely work. Thus, I would not put it as the first suggestion.

      We made the suggested change.

      (4) Data availability - remove AND in 'Aggregated and de-identified data' because it sounds like both are shared. Suggest writing: 'Aggregated, de-identified data..'. I still suggest sharing data/code in a trusted repository (e.g. Dryad, ZENODO...) rather than on GitHub, as per the current recommendation on the best practices for data sharing.

      Thank you for your comment regarding data availability. Due to IRB restrictions and the conditions of our ethics approval, we are not permitted to share the survey data used in this study. However, to support transparency and reproducibility, we have made all analysis code available on Zenodo at https://doi.org/10.5281/zenodo.16327580. In addition, we have included a synthetic dataset with the same structure as the original survey data but containing randomly generated values. This allows others to understand the data structure and replicate our analysis pipeline without compromising participant confidentiality.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. While their comparisons to the original SpliceAI models are convincing on the grounds of model performance, their evaluation of how well the new models match the original's understanding of non-local mutation effects is incomplete. Further, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of what set of splice sites their calibration is expected to hold for, and tests in a context for which calibration is needed.

      Strengths:

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple, well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      We thank the reviewer for these positive comments.  

      Weaknesses:

      (1) The authors' assessment of how much their model retains SpliceAI's understanding of "nonlocal effects of genomic mutations on splice site location and strength" (Figure 6) is not sufficiently supported. Demonstrating this would require showing that for a large number of (non-local) mutations, their model shows the same change in predictions as SpliceAI or that attribution maps for their model and SpliceAI are concordant even at distances from the splice site. Figure 6A comes close to demonstrating this, but only provides anecdotal evidence as it is limited to 2 loci. This could be overcome by summarizing the concordance between ISM maps for the two models and then comparing across many loci. Figure 6B also comes close, but falls short because instead of comparing splicing prediction differences between the models as a function of variants, it compares the average prediction difference as a function of the distance from the splice site. This limits it to only detecting differences in the model's understanding of the local splice site motif sequences. This could be overcome by looking at comparisons between differences in predictions with mutants directly and considering non-local mutants that cause differences in splicing predictions.

      We agree that two loci are insufficient to demonstrate preservation of non-local effects. To address this, we have extended our analysis to a larger set of sites: we randomly sampled 100 donor and 100 acceptor sites, applied our ISM procedure over a 5,001 nt window centered at each site for both models, and computed the ISM map as before. We then calculated the Pearson correlation between the collection of OSAI<sub>MANE</sub> and SpliceAI ISM importance scores. We also created 10 additional ISM maps similar to those in Figure 6A, which are now provided in Figure S23.

      Follow is the revised paragraph in the manuscript’s Results section:

      First, we recreated the experiment from Jaganathan et al. in which they mutated every base in a window around exon 9 of the U2SURP gene and calculated its impact on the predicted probability of the acceptor site. We repeated this experiment on exon 2 of the DST gene, again using both SpliceAI and OSAI<sub>MANE</sub> . In both cases, we found a strong similarity between the resultant patterns between SpliceAI and OSAI<sub>MANE</sub>, as shown in Figure 6A. To evaluate concordance more broadly, we randomly selected 100 donor and 100 acceptor sites and performed the same ISM experiment on each site. The Pearson correlation between SpliceAI and OSAI<sub>MANE</sub> yielded an overall median correlation of 0.857 (see Methods; additional DNA logos in Figure S23). 

      To characterize the local sequence features that both models focus on, we computed the average decrease in predicted splice-site probability resulting from each of the three possible singlenucleotide substitutions at every position within 80bp for 100 donor and 100 acceptor sites randomly sampled from the test set (Chromosomes 1, 3, 5, 7, and 9). Figure 6B shows the average decrease in splice site strength for each mutation in the format of a DNA logo, for both tools.

      We added the following text to the Methods section:

      Concordance evaluation of ISM importance scores between OSAI<sub>MANE</sub> and SpliceAI

      To assess agreement between OSAI<sub>MANE</sub>  and SpliceAI across a broad set of splice sites, we applied our ISM procedure to 100 randomly chosen donor sites and 100 randomly chosen acceptor sites. For each site, we extracted a 5,001 nt window centered on the annotated splice junction and, at every coordinate within that window, substituted the reference base with each of the three alternative nucleotides. We recorded the change in predicted splice-site probability for each mutation and then averaged these Δ-scores at each position to produce a 5,001-score ISM importance profile per site.

      Next, for each splice site we computed the Pearson correlation coefficient between the paired importance profiles from ensembled OSAI<sub>MANE</sub> and ensembled SpliceAI. The median correlation was 0.857 for all splice sites. Ten additional zoom-in representative splice site DNA logo comparisons are provided in Supplementary Figure S23.

      (2) The utility of the calibration method described is unclear. When thinking about a calibrated model for splicing, the expectation would be that the models' predicted splicing probabilities would match the true probabilities that positions with that level of prediction confidence are splice sites. However, the actual calibration that they perform only considers positions as splice sites if they are splice sites in the longest isoform of the gene included in the MANE annotation. In other words, they calibrate the model such that the model's predicted splicing probabilities match the probability that a position with that level of confidence is a splice site in one particular isoform for each gene, not the probability that it is a splice site more broadly. Their level of calibration on this set of splice sites may very well not hold to broader sets of splice sites, such as sites from all annotated isoforms, sites that are commonly used in cryptic splicing, or poised sites that can be activated by a variant. This is a particularly important point as much of the utility of SpliceAI comes from its ability to issue variant effect predictions, and they have not demonstrated that this calibration holds in the context of variants. This section could be improved by expanding and clarifying the discussion of what set of splice sites they have demonstrated calibration on, what it means to calibrate against this set of splice sites, and how this calibration is expected to hold or not for other interesting sets of splice sites. Alternatively, or in addition, they could demonstrate how well their calibration holds on different sets of splice sites or show the effect of calibrating their models against different potentially interesting sets of splice sites and discuss how the results do or do not differ.

      We thank the reviewer for highlighting the need to clarify our calibration procedure. Both SpliceAI and OpenSpliceAI are trained on a single “canonical” transcript per gene: SpliceAI on the hg 19 Ensembl/Gencode canonical set and OpenSpliceAI on the MANE transcript set. To calibrate each model, we applied post-hoc temperature scaling, i.e. a single learnable parameter that rescales the logits before the softmax. This adjustment does not alter the model’s ranking or discrimination (AUC/precision–recall) but simply aligns the predicted probabilities for donor, acceptor, and non-splice classes with their observed frequencies. As shown in our reliability diagrams (Fig. S16-S22), temperature scaling yields negligible changes in performance, confirming that both SpliceAI and OpenSpliceAI were already well-calibrated. However, we acknowledge that we didn’t measure how calibration might affect predictions on non-canonical splice sites or on cryptic splicing. It is possible that calibration might have a detrimental effect on those, but because this is not a key claim of our paper, we decided not to do further experiments. We have updated the manuscript to acknowledge this potential shortcoming; please see the revised paragraph in our next response.

      (3) It is difficult to assess how well their calibration method works in general because their original models are already well calibrated, so their calibration method finds temperatures very close to 1 and only produces very small and hard to assess changes in calibration metrics. This makes it very hard to distinguish if the calibration method works, as it doesn't really produce any changes. It would be helpful to demonstrate the calibration method on a model that requires calibration or on a dataset for which the current model is not well calibrated, so that the impact of the calibration method could be observed.

      It’s true that the models we calibrated didn’t need many changes. It is possible that the calibration methods we used (which were not ours, but which were described in earlier publications) can’t improve the models much. We toned down our comments about this procedure, as follows.

      Original:

      “Collectively, these results demonstrate that OSAIs were already well-calibrated, and this consistency across species underscores the robustness of OpenSpliceAI’s training approach in diverse genomic contexts.”

      Revised:

      “We observed very small changes after calibration across phylogenetically diverse species, suggesting that OpenSpliceAI’s training regimen yielded well‐calibrated models, although it is possible that a different calibration algorithm might produce further improvements in performance.”

      Reviewer #2 (Public review):

      Summary:

      The paper by Chao et al offers a reimplementation of the SpliceAI algorithm in PyTorch so that the model can more easily/efficiently be retrained. They apply their new implementation of the SpliceAI algorithm, which they call OpenSpliceAI, to several species and compare it against the original model, showing that the results are very similar and that in some small species, pretraining on other species helps improve performance.

      Strengths:

      On the upside, the code runs fine, and it is well documented.

      Weaknesses:

      The paper itself does not offer much beyond reimplementing SpliceAI. There is no new algorithm, new analysis, new data, or new insights into RNA splicing. There is no comparison to many of the alternative methods that have since been published to surpass SpliceAI. Given that some of the authors are well-known with a long history of important contributions, our expectations were admittedly different. Still, we hope some readers will find the new implementation useful.

      We thank the reviewer for the feedback. We have clarified that OpenSpliceAI is an open-source PyTorch reimplementation optimized for efficient retraining and transfer learning, designed to analyze cross-species performance gains, and supported by a thorough benchmark and the release of several pretrained models to clearly position our contribution.

      Reviewer #3 (Public review):

      Summary:

      The authors present OpenSpliceAI, a PyTorch-based reimplementation of the well-known SpliceAI deep learning model for splicing prediction. The core architecture remains unchanged, but the reimplementation demonstrates convincing improvements in usability, runtime performance, and potential for cross-species application.

      Strengths:

      The improvements are well-supported by comparative benchmarks, and the work is valuable given its strong potential to broaden the adoption of splicing prediction tools across computational and experimental biology communities.

      Major comments:

      Can fine-tuning also be used to improve prediction for human splicing? Specifically, are models trained on other species and then fine-tuned with human data able to perform better on human splicing prediction? This would enhance the model's utility for more users, and ideally, such fine-tuned models should be made available.

      We evaluated transfer learning by fine-tuning models pretrained on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), Arabidopsis (OSAI<sub>Arabidopsis</sub>), and zebrafish (OSAI<sub>Zebrafish</sub>) on human data. While transfer learning accelerated convergence compared to training from scratch, the final human splicing prediction accuracy was comparable between fine-tuned and scratch-trained models, suggesting that performance on our current human dataset is nearing saturation under this architecture.

      We added the following paragraph to the Discussion section:

      We also evaluated pretraining on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), zebrafish (OSAI<sub>Zebrafish</sub>), and Arabidopsis (OSAI<sub>Arabidopsis</sub>) followed by fine-tuning on the human MANE dataset. While cross-species pretraining substantially accelerated convergence during fine-tuning, the final human splicing-prediction accuracy was comparable to that of a model trained from scratch on human data. This result indicates that our architecture seems to capture all relevant splicing features from human training data alone, and thus gains little or no benefit from crossspecies transfer learning in this context (see Figure S24).

      Reviewer #1 (Recommendations for the authors):

      We thank the editor for summarizing the points raised by each reviewer. Below is our point-bypoint response to each comment:

      (1) In Figure 3 (and generally in the other figures) OpenSpliceAI should be replaced with OSAI_{Training dataset} because otherwise it is hard to tell which precise model is being compared. And in Figure 3 it is especially important to emphasize that you are comparing a SpliceAI model trained on Human data to an OSAI model trained and evaluated on a different species.

      We have updated the labels in Figures 3, replacing “OpenSpliceAI” with “OSAI_{training dataset}” to more clearly specify which model is being compared.

      (2) Are genes paralogous to training set genes removed from the validation set as well as the test set? If you are worried about data leakage in the test set, it makes sense to also consider validation set leakage.

      Thank you for this helpful suggestion. We fully agree, and to avoid any data leakage we implemented the identical filtering pipeline for both validation and test sets: we excluded all sequences paralogous or homologous to sequences in the training set, and further removed any sequence sharing > 80 % length overlap and > 80 % sequence identity with training sequences. The effect of this filtering on the validation set is summarized in Supplementary Figure S7C.

      Reviewer #3 (Recommendations for the authors):

      (1) The legend in Figure 3 is somewhat confusing. The labels like "SpliceAI-Keras (species name)" may imply that the model was retrained using data from that species, but that's not the case, correct?

      Yes, “SpliceAI-Keras (species name)” was not retrained; it refers to the released SpliceAI model evaluated on the specified species dataset. We have revised the Figure 3 legends, changing “SpliceAI-Keras (species name)” to “SpliceAI-Keras” to clarify this.

      (2) Please address the minor issues with the code, including ensuring the conda install works across various systems.

      We have addressed the issues you mentioned. OpenSpliceAI is now available on Conda and can be installed with:  conda install openspliceai. 

      The conda package homepage is at: https://anaconda.org/khchao/openspliceai We’ve also corrected all broken links in the documentation.

      (3) Utility:

      I followed all the steps in the Quick Start Guide, and aside from the issues mentioned below, everything worked as expected.

      I attempted installation using conda as described in the instructions, but it was unsuccessful. I assume this method is not yet supported.

      In Quick Start Guide: predict, the link labeled "GitHub (models/spliceai-mane/10000nt/)" appears to be incorrect. The correct path is likely "GitHub (models/openspliceaimane/10000nt/)".

      In Quick Start Guide: variant (https://ccb.jhu.edu/openspliceai/content/quick_start_guide/quickstart_variant.html#quick-startvariant), some of the download links for input files were broken. While I was able to find some files in the GitHub repository, I think the -A option should point to data/grch37.txt, not examples/data/input.vcf, and the -I option should be examples/data/input.vcf, not data/vcf/input.vcf.

      Thank you for catching these issues. We’ve now addressed all issues concerning Conda installation and file links. We thank the editor for thoroughly testing our code and reviewing the documentation.

    1. In this article, the authors present a study using different networks from various data sources to measure differences in gathering scholarly document topics and to show which networks provide the best information to represent the scientific topics considered appropriately. The work is built on a previous contribution and analyses networks obtained from six sources: scholarly document authors, Facebook users, Twitter users and conversations, patents, and policy documents. These networks are also accompanied by other networks, i.e. the text similarity network and the citation network, that are mainly used for comparison purposes.

      The work particularly interests the scholarly community, aiming to work with science map generation. However, some passages need further explanation to be clear to the reader.

      1. In the abstract, there is a mention of traditional and non-traditional data sources. While in the text of the article there are, indeed, some clarifications, it would be ideal to briefly explain in the abstract what the authors refer to these terms, since it is not immediately clear what is a traditional data source in the context of topic identification.

      2. In the introduction, the authors anticipate the outcomes of a previous work they have conducted on a similar topic. They claim that some topics are well-represented in maps based on citation links and text similarity, while others are not. However, it is not clear which sources they have used to get to this claim, and it is also not evident what the main difference is that characterises the current work compared to the previous one.

      3. In section 3, the authors introduce all the methods and materials used for their analysis. Despite the fact that some of the material cannot be shared since it is behind a paywall (e.g. the Web of Science data), by reading the section, it is not clear that all the code developed and the data obtained from the analysis have been published on Zenodo. While it is okay to address this aspect in the appropriate section at the end of the article, I would suggest to anticipate this information at the beginning of section 3, citing the Zenodo record appropriately and clarifying which of material is not included in that record, thus explaining that the full reproducibility of the experiment cannot be conducted.

      4. Considering all the external sources of networks, it is not clear what the datetime window of each source is - are all these sources containing information from the year of publication of the oldest article in the document set considered to 2024?

      5. As far as I understood from the formula in section 3.7.1, the Purity is always calculated against a particular topic M. Thus, why not refer to such "M" in the formula definition, defining it in a function-like way Purity(N, M)? In addition, still in this section, it is not clear how the N clusters considered are selected. A running example of Purity calculation would probably help the reader here.

      6. In section 3.7.2, the denominator of the formula is set to 5. However, it is unclear why such a number is sensitive for the calculation presented. Why not 6 or 7? Why not 3? I think the authors should clearly justify the choice of such a denominator by bringing in explicit evidence.

      7. In section 3.7.3, it is not entirely clear what the difference is between topics and topic categories.

      8. In the discussions, it would be good to extend a bit on the work's limitation and envision possible paths for future works in the area. A few points that I would love to see discussed in detail:

        • The analysis has been done by using sources that may have changed drastically in the past months/years - e.g. Twitter that, after becoming X, has seen a series of abandons from the academics towards more open (in a broad sense) platforms and networks (e.g. Mastodon and, more recently, BlueSky). Would it be possible to gather the necessary data from these platforms to run the study again? If yes, would it be possible to download them? If not, should we consider these sources unreliable for scientific purposes and, if so, what preconditions should be in place for their reliability? Considering the present situation, what is the relevance of the results obtained with the data gathered from Twitter (now X)?

        • The authors transparently claim that some of the data used (e.g. Web of Science data) are not freely available to the reader, thus preventing the full replication of the study. Is it possible to substitute these closed sources with others offering open research information? For instance, OpenCitations for gathering the citation network (full disclosure: I'm director of OpenCitations), PubMed and PubMed Central for gathering titles and abstracts of the article considered, etc.?

        • The core set of scholarly documents considered are primarily from the biomedical domain since the authors considered only those with a PubMed identifier specified. While the results shown are sensitive for this domain, how much does the approach the authors presented scale also in other scholarly areas, e.g. Social Science and Humanities? Is it possible to speculate that the approach presented is discipline-agnostic? Is there any evidence for such a claim?

      Some final remarks:

      A. The figures should be closer (i.e. maximum on the next page) to the place they are mentioned the very first time.

      B. The research question introduced in the article is introduced in section 1, and then it is not explicitly mentioned anymore in the text. It would be ideal to add an explicit reference to that question when the authors present appropriate evidence to answer it (e.g. in section 4) and to recall the answer to that question in the conclusion of the paper.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      This manuscript described the translational responses to single and combined BCAA shortages in mouse cell lines. Using Ribo-seq and RNA-seq analysis, the authors found selective ribosome pausing at codons that encode the depleted amino acids, where the pausing at valine codons was prominent at both a single and triple starvations whereas isoleucine codons showed pausing only under a single depletion. They analyzed the mechanisms of the unexpected selective pausing and proposed that the positional codon usage bias could shape the ribosome stalling and tRNA charging patterns across different amino acids. They also examined the stress responses and the changes in the protein expression levels under BCAA starvation.

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

      We thank the reviewer for the thoughtful and positive evaluation of our work.

      Major comments

      1. The abstract may need to be revised since it is hard to immediately catch the authors' main point. If the authors regard this work as a resource paper, the current version is fine. But it could be better to point out the positional codon usages the authors found, which is a strong point of the current manuscript.

      Response: We thank the reviewer for highlighting the importance of positional codon usage, which indeed represents a key finding of our study. We revised the abstract, and we now emphasize this aspect more clearly. However, in response to review #2, we have framed the observed positional effects and the idea of an elongation bottleneck as one possible contributing mechanism among others and relate it specifically to the attenuation of isoleucine-specific stalling under triple starvation.

      1. Page 18 "Beyond these tRNA dynamics, our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress." This idea is interesting. To what extent the authors think this could be generalized? The authors may discuss whether they think their proposed model is specific to the different ribosome stalling patterns between valine and isoleucine codons or generalized to other codon combinations. For example, the positional codon usage bias will be different among different organisms, and are there any previous reports on ribosome behaviors that align with their model?

      Response: We thank the reviewer for raising these important points. While our study primarily focuses on the differential stalling patterns of valine and isoleucine codons, we believe the underlying principle, that the position of codons within the CDS can modulate the extent of ribosome stalling, may under very specific circumstances extend beyond this amino acid pair. We expect this positional effect to be potentially relevant for combinations in which one amino acid has considerable enrichment near the 5′ end of coding sequences, coupled with starvation-sensitive tRNA isoacceptors, while the other does not. In our case, valine meets these criteria (see Fig. S11A and Fig. 6). In contrast, isoleucine and leucine codons, although also relatively frequent, show more variable positional distributions and are both decoded by isoacceptors that appear more resistant to starvation, as illustrated in Fig. 6 and reported for mammals and bacteria in Saikia et al. 2016; Darnell, Subramaniam, and O’Shea 2018; Elf et al. 2003; Dittmar et al. 2005. To explore the generalizability of this model, we have now included a transcriptome-wide analysis of codon position biases in mouse for all codons in the revised manuscript (Supplementary Figures 10 and 11). This analysis may serve as a basis to identify additional candidate codons for future studies. Furthermore, we now mention in the Discussion that amino acids with similar properties to valine regarding their positional distribution and tRNA isoacceptors, such as phenylalanine, and glutamine, whose tRNA isoacceptors are predicted to be fully deacylated under their respective starvation in bacteria (Elf et al. 2003), could be promising candidates for testing this model, in combination with amino acids, whose tRNAs are expected to remain partially charged under starvation or to be depleted at the start of the CDS such as i.e. His (Supplementary Fig.11C).

      Even if the authors think this model can be applied to BCAA starvation, would it be possible to explain the different isoleucine codon responses between single and double starvation? The authors may discuss why the ribosome stalling at isoleucine AUU and AUC codons was slightly attenuated under double starvation. And how about the different leucine codon responses among single, double, and triple starvations, although the pausing is not as strong as isoleucine and valine codons?

      Response: Regarding the attenuated isoleucine stalling under double starvation, we believe this is primarily due to stronger inhibition of the mTORC1 pathway when leucine is co-depleted (i.e., in the double starvation condition; Fig. 2D–F). This results in a more substantial suppression of global translation, reducing overall tRNA demand and thereby mitigating stalling (Darnell, 2018). A similar effect may explain the only mild leucine codon stalling observed under single leucine starvation, which also triggers strong mTORC1 inhibition and reduced initiation. In contrast, triple starvation does not suppress mTORC1 to the same extent, and thus reduced initiation alone cannot explain the absence of leucine codon stalling. Instead, we propose that additional features, such as the relative sensitivity of tRNA isoacceptors to starvation and their aminoacylation dynamics, must be considered. Valine tRNAs, for example, are known to be highly sensitive and become strongly deacylated under starvation in bacteria (Elf et al. 2003), a pattern that we also find in our own data (Fig. 6). Leucine tRNAs, by contrast, appear more resistant, possibly due to better amino acid recycling or isoacceptor-specific differences in charging kinetics, though further validation would be needed. However, combined with the strong stalling at 5′-enriched valine codons, this could reduce downstream ribosome traffic and limit exposure of leucine codons, thus preventing stalling. However, our new analysis of the positional relationship between valine and leucine codons within individual transcripts (now shown in Supplementary Figure 11B) did not reveal as strong a pattern as we observed for valine and isoleucine codons. We now discuss these points and their implications in the revised Discussion.

      Experimental validation using artificial reporters carrying biased sequences may also be considered.

      Response: We appreciate the reviewer’s suggestion. In fact, we explored this experimentally using a dual-fluorescent reporter system (GFP–RFP) (Juszkiewicz and Hegde 2017) containing consecutive Val or Ile codons. However, the constructs yielded variable and non-reproducible results under starvation conditions. In addition, testing the role of codon position would require placing the same codons at multiple defined positions within a single transcript and performing ribosome profiling directly on the reporter. This type of targeted experimental validation is technically challenging and falls beyond the scope of the current study. We now mention this explicitly in the revised Discussion as an interesting direction for future work.

      1. Page 13 "Moreover, we noticed that DT changes extend beyond the ribosomal A-site, including the P-site, E-site, and even further positions (Supplementary Fig. 2A), consistent with other studies on single amino acid starvation 39 (Supplementary Fig. 2B-C)." Could the widespread DT changes be due to Ribo-DT pipeline they used or difficulties in offset determination? Indeed the authors showed that this feature was found in other datasets, but it seems that the datasets were processed and analyzed in the same way as their data. The original Ribo-DT paper (Gobet and Naef, 2022, Methods) also showed some widespread DT changes even from RNA-seq. Another analysis method like the codon subsequence abundant shift as a part of diricore analysis (Loayza-Puch et al., 2016, Nature) did not show that broad changed regions. The authors are encouraged to re-analyze the data sets using different methods.

      Response: We agree with the reviewer that the fact that DT changes beyond the ribosomal A-site is puzzling, but this has already been seen in other papers using other approaches (Darnell, Subramaniam, and O’Shea 2018). To validate that this shift is not due to our A-site assignment, enrichment analysis, or DT method, we applied the Diricore pipeline to our Ribo-Seq data. The output of the pipeline provides either 5’-end ribosome density or “subsequence” analysis using an A-site offset for each read size based on the metagene profile at the start codon. Both analyses show the same enriched codons across the different conditions as in our analyses, and the broad shift is similar, with the maximum signal at E, -1 position (Fig. R1).

      1. Page 13 "Intriguingly, only two of the three isoleucine codons (AUU and AUC) showed increased DTs upon Ile starvation (p < 0.01), while just one leucine codon (CUU) exhibited a modest but significant DT increase (p < 0.01) under Leu starvation (Figure 1A-B, Supplementary Figure 2A)." How can the authors explain the different strengths of ribosome pausing at Ile codons under Ile and double starvation? The AUA codon did not show any pausing under either of the starvation conditions. Throughout the manuscript, the authors mainly describe the difference between amino acids but it is desirable to discuss the codon-level difference as well.

      Response: Thank you for raising this point. The observed differences in stalling between the isoleucine codons can likely be explained by differences in tRNA isoacceptor charging and positional bias within transcripts. The AUA codon is decoded by a distinct tRNAIle isoacceptor (tRNAIleUAU), which, according to our tRNA charging data (Fig. 6), remains largely charged during Ile starvation. This observation aligns with previous reports suggesting that this isoacceptor is more resistant to starvation-induced deacylation in mammalian cells and bacteria (Saikia et al. 2016; Elf et al. 2003). In contrast, the AUU and AUC codons are primarily decoded by the tRNAIleAAU isoacceptor, which we find to be strongly deacylated under Ile starvation, likely contributing to the observed codon-specific ribosome pausing. Additionally, we found that the AUA codons are relatively rare in general and particularly underrepresented near the 5′ ends of coding sequences. Our new spatial analysis (now included in Supplementary Figure 11B) confirms that AUA codons tend to occur downstream of AUU and AUC codons within transcripts. This potentially further reduces stalling on these codons and further diminishes their apparent DT increase under starvation. In order to better explain these important points, we have now expanded the codon-level discussion of these differences in the revised manuscript.

      1. Page 13 "We examined the effects of single amino acid starvations (-Leu, -Ile and -Val), as well as combinations, including a double starvation of leucine and isoleucine (hereafter referred to as "double") and a starvation of leucine, isoleucine, and valine ("triple"), allowing us to identify potential non-additive effects." The different double starvations, isoleucine and valine, and leucine and valine, will further support their hypothesis on the effects of the positional codon usage bias on ribosome pausing and tRNA charging patterns. Although this could be beyond the scope of the current manuscript, the authors are encouraged to provide a rationale for the chosen combination.

      Response: Our experimental design evolved stepwise: we initially focused on leucine and isoleucine depletion as we found that despite their structure similarity these had respectively short and long dwell times in our previous work in the mouse liver (Gobet et al. 2020). Valine was included at a later stage to cover all the BCAAs. At the time, we did not anticipate valine to yield particularly striking effects in cells, and therefore we did not include systematic pairwise depletions involving valine. However, the strong and unexpected stalling observed at valine codons, especially under triple starvation, became a central aspect of the study. Thus, we agree that additional combinations, such as Leu/Val or Val/Ile, could be informative and now mention this in the Discussion as a potential direction for future studies.

      Minor comments

      Page 16 "these results imply that BCAA deprivation lowers protein output through multiple pathways: a combination of reduced initiation, direct elongation blocks (stalling), and possibly an increased proteolysis" This conclusion is totally right but may be too general. Could the authors summarize BCAA-specific features of the events including reduced initiation, stalling, and proteolysis that all contribute to protein outputs? This is not well discussed in the latter sections including Discussion.

      Response: We thank the reviewer for this helpful suggestion. We agree that the original statement was too general and have revised the relevant section to more clearly delineate the distinct responses observed under each BCAA starvation condition. Specifically, we now summarize that valine starvation is characterized by strong, positionally biased ribosome stalling; leucine starvation primarily impacts translation initiation, likely via mTORC1 repression; and isoleucine starvation shows a mixed phenotype, with features of both impaired initiation and codon-specific elongation delays. We also clarify that while protein stability or degradation may contribute to the observed changes in protein output, our current data do not allow for quantitative assessment of proteolytic effects (e.g., changes in protein half-life). Therefore, we refrain from making direct quantitative conclusions about the differential modulations of proteolysis and instead focus our discussion on the translational mechanisms supported by our data.

      Reviewer #1 (Significance):

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

      We thank the reviewer for the encouraging comments and share the view that positional codon-usage bias is an important result; accordingly, we now underscore this point explicitly in the revised Abstract. We also emphasise that our other observations are, to our knowledge, novel: only a handful of multi-omics studies have combined ribosome-pausing profiles with direct tRNA-aminoacylation measurements, and none has systematically examined multiple amino-acid-deprivation conditions as presented here.

      Reviewer #2 (Evidence, reproducibility and clarity):

      This study examines the consequences of starvation for the BRCAAs, either singly, for Leu & Ile, or for all three simultaneously in HeLa cells on overall translation rates, decoding rates at each codon, and on ribosome density, protein expression, and distribution of ribosome stalling events across the CDS for each expressed gene. The single amino acid starvation regimes specifically reduce the cognate intracellular amino acid pool and lead to deacylation of at least a subset of the cognate tRNAs in a manner dependent on continuing protein synthesis. They also induce the ISR equally and decrease bulk protein synthesis equally in a manner that appears to occur largely at the initiation level for -Leu and -Val, judging by the decreased polysome:monsome ratio, but at both the initiation and elongation levels for -Ile-a distinction that remains unexplained. Only -Leu appears to down-regulate mTORC1 and TOP mRNA translation.There is a significant down-regulation of protein levels for 50-200 genes, which tend to be unstable in nutrient-replete cells, only a fraction of which are associated with reduced ribosome occupancies (RPFs measured by Ribo-Seq) on the corresponding mRNAs in the manner expected for reduced initiation, suggesting that delayed elongation is responsible for reduced protein levels for the remaining fraction of genes. All three single starvations lead to increased decoding times for a subset of the cognate "hungry" codons: CUU for -Leu, AUU and AUC for -Ile, and all of the Val codons, in a manner that is said to correspond largely to the particular tRNA isoacceptors that become deacylated, although this correspondence was not explained explicitly and might not be as simple as claimed. All three single starvations also evoke skewing of RPFs towards the 5' ends of many CDSs in a manner correlated with an enrichment within the early regions of the CDSs for one or more of the cognate codons that showed increased decoding times for -Ile (AUC codon) and -Val (GUU, GUC, and GUG), but not for -Leu-of which the latter was not accounted for. These last findings suggest that, at least for -Val and -Ile, delays in decoding N-terminal cognate codons cause elongating ribosomes to build-up early in the CDS. They go on to employ a peak calling algorithm to identify stalling sites in an unbiased way within the CDS, which are greatest in number for -Val, and find that Val codons are enriched in the A-sites (slightly) and adjacent 5' nucleotides (to a greater extent) for -Val starvation; and similarly for Ile codons in -Ile conditions, but not for -Leu starvation-again for unknown reasons. It's unclear why their called stalling sites have various other non-hungry codons present in the A sites with the cognate hungry codons being enriched further upstream, given that stalling should occur with the "hungry" cognate codon in the A site. The proteins showing down-regulation are enriched for stalling sites only in the case of the -Val starvation in the manner expected if stalling is contributing to reduced translation of the corresponding mRNA. It's unclear why this enrichment apparently does not extend to -Ile starvation which shows comparable skewing of RPFs towards the 5'ends, and this fact diminishes the claim that pausing generally contributes to reduced translation for genes with abundant hungry codons. All of the same analyses were carried out for the Double -Ile/-Leu and Triple starvations and yield unexpected results, particularly for the triple starvation wherein decoding times are increased only at Val codons, skewing of RPFs towards the 5' ends of CDSs is correlated only with an enrichment for Val codons within the early regions of the CDSs, and stall sites are enriched only for Val codons at nearly upstream sites, all consistent with the finding that only Val tRNAs become deacylated in the Triple regime. To explain why only Val tRNA charging is reduced despite the observed effective starvation for all three amino acids, they note first that stalling at Val codons is skewed towards the 5'ends of CDS for both -Val and triple starvations more so than observed for Ile or -Leu starvation, which they attribute to a greater frequency of Val codons vs Ile codons in the 5' ends of CDSs. As such, charged Val tRNAs are said to be consumed in translating the 5'ends of CDSs and the resulting stalling prevents ribosomes from reaching downstream Ile and Leu codons at the same frequencies and thus prevents deacylation of the cognate Ile and Leu tRNAs. It's unclear whether this explanation is adequate to explain the complete lack of Ile or Leu tRNA deacylation observed even when amino acid recycling by the proteasome is inhibited-a treatment shown to exacerbate deacylation of cognate tRNAs in the single amino acid starvations and of Val tRNA in the triple starvation. As such, the statement in the Abstract "Notably, we could show that isoleucine starvation-specific stalling largely diminished under triple starvation, likely due to early elongation bottlenecks at valine codons" might be too strong and the word "possibly" would be preferred over "likely". It's also unclear why the proteins that are down-regulated in the triple starvation are not significantly enriched for stalling sites (Fig. 5B) given that the degree of skewing is comparable or greater than for -Val. This last point seems to undermine their conclusion in the Abstract that "that many proteins downregulated under BCAA deprivation harbor stalling sites, suggesting that compromised elongation contributes to decreased protein output." In the case of the double -Ile/-Leu starvation, a related phenomenon occurs wherein decoding rates are decreased for only the AUU Ile codon and only the AAU Ile tRNA becomes deacylated; although in this case increased RPFs in the 5' ends are not correlated with enrichment for Ile or Leu codons and, although not presented, apparently stall sites are not associated with the Ile codon in the double starvation. In addition, stalling sites are not enriched in the proteins down-regulated by the double starvation. Moreover, because Ile codons are not enriched in the 5'ends of CDS, it doesn't seem possible to explain the selective deacylation of the single Ile tRNA observed in the double starvation by the same "bottleneck" mechanism proposed to explain selective deacylation of only Val tRNAs during the triple starvation. This is another reason for questioning their "bottleneck" mechanism.

      We thank the reviewer for their deep assessment, exhaustive reading, and constructive feedback, which have greatly contributed to improving the clarity and contextualization of our manuscript. We would first like to clarify that all experiments in this study were conducted in NIH3T3 mouse fibroblasts, not HeLa cells; we assume this was a misunderstanding and have verified that the correct cell line is consistently indicated throughout the manuscript. We also clarify that our data show that -Leu, double starvation, and to a lesser extent -Ile, downregulate mTORC1 signaling and TOP mRNA translation, whereas valine -Val and triple starvation had minimal effects on these pathways. We agree that some of our conclusions and observed phenomena were not explained in sufficient detail in the original version. To address this, we have significantly reworked the discussion, added complementary figures and clarified key points throughout the text, to better convey the underlying rationale and biological interpretation of our findings. We address each of the reviewer’s points in detail in the point-by-point responses below.

      Specific comments (some of which were mentioned above):

      -The authors have treated cells with CHX in the Ribo-Seq experiments, which has been shown to cause artifacts in determining the locations of ribosome stalling in vivo owing to continued elongation in the presence of CHX (https://doi.org/10.1371/journal.pgen.1005732 ). The authors should comment on whether this artifact could be influencing some of their findings, particular the results in Fig. 5C where the hungry codons are often present upstream of the A sites of called stalling sites in the manner expected if elongation continued slowly following stalling in the presence of CHX.

      Response: We thank the reviewer for raising this important concern. We would like to clarify that our ribosome profiling protocol did not include CHX pretreatment of live cells. CHX was added only during the brief PBS washes immediately before lysis and in the lysis buffer itself. This approach aligns with best practices aimed at minimizing post-lysis ribosome run-off, and is intended to prevent the downstream ribosome displacement artifacts described by Hussmann et al. 2015, which result from pre-incubation of live cells with CHX for several minutes before harvesting. Furthermore, recent studies have demonstrated that CHX-induced biases are species-specific. For instance, Sharma et al. 2021 found that human (and mice) ribosomes are not susceptible to conformational restrictions by CHX, nor does CHX distort gene-level measurements of ribosome occupancy. This suggests that the use of CHX in the lysis buffer, as performed in our protocol, is unlikely to introduce significant artifacts in our ribosome profiling data. To further support this, we reanalyzed data from Darnell, Subramaniam, and O’Shea 2018, where the ribosome profiling samples were prepared without any CHX pretreatment or CHX in the wash buffer, and still observed similar upstream enrichments in their stalling profiles (see Supplementary Figure 2B-C in our manuscript). Additionally, in our previous work (Gobet et al. 2020), we compared ribosome dwell times with and without CHX in the lysis buffer and found no significant differences, reinforcing the notion that CHX use during lysis does not substantially affect the measurement of ribosome stalling. Given these considerations, we believe that CHX-related artifacts, such as downstream ribosome movement, are unlikely to explain the enrichment of hungry codons upstream of identified stalling sites in our data. We have now adjusted the Methods section to clarify this point.

      -p. 12: "These starvation-specific DT and ribosome density modulations were also evident at the individual transcript level, as exemplified by Col1a1, Col1a2, Aars, and Mki67 which showed persistent Val-codon-specific ribosome density increases but lost Ile-codon-specific increases under triple starvation (Supplementary Figure 3A-D). " This conclusion is hard to visualize for any but Val codons. It would help to annotate the relevant peaks of interest for -Ile starvation with arrows.

      Response: We agree and thank the reviewer for this observation. We have now annotated exemplary peaks in Supplementary Figure 3A–D to highlight ribosome pileups over Ile codons. However, we agree that it is still hard to visualize in the given Figure. Therefore, we added scatter plots for each of the transcripts that show the RPM of each position in the Ctrl vs starvation to allow for a better illustration of the milder effects upon Ile starvation (Supplementary Figure 4).

      -To better make the point that codon-specific stalling under BCAA starvation appears to be not driven by codon usage, rather than the analysis in Fig. 1H, wouldn't it be better to examine the correlation between increases in DT under the single amino acid starvation conditions and the codon frequencies across all codons?

      Response: We appreciate the suggestion. We have now added an additional analysis correlating the change in DT with codon usage frequency for each starvation condition. This is included in Supplementary Figure 5A-D and supports our interpretation that codon frequency alone does not explain the observed stalling behavior.

      -p. 13, entire paragraph beginning with "Our RNA-seq and Ribo-seq revealed a general activation of stress response pathways across all starvations..." It is difficult to glean any important conclusions from this lengthy analysis, and the results do not appear to be connected to the overall topic of the study. If there are important conclusions here that relate to the major findings then these connections should be made or noted later in the Discussion. If not, perhaps the analysis should be largely relegated to the Supplemental material.

      Response: We thank the reviewer for this comment. The paragraph in question is intended to provide a global overview of transcriptional and translational responses across the starvation conditions. It serves both as a quality control (e.g., PCA clustering and global shifts in RPF/RNA-seq profiles), and to confirm that expected starvation-induced responses are among the strongest detectable signals separating the starved samples from the control. Indeed, these observations establish that the perturbations are effective and that hallmark nutrient stress responses are globally engaged across conditions. Importantly, very few studies to date have examined transcriptional and translational responses under single or combined branched-chain amino acid (BCAA) starvation conditions. It therefore remains unclear to what extent BCAA depletion broadly remodels gene expression and translation. Our analysis contributes to addressing this gap, revealing that while certain stress pathways are commonly induced, others show condition-specific patterns such as we observed for -Ile starvation. To maintain focus, we have kept the detailed pathway analyses and transcript-level enrichments in the Supplement and rewritten the corresponding text in a more compact manner, reducing it by more than one third.

      -p. 15: "Together, these findings highlight that BCAA starvation triggers a combination of effects on initiation and elongation, with varying dynamics by amino acid starvation." I take issue with this statement as it appears that translation is reduced primarily at the initiation step for all conditions except -Ile. As noted above, these data are never menitioned in the DISCUSSION as to why only -Ile would show a marked elongation component to the inhibition whereas -Val gives the greatest amount of ribosome stalling.

      Response: We acknowledge the reviewer’s point. While the polysome profiles (Figure 3F-H) directly indicate that most conditions repress initiation, codon- and condition-specific elongation defects can still contribute to reduced protein output, even if they are not always detectable as global polysome shifts. Polysome profiles reflect the combined outcome of reduced initiation (which decreases polysome numbers) and ribosome stalling (which can, but does not always have to, increase ribosome density on individual transcripts, potentially counteracting the effects of reduced initiation). For valine starvation strong stalling occurs very early in the CDS (Figure 5F). This bottleneck restricts overall ribosome movement to downstream regions. Thus, while elongation is profoundly impaired, the total number of ribosomes per transcript (which polysome signals largely reflect) may appear low due to reduced overall ribosome traffic. In contrast, isoleucine codon stalling tends to occur also further downstream on the transcript (Figure 5F), allowing ribosomes to accumulate in larger numbers on the mRNA, leading to a clearer "elongation signature" in polysome profiles (Figure 3F, H). Additionally, we observed slightly higher inter-replicate variance for isoleucine starvation (Supplementary Figure 6B), which may have reduced the number of statistically significant stalling sites extracted compared to valine. We have revised the main text and discussion to clarify these points.

      -I cannot decipher Fig. 4D and more detail is required to indicate the identity of each column of data.

      Response: We thank the reviewer for pointing this out. Figure 4D (now Figure 4E) presents an UpSet plot, which is a scalable alternative to Venn diagrams commonly used to visualize intersections across multiple sets. Briefly, each bar in the upper plot represents the number of transcripts with increased 5′ ribosome coverage (Δpi < -0.15; p < 0.05) shared across the conditions indicated in the dot matrix below. Each column in the dot matrix highlights the specific combination of conditions contributing to a given intersection (e.g., dots under “Val” and “Triple” show the overlap between these two). To improve clarity, we have expanded the figure legend accordingly and now refer to the UpSetR methodology in the main text.

      -In Fig. 4E, one cannot determine what the P values actually are, which should be provided in the legend to confirm statistical significance.

      Response: Thank you for pointing that out. The legend in Figure 4E (now Figure 4F) for the p-values was accidentally removed during figure editing. We have added the legend back, so that the statistical significance is clear.

      -It's difficult to understand how the -Leu condition and the Double starvation can produce polarized RPFs (Fig. 4A) without evidence of stalling at the cognate hungry codons (Fig. 4E), despite showing later in Fig. 5A that the numbers of stall sites are comparable in those cases to that found for -Ile.

      Response: We appreciate this comment, which points to an important property of RPF profiles under nutrient stress. As shown in Figure 4A, all starvation conditions induce a degree of 5′ ribosome footprint polarization, a pattern that can be observed under various stress conditions and perturbations (Allen et al. 2021; Hwang and Buskirk 2017; Li et al. 2023). This general 5′ bias likely reflects a combination of slowed elongation and altered ribosome dynamics and is not necessarily linked to codon-specific stalling. However, Val and Triple starvation show a much stronger and more asymmetric polarization, characterized by pronounced 5′ accumulation and 3′ depletion of ribosome density. To better illustrate this, we have updated the visualization of polarity scores and added a new bar chart summarizing the number of transcripts showing strong 5′ polarization under each condition. This quantification highlights that the effect is markedly more prevalent under Val and Triple conditions than under Leu or Double starvation. In addition, Figure 4F demonstrates that this polarity is codon-specific under Val and Triple starvation. We clarify that this analysis tests for enrichment of specific codons near the start codon among the polarized transcripts and does not directly assess stalling. The observed enrichment of Val codons in the 5′ regions of polarized transcripts supports the interpretation that early elongation delays contribute to the RPF shift. In contrast, no such enrichment is observed for Leu starvation, reinforcing that Leu-induced polarity is not driven by stalling at Leu codons. While Figure 5 shows a similar number of peak-called stalling sites in -Leu, -Ile, and Double starvation, we note that Ribo-seq signal variability under Ile starvation was higher, which may have limited statistical power for detecting stalling sites, even though clear dwell time increases were observed at specific codons. Additionally, we have improved the metagene plots depicting total ribosome footprint density in Figure 4A. The previous version incorrectly showed sharp drops at CDS boundaries due to binning artifacts. The updated version more accurately reflects the density distribution and further highlights the stronger polarization in Val and Triple conditions. Together, these clarifications and improvements within the main text now more clearly distinguish between general polarity effects and codon-specific stalling.

      -Fig. 5B: the P values should be given for all five columns, and it should be explained here or in the Discussion why the authors conclude that stalling is an important determinant for reduced translation when a significant correlation seems to exist only for the -Val condition and not even for the Triple condition.

      Response: We thank the reviewer for this important observation. In response, we have revised both the text and the figures to provide a clearer and biologically more meaningful representation of the relationship between ribosome stalling and reduced protein output. Specifically, we have replaced the previous Figure 5B with a new analysis that stratifies transcripts based on the number of identified stalling sites. This updated analysis, now shown in Figure 5B, reveals that under Val and Triple starvation conditions, proteins that are downregulated tend to originate from transcripts with multiple stalling sites. Importantly, the corresponding p-values for all five conditions are now explicitly shown in the figure (as red lines). As the reviewer correctly notes, only the Val condition shows a statistically significant enrichment when considering overall overlap. Triple starvation shows a similarly high proportion of overlap (72.3%) but does not reach statistical significance, likely due to the more complex background composition under combined starvation, which increases the expected overlap and reduces statistical power. By stratifying transcripts by the number of stalling sites, we uncover that transcripts with ≥2 stalling sites are enriched among downregulated proteins specifically under Val and Triple conditions, providing a more robust indication of the link between stalling and translation repression under Valine deprivations. We believe this refined approach, prompted by the reviewer’s comment, offers a clearer and biologically more relevant perspective on the role of ribosome stalling. The original analysis previously shown in Figure 5B is now provided as Supplemental Figure 10C for transparency and comparison. We have clarified this in the revised text and now interpret the relationship more cautiously.

      -p. 17: "Of note, in cases where valine or isoleucine codons were present just upstream (rather than at) the stalling position, we noted a strong bias for GAG (E), GAA (E), GAU (D), GAC (D), AAG (K), CAG (Q), GUG (V) and GGA (G) (Val starvation) and AAC (N), GAC (D), CUG (L), GAG (E), GCC (A), CAG (Q), GAA (E) and AAG (K) (Ile starvation) at the stalling site (Supplementary Figure 7B)." The authors fail to explain why these codons would be present in the A sites at stalling sites rather than the hungry codons themselves, especially since it is the decoding times of the hungry codons that are increased according to Fig. 1A-E. As suggested above, is this a CHX artifact?

      Response: We agree that the observation that the listed codons are enriched at identified stalling positions (now Supplementary Figure 10C), while the depleted amino acid codon is located upstream, is a finding that needs more detailed explanation. Importantly, this phenomenon is not attributable to CHX artifacts, as our Ribo-seq protocol employs CHX solely during brief washes and lysis to prevent post-lysis ribosome run-off, rather than live-cell pre-treatment. Instead, we propose two hypotheses to explain this pattern: Firstly, many of these enriched codons are already inherently slow-decoded with longer DTs even under control conditions (Supplementary Figure 5H, newly added). Together with the upstream hungry codons they might form a challenging consecutive decoding environment, which results in an attenuated ribosome slowdown downstream after the hungry codon. Second, ribosome queuing may further explain this pattern. When a ribosome encounters a critically hungry codon and stalls, subsequent ribosomes can form a queue. The codon within the A-site of the queued ribosome would be (more or less) independent of the identity of the hungry codon itself that caused the initial stall. Since the listed codons have a high frequency within the transcriptome (Supp. Fig 5B), they therefore have an increased likelihood of appearing at this “stalling site”. Importantly, both of these phenomena are not necessarily represented by a general increase of DT on all of the listed codons and would therefore only be captured by the direct extraction of stalling sites but might be averaged out in the global dwell time analysis. We mention this phenomenon now in the Discussion.

      -Fig. 5D: P values for the significance, or lack thereof, of the different overlaps should be provided.

      Response: Thanks for pointing out this omission. We have now computed hypergeometric p-values for comparisons shown in Figure 5D and Figure 5E, and report them directly in the main text. As described, the overlap in stalling sites between Val and triple starvation is highly significant (2522 positions, p < 2.2×10⁻¹⁶), while overlaps involving Ile-specific stalling positions are smaller but still statistically robust (e.g., 149 positions for Ile – Triple, p = 1.77×10⁻⁵²). Notably, we also calculated p-values at the transcript level and found that a large fraction of transcripts with Ile-specific stalling under single starvation also stall under triple starvation, though often at different positions (1806 transcripts, p = 1.78×10⁻⁵⁸). These values are now included in the revised results section to support the interpretation of these overlaps.

      -p. 17: "Nonetheless, when we examined entire transcripts rather than single positions, many transcripts that exhibited isoleucine-related stalling under Ile starvation also stalled under triple starvation, but at different sites along the CDS (Figure 5E). This finding is particularly intriguing, as it suggests that while Ile-starvation-specific stalling sites may shift under triple starvation, the overall tendency of these transcripts to stall remains." The authors never come back to account for this unexpected result.

      Response: Thank you for highlighting this point. We've incorporated this finding as part of the proposed "bottleneck" scenario. While the isoleucine-specific stalling sites identified under Ile starvation do shift or disappear under triple starvation, we've observed that the same transcripts still tend to exhibit stalling. However, this now primarily occurs at upstream valine codons. We interpret this as a consequence of early elongation stalling caused by strong pausing at Val codons. This restriction on ribosome progression effectively prevents ribosomes from reaching the original Ile stalling sites. Therefore, the stalling sites identified under triple starvation are largely explained by the Val codons, reflecting a redistribution of stalling rather than its loss. To further clarify this crucial point, we've now explicitly mentioned Figure 5D-E again in the subsequent paragraph, which introduces the bottleneck theory.

      -It seems very difficult to reconcile the results in Fig. 5F with those in Fig. 4A, where similar polarities in RPFs are observed for -Ile and -Val in Fig, 4A but dramatically different distributions of stalling sites in Fig. 5F. More discussion of these discrepancies is required.

      Response: Thank you for pointing this out. The apparent discrepancy between the RPF profiles shown in Figure 4A and the stalling site distributions in Figure 5F likely reflects the fact that RPF polarization includes both general (unspecific) and codon-specific components. Figure 4A displays total ribosome footprint density, capturing both broad stress-induced effects and codon-specific contributions, whereas Figure 5F focuses specifically on peak-called stalling sites, representing localized and statistically significant pauses. Importantly, we would like to emphasise that Fig 4 shows that -Val and -Ile starvation exhibit different responses and not the same patterns. To make these differences even clearer, we have now updated the visualizations in Figure 4, including improved polarity plots and a new bar chart summarizing the number of transcripts with strong 5′ polarization. These additions highlight that the RPF profiles under -Val starvation are more pronounced and asymmetric, particularly due to 3′ depletion, while the polarity under -Ile is milder and a distinct, much smaller subset of transcripts appears to show polarity score shifts. We believe the updated figures and accompanying explanations now make these distinctions clearer.

      • p. 18: " These isoacceptor-specific patterns correlate largely with the particular subsets of leucine and isoleucine codons that stalled (Figure 1A)." This correlation needs to be addressed for each codon-anticodon pair for all of the codons showing stalling in Fig. 1A.

      Response: We thank the reviewer for this important comment. In the revised manuscript, we have expanded the relevant sections to address codon–anticodon relationships more thoroughly. We now explicitly match codons that exhibited increased dwell times under starvation to the corresponding tRNA isoacceptors whose charging was affected, and we provide a clearer discussion of the caveats involved. As noted by the reviewer, this correlation is not straightforward, as it is complicated by wobble base pairing, anticodon modifications, and the fact that multiple codons can be decoded by more than one isoacceptor, and vice versa. Moreover, in our qPCR-based tRNA charging assay, certain isoacceptors cannot be distinguished due to highly similar sequences (e.g., LeuAAG and LeuUAG, and LeuCAA and LeuCAG), which limits resolution for exact pairing. In addition, we did not assess absolute tRNA abundance, which may further influence decoding capacity. Nevertheless, where resolution is possible, the patterns align well: All tRNAVal isoacceptors became uncharged under Val and triple starvation, matching the consistent dwell time increases across all Val codons. Only tRNAIleAAU (decoding AUU and AUC) was deacylated, matching to these codons showing increased dwell times, while AUA (decoded by still-charged tRNAIleUAU) did not. Only CUU (decoded by uncharged tRNALeuGAA) showed increased dwell time. A mild deacylation of the other Leu isoacceptors was observed, but isoacceptor-level resolution is limited by assay constraints. However, these rather minimal tRNA and DT changes were consistent with more dominant initiation repression rather than elongation stalls. To support this analysis, we included an illustrative figure (now in Supplementary Figure 12F) summarizing the codon–anticodon matches.

      -p. 19: "For instance, in our double starvation condition, unchanged tRNA charging levels (Figure 6E) may result from a pronounced downregulation of global translation initiation, likely driven by the activation of stress responses (Figure 2), subsequently lowering the demand for charged tRNAs as it has been observed previously for Leu starvation 39.” This seems at odds with the comparable down-regulation of protein synthesis for the Double starvation and -Leu and -Ile single starvations shown in Fig. 3C. Also, in the current study, Leu starvation does lower charging of certain Leu tRNAs.

      Response: We thank the reviewer for raising this important point. In the revised manuscript, we have clarified this section and now offer a more refined interpretation of the tRNA charging patterns observed under double starvation. While Figure 3C shows a comparable reduction in global protein synthesis across the -Leu, -Ile, and double starvation conditions, it needs to be considered that the OPP assay has limited sensitivity. It operates in a relatively low fluorescence intensity range and is subject to background signal, which may obscure subtle differences between conditions. Moreover, other factors such as changes in protein stability or turnover could also contribute to the observed differences. Therefore, inter-condition differences in translation repression should be interpreted with caution. However, based on our stress response analysis (Figure 2), mTORC1 inactivation appears strongest under double starvation, likely leading to more profound suppression of translation initiation. This would reduce the overall demand for charged tRNAs and could explain why no detectable tRNA deacylation was observed under double starvation, even though mild uncharging of Leu isoacceptors occurred under -Leu, which exhibited a milder stress response. This distinction is consistent with the observed mild dwell time increases for one Leu codon under -Leu, but not in the double condition. Similarly, the absence of Ile codon stalling and tRNA deacylation under double starvation may be attributed to stress-driven reductions in elongation demand, preventing the tRNA depletion and codon-specific delays observed under single Ile starvation. A more direct clarification is now included in the revised manuscript.

      Reviewer #2 (Significance):

      The results here are significant in showing that starvation for a single amino acid does not lead to deacylation of all isoacceptors for that amino acid and in revealing that starvation for one amino acid can prevent deacylation of tRNAs for other amino acids, as shown most dramatically for the selective deacylation of only Val tRNAs in the triple BRCAA starvation condition. For the various reasons indicated above, however, I'm not convinced that their "bottleneck" mechanism is adequate to explain this phenomenon, especially in the case of the selective deacylation of Ile vs Leu tRNA in the Double starvation regime. It's also significant that deacylation leads to ribosome build-up near the 5'ends of CDS, which seems to be associated with an enrichment for the hungry codons in the case of Val and Ile starvation, but inexplicably, not for Leu or the Double starvations. This last discrepancy makes it hard to understand how the -Leu and Double starvations produce RPF buildups near the 5 ends of CDSs. In addition, the claim in the Discussion that "our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress" overstates the strength of evidence that the stalling events lead to substantial decreases in translational efficiencies for the affected mRNAs, as the stalling frequency and decreased protein output are significantly correlated only for the -Val starvation, and the data in Fig. 3 D-H suggest that the reductions in protein synthesis generally occur at the level of initiation, even for -Val starvation, with a contribution from slow elongation only for -Ile-which is in itself difficult to understand considering that stalling frequencies are highest in -Val. Thus, while many of the results are very intriguing and will be of considerable interest to the translation field, it is my opinion that a number of results have been overinterpreted and that important inconsistencies and complexities have been overlooked in concluding that a significant component of the translational inhibition arises from the increased decoding times at hungry codons during elongation and that the selective deacylation of Val tRNAs in the Triple starvation can be explained by the "bottleneck" mechanism. The complexities and limitations of the data and their intepretations should be discussed much more thoroughly in the Discussion, which currently is devoted mostly to other phenomena often of tangential importance to the current findings. A suitably revised manuscript would clearly state the limitations and caveats of the proposed mechanisms and consider other possible explanations as well.

      Again, we thank the reviewer for the valuable insights and constructive critiques. We believe that the concerns regarding potential overinterpretation and inconsistencies have now been addressed through clearer explanations and more cautious interpretation throughout the revised manuscript. We also agree that the original Discussion included aspects that, while interesting, were of secondary importance. In light of the reviewer’s suggestions, we have restructured and rebalanced the Discussion to focus more directly on the key findings and their implications. Importantly, we wish to clarify that we do not propose the elongation bottleneck model as a general mechanism across all conditions. In particular, for double (Leu/Ile) starvation, we attribute the observed effects primarily to stress response–mediated translational repression, and not to codon-specific stalling or tRNA depletion. We believe that this distinction is now more clearly conveyed in the revised manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary

      Worpenberg and colleagues investigated the translational consequences of branched-chain amino acid (BCAA) starvation in mouse cells. Limitation of individual BCAAs has been reported to cause codon-specific and global translational repression. In this paper, the authors use RNA-seq, ribosome profiling (Ribo-seq), proteomics, and tRNA charging assays to characterize the impacts of individual and combined depletion of leucine, isoleucine, and valine on translation. They find that BCAA starvation increases codon-specific ribosome dwell times, activates global translational stress responses and reduces global protein synthesis. They infer that this effect is due to decreased translation initiation and codon-specific translational stalling. They find that the effects of simultaneous depletion are non-additive. In valine and triple (valine, leucine, and isoleucine) depletion, they show that affected transcripts have a high density of valine codons early in their coding sequences, creating an "elongation bottleneck" that obscures the impact of starvation of other amino acids. Finally, they identify isoacceptor-specific differences in tRNA charging that help explain the codon-specific effects that they observe.

      We find the major findings convincing and clear. We find that some results are incompletely explained. We suggest an additional experiment and also have some minor comments that we hope will improve clarity and rigor.

      We thank the reviewer for the thorough and constructive feedback. We appreciate the recognition of our main findings and the helpful suggestions for improving the manuscript. Below we address each point in detail.

      Major comments

      Figure 3O: In this figure and the associated text, the authors try to determine whether differences in protein degradation can explain why some proteins have higher ribosome density but lower proteomic expression. However, since this analysis relies on published protein half-lives from non-starvation conditions and on the assumption that protein synthesis has entirely stopped, we are not convinced it is informative for this experimental context. It does not distinguish between a model in which protein synthesis has been reduced by stalling and a model in which both protein synthesis and degradation rate have increased, which are both consistent with their Ribo-seq and proteomic data. To address this issue, the authors should either perform protein half-life measurements under their starvation conditions, or more clearly explain these two models in the text and acknowledge that they cannot distinguish between them.

      Response: We agree with the reviewer that our current analysis, which is based on protein half-lives obtained under non-starvation conditions, can not definitively separate the effects of reduced translation from those of increased protein degradation. We have revised the relevant section in the manuscript to more clearly state that this analysis is correlative in nature and serves only to explore one possible explanation for the observed disconnect between ribosome density and protein levels. We now also explicitly acknowledge that our dataset does not allow us to distinguish between a model in which protein output is reduced due to stalling and one in which both translation and degradation rates are altered. However, the observed log2FC in the proteomics data are often milder than expected based on complete-medium condition half-life alone, which would be difficult to reconcile with a dominant contribution from global protein destabilization. That said, we also acknowledge that protein degradation is highly context- and protein-specific, and that proteolytic regulation might still play a role. Performing a direct protein half-life measurement under our starvation conditions would indeed be required to rigorously test this, but such an experiment is outside the scope of this study. We now highlight this as a limitation and a valuable direction for future work, and we have softened any interpretations in the main text to reflect the uncertainty regarding the contribution of protein stability changes.

      Minor comments

      Figure 1G: Why does intracellular valine seem to be less depleted under starvation conditions than intracellular leucine or isoleucine? Are the limits of detections different for different amino acids? The authors should acknowledge this discrepancy and comment on whether it has any implications for interpretation of their results.

      Response: We thank the reviewer for this important point. While valine appears slightly less depleted than leucine or isoleucine in Figure 1G, the fold changes and absolute reductions are strong for all three BCAAs, including valine. To further illustrate this, we have added a supplementary bar chart showing the measured intracellular concentrations in µmol/L, including mean and variance across five biological replicates (Supplementary Figure 5A). We believe that the variation may reflect technical factors, such as differences in detection sensitivity or ionization efficiency between amino acids in the targeted metabolomics assay and, therefore, that the observed difference does not have a meaningful impact on the interpretation of our results. We now directly acknowledge these differences in the main text.

      Figure 1H: These data do not appear to meet the assumptions for linear regression. We suggest either reporting a Spearman R correlation (as the data appears linear in rank but not absolute value), or remove it entirely - we think the plot without statistics is sufficient.

      Response: We thank the reviewer for the suggestion. In the revised manuscript, we removed the statistical annotation and retained only the trend line to illustrate the general pattern. We agree that this visualization alone is sufficient to support the qualitative point we aimed to convey.

      Figure 2B: The in-text description of this figure states that "most" ISR genes show a "robust induction," but only three genes are shown in the figure, two of which are upregulated. The authors should instead specify that 2 out of the 3 genes profiled were robustly induced.

      Response: We have rephrased the sentence to say “two of the three genes profiled…” for precision and consistency with the data shown.

      Figure 2D: Please include the full, uncropped blots in the supplementary materials.

      Response: We have now added the full, uncropped western blots to the supplementary material (Supplementary Figure 8).

      Figure 2E: Swap the positions of the RPS6 and 4E-BP1 plots so they line up with their respective blots to make these figures easier to interpret. Authors should consider doing a one-way ANOVA and post-hoc analysis, if we correctly understand that they are making a conclusion about the difference between multiple groups in aggregate.

      Response: We thank the reviewer for the suggestion. The alignment of the RPS6 and 4E-BP1 plots with their respective blots has been corrected. As this panel focuses on comparisons to the control condition only, we have retained the original presentation.

      Figure 4B: Panel A in this figure is very convincing, and these plots don't add additional information. The authors could consider removing them. If this panel stays in, we suggest removing the "mid index" plot, since it is never referenced in the text and doesn't seem relevant to the message of the figure.

      Response: We appreciate the feedback. While we considered removing panel B as suggested, we decided to retain it because it provides a useful summary of panel A. To improve clarity and visual interpretation, we replaced the original boxplot with a bar plot displaying mean values and SEM error bars. We believe the bar plot now nicely illustrates that Val and Triple starvation lead to stronger effects, especially in the reduction of the 3′ index. The “mid index” plot, which was not referenced in the text and did not contribute to the central message, has been removed as suggested.

      Figure 4E: Why is there a reduction in frequency of a Leu and a Val codon under Ile starvation?

      Response: Thank you for highlighting this observation. The reduction in the frequency of a specific Leu and Val codon under Ile starvation in Figure 4F (former Figure 4E) is indeed intriguing. This figure reflects codon usage in the first 20% of the CDSs among the subset of transcripts that exhibit a footprint polarization under each starvation condition. As such, the observed depletion likely arises from the specific transcript composition of the polarized subset under -Ile, which differs from that under -Val or other conditions. Importantly, this pattern is not consistently observed when analyzing the full transcripts (another Leu codon is affected), indicating that it is not a systematic depletion of these codons. One possibility is that an increased frequency of Ile codons (AUC) within the constrained region may lead to a relative underrepresentation of other codons, such as Leu and Val. Alternatively, this may reflect non-random codon co-occurrence patterns within specific transcripts. While our current data do not allow us to investigate this further, we acknowledge these as speculative explanations and now mention this point in the Discussion as a potential avenue for future study.

      Figure 5G: There appears to be one Val codon early in the Hint1 transcript without much stalling under triple or valine starvation conditions. The authors should acknowledge this and comment on why this may be.

      Response: We thank the reviewer for pointing this out. While the Hint1 transcript indeed contains a valine codon early in its CDS, no clear stalling peak was observed at that position under valine or triple starvation. Several factors may contribute to this: local sequence context can influence ribosome pausing, and not all cognate codons necessarily lead to detectable stalling even under amino acid starvation. Additionally, coverage at the 5′ end of Hint1 is relatively sparse in our dataset, and potential mappability limitations, such as regions with low complexity or repetitive elements, may further reduce resolution at specific sites. We now briefly mention this in the manuscript to clarify the possible causes.

      Figure 5B: In the text referencing this figure, the authors state that "a high number of downregulated proteins with associated ribosome stalling sites did not show an overall decreased mean RPF count...as it would be expected from translation initiation defects, linking these stalling sites directly to proteomic changes." However, RPF is affected both by stalling (increases RPF) and initiation defects (decreases RPF). A gene with both stalling and decreased initiation may appear to have no RPF change. The data does suggest a contribution from stalling, but the authors should also acknowledge that reduced initiation may also be playing a role.

      Response: We agree with the reviewer comment. Our cited statement should indeed be more nuanced. The reviewer correctly points out that RPFs are influenced by both increased ribosome density due to stalling and decreased ribosome density due to reduced initiation. Therefore, a gene experiencing both stalling and reduced initiation might appear to have no net change in RPF, or even a slight increase if stalling is dominant. Thus, while the presence of stalling sites strongly suggests a contribution from compromised elongation to reduced protein output, we cannot definitively rule out a concurrent role for reduced initiation, even in cases where RPF counts are not globally decreased. We revised this section in the manuscript to acknowledge this interplay.

      Figure 5E: the black text on dark brown in the center of the Venn diagram is difficult to read. The diagram should either have a different color scheme, or the text in the center should be white instead of black for higher contrast.

      Response: We have adjusted the text color for better contrast and improved readability.

      Supplementary Figure 1C: The ribosome dwell time data in this study is described as "highly correlated" with another published dwell time dataset, but the P and E site data do not seem strongly correlated. The authors should remove the word "highly."

      Response: We have removed the word “highly” to have a more cautious interpretation in the text.

      Supplementary Figure 3E: Not all of the highlighted codons in this figure are ones with prolonged dwell times. To clarify the point that dwell time change is not related to codon frequency, this figure should only highlight codons that have a significantly prolonged dwell time in at least one starvation condition.

      Response: We thank the reviewer for pointing this out. To improve clarity, we have revised the figure and now specifically highlight codons with significantly prolonged dwell times with stars.

      Supplementary Figure 5C: The gene Chop is mentioned in the main text when referencing this figure, but is absent from the heatmap.

      Response: We thank the reviewer for noting this. The gene Chop is annotated under its alternative name Ddit3 in the current version of the heatmap and is indeed present. To avoid confusion, we have now updated the label in the figure to display Chop (Ddit3) directly.

      Supplementary Figure 7A: The authors could clarify this figure by adding additional language to either the figure panel or the figure legend specifying that the RPM metric being used comes from Ribo-seq.

      Response: We have updated the legend to explicitly state that the RPM values shown are derived from Ribo-seq data.

      Supplementary Figure 7D: The metric used to describe the spatial relationship between the first valine and isoleucine codons in transcripts in this figure seems to be describing something conceptually similar to the stalling sites in Figure 5G, but uses a different metric. These figures would be easier to interpret if these spatial relationships were presented in a consistent way throughout the manuscript.

      Response: We thank the reviewer for this helpful observation. Supplementary Figure 7D (now Supplementary Figure 11B) originally used a gene-length-normalized metric to describe codon spacing, whereas Figure 5G depicted absolute nucleotide distances to stalling sites. To ensure consistency across the manuscript, we have now updated Supplementary Figure 11B to also use absolute distances. We believe this adjustment improves clarity and allows for a more direct comparison between spatial codon patterns and stalling events.

      Discussion:

      Reader understanding would be improved if the relevance of paragraphs were established in the first sentence. For instance, in the paragraphs about adaptive misacylation and posttranscriptional modifications, it is unclear until the end of the paragraph how these topics are relevant. Introducing the relevant aspects of the study (the fact that some starvation conditions have less severe effects and the observation about m6A-related mRNAs) at the beginning of these paragraphs would improve clarity.

      Response: We thank the reviewer for this helpful comment. We agree that the flow and clarity of the Discussion can be improved by making the relevance of each paragraph clearer from the outset. In the revised manuscript, we have restructured these sections to better highlight the connection between each topic and our main findings. These changes also align with suggestions from Reviewer 2, and we believe they help to focus the Discussion more tightly around the core insights of our study.

      The authors should provide more information and speculation about possible physiological relevance of their findings, particularly about the way that the effects of triple starvation are highly valine-dependent. Are there physiological conditions under which starvation of all three BCAAs is more likely than starvation of one or two of them? If so, are there any reasons why a valine-based bottleneck might be advantageous?

      Response: We appreciate the reviewer's insightful question regarding the physiological relevance of our findings, particularly the valine-dependent bottleneck observed under triple BCAA starvation. This prompts a crucial discussion on the broader biological context of our work.

      While complete starvation of all three BCAAs might be less frequent than individual deficiencies, such conditions are physiologically relevant in several contexts. In prolonged fasting, starvation, or severe cachectic states associated with chronic diseases (e.g., advanced cancer, critical illness), systemic amino acid pools, including BCAAs, can become significantly depleted due to increased catabolism and insufficient intake (Yu et al. 2021). Moreover, certain specialized diets or therapeutic strategies aim to modulate BCAA levels. For instance, in some Maple Syrup Urine Disease (MSUD) management protocols, BCAA intake is severely restricted to prevent the accumulation of toxic BCAA metabolites (Mann et al. 2021). Similarly, emerging cancer therapies sometimes explore nutrient deprivation strategies to selectively target tumor cells, which could involve broad BCAA reduction (e.g. Sheen et al. 2011; Xiao et al. 2016).

      In these contexts, a valine-based bottleneck, as we describe, could indeed represent an adaptive strategy. If valine-tRNAs are particularly susceptible to deacylation and valine codons are strategically enriched at the 5' end of transcripts, stalling at these early positions could serve as a rapid "gatekeeper" for global translation. This early-stage inhibition would conserve cellular energy and available amino acids by quickly reducing the overall demand for charged tRNAs. Such a mechanism could potentially prioritize the translation of a subset of proteins that might have different codon usage biases or are translated via alternative, less valine-dependent mechanisms. This aligns with the concept of a multi-layered translational control where global initiation repression (as reflected in mTORC1 inhibition and polysome profiles) is complemented by specific elongation checkpoints, allowing for a more nuanced and adaptive response to severe nutrient stress.

      Reviewer #3 (Significance):

      Nature and significance of the advance

      The main contribution of this work is to demonstrate that depletion of multiple amino acids simultaneously impacts translation elongation in ways that are not necessarily additive. These impacts can depend on the distribution of codons in a transcript. It adds to a growing body of work showing that essential amino acid starvation can cause codon-specific ribosome stalling. The authors suggest that the position-dependent stalling they observe could be a novel regulatory mechanism to alleviate the effects of multi-amino acid starvation. However, it is not fully clear from the paper what the significance of a valine-based regulatory adaptation to BCAA starvation is, or whether simultaneous starvation of all three BCAAs is of particular physiological relevance. The paper's primary contribution is mainly focused on the similarity between valine and triple BCAA starvation, and it provides limited insight into the effects of combined depletion of two BCAAs.

      Context of existing literature

      Although ribosome profiling does not distinguish between actively-elongating and stalled ribosomes, sites with higher read coverage, and thereby higher inferred dwell time, can be used to infer ribosome stalling (Ingolia 2011). Various downstream effects of essential amino acid depletion have been documented, such as leucine deficiency being sensed by mTORC1 via leucyl-tRNA synthetase (Dittmar 2005, Han 2012), and shared transcriptional responses among many amino acid depletion conditions (Tang 2015). These authors have previously measured the translational effects of nutrient stress using ribosome profiling (e.g., Gobet 2020), as have others (Darnell 2018, Kochavi et al. 2024). The present work represents the first study (to our knowledge) combining BCAA depletions, representing an incremental and useful contribution to our understanding of translational responses to stress conditions.

      Audience

      This work is of interest to investigators studying the response of human cells in stress conditions, such as in human disease, as well as investigators studying the basic biology of eukaryotic translational control.

      Reviewer expertise: mRNA decay and translation regulation in bacteria.

      We hope the authors have found our comments thoughtful and useful. We welcome further discussion or clarification via email: Juliana Stanley (julianst@mit.edu) and Hannah LeBlanc (leblanch@mit.edu).

      We sincerely thank the reviewers for their thoughtful and constructive feedback, as well as for their careful and thorough reading of our manuscript. We also gratefully acknowledge the invitation for further discussion and would be happy to engage in future correspondence.

      References

      Allen, George E., Olesya O. Panasenko, Zoltan Villanyi, Marina Zagatti, Benjamin Weiss, Lucile Pagliazzo, Susanne Huch, et al. 2021. “Not4 and Not5 Modulate Translation Elongation by Rps7A Ubiquitination, Rli1 Moonlighting, and Condensates That Exclude eIF5A.” Cell Reports 36 (9): 109633. https://doi.org/10.1016/j.celrep.2021.109633.

      Darnell, Alicia M., Arvind R. Subramaniam, and Erin K. O’Shea. 2018. “Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells.” Molecular Cell 71 (2): 229-243.e11. https://doi.org/10.1016/j.molcel.2018.06.041.

      Dittmar, Kimberly A., Michael A. Sørensen, Johan Elf, Måns Ehrenberg, and Tao Pan. 2005. “Selective Charging of tRNA Isoacceptors Induced by Amino-Acid Starvation.” EMBO Reports 6 (2): 151–57. https://doi.org/10.1038/sj.embor.7400341.

      Elf, Johan, Daniel Nilsson, Tanel Tenson, and Mans Ehrenberg. 2003. “Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage.” Science (New York, N.Y.) 300 (5626): 1718–22. https://doi.org/10.1126/science.1083811.

      Gobet, Cédric, Benjamin Dieter Weger, Julien Marquis, Eva Martin, Nagammal Neelagandan, Frédéric Gachon, and Felix Naef. 2020. “Robust Landscapes of Ribosome Dwell Times and Aminoacyl-tRNAs in Response to Nutrient Stress in Liver.” Proceedings of the National Academy of Sciences of the United States of America 117 (17): 9630–41. https://doi.org/10.1073/pnas.1918145117.

      Hussmann, Jeffrey A., Stephanie Patchett, Arlen Johnson, Sara Sawyer, and William H. Press. 2015. “Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.” Edited by Michael Snyder. PLOS Genetics 11 (12): e1005732. https://doi.org/10.1371/journal.pgen.1005732.

      Hwang, Jae-Yeon, and Allen R. Buskirk. 2017. “A Ribosome Profiling Study of mRNA Cleavage by the Endonuclease RelE.” Nucleic Acids Research 45 (1): 327–36. https://doi.org/10.1093/nar/gkw944.

      Juszkiewicz, Szymon, and Ramanujan S. Hegde. 2017. “Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination.” Molecular Cell 65 (4): 743-750.e4. https://doi.org/10.1016/j.molcel.2016.11.039.

      Li, Fajin, Jianhuo Fang, Yifan Yu, Sijia Hao, Qin Zou, Qinglin Zeng, and Xuerui Yang. 2023. “Reanalysis of Ribosome Profiling Datasets Reveals a Function of Rocaglamide A in Perturbing the Dynamics of Translation Elongation via eIF4A.” Nature Communications 14 (1): 553. https://doi.org/10.1038/s41467-023-36290-w.

      Mann, Gagandeep, Stephen Mora, Glory Madu, and Olasunkanmi A. J. Adegoke. 2021. “Branched-Chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-Body Metabolism.” Frontiers in Physiology 12 (July):702826. https://doi.org/10.3389/fphys.2021.702826.

      Saikia, Mridusmita, Xiaoyun Wang, Yuanhui Mao, Ji Wan, Tao Pan, and Shu-Bing Qian. 2016. “Codon Optimality Controls Differential mRNA Translation during Amino Acid Starvation.” RNA (New York, N.Y.) 22 (11): 1719–27. https://doi.org/10.1261/rna.058180.116.

      Sharma, Puneet, Jie Wu, Benedikt S. Nilges, and Sebastian A. Leidel. 2021. “Humans and Other Commonly Used Model Organisms Are Resistant to Cycloheximide-Mediated Biases in Ribosome Profiling Experiments.” Nature Communications 12 (1): 5094. https://doi.org/10.1038/s41467-021-25411-y.

      Sheen, Joon-Ho, Roberto Zoncu, Dohoon Kim, and David M. Sabatini. 2011. “Defective Regulation of Autophagy upon Leucine Deprivation Reveals a Targetable Liability of Human Melanoma Cells In Vitro and In Vivo.” Cancer Cell 19 (5): 613–28. https://doi.org/10.1016/j.ccr.2011.03.012.

      Xiao, Fei, Chunxia Wang, Hongkun Yin, Junjie Yu, Shanghai Chen, Jing Fang, and Feifan Guo. 2016. “Leucine Deprivation Inhibits Proliferation and Induces Apoptosis of Human Breast Cancer Cells via Fatty Acid Synthase.” Oncotarget 7 (39): 63679–89. https://doi.org/10.18632/oncotarget.11626.

      Yu, Deyang, Nicole E. Richardson, Cara L. Green, Alexandra B. Spicer, Michaela E. Murphy, Victoria Flores, Cholsoon Jang, et al. 2021. “The Adverse Metabolic Effects of Branched-Chain Amino Acids Are Mediated by Isoleucine and Valine.” Cell Metabolism 33 (5): 905-922.e6. https://doi.org/10.1016/j.cmet.2021.03.025.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      Worpenberg and colleagues investigated the translational consequences of branched-chain amino acid (BCAA) starvation in mouse cells. Limitation of individual BCAAs has been reported to cause codon-specific and global translational repression. In this paper, the authors use RNA-seq, ribosome profiling (Ribo-seq), proteomics, and tRNA charging assays to characterize the impacts of individual and combined depletion of leucine, isoleucine, and valine on translation. They find that BCAA starvation increases codon-specific ribosome dwell times, activates global translational stress responses and reduces global protein synthesis. They infer that this effect is due to decreased translation initiation and codon-specific translational stalling. They find that the effects of simultaneous depletion are non-additive. In valine and triple (valine, leucine, and isoleucine) depletion, they show that affected transcripts have a high density of valine codons early in their coding sequences, creating an "elongation bottleneck" that obscures the impact of starvation of other amino acids. Finally, they identify isoacceptor-specific differences in tRNA charging that help explain the codon-specific effects that they observe.

      We find the major findings convincing and clear. We find that some results are incompletely explained. We suggest an additional experiment and also have some minor comments that we hope will improve clarity and rigor.

      Major comments

      Figure 3O: In this figure and the associated text, the authors try to determine whether differences in protein degradation can explain why some proteins have higher ribosome density but lower proteomic expression. However, since this analysis relies on published protein half-lives from non-starvation conditions and on the assumption that protein synthesis has entirely stopped, we are not convinced it is informative for this experimental context. It does not distinguish between a model in which protein synthesis has been reduced by stalling and a model in which both protein synthesis and degradation rate have increased, which are both consistent with their Ribo-seq and proteomic data. To address this issue, the authors should either perform protein half-life measurements under their starvation conditions, or more clearly explain these two models in the text and acknowledge that they cannot distinguish between them.

      Minor comments

      Figure 1G: Why does intracellular valine seem to be less depleted under starvation conditions than intracellular leucine or isoleucine? Are the limits of detections different for different amino acids? The authors should acknowledge this discrepancy and comment on whether it has any implications for interpretation of their results.

      Figure 1H: These data do not appear to meet the assumptions for linear regression. We suggest either reporting a Spearman R correlation (as the data appears linear in rank but not absolute value), or remove it entirely - we think the plot without statistics is sufficient.

      Figure 2B: The in-text description of this figure states that "most" ISR genes show a "robust induction," but only three genes are shown in the figure, two of which are upregulated. The authors should instead specify that 2 out of the 3 genes profiled were robustly induced.

      Figure 2D: Please include the full, uncropped blots in the supplementary materials.

      Figure 2E: Swap the positions of the RPS6 and 4E-BP1 plots so they line up with their respective blots to make these figures easier to interpret. Authors should consider doing a one-way ANOVA and post-hoc analysis, if we correctly understand that they are making a conclusion about the difference between multiple groups in aggregate.

      Figure 4B: Panel A in this figure is very convincing, and these plots don't add additional information. The authors could consider removing them. If this panel stays in, we suggest removing the "mid index" plot, since it is never referenced in the text and doesn't seem relevant to the message of the figure.

      Figure 4E: Why is there a reduction in frequency of a Leu and a Val codon under Ile starvation?

      Figure 5G: There appears to be one Val codon early in the Hint1 transcript without much stalling under triple or valine starvation conditions. The authors should acknowledge this and comment on why this may be.

      Figure 5B: In the text referencing this figure, the authors state that "a high number of downregulated proteins with associated ribosome stalling sites did not show an overall decreased mean RPF count...as it would be expected from translation initiation defects, linking these stalling sites directly to proteomic changes." However, RPF is affected both by stalling (increases RPF) and initiation defects (decreases RPF). A gene with both stalling and decreased initiation may appear to have no RPF change. The data does suggest a contribution from stalling, but the authors should also acknowledge that reduced initiation may also be playing a role.

      Figure 5E: the black text on dark brown in the center of the Venn diagram is difficult to read. The diagram should either have a different color scheme, or the text in the center should be white instead of black for higher contrast.

      Supplementary Figure 1C: The ribosome dwell time data in this study is described as "highly correlated" with another published dwell time dataset, but the P and E site data do not seem strongly correlated. The authors should remove the word "highly."

      Supplementary Figure 3E: Not all of the highlighted codons in this figure are ones with prolonged dwell times. To clarify the point that dwell time change is not related to codon frequency, this figure should only highlight codons that have a significantly prolonged dwell time in at least one starvation condition.

      Supplementary Figure 5C: The gene Chop is mentioned in the main text when referencing this figure, but is absent from the heatmap.

      Supplementary Figure 7A: The authors could clarify this figure by adding additional language to either the figure panel or the figure legend specifying that the RPM metric being used comes from Ribo-seq.

      Supplementary Figure 7D: The metric used to describe the spatial relationship between the first valine and isoleucine codons in transcripts in this figure seems to be describing something conceptually similar to the stalling sites in Figure 5G, but uses a different metric. These figures would be easier to interpret if these spatial relationships were presented in a consistent way throughout the manuscript.

      Discussion:

      Reader understanding would be improved if the relevance of paragraphs were established in the first sentence. For instance, in the paragraphs about adaptive misacylation and posttranscriptional modifications, it is unclear until the end of the paragraph how these topics are relevant. Introducing the relevant aspects of the study (the fact that some starvation conditions have less severe effects and the observation about m6A-related mRNAs) at the beginning of these paragraphs would improve clarity.<br /> The authors should provide more information and speculation about possible physiological relevance of their findings, particularly about the way that the effects of triple starvation are highly valine-dependent. Are there physiological conditions under which starvation of all three BCAAs is more likely than starvation of one or two of them? If so, are there any reasons why a valine-based bottleneck might be advantageous?

      We hope the authors have found our comments thoughtful and useful. We welcome further discussion or clarification via email: Juliana Stanley (julianst@mit.edu) and Hannah LeBlanc (leblanch@mit.edu).

      Significance

      Nature and significance of the advance

      The main contribution of this work is to demonstrate that depletion of multiple amino acids simultaneously impacts translation elongation in ways that are not necessarily additive. These impacts can depend on the distribution of codons in a transcript. It adds to a growing body of work showing that essential amino acid starvation can cause codon-specific ribosome stalling. The authors suggest that the position-dependent stalling they observe could be a novel regulatory mechanism to alleviate the effects of multi-amino acid starvation. However, it is not fully clear from the paper what the significance of a valine-based regulatory adaptation to BCAA starvation is, or whether simultaneous starvation of all three BCAAs is of particular physiological relevance. The paper's primary contribution is mainly focused on the similarity between valine and triple BCAA starvation, and it provides limited insight into the effects of combined depletion of two BCAAs.

      Context of existing literature

      Although ribosome profiling does not distinguish between actively-elongating and stalled ribosomes, sites with higher read coverage, and thereby higher inferred dwell time, can be used to infer ribosome stalling (Ingolia 2011). Various downstream effects of essential amino acid depletion have been documented, such as leucine deficiency being sensed by mTORC1 via leucyl-tRNA synthetase (Dittmar 2005, Han 2012), and shared transcriptional responses among many amino acid depletion conditions (Tang 2015). These authors have previously measured the translational effects of nutrient stress using ribosome profiling (e.g., Gobet 2020), as have others (Darnell 2018, Kochavi et al. 2024). The present work represents the first study (to our knowledge) combining BCAA depletions, representing an incremental and useful contribution to our understanding of translational responses to stress conditions.

      Audience

      This work is of interest to investigators studying the response of human cells in stress conditions, such as in human disease, as well as investigators studying the basic biology of eukaryotic translational control.

      Reviewer expertise: mRNA decay and translation regulation in bacteria.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This manuscript described the translational responses to single and combined BCAA shortages in mouse cell lines. Using Ribo-seq and RNA-seq analysis, the authors found selective ribosome pausing at codons that encode the depleted amino acids, where the pausing at valine codons was prominent at both a single and triple starvations whereas isoleucine codons showed pausing only under a single depletion. They analyzed the mechanisms of the unexpected selective pausing and proposed that the positional codon usage bias could shape the ribosome stalling and tRNA charging patterns across different amino acids. They also examined the stress responses and the changes in the protein expression levels under BCAA starvation.

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

      Major comments

      1. The abstract may need to be revised since it is hard to immediately catch the authors' main point. If the authors regard this work as a resource paper, the current version is fine. But it could be better to point out the positional codon usages the authors found, which is a strong point of the current manuscript.
      2. Page 18 "Beyond these tRNA dynamics, our data also highlight the importance of the codon positional context within mRNAs, indicating that where a codon is located within the CDS can influence both the extent of ribosomal stalling and overall translation efficiency during nutrient stress."<br /> This idea is interesting. To what extent the authors think this could be generalized? The authors may discuss whether they think their proposed model is specific to the different ribosome stalling patterns between valine and isoleucine codons or generalized to other codon combinations. For example, the positional codon usage bias will be different among different organisms, and are there any previous reports on ribosome behaviors that align with their model? Even if the authors think this model can be applied to BCAA starvation, would it be possible to explain the different isoleucine codon responses between single and double starvation? The authors may discuss why the ribosome stalling at isoleucine AUU and AUC codons was slightly attenuated under double starvation. And how about the different leucine codon responses among single, double, and triple starvations, although the pausing is not as strong as isoleucine and valine codons? Experimental validation using artificial reporters carrying biased sequences may also be considered.
      3. Page 13 "Moreover, we noticed that DT changes extend beyond the ribosomal A-site, including the P-site, E-site, and even further positions (Supplementary Fig. 2A), consistent with other studies on single amino acid starvation 39 (Supplementary Fig. 2B-C)." Could the widespread DT changes be due to Ribo-DT pipeline they used or difficulties in offset determination? Indeed the authors showed that this feature was found in other datasets, but it seems that the datasets were processed and analyzed in the same way as their data. The original Ribo-DT paper (Gobet and Naef, 2022, Methods) also showed some widespread DT changes even from RNA-seq. Another analysis method like the codon subsequence abundant shift as a part of diricore analysis (Loayza-Puch et al., 2016, Nature) did not show that broad changed regions. The authors are encouraged to re-analyze the data sets using different methods.
      4. Page 13 "Intriguingly, only two of the three isoleucine codons (AUU and AUC) showed increased DTs upon Ile starvation (p < 0.01), while just one leucine codon (CUU) exhibited a modest but significant DT increase (p < 0.01) under Leu starvation (Figure 1A-B, Supplementary Figure 2A)." How can the authors explain the different strengths of ribosome pausing at Ile codons under Ile and double starvation? The AUA codon did not show any pausing under either of the starvation conditions. Throughout the manuscript, the authors mainly describe the difference between amino acids but it is desirable to discuss the codon-level difference as well.
      5. Page 13 "We examined the effects of single amino acid starvations (-Leu, -Ile and -Val), as well as combinations, including a double starvation of leucine and isoleucine (hereafter referred to as "double") and a starvation of leucine, isoleucine, and valine ("triple"), allowing us to identify potential non-additive effects." The different double starvations, isoleucine and valine, and leucine and valiene, will further support their hypothesis on the effects of the positional codon usage bias on ribosome pausing and tRNA charging patterns. Although this could be beyond the scope of the current manuscript, the authors are encouraged to provide a rationale for the chosen combination.

      Minor comments

      Page 16 "these results imply that BCAA deprivation lowers protein output through multiple pathways: a combination of reduced initiation, direct elongation blocks (stalling), and possibly an increased proteolysis" This conclusion is totally right but may be too general. Could the authors summarize BCAA-specific features of the events including reduced initiation, stalling, and proteolysis that all contribute to protein outputs? This is not well discussed in the latter sections including Discussion.

      Significance

      The manuscript was well-written, and the findings are interesting, especially their model that positional codon usage bias could be a regulator of ribosome pausing and tRNA charging levels. Although different translational responses to distinct amino acid starvation have been widely documented, the positional codon usage bias is an interesting aspect. The manuscript's central message could have been made clearer. The authors may consider emphasizing this point more explicitly in the abstract. The rich multi-omics dataset in this work provides valuable resources for the translation field.

    1. Problem-posing education is revolutionary futurity. Hence itis prophetic (and, as such, hopeful). Hence, it corresponds tothe historical nature of humankind. Hence, it affirms womenand men as beings who transcend themselves, who move for-ward and look ahead, for whom immobility represents a fatalthreat, for whom looking at the past must only be a means ofunderstanding more clearly what and who they are so that theycan more wisely build the fixture. Hence, it identifies with themovement which engages people as beings aware of their in-completion—an historical movement which has its point of de-parture, its Subjects and its objective.

      This reminds me of a doctrine from one of my mentors who allowed me to see that I must be perturbed over the thought of surpassing myself. In this sense it is a collaborative effort. If I may tie it to a metaphor, problem-posing education makes me think of a giant pump trolley where neither teacher or student can properly advance without the other's contribution. We must also decide in what direction we'll travel.

    1. ons Tap to enable a layout that focuses on the article. Focus mode setTimeout(()=>{try{if(-1===document.cookie.indexOf("c_mId="))return;const e=window.localStorage.getItem("FocusMode");if(!e)return;if(!JSON.parse(e).enabled)return;const o=document.querySelector(".focus-toggle"),t=o?o.querySelector(".toggle-switch-button"):void 0;if(!o||!t)return;document.documentElement.classList.add("focus","focus-enabled"),o.classList.remove("hidden"),t.classList.add("is-checked")}catch(e){console.warn("Error retrieving data for Focus Mode",e)}},0) Subscribe or Log In Profile Sign Out Show Search Search Query Submit Search Advertisement California The 9 LGBTQ+ children’s books targeted in high court ruling upending education policy A selection of books featuring LGBTQ+ characters that are part of a Supreme Court case are pictured April 15 in Washington. (Pablo Martinez Monsivais / Associated Press) By Jenny GoldStaff Writer Follow June 27, 2025 8:01 PM PT 8 Share via Close extra sharing options Email Facebook X LinkedIn Threads Reddit WhatsApp Copy Link URL Copied! Print Picture books are not usually the stuff of Supreme Court rulings. But on Friday, a majority of justices ruled that parents have a right to opt their children out of lessons that offend their religious beliefs — bringing the colorful pages of books like “Uncle Bobby’s Wedding” and “Pride Puppy” into the staid public record of the nation’s highest court.The ruling resulted from a lawsuit brought by parents in Montgomery County, Md., who sued for the right to remove their children from lessons where LGBTQ+ storybooks would be read aloud in elementary school classes from kindergarten through 5th grade. The books were part of an effort in the district to represent LGBTQ+ families in the English language arts curriculum.In a 6-3 decision, the Supreme Court ruled that schools must “notify them in advance” when one of the disputed storybooks would be used in their child’s class, so that they could have their children temporarily removed. The court’s three liberals dissented. Advertisement Politics Parents may pull their children from classes that offend their religion, Supreme Court rules Supreme Court hands down a major victory for parents’ rights June 27, 2025 As part of the the decisions, briefings and petitions in the case, the justices and lawyers for the parents described in detail the story lines of nine picture books that were part of Montgomery County’s new curriculum. In her dissent, Justice Sonia Sotomayor even reproduced one, “Uncle Bobby’s Wedding,” in its entirety. Here are the nine books that were the subject of the case:Pride PuppyAuthor: Robin Stevenson Illustrator: Julie McLaughlin Book “Pride Puppy” published by Orca Book Publishers. (Orca Book Publishers) “Pride Puppy,” a rhyming alphabet book for very young children, depicts a little girl who loses her dog during a joyful visit to a Pride parade. The story, which is available as a board book, invites readers to spot items starting with each of the letters of the alphabet, including apple, baseball and clouds — as well as items more specific to a Pride parade.Lawyers representing the parents said in their brief that the “invites students barely old enough to tie their own shoes to search for images of ‘underwear,’ ‘leather,’ ‘lip ring,’ ‘[drag] king’ and ‘[drag] queen,’ and ‘Marsha P. Johnson,’ a controversial LGBTQ activist and sex worker.”The “leather” in question refers to a mother’s jacket, and the “underwear” to a pair of green briefs worn over tights by an older child as part of a colorful outfit. Advertisement The Montgomery County Public Schools stopped teaching “Pride Puppy” in the midst of the legal battle. California As children’s book bans soar, sales are down and librarians are afraid. Even in California Book bans are tanking sales of children’s books. Schools and libraries aren’t buying books about LGBTQ+ issues and race as they brace for culture war pushback. Dec. 12, 2024 Love, VioletAuthor: Charlotte Sullivan WildIllustrator: Charlene Chua Book “Love Violet” published by macmillan publishers. (macmillan) The story describes a little girl named Violet with a crush on another girl in her class named Mira, who “had a leaping laugh” and “made Violet’s heart skip.” But every time Mira tries to talk to her, Violet gets shy and quiet.On Valentine’s Day, Violet makes Mira a special valentine. As Violet gathers the courage to give it to her, the valentine ends up trampled in the snow. But Mira loves it anyway and also has a special gift for Violet — a locket with a violet inside. At the end of the book, the two girls go on an adventure together.Lawyers for the parents describe “Love, Violet” as a book about “two young girls and their same-sex playground romance.” They wrote in that “teachers are encouraged to have a ‘think aloud’ moment to ask students how it feels when they don’t just ‘like’ but ‘like like’ someone.” Advertisement Born Ready: The True Story of a Boy Named PenelopeAuthor: Jodie Patterson Illustrator: Charnelle Pinkney Barlow Book “Born Ready” published by Random House. (Random House) In “Born Ready,” 5-year-old Penelope was born a girl but is certain they are a boy. “I love you, Mama, but I don’t want to be you. I want to be Papa. I don’t want tomorrow to come because tomorrow I’ll look like you. Please help me, Mama. Help me be a boy,” Penelope tells their mom. “We will make a plan to tell everyone we know,” Penelope’s mom tells them, and they throw a big party to celebrate.In her dissent, Sotomayor notes, “When Penelope’s brother expresses skepticism, his mother says, ‘Not everything needs to make sense. This is about love.’ ” In their opening brief, lawyers for the families said that “teachers are told to instruct students that, at birth, people ‘guess about our gender,’ but ‘we know ourselves best.’ ”Prince and Knight Author: Daniel Haack Illustrator: Stevie Lewis “Prince and Knight” is a story about a prince whose parents want him to find a bride, but instead he falls in love with a knight. Together, they fight off a dragon. When the prince falls from a great height, his knight rescues him on horseback. When the king and queen find out of their love, they “were overwhelmed with joy. ‘We have finally found someone who is perfect for our boy!’ ” A great wedding is held, and “the prince and his shining knight would live happily ever after.”“The book Prince & Knight clearly conveys the message that same-sex marriage should be accepted by all as a cause for celebration,” said Justice Samuel Alito, who wrote the majority opinion, a concerning message for Americans whose religion tells them that same-sex marriage is wrong.

      This is just about acceptance and not really conforming into certain views

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02922

      Corresponding author(s): Christian Specht

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      • *

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      • *

      We thank the reviewers for their thorough and constructive evaluation of our work. We have revised the manuscript carefully and addressed all the criticisms raised, in particular the issues mentioned by several of the reviewers (see point-by-point response below). We have also added a number of explanations in the text for the sake of clarity, while trying to keep the manuscript as concise as possible.

      • *

      In our view, the novelty of our research is two-fold. From a neurobiological point of view, we provide conclusive evidence for the existence of glycine receptors (GlyRs) at inhibitory synapses in various brain regions including the hippocampus, dentate gyrus and sub-regions of the striatum. This solves several open questions and has fundamental implications for our understanding of the organisation and function of inhibitory synapses in the telencephalon. Secondly, our study makes use of the unique sensitivity of single molecule localisation microscopy (SMLM) to identify low protein copy numbers. This is a new way to think about SMLM as it goes beyond a mere structural characterisation and towards a quantitative assessment of synaptic protein assemblies.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      In this manuscript, the authors investigate the nanoscopic distribution of glycine receptor subunits in the hippocampus, dorsal striatum, and ventral striatum of the mouse brain using single-molecule localization microscopy (SMLM). They demonstrate that only a small number of glycine receptors are localized at hippocampal inhibitory synapses. Using dual-color SMLM, they further show that clusters of glycine receptors are predominantly localized within gephyrin-positive synapses. A comparison between the dorsal and ventral striatum reveals that the ventral striatum contains approximately eight times more glycine receptors and this finding is consistent with electrophysiological data on postsynaptic inhibitory currents. Finally, using cultured hippocampal neurons, they examine the differential synaptic localization of glycine receptor subunits (α1, α2, and β). This study is significant as it provides insights into the nanoscopic localization patterns of glycine receptors in brain regions where this protein is expressed at low levels. Additionally, the study demonstrates the different localization patterns of GlyR in distinct striatal regions and its physiological relevance using SMLM and electrophysiological experiments. However, several concerns should be addressed.

      The following are specific comments:

      1. Colocalization analysis in Figure 1A. The colocalization between Sylite and mEos-GlyRβ appears to be quite low. It is essential to assess whether the observed colocalization is not due to random overlap. The authors should consider quantifying colocalization using statistical methods, such as a pixel shift analysis, to determine whether colocalization frequencies remain similar after artificially displacing one of the channels. *Following the suggestion of reviewer 1, we re-analysed CA3 images of Glrbeos/eos hippocampal slices by applying a pixel-shift type of control, in which the Sylite channel (in far red) was horizontally flipped relative to the mEos4b-GlyRβ channel (in green, see Methods). As expected, the number of mEos4b-GlyRβ detections per gephyrin cluster was markedly reduced compared to the original analysis (revised__ Fig. 1B__), confirming that the synaptic mEos4b detections exceed chance levels (see page 5). *

      Inconsistency between Figure 3A and 3B. While Figure 3B indicates an ~8-fold difference in the number of mEos4b-GlyRβ detections per synapse between the dorsal and ventral striatum, Figure 3A does not appear to show a pronounced difference in the localization of mEos4b-GlyRβ on Sylite puncta between these two regions. If the images presented in Figure 3A are not representative, the authors should consider replacing them with more representative examples or providing an expanded images with multiple representative examples. Alternatively, if this inconsistency can be explained by differences in spot density within clusters, the authors should explain that.

      *The pointillist images in Fig. 3A are essentially binary (red-black). Therefore, the density of detections at synapses cannot be easily judged by eye. For clarity, the original images in Fig. 3A have been replaced with two other examples that better reflect the different detection numbers in the dorsal and ventral striatum. *

      • *

      Quantification in Figure 5. It is recommended that the authors provide quantitative data on cluster formation and colocalization with Sylite puncta in Figure 5 to support their qualitative observations.

      *This is an important point that was also raised by the other reviewers. We have performed additional experiments to increase the data volume for analysis. For quantification, we used two approaches. First, we counted the percentage of infected cells in which synaptic localisation of the recombinant receptor subunit was observed (Fig. 5C). We found that mEos4b-GlyRa1 consistently localises at synapses, indicating that all cells express endogenous GlyRb. When neurons were infected with mEos4b-GlyRb, fewer cells had synaptic clusters, meaning that indeed, GlyR alpha subunits are the limiting factor for synaptic targeting. In cultures infected with mEos4b-GlyRa2, only very few neurons displayed synaptic localisation (as judged by epifluorescence imaging). We think this shows that GlyRa2 is less capable of forming heteromeric complexes than GlyRa1, in line with our previous interpretation (see pp. 9-10, 13). *

      • *

      Secondly, we quantified the total intensity of each subunit at gephyrin-positive domains, both in infected neurons as well as non-infected control cultures (Fig. 5D). We observed that mEos4b-GlyRa1 intensity at gephyrin puncta was higher than that of the other subunits, again pointing to efficient synaptic targeting of GlyRa1. Gephyrin cluster intensities (Sylite labelling) were not significantly different in GlyRb and GlyRa2 expressing neurons compared to the uninfected control, indicating that the lentiviral expression of recombinant subunits does not fundamentally alter the size of mixed inhibitory synapses in hippocampal neurons. Interestingly, gephyrin levels were slightly higher in hippocampal neurons expressing mEos4b-GlyRa1. In our view, this comes from an enhanced expression and synaptic targeting of mEos4b-GlyRa1 heteromers with endogenous GlyRb, pointing to a structural role of GlyRa1/b in hippocampal synapses (pp. 10, 13).

      • *

      The new data and analyses have been described and illustrated in the relevant sections of the manuscript.

      Potential for pseudo replication. It's not clear whether they're performing stats tests across biological replica, images, or even synapses. They often quote mean +/- SEM with n = 1000s, and so does that mean they're doing tests on those 1000s? Need to clarify.

      All experiments were repeated at least twice to ensure reproducibility (N independent experiments). Statistical tests were performed on pooled data across the biological replicates; n denotes the number of data points used for testing (e.g., number of synaptic clusters, detections, cells, as specified in each case). We have systematically given these numbers in the revised manuscript (n, N, and other experimental parameters such as the number of animals used, coverslips, images or cells). Data are generally given as mean +/- SEM or as mean +/- SD as indicated.

      • *

      Does mEoS effect expression levels or function of the protein? Can't see any experiments done to confirm this. Could suggest WB on homogenate, or mass spec?

      The Glrbeos/eos knock-in mouse line has been characterised previously and does not to display any ultrastructural or functional deficits at inhibitory synapses (Maynard et al. 2021 eLife). GlyRβ expression and glycine-evoked responses were not significantly different to those of the wild-type. The synaptic localisation of mEos4b-GlyRb in KI animals demonstrates correct assembly of heteromeric GlyRs and synaptic targeting. Accordingly, the animals do not display any obvious phenotype. We have clarified this in the manuscript (p. 4). In the case of cultured neurons, long-term expression of fluorescent receptor subunits with lentivirus has proven ideal to achieve efficient synaptic targeting. The low and continuous supply of recombinant receptors ensures assembly with endogenous subunits to form heteropentameric receptor complexes (e.g. [Patrizio et al. 2017 Sci Rep]). In the present study, lentivirus infection did not induce any obvious differences in the number or size of inhibitory synapses compared to control neurons, as judged by Sylite labelling of synaptic gephyrin puncta (new__ Fig. 5D__).

      Quantification of protein numbers is challenging with SMLM. Issues include i) some of FP not correctly folded/mature, and ii) dependence of localisation rate on instrument, excitation/illumination intensities, and also the thresholds used in analysis. Can the authors compare with another protein that has known expression levels- e.g. PSD95? This is quite an ask, but if they could show copy number of something known to compare with, it would be useful.

      We agree that absolute quantification with SMLM is challenging, since the number of detections depends on fluorophore maturation, photophysics, imaging conditions, and analysis thresholds (discussed in Patrizio & Specht 2016, Neurophotonics). For this reason, only very few datasets provide reliable copy numbers, even for well-studied proteins such as PSD-95. One notable exception is the study by Maynard et al. (eLife 2021) that quantified endogenous GlyRb-containing receptors in spinal cord synapses using SMLM combined with correlative electron microscopy. The strength of this work was the use of a KI mouse strain, which ensures that mEos4b-GlyRb expression follows intrinsic regional and temporal profiles. The authors reported a stereotypic density of ~2,000 GlyRs/µm² at synapses, corresponding to ~120 receptors per synapse in the dorsal horn and ~240 in the ventral horn, taking into account various parameters including receptor stoichiometry and the functionality of the fluorophore. These values are very close to our own calculations of GlyR numbers at spinal cord synapses that were obtained slightly differently in terms of sample preparation, microscope setup, imaging conditions, and data analysis, lending support to our experimental approach. Nevertheless, the obtained GlyR copy numbers at hippocampal synapses clearly have to be taken as estimates rather than precise figures, because the number of detections from a single mEos4b fluorophore can vary substantially, meaning that the fluorophores are not represented equally in pointillist images. This can affect the copy number calculation for a specific synapse, in particular when the numbers are low (e.g. in hippocampus), however, it should not alter the average number of detections (Fig. 1B) or the (median) molecule numbers of the entire population of synapses (Fig. 1C). We have discussed the limitations of our approach (p. 11).

      Rationale for doing nanobody dSTORM not clear at all. They don't explain the reason for doing the dSTORM experiments. Why not just rely on PALM for coincidence measurements, rather than tagging mEoS with a nanobody, and then doing dSTORM with that? Can they explain? Is it to get extra localisations- i.e. multiple per nanobody? If so, localising same FP multiple times wouldn't improve resolution. Also, no controls for nanobody dSTORM experiments- what about non-spec nb, or use on WT sections?

      *As discussed above (point 6), the detection of fluorophores with SMLM is influenced by many parameters, not least the noise produced by emitting molecules other than the fluorophore used for labelling. Our study is exceptional in that it attempts to identify extremely low molecule numbers (down to 1). To verify that the detections obtained with PALM correspond to mEos4b, we conducted robust control experiments (including pixel-shift as suggested by the reviewer, see point 1, revised__ Fig. 1B__). The rationale for the nanobody-based dSTORM experiments was twofold: (1) to have an independent readout of the presence of low-copy GlyRs at inhibitory synapses and (2) to analyse the nanoscale organisation of GlyRs relative to the synaptic gephyrin scaffold using dual-colour dSTORM with spectral demixing (see p. 6). The organic fluorophores used in dSTORM (AF647, CF680) ensure high photon counts, essential for reliable co-localisation and distance analysis. PALM and dSTORM cannot be combined in dual-colour mode, as they require different buffers and imaging conditions. *

      The specificity of the anti-Eos nanobody was demonstrated by immunohistochemistry in spinal cord cultures expressing mEos4b-GlyRb and wildtype control tissue (Fig. S3). In response to the reviewer's remarks, we also performed a negative control experiment in Glrbeos/eos slices (dSTORM), in which the nanobody was omitted (new__ Fig. S4F,G__). Under these conditions, spectral demixing produced a single peak corresponding to CF680 (gephyrin) without any AF647 contribution (Fig. S4F). The background detection of "false" AF647 detections at synapses was significantly lower than in the slices labelled with the nanobody. We conclude that the fluorescence signal observed in our dual-colour dSTORM experiments arises from the specific detection of mEos4b-GlyRb by the nanobody, rather than from background, cross-reactivity or wrong attribution of colour during spectral demixing. We have added these data and explanations in the results (p. 7) and in the figure legend of Fig. S4F,G.

      What resolutions/precisions were obtained in SMLM experiments? Should perform Fourier Ring Correlation (FRC) on SR images to state resolutions obtained (particularly useful for when they're presenting distance histograms, as this will be dependent on resolution). Likewise for precision, what was mean precision? Can they show histograms of localisation precision.

      This is an interesting question in the context of our experiments with low-copy GlyRs, since the spatial resolution of SMLM is limited also by the density of molecules, i.e. the sampling of the structure in question (Nyquist-Shannon criterion). Accordingly, the priority of the PALM experiments was to improve the sensibility of SMLM for the identification of mEos4b-GlyRb subunits, rather than to maximize the spatial resolution. The mean localisation precision in PALM was 33 +/- 12 nm, as calculated from the fitting parameters of each detection (Zeiss, ZEN software), which ultimately result from their signal-to-noise ratio. This is a relatively low precision for SMLM, which can be explained by the low brightness of mEos4b compared to organic fluorophores together with the elevated fluorescence background in tissue slices.

      • *

      In the case of dSTORM, the aim was to study the relative distribution of GlyRs within the synaptic scaffold, for which a higher localisation precision was required (p. 6). Therefore, detections with a precision ≥ 25 nm were filtered during analysis with NEO software (Abbelight). The retained detections had a mean localisation precision of 12 +/- 5 for CF680 (Sylite) and 11 +/- 4 for AF647 (nanobody). These values are given in the revised manuscript (pp. 18, 22).

      Why were DBSCAN parameters selected? How can they rule out multiple localisations per fluor? If low copy numbers (

      Multiple detections of the same fluorophore are intrinsic to dSTORM imaging and have not been eliminated from the analysis. Small clusters of detections likely represent individual molecules (e.g. single receptors in the extrasynaptic regions, Fig. 2A). DBSCAN is a robust clustering method that is quite insensitive to minor changes in the choice of parameters. For dSTORM of synaptic gephyrin clusters (CF680), a relatively low length (80 nm radius) together with a high number of detections (≥ 50 neighbours) were chosen to reconstruct the postsynaptic domain with high spatial resolution (see point 8). In the case of the GlyR (nanobody-AF647), the clustering was done mostly for practical reasons, as it provided the coordinates of the centre of mass of the detections. The low stringency of this clustering (200 nm radius, ≥ 5 neighbours) effectively filters single detections that can result from background noise or incorrect demixing. An additional reference explaining the use of DBSCAN including the choice of parameters is given on p. 22 (see also R2 point 4).

      For microscopy experiment methods, state power densities, not % or "nominal power".

      *Done. We now report the irradiance (laser power density) instead of nominal power (pp. 18, 21). *

      In general, not much data presented. Any SI file with extra images etc.?

      *The original submission included four supplementary figures with additional data and representative images that should have been available to the reviewer (Figs. S1-S4). The SI file has been updated during revision (new Fig. S4E-G). *

      Clarification of the discussion on GlyR expression and synaptic localization: The discussion on GlyR expression, complex formation, and synaptic localization is sometimes unclear, and needs terminological distinctions between "expression level", "complex formation" and "synaptic localization". For example, the authors state:"What then is the reason for the low protein expression of GlyRβ? One possibility is that the assembly of mature heteropentameric GlyR complexes depends critically on the expression of endogenous GlyR α subunits." Does this mean that GlyRβ proteins that fail to form complexes with GlyRα subunits are unstable and subject to rapid degradation? If so, the authors should clarify this point. The statement "This raises the interesting possibility that synaptic GlyRs may depend specifically on the concomitant expression of both α1 and β transcripts." suggests a dependency on α1 and β transcripts. However, is the authors' focus on synaptic localization or overall protein expression levels? If this means synaptic localization, it would be beneficial to state this explicitly to avoid confusion. To improve clarity, the authors should carefully distinguish between these different aspects of GlyR biology throughout the discussion. Additionally, a schematic diagram illustrating these processes would be highly beneficial for readers.

      We thank the reviewer to point this out. We are dealing with several processes; protein expression that determines subunit availability and the assembly of pentameric GlyRs complexes, surface expression, membrane diffusion and accumulation of GlyRb-containing receptor complexes at inhibitory synapses. We have edited the manuscript, particularly the discussion and tried to be as clear as possible in our wording.

      • *

      We chose not to add a schematic illustration for the time being, because any graphical representation is necessarily a simplification. Instead, we preferred to summarise the main numbers in tabular form (Table 1). We are of course open to any other suggestions.

      Interpretation of GlyR localization in the context of nanodomains. The distribution of GlyR molecules on inhibitory synapses appears to be non-homogeneous, instead forming nanoclusters or nanodomains, similar to many other synaptic proteins. It is important to interpret GlyR localization in the context of nanodomain organization.

      The dSTORM images in Fig. 2 are pointillist representations that show individual detections rather than molecules. Small clusters of detections are likely to originate from a single AF647 fluorophore (in the case of nanobody labelling) and therefore represent single GlyRb subunits. Since GlyR copy numbers are so low at hippocampal synapses (≤ 5), the notion of nanodomain is not directly applicable. Our analysis therefore focused on the integration of GlyRs within the postsynaptic scaffold, rather than attempting to define nanodomain structures (see also response to point 8 of R1). A clarification has been added in the revised manuscript (p. 6).

      __Reviewer #1 (Significance (Required)): __

      The paper presents biological and technical advances. The biological insights revolve mostly on the documentation of Glycine receptors in particular synapses in forebrain, where they are typically expressed at very low levels. The authors provide compelling data indicating that the expression is of physiological significance. The authors have done a nice job of combining genetically-tagged mice with advanced microscopy methods to tackle the question of distributions of synaptic proteins. Overall these advances are more incremental than groundbreaking.

      We thank the reviewer for acknowledging both the technical and biological advances of our study. While we recognize that our work builds upon established models, we consider that it also addresses important unresolved questions, namely that GlyRs are present and specifically anchored at inhibitory synapses in telencephalic regions, such as the hippocampus and striatum. From a methodological point of view, our study demonstrates that SMLM can be applied not only for structural analysis of highly abundant proteins, but also to reliably detect proteins present at very low copy numbers. This ability to identify and quantify sparse molecule populations adds a new dimension to SMLM applications, which we believe increases the overall impact of our study beyond the field of synaptic neuroscience.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      In their manuscript "Single molecule counting detects low-copy glycine receptors in hippocampal and striatal synapses" Camuso and colleagues apply single molecule localization microscopy (SMLM) methods to visualize low copy numbers of GlyRs at inhibitory synapses in the hippocampal formation and the striatum. SMLM analysis revealed higher copy numbers in striatum compared to hippocampal inhibitory synapses. They further provide evidence that these low copy numbers are tightly linked to post-synaptic scaffolding protein gephyrin at inhibitory synapses. Their approach profits from the high sensitivity and resolution of SMLM and challenges the controversial view on the presence of GlyRs in these formations although there are reports (electrophysiology) on the presence of GlyRs in these particular brain regions. These new datasets in the current manuscript may certainly assist in understanding the complexity of fundamental building blocks of inhibitory synapses.

      However I have some minor points that the authors may address for clarification:

      1) In Figure 1 the authors apply PALM imaging of mEos4b-GlyRß (knockin) and here the corresponding Sylite label seems to be recorded in widefield, it is not clearly stated in the figure legend if it is widefield or super-resolved. In Fig 1 A - is the scale bar 5 µm? Some Sylite spots appear to be sized around 1 µm, especially the brighter spots, but maybe this is due to the lower resolution of widefield imaging? Regarding the statistical comparison: what method was chosen to test for normality distribution, I think this point is missing in the methods section.

      *This is correct; the apparent size of the Sylite spots does not reflect the real size of the synaptic gephyrin domain due to the limited resolution of widefield imaging including the detection of out-of-focus light. We have clarified in the legend of Fig. 1A that Sylite labelling was with classic epifluorescence microscopy. The scale bar in Fig. 1A corresponds to 5 µm. Since the data were not normally distributed, nonparametric tests (Kruskal- Wallis one-way ANOVA with Dunn’s multiple comparison test or Mann-Whitney U-test for pairwise comparisons) were used (p. 23). *

      Moreover I would appreciate a clarification and/or citation that the knockin model results in no structural and physiological changes at inhibitory synapses, I believe this model has been applied in previous studies and corresponding clarification can be provided.

      The Glrbeos/eos mouse model has been described previously and does not exhibit any structural or physiological phenotypes (Maynard et al. 2021 eLife). The issue was also raised by reviewer R1 (point 5) and has been clarified in the revised manuscript (p. 4).

      2) In the next set of experiments the authors switch to demixing dSTORM experiments - an explanation why this is performed is missing in the text - I guess better resolution to perform more detailed distance measurements? For these experiments: which region of the hippocampus did the authors select, I cannot find this information in legend or main text.

      Yes, the dSTORM experiments enable dual-colour structural analysis at high spatial resolution (see response to R1 point 7). An explanation has been added (p. 6).

      3) Regarding parameters of demixing experiments: the number of frames (10.000) seems quite low and the exposure time higher than expected for Alexa 647. Can the authors explain the reason for chosing these particular parameters (low expression profile of the target - so better separation?, less fluorophores on label and shorter collection time?) or is there a reference that can be cited? The laser power is given in the methods in percentage of maximal output power, but for better comparison and reproducibility I recommend to provide the values of a power meter (kW/cm2) as lasers may change their maximum output power during their lifetime.

      Acquisition parameters (laser power, exposure time) for dSTORM were chosen to obtain a good localisation precision (~12 nm; see R1 point 8). The number of frames is adequate to obtain well sampled gephyrin scaffolds in the CF680 channel. In the case of the GlyR (nanobody-AF647), the concept of spatial resolution does not really apply due to the low number of targets (see R1, point 13). Power density (irradiance) values have now been given (pp. 18, 21).

      4) For analysis of subsynaptic distribution: how did the authors decide to choose the parameters in the NEO software for DBSCAN clustering - was a series of parameters tested to find optimal conditions and did the analysis start with an initial test if data is indeed clustered (K-ripley) or is there a reference in literature that can be provided?

      DBSCAN parameters were optimised manually, by testing different values. Identification of dense and well-delimited gephyrin clusters (CF680) was achieved with a small radius and a high number of detections (80 nm, ≥ 50 neighbours), whereas filtering of low-density background in the AF647 channel (GlyRs) required less stringent parameters (200 nm, ≥ 5) due to the low number of target molecules. Similar parameters were used in a previous publication (Khayenko et al. 2022, Angewandte Chemie). The reference has been provided on p. 22 (see also R1 point 9).

      5) A conclusion/discussion of the results presented in Figure 5 is missing in the text/discussion.

      *This part of the manuscript has been completely overhauled. It includes new experimental data, quantification of the data (new Fig.5), as well as the discussion and interpretation of our findings (see also R1, point 3). In agreement with our earlier interpretation, the data confirm that low availability of GlyRa1 subunits limits the expression and synaptic targeting of GlyRa1/b heteropentamers. The observation that GlyRa1 overexpression with lentivirus increases the size of the postsynaptic gephyrin domain further points to a structural role, whereby GlyRs can enhance the stability (and size) of inhibitory synapses in hippocampal neurons, even at low copy numbers (pp. 13-14). *

      6) in line 552 "suspension" is misleading, better use "solution"

      Done.

      __Reviewer #2 (Significance (Required)): __

      Significance: The manuscript provides new insights to presence of low-copy numbers by visualizing them via SMLM. This is the first report that visualizes GlyR optically in the brain applying the knock-in model of mEOS4b tagged GlyRß and quantifies their copy number comparing distribution and amount of GlyRs from hippocampus and striatum. Imaging data correspond well to electrophysiological measurements in the manuscript.

      Field of expertise: Super-Resolution Imaging and corresponding analysis

      __Reviewer #4 (Evidence, reproducibility and clarity (Required)): __

      In this study, Camuso et al., make use of a knock-in mouse model expressing endogenously mEos4b-tagged GlyRβ to detect endogenous glycine receptors using single-molecule localization microscopy. The main conclusion from this study is that in the hippocampus GlyRβ molecules are barely detected, while inhibitory synapses in the ventral striatum seem to express functionally relevant GlyR numbers.

      I have a few points that I hope help to improve the strength of this study.

      • In the hippocampus, this study finds that the numbers of detections are very low. The authors perform adequate controls to indicate that these localizations are above noise level. Nevertheless, it remains questionable that these reflect proper GlyRs. The suggestion that in hippocampal synapses the low numbers of GlyRβ molecules "are important in assembly or maintenance of inhibitory synaptic structures in the brain" is on itself interesting, but is not at all supported. It is also difficult to envision how such low numbers could support the structure of a synapse. A functional experiment showing that knockdown of GlyRs affects inhibitory synapse structure in hippocampal neurons would be a minimal test of this.

      *It is not clear what the reviewer means by “it remains questionable that these reflect proper GlyRs”. The PALM experiments include a series of stringent controls (see R1, point 1) demonstrating the existence of low-copy GlyRs at inhibitory synapses in the hippocampus (Fig. 1) and in the striatum (Fig. 3), and are backed up by dSTORM experiments (Fig. 2). We have no reason to doubt that these receptors are fully functional (as demonstrated for the ventral striatum (Fig. 4). However, due to their low number, a role in inhibitory synaptic transmission is clearly limited, at least in the hippocampus and dorsal striatum. *

      • *

      We therefore propose a structural role, where the GlyRs could be required to stabilise the postsynaptic gephyrin domain in hippocampal neurons. This is based on the idea that the GlyR-gephyrin affinity is much higher than that of the GABAAR-gephyrin interaction (reviewed in Kasaragod & Schindelin 2018 Front Mol Neurosci). Accordingly, there is a close relationship between GlyRs and gephyrin numbers, sub-synaptic distribution, and dynamics in spinal cord synapses that are mostly glycinergic (Specht et al. 2013 Neuron; Maynard et al. 2021 eLife; Chapdelaine et al. 2021 Biophys J). It is reasonable to assume that low-copy GlyRs could play a similar structural role at hippocampal synapses. A knockdown experiment targeting these few receptors is technically very challenging and beyond the scope of this study. However, in response to the reviewer's question we have conducted new experiments in cultured hippocampal neurons (new__ Fig. 5__). They demonstrate that overexpression of GlyRa1/b heteropentamers increases the size of the postsynaptic domain in these neurons, supporting our interpretation of a structural role of low-copy GlyRs (p. 14).

      • The endogenous tagging strategy is a very strong aspect of this study and provides confidence in the labeling of GlyRβ molecules. One caveat however, is that this labeling strategy does not discriminate whether GlyRβ molecules are on the cell membrane or in internal compartments. Can the authors provide an estimate of the ratio of surface to internal GlyRβ molecules?

      Gephyrin is known to form a two-dimensional scaffold below the synaptic membrane to which inhibitory GlyRs and GABAARs attach (reviewed in Alvarez 2017 Brain Res). The majority of the synaptic receptors are therefore thought to be located in the synaptic membrane, which is supported by the close relationship between the sub-synaptic distribution of GlyRs and gephyrin in spinal cord neurons (e.g. Maynard et al. 2021 eLife). To demonstrate the surface expression of GlyRs at hippocampal synapses we labelled cultured hippocampal neurons expressing mEos4b-GlyRa1 with anti-Eos nanobody in non-permeabilised neurons (see Figure below for the reviewer only). The close correspondence between the nanobody (AF647) and the mEos4b signal confirms that the majority of the GlyRs are indeed located in the synaptic membrane.

      • *

      Figure (for the reviewer only).* Left: Lentivirus expression of mEos4b-GlyRa1 in fixed and non-permeabilised hippocampal neurons (mEos4b signal). Right: Surface labelling of the recombinant subunit with anti-Eos nanoboby (AF647). *

      • 'We also estimated the absolute number of GlyRs per synapse in the hippocampus. The number of mEos4b detections was converted into copy numbers by dividing the detections at synapses by the average number of detections of individual mEos4b-GlyRβ containing receptor complexes'. In essence this is a correct method to estimate copy numbers, and the authors discuss some of the pitfalls associated with this approach (i.e., maturation of fluorophore and detection limit). Nevertheless, the authors did not subtract the number of background localizations determined in the two negative control groups. This is critical, particularly at these low-number estimations.

      We fully agree that background subtraction can be useful with low detection numbers. In the revised manuscript, copy numbers are now reported as background-corrected values. Specifically, the mean number of detections measured in wildtype slices was used to calculate an equivalent receptor number, which was then subtracted from the copy number estimates across hippocampus, spinal cord and striatum. This procedure is described in the methods (p. 20) and results (p. 5, 8), and mentioned in the figure legends of Fig. 1C, 3C. The background corrected values are given in the text and Table 1.

      Furthermore, the authors state that "The advantage of this estimation is that it is independent of the stoichiometry of heteropentameric GlyRs". However, if the stoichometry is unknown, the number of counted GlyRβ subunits cannot simply be reported as the number of GlyRs. This should be discussed in more detail, and more carefully reported throughout the manuscript.

      *The reviewer is right to point this out. There is still some debate about the stoichiometry of heteropentameric GlyRs. Configurations with 2a:3b, 3a:2b and 4a:1b subunits have been advanced (e.g. Grudzinska et al. 2005 Neuron; Durisic et al. 2012 J Neurosci; Patrizio et al. 2017 Sci Rep; Zhu & Gouaux 2021 Nature). We have therefore chosen a quantification that is independent of the underlying stoichiometry. Since our quantification is based on very sparse clusters of mEos4b detections that likely originate from a single receptor complex (irrespective of its stoichiometry), the reported values actually reflect the number of GlyRs (and not GlyRb subunits). We have clarified this in the results (p. 5) and throughout the manuscript (Table 1). *

      • The dual-color imaging provides insights in the subsynaptic distribution of GlyRβ molecules in hippocampal synapses. Why are similar studies not performed on synapses in the ventral striatum where functionally relevant numbers of GlyRβ molecules are found? Here insights in the subsynaptic receptor distribution would be of much more interest as it can be tight to the function.

      This is an interesting suggestion. However, the primary aim of our study was to identify the existence of GlyRs in hippocampal regions. At low copy numbers, the concept of sub-synaptic domains (SSDs, e.g. Yang et al. 2021 EMBO Rep) becomes irrelevant (see R1 point 13). It should be pointed out that the dSTORM pointillist images (Fig. 2A) represent individual GlyR detections rather than clusters of molecules. In the striatum, our specific purpose was to solve an open question about the presence of GlyRs in different subregions (putamen, nucleus accumbens).

      • It is unclear how the experiments in Figure 5 add to this study. These results are valid, but do not seem to directly test the hypothesis that "the expression of α subunits may be limiting factor controlling the number of synaptic GlyRs". These experiments simply test if overexpressed α subunits can be detected. If the α subunits are limiting, measuring the effect of α subunit overexpression on GlyRβ surface expression would be a more direct test.

      Both R1 and R2 have also commented on the data in Fig. 5 and their interpretation. We have substantially revised this section as described before (see R1 point 3) including additional experiments and quantification of the data (new Fig. 5). The findings lend support to our earlier hypothesis that GlyR alpha subunits (in particular GlyRa1) are the limiting factor for the expression of heteropentameric GlyRa/b in hippocampal neurons (pp. 13-14). Since the GlyRa1 subunit itself does not bind to gephyrin (Patrizio et al. 2017 Sci Rep), the synaptic localisation of the recombinant mEos4b-GlyRa1 subunits is proof that they have formed heteropentamers with endogenous GlyRb subunits and driven their membrane trafficking, which the GlyRb subunits are incapable of doing on their own.

      __Reviewer #4 (Significance (Required)): __

      These results are based on carefully performed single-molecule localization experiments, and are well-presented and described. The knockin mouse with endogenously tagged GlyRβ molecules is a very strong aspect of this study and provides confidence in the labeling, the combination with single-molecule localization microscopy is very strong as it provides high sensitivity and spatial resolution.

      The conceptual innovation however seems relatively modest, these results confirm previous studies but do not seem to add novel insights. This study is entirely descriptive and does not bring new mechanistic insights.

      This study could be of interest to a specialized audience interested in glycine receptor biology, inhibitory synapse biology and super-resolution microscopy.

      my expertise is in super-resolution microscopy, synaptic transmission and plasticity

      As we have stated before, the novelty of our study lies in the use of SMLM for the identification of very small numbers of molecules, which requires careful control experiments. This is something that has not been done before and that can be of interest to a wider readership, as it opens up SMLM for ultrasensitive detection of rare molecular events. Using this approach, we solve two open scientific questions: (1) the demonstration that low-copy GlyRs are present at inhibitory synapses in the hippocampus, (2) the sub-region specific expression and functional role of GlyRs in the ventral versus dorsal striatum.

      • *

      • *

      The following review was provided later under the name “Reviewer #4”. To avoid confusion with the last reviewer from above we will refer to this review as R4-2.


      __Reviewer #4-2 (Evidence, reproducibility and clarity (Required)): __


      Summary:

      Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate).

      The authors investigate the presence of synaptic glycine receptors in the telencephalon, whose presence and function is poorly understood.

      Using a transgenically labeled glycine receptor beta subunit (Glrb-mEos4b) mouse model together with super-resolution microscopy (SLMM, dSTORM), they demonstrate the presence of a low but detectable amount of synaptically localized GLRB in the hippocampus. While they do not perform a functional analysis of these receptors, they do demonstrate that these subunits are integrated into the inhibitory postsynaptic density (iPSD) as labeled by the scaffold protein gephyrin. These findings demonstrate that a low level of synaptically localized glycerine receptor subunits exist in the hippocampal formation, although whether or not they have a functional relevance remains unknown.

      They then proceed to quantify synaptic glycine receptors in the striatum, demonstrating that the ventral striatum has a significantly higher amount of GLRB co-localized with gephyrin than the dorsal striatum or the hippocampus. They then recorded pharmacologically isolated glycinergic miniature inhibitory postsynaptic currents (mIPSCs) from striatal neurons. In line with their structural observations, these recordings confirmed the presence of synaptic glycinergic signaling in the ventral striatum, and an almost complete absence in the dorsal striatum. Together, these findings demonstrate that synaptic glycine receptors in the ventral striatum are present and functional, while an important contribution to dorsal striatal activity is less likely.

      Lastly, the authors use existing mRNA and protein datasets to show that the expression level of GLRA1 across the brain positively correlates with the presence of synaptic GLRB.

      The authors use lentiviral expression of mEos4b-tagged glycine receptor alpha1, alpha2, and beta subunits (GLRA1, GLRA1, GLRB) in cultured hippocampal neurons to investigate the ability of these subunits to cause the synaptic localization of glycine receptors. They suggest that the alpha1 subunit has a higher propensity to localize at the inhibitory postsynapse (labeled via gephyrin) than the alpha2 or beta subunits, and may therefore contribute to the distribution of functional synaptic glycine receptors across the brain.

      Major comments:

      • Are the key conclusions convincing?

      The authors are generally precise in the formulation of their conclusions.

      • They demonstrate a very low, but detectable, amount of a synaptically localized glycine receptor subunit in a transgenic (GlrB-mEos4b) mouse model. They demonstrate that the GLRB-mEos4b fusion protein is integrated into the iPSD as determined by gephyrin labelling. The authors do not perform functional tests of these receptors and do not state any such conclusions.
      • The authors show that GLRB-mEos4b is clearly detectable in the striatum and integrated into gephyrin clusters at a significantly higher rate in the ventral striatum compared to the dorsal striatum, which is in line with previous studies.
      • Adding to their quantification of GLRB-mEos4b in the striatum, the authors demonstrate the presence of glycinergic miniature IPSCs in the ventral striatum, and an almost complete absence of mIPSCs in the dorsal striatum. These currents support the observation that GLRB-mEos4b is more synaptically integrated in the ventral striatum compared to the dorsal striatum.
      • The authors show that lentiviral expression of GLRA1-mEos4b leads to a visually higher number of GLR clusters in cultured hippocampal neurons, and a co-localization of some clusters with gephyrin. The authors claim that this supports the idea that GLRA1 may be an important driver of synaptic glycine receptor localization. However, no quantification or statistical analysis of the number of puncta or their colocalization with gephyrin is provided for any of the expressed subunits. Such a claim should be supported by quantification and statistics A thorough analysis and quantification of the data in Fig.5 has been carried out as requested by all the other reviewers (e.g. R1, point 3). The new data and results have been described in the revised manuscript (pp. 9-10, 13-14).

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      One unaddressed caveat is the fact that a GLRB-mEos4b fusion protein may behave differently in terms of localization and synaptic integration than wild-type GLRB. While unlikely, it is possible that mEos4b interacts either with itself or synaptic proteins in a way that changes the fused GLRB subunit’s localization. Such an effect would be unlikely to affect synaptic function in a measurable way, but might be detected at a structural level by highly sensitive methods such as SMLM and STORM in regions with very low molecule numbers (such as the hippocampus). Since reliable antibodies against GLRB in brain tissue sections are not available, this would be difficult to test. Considering that no functional measures of the hippocampal detections exist, we would suggest that this possible caveat be mentioned for this particular experiment.

      *This question has also been raised before (R1, point 5). According to an earlier study the mEos4b-GlyRb knock-in does not cause any obvious phenotypes, with the possible exception of minor loss of glycine potency (Maynard et al. 2021 eLife). The fact that the synaptic levels in the spinal cord in heterozygous animals are precisely half of those of homozygous animals argues against differences in receptor expression, heteropentameric assembly, forward trafficking to the plasma membrane and integration into the synaptic membrane as confirmed using quantitative super-resolution CLEM (Maynard et al. 2021 eLife). Accordingly, we did not observe any behavioural deficits in these animals, making it a powerful experimental model. We have added this information in the revised manuscript (p. 4). *

      In addition, without any quantification or statistical analysis, the author’s claims regarding the necessity of GLRA1 expression for the synaptic localization of glycine receptors in cultured hippocampal neurons should probably be described as preliminary (Fig. 5).

      As mentioned before, we have substantially revised this part (R1, point 3). The quantification and analysis in the new Fig. 5 support our earlier interpretation.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      The authors show that there is colocalization of gephyrin with the mEos4b-GlyRβ subunit using the Dual-colour SMLM. This is a powerful approach that allows for a claim to be made on the synaptic location of the glycine receptors. The images presented in Figure 1, together with the distance analysis in Figure 2, display the co-localization of the fluorophores. The co-localization images in all the selected regions, hippocampus and striatum, also show detections outside of the gephyrin clusters, which the authors refer to as extrasynaptic. These punctated small clusters seem to have the same size as the ones detected and assigned as part of the synapse. It would be informative if the authors analysed the distribution, density and size of these non-synaptic clusters and presented the data in the manuscript and also compared it against the synaptic ones. Validating this extrasynaptic signal by staining for a dendritic marker, such as MAP-2 or maybe a somatic marker and assessing the co-localization with the non-synaptic clusters would also add even more credibility to them being extrasynaptic.

      The existence of extrasynaptic GlyRs is well attested in spinal cord neurons (e.g. Specht et al. 2013 Neuron; this study see Fig. S2). The fact that these appear as small clusters of detections in SMLM recordings results from the fact that a single fluorophore can be detected several times in consecutive image frames and because of blinking. Therefore, small clusters of detections likely represent single GlyRs (that can be counted), and not assemblies of several receptor complexes. Due to their diffusion in the neuronal membrane, they are seen as diffuse signals throughout the somatodendritic compartment in epifluorescence images (e.g. Fig. 5A). SMLM recordings of the same cells resolves this diffuse signal into discrete nanoclusters representing individual receptors (Fig. 5B). It is not clear what information co-localisation experiments with specific markers could provide, especially in hippocampal neurons, in which the copy numbers (and density) of GlyRs is next to zero.

      In addition we would encourage the authors to quantify the clustering and co-localization of virally expressed GLRA1, GLRA2, and GLRB with gephyrin in order to support the associated claims (Fig. 5). Preferably, the density of GLR and gephyrin clusters (at least on the somatic surface, the proximal dendrites, or both) as well as their co-localization probability should be quantified if a causal claim about subunit-specific requirements for synaptic localization is to be made.

      Quantification of the data have been carried out (new Fig.5C,D). The results have been described before (R1, point 3) and support our earlier interpretation of the data (pp. 13-14).

      Lastly, even though it may be outside of the scope of such a study analysing other parts of the hippocampal area could provide additional important information. If one looks at the Allen Institute’s ISH of the beta subunit the strongest signal comes from the stratum oriens in the CA1 for example, suggesting that interneurons residing there would more likely have a higher expression of the glycine receptors. This could also be assessed by looking more carefully at the single cell transcriptomics, to see which cell types in the hippocampus show the highest mRNA levels. If the authors think that this is too much additional work, then perhaps a mention of this in the discussion would be good.

      We have added the requested information from the ISH database of the Allen Institute in the discussion as suggested by the reviewer (p. 12). However, in combination with the transcriptomic data (Fig. S1) our finding strongly suggest that the expression of synaptic GlyRs depends on the availability of alpha subunits rather than on the presence of the GlyRb transcript. This is obvious when one compares the mRNA levels in the hippocampus with those in the basal ganglia (striatum) and medulla. While the transcript concentrations of GlyRb are elevated in all three regions and essentially the same, our data show that the GlyRb copy numbers *at synapses differ over more than 2 orders of magnitude (Fig. 1B, Table 1). *

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      Since the labeling and some imaging has been performed already, the requested experiment would be a matter of deploying a method of quantification. In principle, it should not require any additional wet-lab experiments, although it may require additional imaging of existing samples.

      • Are the data and the methods presented in such a way that they can be reproduced?

      Yes, for the most part.

      • Are the experiments adequately replicated and statistical analysis adequate?

      Yes

      Minor comments:

      • Specific experimental issues that are easily addressable.

      N/A

      • Are prior studies referenced appropriately?

      Yes

      • Are the text and figures clear and accurate?

      Yes, although quantification in figure 5 is currently not present.

      A quantification has been added (see R1, point 3).

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      This paper presents a method that could be used to localize receptors and perhaps other proteins that are in low abundance or for which a detailed quantification is necessary. I would therefore suggest that Figure S4 is included into Figure 2 as the first panel, showcasing the demixing, followed by the results.

      We agree in principle with this suggestion. However, the revised Fig. S4 is more complex and we think that it would distract from the data shown in Fig. 2. Given that Fig. S4 is mostly methodological and not essential to understand the text, we have kept it in the supplement for the time being. We leave the final decision on this point to the editor.

      __Reviewer #4-2 (Significance (Required)): __

      [This review was supplied later]

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      Using a novel and high resolution method, the authors have provided strong evidence for the presence of glycine receptors in the murine hippocampus and in the dorsal striatum. The number of receptors calculated is small compared to the numbers found in the ventral striatum. This is the first study to quantify receptor numbers in these region. In addition it also lays a roadmap for future studies addressing similar questions.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      This is done well by the authors in the curation of the literature. As stated above, the authors have filled a gap in the presence of glycine receptors in different brain regions, a subject of importance in understanding the role they play in brain activity and function.

      • State what audience might be interested in and influenced by the reported findings.

      Neuroscientists working at the synaptic level, on inhibitory neurotransmission and on fundamental mechanisms of expression of genes at low levels and their relationship to the presence of the protein would be interested. Furthermore, researchers in neuroscience and cell biology may benefit from and be inspired by the approach used in this manuscript, to potentially apply it to address their own aims.

      *We thank the reviewer for the positive assessment of the technical and biological implications of our work, as well as the interest of our findings to a wide readership of neuroscientists and cell biologists. *

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Synaptic transmission, inhibitory cells and GABAergic synapses functionally and structurally, cortex and cortical circuits. No strong expertise in super-resolution imaging methods.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #4

      Evidence, reproducibility and clarity

      Summary: Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate).

      The authors investigate the presence of synaptic glycine receptors in the telencephalon, whose presence and function is poorly understood.

      Using a transgenically labeled glycine receptor beta subunit (Glrb-mEos4b) mouse model together with super-resolution microscopy (SLMM, dSTORM), they demonstrate the presence of a low but detectable amount of synaptically localized GLRB in the hippocampus. While they do not perform a functional analysis of these receptors, they do demonstrate that these subunits are integrated into the inhibitory postsynaptic density (iPSD) as labeled by the scaffold protein gephyrin. These findings demonstrate that a low level of synaptically localized glycerine receptor subunits exist in the hippocampal formation, although whether or not they have a functional relevance remains unknown.

      They then proceed to quantify synaptic glycine receptors in the striatum, demonstrating that the ventral striatum has a significantly higher amount of GLRB co-localized with gephyrin than the dorsal striatum or the hippocampus. They then recorded pharmacologically isolated glycinergic miniature inhibitory postsynaptic currents (mIPSCs) from striatal neurons. In line with their structural observations, these recordings confirmed the presence of synaptic glycinergic signaling in the ventral striatum, and an almost complete absence in the dorsal striatum. Together, these findings demonstrate that synaptic glycine receptors in the ventral striatum are present and functional, while an important contribution to dorsal striatal activity is less likely.

      Lastly, the authors use existing mRNA and protein datasets to show that the expression level of GLRA1 across the brain positively correlates with the presence of synaptic GLRB. The authors use lentiviral expression of mEos4b-tagged glycine receptor alpha1, alpha2, and beta subunits (GLRA1, GLRA1, GLRB) in cultured hippocampal neurons to investigate the ability of these subunits to cause the synaptic localization of glycine receptors. They suggest that the alpha1 subunit has a higher propensity to localize at the inhibitory postsynapse (labeled via gephyrin) than the alpha2 or beta subunits, and may therefore contribute to the distribution of functional synaptic glycine receptors across the brain.

      Major comments: - Are the key conclusions convincing?

      The authors are generally precise in the formulation of their conclusions.

      1) They demonstrate a very low, but detectable, amount of a synaptically localized glycine receptor subunit in a transgenic (GlrB-mEos4b) mouse model. They demonstrate that the GLRB-mEos4b fusion protein is integrated into the iPSD as determined by gephyrin labelling. The authors do not perform functional tests of these receptors and do not state any such conclusions. 2) The authors show that GLRB-mEos4b is clearly detectable in the striatum and integrated into gephyrin clusters at a significantly higher rate in the ventral striatum compared to the dorsal striatum, which is in line with previous studies. 3) Adding to their quantification of GLRB-mEos4b in the striatum, the authors demonstrate the presence of glycinergic miniature IPSCs in the ventral striatum, and an almost complete absence of mIPSCs in the dorsal striatum. These currents support the observation that GLRB-mEos4b is more synaptically integrated in the ventral striatum compared to the dorsal striatum. 4) The authors show that lentiviral expression of GLRA1-mEos4b leads to a visually higher number of GLR clusters in cultured hippocampal neurons, and a co-localization of some clusters with gephyrin. The authors claim that this supports the idea that GLRA1 may be an important driver of synaptic glycine receptor localization. However, no quantification or statistical analysis of the number of puncta or their colocalization with gephyrin is provided for any of the expressed subunits. Such a claim should be supported by quantification and statistics

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      One unaddressed caveat is the fact that a GLRB-mEos4b fusion protein may behave differently in terms of localization and synaptic integration than wild-type GLRB. While unlikely, it is possible that mEos4b interacts either with itself or synaptic proteins in a way that changes the fused GLRB subunit's localization. Such an effect would be unlikely to affect synaptic function in a measurable way, but might be detected at a structural level by highly sensitive methods such as SMLM and STORM in regions with very low molecule numbers (such as the hippocampus). Since reliable antibodies against GLRB in brain tissue sections are not available, this would be difficult to test. Considering that no functional measures of the hippocampal detections exist, we would suggest that this possible caveat be mentioned for this particular experiment.

      In addition, without any quantification or statistical analysis, the author's claims regarding the necessity of GLRA1 expression for the synaptic localization of glycine receptors in cultured hippocampal neurons should probably be described as preliminary (Fig. 5).

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      The authors show that there is colocalization of gephyrin with the mEos4b-GlyRβ subunit using the Dual-colour SMLM. This is a powerful approach that allows for a claim to be made on the synaptic location of the glycine receptors. The images presented in Figure 1, together with the distance analysis in Figure 2, display the co-localization of the fluorophores. The co-localization images in all the selected regions, hippocampus and striatum, also show detections outside of the gephyrin clusters, which the authors refer to as extrasynaptic. These punctated small clusters seem to have the same size as the ones detected and assigned as part of the synapse. It would be informative if the authors analysed the distribution, density and size of these non-synaptic clusters and presented the data in the manuscript and also compared it against the synaptic ones. Validating this extrasynaptic signal by staining for a dendritic marker, such as MAP-2 or maybe a somatic marker and assessing the co-localization with the non-synaptic clusters would also add even more credibility to them being extrasynaptic.

      In addition we would encourage the authors to quantify the clustering and co-localization of virally expressed GLRA1, GLRA2, and GLRB with gephyrin in order to support the associated claims (Fig. 5). Preferably, the density of GLR and gephyrin clusters (at least on the somatic surface, the proximal dendrites, or both) as well as their co-localization probability should be quantified if a causal claim about subunit-specific requirements for synaptic localization is to be made.

      Lastly, even though it may be outside of the scope of such a study analysing other parts of the hippocampal area could provide additional important information. If one looks at the Allen Institute's ISH of the beta subunit the strongest signal comes from the stratum oriens in the CA1 for example, suggesting that interneurons residing there would more likely have a higher expression of the glycine receptors. This could also be assessed by looking more carefully at the single cell transcriptomics, to see which cell types in the hippocampus show the highest mRNA levels. If the authors think that this is too much additional work, then perhaps a mention of this in the discussion would be good.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      Since the labeling and some imaging has been performed already, the requested experiment would be a matter of deploying a method of quantification. In principle, it should not require any additional wet-lab experiments, although it may require additional imaging of existing samples.

      • Are the data and the methods presented in such a way that they can be reproduced?

      Yes, for the most part.

      • Are the experiments adequately replicated and statistical analysis adequate?

      Yes

      Minor comments: - Specific experimental issues that are easily addressable.

      N/A

      • Are prior studies referenced appropriately?

      Yes

      • Are the text and figures clear and accurate?

      Yes, although quantification in figure 5 is currently not present.

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      This paper presents a method that could be used to localize receptors and perhaps other proteins that are in low abundance or for which a detailed quantification is necessary. I would therefore suggest that Figure S4 is included into Figure 2 as the first panel, showcasing the demixing, followed by the results.

      Significance

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      Using a novel and high resolution method, the authors have provided strong evidence for the presence of glycine receptors in the murine hippocampus and in the dorsal striatum. The number of receptors calculated is small compared to the numbers found in the ventral striatum. This is the first study to quantify receptor numbers in these region. In addition it also lays a roadmap for future studies addressing similar questions.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      This is done well by the authors in the curation of the literature. As stated above, the authors have filled a gap in the presence of glycine receptors in different brain regions, a subject of importance in understanding the role they play in brain activity and function.

      • State what audience might be interested in and influenced by the reported findings.

      Neuroscientists working at the synaptic level, on inhibitory neurotransmission and on fundamental mechanisms of expression of genes at low levels and their relationship to the presence of the protein would be interested. Furthermore, researchers in neuroscience and cell biology may benefit from and be inspired by the approach used in this manuscript, to potentially apply it to address their own aims.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Synaptic transmission, inhibitory cells and GABAergic synapses functionally and structurally, cortex and cortical circuits. No strong expertise in super-resolution imaging methods.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      We thank the reviewer for his valuable input and careful assessment, which have significantly improved the clarity and rigor of our manuscript.

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      (1) The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      (2) The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents successfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the directionof-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      (3) The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      (4) The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      There are a few places in the paper that can be misunderstood or don't provide complete details. Here is a selection:

      (1) Line 61: '... studies have focused on movement algorithms while overlooking the sensory challenges involved' : This statement does not match the recent state of the literature. While the previous models may have had the assumption that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from a potential inability to track all neighbours due to occlusion, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Rosenthal et al. 2015 PNAS, Jhawar et al. 2020 Nature Physics.

      We appreciate the reviewer's comment and the relevant references. We have revised the manuscript accordingly to clarify the distinction between studies that incorporate limited interactions and those that explicitly analyze sensory constraints and interference. We have refined our statement to acknowledge these contributions while maintaining our focus on sensory challenges beyond limited neighbor detection, such as signal degradation, occlusion effects, and multimodal sensory integration (see lines 58-64):

      (2) The word 'interference' is used loosely places (Line 89: '...took all interference signals...', Line 319: 'spatial interference') - this is confusing as it is not clear whether the authors refer to interference in the physics/acoustics sense, or broadly speaking as a synonym for reflections and/or jamming.

      To improve clarity, we have revised the manuscript to distinguish between different types of interference:

      • Acoustic interference (jamming): Overlapping calls that completely obscure echo detection, preventing bats from perceiving necessary environmental cues.

      • Acoustic interference (masking): Partial reduction in signal clarity due to competing calls.

      • Spatial interference: Physical obstruction by conspecifics affecting movement and navigation.

      We have updated the manuscript to use these terms consistently and explicitly define them in relevant sections (see lines 84-85, 119-120). This distinction ensures that the reader can differentiate between interference as an acoustic phenomenon and its broader implications in navigation.

      (3) The paper discusses original results without reference to how they were obtained or what was done. The lack of detail here must be considered while interpreting the Discussion e.g. Line 302 ('our model suggests...increasing the call-rate..' - no clear mention of how/where call-rate was varied) & Line 323 '..no benefit beyond a certain level..' - also no clear mention of how/where call-level was manipulated in the simulations.

      All tested parameters, including call rate dynamics and call intensity variations, are detailed in the Methods section and Tables 1 and 2. Specifically:

      • Call Rate Variation: The Inter-Pulse Interval (IPI) was modeled based on documented echolocation behavior, decreasing from 100 msec during the search phase to 35 msec (~28 calls per second) at the end of the approach phase, and to 5 msec (200 calls per second) during the final buzz (see Table 2). This natural variation in call rate was not manually manipulated in the model but emerged from the simulated bat behavior.

      • Call Intensity Variation: The tested call intensity levels (100, 110, 120, 130 dB SPL) are presented in Table 1 under the “Call Level” parameter. The effect of increasing call intensity was analyzed in relation to exit probability, jamming probability, and collision rate. This is now explicitly referenced in the Discussion. We have revised the manuscript to explicitly reference these aspects in the Results and Discussion sections – see lines 346-349, 372-375.

      Reviewer #2 (Public review):

      We are grateful for the reviewer’s insightful feedback, which has helped us clarify key aspects of our research and strengthen our conclusions.

      This manuscript describes a detailed model of bats flying together through a fixed geometry. The model considers elements that are faithful to both bat biosonar production and reception and the acoustics governing how sound moves in the air and interacts with obstacles. The model also incorporates behavioral patterns observed in bats, like one-dimensional feature following and temporal integration of cognitive maps. From a simulation study of the model and comparison of the results with the literature, the authors gain insight into how often bats may experience destructive interference of their acoustic signals and those of their peers, and how much such interference may actually negatively affect the groups' ability to navigate effectively. The authors use generalized linear models to test the significance of the effects they observe.

      In terms of its strengths, the work relies on a thoughtful and detailed model that faithfully incorporates salient features, such as acoustic elements like the filter for a biological receiver and temporal aggregation as a kind of memory in the system. At the same time, the authors' abstract features are complicating without being expected to give additional insights, as can be seen in the choice of a twodimensional rather than three-dimensional system. I thought that the level of abstraction in the model was perfect, enough to demonstrate their results without needless details. The results are compelling and interesting, and the authors do a great job discussing them in the context of the biological literature. 

      The most notable weakness I found in this work was that some aspects of the model were not entirely clear to me. 

      For example, the directionality of the bat's sonar call in relation to its velocity. Are these the same?

      For simplicity, in our model, the head is aligned with the body, therefore the direction of the echolocation beam is the same as the direction of the flight. 

      Moreover, call directionality (directivity) is not directly influenced by velocity. Instead, directionality is estimated using the piston model, as described in the Methods section. The directionality is based on the emission frequency and is thus primarily linked to the behavioral phases of the bat, with frequency shifts occurring as the bat transitions from search to approach to buzz phases. During the approach phase, the bat emits calls with higher frequencies, resulting in increased directionality. This is supported by the literature (Jakobsen and Surlykke, 2010; Jakobsen, Brinkløv and Surlykke, 2013). This phase is also associated with a natural reduction in flight speed, which is a well-documented behavioral adaptation in echolocating bats(Jakobsen et al., 2024).

      To clarify this in the manuscript, we have updated the text to explicitly state that directionality follows phase-dependent frequency changes rather than being a direct function of velocity, see lines 543-545. 

      If so, what is the difference between phi_target and phi_tx in the model equations? 

      𝝓<sub>𝒕𝒂𝒓𝒈𝒆𝒕</sub> represents the angle between the bat and the reflected object (target).

      𝝓<sub>𝑻𝒙</sub> the angle [rad], between the masking bat and target (from the transmitter’s perspective)

      𝝓<sub>𝑻𝒙𝑹𝒙</sub> refers to the angle between the transmitting conspecific and the receiving focal bat, from the transmitter’s point of view.

      𝝓<sub>𝑹𝒙𝑻𝒙</sub> represents the angle between the receiving bat and the transmitting bat, from the receiver’s point of view.

      These definitions have been explicitly stated in the revised manuscript to prevent any ambiguity (lines 525-530). Additionally, a Supplementary figure demonstrating the geometrical relations has been added to the manuscript.

      What is a bat's response to colliding with a conspecific (rather than a wall)? 

      In nature, minor collisions between bats are common and typically do not result in significant disruptions to flight (Boerma et al., 2019; Roy et al., 2019; Goldshtein et al., 2025). Given this, our model does not explicitly simulate the physical impact of a collision event. Instead, during the collision event the bat keeps decreasing its velocity and changing its flight direction until the distance between bats is above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the effort required to avoid collisions, rather than from the collision itself. This assumption aligns with observations of bat behavior in dense flight environments, where individuals prioritize collision avoidance rather than modeling post-collision dynamics. See lines 479-484.

      From the statistical side, it was not clear if replicate simulations were performed. If they were, which I believe is the right way due to stochasticity in the model, how many replicates were used, and are the standard errors referred to throughout the paper between individuals in the same simulation or between independent simulations, or both? 

      The number of repetitions for each scenario is detailed in Table 1, but we included it in a more prominent location in the text for clarity. Specifically, we now state (Lines 110-111):

      "The number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12; 40 bats: 12; 100 bats: 6."

      Regarding the reported standard errors, they are calculated across all individuals within each scenario, without distinguishing between different simulation trials. 

      We clarified in the revised text (Lines 627-628 in Statistical Analysis) 

      Overall, I found these weaknesses to be superficial and easily remedied by the authors. The authors presented well-reasoned arguments that were supported by their results, and which were used to demonstrate how call interference impacts the collective's roost exit as measured by several variables. As the authors highlight, I think this work is valuable to individuals interested in bat biology and behavior, as well as to applications in engineered multi-agent systems like robotic swarms.

      Reviewer #3 (Public review):

      We sincerely appreciate the reviewer’s thoughtful comments and the time invested in evaluating our work, which have greatly contributed to refining our study.

      We would like to note that in general, our model often simplifies some of the bats’ abilities, under the assumption that if the simulated bats manage to perform this difficult task with simpler mechanisms, real better adapted bats will probably perform even better. This thought strategy will be repeated in several of the s below.

      Summary:

      The authors describe a model to mimic bat echolocation behavior and flight under high-density conditions and conclude that the problem of acoustic jamming is less severe than previously thought, conflating the success of their simulations (as described in the manuscript) with hard evidence for what real bats are actually doing. The authors base their model on two species of bats that fly at "high densities" (defined by the authors as colony sizes from tens to tens of thousands of individuals and densities of up to 33.3 bats/m2), Pipistrellus kuhli and Rhinopoma microphyllum. This work fits into the broader discussion of bat sensorimotor strategies during collective flight, and simulations are important to try to understand bat behavior, especially given a lack of empirical data. However, I have major concerns about the assumptions of the parameters used for the simulation, which significantly impact both the results of the simulation and the conclusions that can be made from the data. These details are elaborated upon below, along with key recommendations the authors should consider to guide the refinement of the model.

      Strengths:

      This paper carries out a simulation of bat behavior in dense swarms as a way to explain how jamming does not pose a problem in dense groups. Simulations are important when we lack empirical data. The simulation aims to model two different species with different echolocation signals, which is very important when trying to model echolocation behavior. The analyses are fairly systematic in testing all ranges of parameters used and discussing the differential results.

      Weaknesses:

      The justification for how the different foraging phase call types were chosen for different object detection distances in the simulation is unclear. Do these distances match those recorded from empirical studies, and if so, are they identical for both species used in the simulation? 

      The distances at which bats transition between echolocation phases are identical for both species in our model (see Table 2). These distances are based on welldocumented empirical studies of bat hunting and obstacle avoidance behavior (Griffin, Webster and Michael, 1958; Simmons and Kick, 1983; Schnitzler et al., 1987; Kalko, 1995; Hiryu et al., 2008; Vanderelst and Peremans, 2018). These references provide extensive evidence that insectivorous bats systematically adjust their echolocation calls in response to object proximity, following the characteristic phases of search, approach, and buzz.

      To improve clarity, we have updated the text to explicitly state that the phase transition distances are empirically grounded and apply equally to both modeled species (lines 499-508).

      What reasoning do the authors have for a bat using the same call characteristics to detect a cave wall as they would for detecting a small insect? 

      In echolocating bats, call parameters are primarily shaped by the target distance and echo strength. Accordingly, there is little difference in call structure between prey capture and obstacles-related maneuvers, aside from intensity adjustments based on target strength (Hagino et al., 2007; Hiryu et al., 2008; Surlykke, Ghose and Moss, 2009; Kothari et al., 2014). In our study, due to the dense cave environment, the bats are found to operate in the approach phase most of the time, which is consistent with natural cave emergence, where they are navigating through a cluttered environment rather than engaging in open-space search. For one of the species (Rhinopoma), we also have empirical recordings of individuals flying under similar conditions (Goldshtein et al., 2025). Our model was designed to remain as simple as possible while relying on conservative assumptions that may underestimate bat performance. If, in reality, bats fine-tune their echolocation calls even earlier or more precisely during navigation than assumed, our model would still conservatively reflect their actual capabilities. See lines 500-508.

      The two species modeled have different calls. In particular, the bandwidth varies by a factor of 10, meaning the species' sonars will have different spatial resolutions. Range resolution is about 10x better for PK compared to RM, but the authors appear to use the same thresholds for "correct detection" for both, which doesn't seem appropriate.

      The detection process in our model is based on Saillant’s method using a filterbank, as detailed in the paper (Saillant et al., 1993; Neretti et al., 2003; Sanderson et al., 2003). This approach inherently incorporates the advantages of a wider bandwidth, meaning that the differences in range resolution between the species are already accounted for within the signal-processing framework. Thus, there is no need to explicitly adjust the model parameters for bandwidth variations, as these effects emerge from the applied method.

      Also, the authors did not mention incorporating/correcting for/exploiting Doppler, which leads me to assume they did not model it.

      The reviewer is correct. To maintain model simplicity, we did not incorporate the Doppler effect or its impact on echolocation. The exclusion of Doppler effects was based on the assumption that while Doppler shifts can influence frequency perception, their impact on jamming and overall navigation performance is minor within the modelled context.

      The maximal Doppler shifts expected for the bats in this scenario are of ~ 1kHz. These shifts would be applied variably across signals due to the semi-random relative velocities between bats, leading to a mixed effect on frequency changes. This variability would likely result in an overall reduction in jamming rather than exacerbating it, aligning with our previous statement that our model may overestimate the severity of acoustic interference. Such Doppler shifts would result in errors of 2-4 cm in localization (i.e., 200-400 micro-seconds) (Boonman, Parsons and Jones, 2003).

      We have now explicitly highlighted this in the revised version (see 548-581).

      The success of the simulation may very well be due to variation in the calls of the bats, which ironically enough demonstrates the importance of a jamming avoidance response in dense flight. This explains why the performance of the simulation falls when bats are not able to distinguish their own echoes from other signals. For example, in Figure C2, there are calls that are labeled as conspecific calls and have markedly shorter durations and wider bandwidths than others. These three phases for call types used by the authors may be responsible for some (or most) of the performance of the model since the correlation between different call types is unlikely to exceed the detection threshold. But it turns out this variation in and of itself is what a jamming avoidance response may consist of. So, in essence, the authors are incorporating a jamming avoidance response into their simulation. 

      We fully agree that the natural variations in call design between the phases contribute significantly to interference reduction (see our discussion in a previous paper in Mazar & Yovel, 2020). However, we emphasize that this cannot be classified as a Jamming Avoidance Response (JAR). In our model, bats respond only to the physical presence of objects and not to the acoustic environment or interference itself. There is no active or adaptive adjustment of call design to minimize jamming beyond the natural phase-dependent variations in call structure. Therefore, while variation in call types does inherently reduce interference, this effect emerges passively from the modeled behavior rather than as an intentional strategy to avoid jamming. 

      The authors claim that integration over multiple pings (though I was not able to determine the specifics of this integration algorithm) reduces the masking problem. Indeed, it should: if you have two chances at detection, you've effectively increased your SNR by 3dB.  

      The reviewer is correct. Indeed, integration over multiple calls improves signal-tonoise ratio (SNR), effectively increasing it by approximately 3 dB per doubling of observations. The specifics of the integration algorithm are detailed in the Methods section, where we describe how sensory information is aggregated across multiple time steps to enhance detection reliability.

      They also claim - although it is almost an afterthought - that integration dramatically reduces the degradation caused by false echoes. This also makes sense: from one ping to the next, the bat's own echo delays will correlate extremely well with the bat's flight path. Echo delays due to conspecifics will jump around kind of randomly. However, the main concern is regarding the time interval and number of pings of the integration, especially in the context of the bat's flight speed. The authors say that a 1s integration interval (5-10 pings) dramatically reduces jamming probability and echo confusion. This number of pings isn't very high, and it occurs over a time interval during which the bat has moved 5-10m. This distance is large compared to the 0.4m distance-to-obstacle that triggers an evasive maneuver from the bat, so integration should produce a latency in navigation that significantly hinders the ability to avoid obstacles. Can the authors provide statistics that describe this latency, and discussion about why it doesn't seem to be a problem? 

      As described in the Methods section, the bat’s collision avoidance response does not solely rely on the integration process. Instead, the model incorporates real-time echoes from the last calls, which are used independently of the integration process for immediate obstacle avoidance maneuvers. This ensures that bats can react to nearby obstacles without being hindered by the integration latency. The slower integration on the other hand is used for clustering, outlier removal and estimation wall directions to support the pathfinding process, as illustrated in Supplementary Figure 1.

      Additionally, our model assumes that bats store the physical positions of echoes in an allocentric coordinate system (x-y). The integration occurs after transforming these detections from a local relative reference frame to a global spatial representation. This allows for stable environmental mapping while maintaining responsiveness to immediate changes in the bat’s surroundings.

      See lines 600-616 in the revised version.

      The authors are using a 2D simulation, but this very much simplifies the challenge of a 3D navigation task, and there is an explanation as to why this is appropriate. Bat densities and bat behavior are discussed per unit area when realistically it should be per unit volume. In fact, the authors reference studies to justify the densities used in the simulation, but these studies were done in a 3D world. If the authors have justification for why it is realistic to model a 3D world in a 2D simulation, I encourage them to provide references justifying this approach. 

      We acknowledge that this is a simplification; however, from an echolocation perspective, a 2D framework represents a worst-case scenario in terms of bat densities and maneuverability:

      • Higher Effective Density: A 2D model forces all bats into a single plane rather than distributing them through a 3D volume, increasing the likelihood of overlap in calls and echoes and making jamming more severe. As described in the text: the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m (Fujioka et al., 2021), as observed in Myotis grisescens (Sabol and Hudson, 1995) and Tadarida brasiliensis (Theriault et al., no date; Betke et al., 2008; Gillam et al., 2010)

      • Reduced Maneuverability: In 3D space, bats can use vertical movement to avoid obstacles and conspecifics. A 2D constraint eliminates this degree of freedom, increasing collision risk and limiting escape options.

      Thus, our 2D model provides a conservative difficult test case, ensuring that our findings are valid under conditions where jamming and collision risks are maximized. Additionally, the 2D framework is computationally efficient, allowing us to perform multiple simulation runs to explore a broad parameter space and systematically test the impact of different variables.

      To address the reviewer’s concern, we have clarified this justification in the revised text and will provide supporting references where applicable (see Methods lines 450455).

      The focus on "masking" (which appears to be just in-band noise), especially relative to the problem of misassigned echoes, is concerning. If the bat calls are all the same waveform (downsweep linear FM of some duration, I assume - it's not clear from the text), false echoes would be a major problem. Masking, as the authors define it, just reduces SNR. This reduction is something like sqrt(N), where N is the number of conspecifics whose echoes are audible to the bat, so this allows the detection threshold to be set lower, increasing the probability that a bat's echo will exceed a detection threshold. False echoes present a very different problem. They do not reduce SNR per se, but rather they cause spurious threshold excursions (N of them!) that the bat cannot help but interpret as obstacle detection. I would argue that in dense groups the mis-assignment problem is much more important than the SNR problem. 

      There is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from conspecific signals (Schnitzler, Bioscience and 2001, no date; Kazial, Burnett and Masters, 2001; Burnett and Masters, 2002; Kazial, Kenny and Burnett, 2008; Chili, Xian and Moss, 2009; Yovel et al., 2009; Beetz and Hechavarría, 2022)). However, we acknowledge that false echoes may present a major challenge in dense groups. To address this, we explicitly tested the impact of the self-echo identification assumption in our study see Results Figure 1: The impact of confusion on performance, and lines 399-404 in the Discussion.

      Furthermore, we examined a full confusion scenario, where all reflected echoes from conspecifics were misinterpreted as obstacle reflections (i.e., 100% confusion). Our results show that this significantly degrades navigation performance, supporting the argument that echo misassignment is a critical issue. However, we also explored a simple mitigation strategy based on temporal integration with outlier rejection, which provided some improvement in performance. This suggests that real bats may possess additional mechanisms to enhance self-echo identification and reduce false detections. See lines 411-420 in the manuscript for further discussion. 

      We actually used logarithmically frequency modulated (FM) chirps, generated using the MATLAB built-in function chirp(t, f0, t1, f1, 'logarithmic'). This method aligns with the nonlinear FM characteristics of Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM) and provides a realistic approximation of their echolocation signals. We acknowledge that this was not sufficiently emphasized in the original text, and we have now explicitly highlighted this in the revised version to ensure clarity (see Lines 509-512 in Methods).

      The criteria set for flight behavior (lines 393-406) are not justified with any empirical evidence of the flight behavior of wild bats in collective flight. How did the authors determine the avoidance distances? Also, what is the justification for the time limit of 15 seconds to emerge from the opening? Instead of an exit probability, why not instead use a time criterion, similar to "How long does it take X% of bats to exit?"  :

      While we acknowledge that wild bats may employ more complex behaviors for collision avoidance, we chose to implement a simplified decision-making rule in our model to maintain computational tractability.

      The avoidance distances (1.5 m from walls and 0.4 m from other bats) were selected as internal parameters to support stable and realistic flight trajectories while maintaining a reasonable collision rate. These values reflect a trade-off between maneuverability and behavioral coherence under crowding. To address this point, we added a sensitivity analysis to the revised manuscript. Specifically, we tested the effect of varying the conspecific avoidance distance from 0.2 to 1.6 meters at bat densities of 2 to 40 bats/3m². The only statistically significant impact was at the highest density (40 bats/3m²), where exit probability increased slightly from 82% to 88% (p = 0.024, t = 2.25, DF = 958). No significant changes were observed in exit time, collision rate, or jamming probability across other densities or conditions (GLM, see revised Methods). These results suggest that the selected avoidance distances are robust and not a major driver of model performance, see lines 469-47.

      The 15-second exit limit was determined as described in the text (Lines 489-491): “A 15-second window was chosen because it is approximately twice the average exit time for 40 bats and allows for a second corrective maneuver if needed.” In other words, it allowed each bat to circle the ‘cave’ twice to exit even in the most crowded environment. This threshold was set to keep simulation time reasonable while allowing sufficient time for most bats to exit successfully.

      We acknowledge that the alternative approach suggested by the reviewer— measuring the time taken for a certain percentage of bats to exit—is also valid. However, in our model, some outlier bats fail to exit and continue flying for many minutes, such simulations would lead to excessive simulation times making it difficult to generate repetitions and not teaching us much – they usually resulted from the bat slightly missing the opening (see video S1. Our chosen approach ensures practical runtime constraints while still capturing relevant performance metrics.

      What is the empirical justification for the 1-10 calls used for integration?  

      The "average exit time for 40 bats" is also confusing and not well explained. Was this determined empirically? From the simulation? If the latter, what are the conditions?

      Does it include masking, no masking, or which species? 

      Previous studies have demonstrated that bats integrate acoustic information received sequentially over several echolocation calls (2-15), effectively constructing an auditory scene in complex environments (Ulanovsky and Moss, 2008; Chili, Xian and Moss, 2009; Moss and Surlykke, 2010; Yovel and Ulanovsky, 2017; Salles, Diebold and Moss, 2020). Additionally, bats are known to produce echolocation sound groups when spatiotemporal localization demands are high (Kothari et al., 2014). Studies have documented call sequences ranging from 2 to 15 grouped calls (Moss and Surlykke, 2010), and it has been hypothesized that grouping facilitates echo segregation.

      We did not use a single integration window - we tested integration sizes between 1 and 10 calls and presented the results in Figure 3A. This range was chosen based on prior empirical findings and to explore how different levels of temporal aggregation impact navigation performance. Indeed, the results showed that the performance levels between 5-10 calls integration window (Figure 3A)

      Regarding the average exit time for 40 bats, this value was determined from our simulations, where it represents the mean time for successful exits under standard conditions with masking. We have revised the text to clarify these details see, lines 489-491.

      Reviewer #1 (Recommendations for the authors):

      (1) Data Availability:

      As it stands now, this reviewer cannot vouch for the uploaded code as it wasn't accessible according to F.A.I.R principles. The link to the code/data points to a private company's file-hosting account that requires logging in or account creation to see its contents, and thus cannot be accessed.

      This reviewer urges the authors to consider uploading the code onto an academic data repository from the many on offer (e.g. Dryad, Zenodo, OSF). Some repositories offer an option to share a private link (e.g. Zenodo) to the folder that can then be shared only with reviewers so it is not completely public.

      This is a computational paper, and the credibility of the results is based on the code used to generate them.

      The code is available at GitHub as required:

      https://github.com/omermazar/Colony-Exit-Bat-Simulation

      (2) Abstract:

      Line 22: 'To explore whether..' - replace 'whether' with 'how'?

      The sentence was rephrased as suggested by the reviewer.

      (2) Main text:

      Line 43: '...which may share...' - correct to '...which share...', as elegantly framed in the authors' previous work - jamming avoidance is unavoidable because all FM bats of a species still share >90% of spectral bandwidth despite a few kHz shift here and there.

      The sentence was rephrased as suggested by the reviewer.

      Line 49: The authors may wish to additionally cite the work of Fawcett et al. 2015 (J. Comp. Phys A & Biology Open)

      Thank you for the suggestion. We have included a citation to the work of Fawcett et al. (2015) in the revised manuscript.

      Line 61: This statement does not match the recent state of the literature. While the previous models may have assumed that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from the potential inability to track all neighbours, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Jhawar et al. 2020 Nature Physics.

      We have added citations to the important studies suggested by the reviewer, as detailed in the Public Review above.

      Line 89: '..took all interference signals into account...' - what is meant by 'interference signals' - are the authors referring to reflections, unclear.

      We have revised the sentence and detailed the acoustic signals involved in the process: self-generated echoes, calls from conspecifics, and echoes from cave walls and other bats evoked by those calls, see lines 99-106.

      Figure 1A: The colour scheme with overlapping points makes the figure very hard to understand what is happening. The legend has colours from subfigures B-D, adding to the confusion.

      What does the yellow colour represent? This is not clear. Also, in general, the color schemes in the simulation trajectories and the legend are not the same, creating some amount of confusion for the reader. It would be good to make the colour schemes consistent and visually separable (e.g. consp. call direct is very similar to consp. echo from consp. call), and perhaps also if possible add a higher resolution simulation visualisation. Maybe it is best to separate out the colour legends for each sub-figure.

      The updated figure now includes clearer, more visually separable colors, and consistent color coding across all sub-panels. The yellow trajectory representing the focal bat’s flight path is now explicitly labeled, and we adjusted the color mapping of acoustic signals (e.g., conspecific calls vs. echoes) to improve distinction. We also revised the figure caption accordingly and ensured that the legend is aligned with the updated visuals. These modifications aim to enhance interpretability and reduce ambiguity for the reader.

      Figure C3: What is 'FB Channel', this is not explained in the legend.

      FB Channel’ stands for ‘Filter Bank Channel’. This clarification has been added to the caption of Figure 1. 

      Figure 3: Visually noticing that the colour legend is placed only on sub-figure A is tricky and readers may be left searching for the colour legend. Maybe lay out the legend horizontally on top of the entire figure, so it stands out?

      We have adjusted the placement of the color legend in Figure 3 to improve visibility and consistency.

      Line 141: '..the probability of exiting..' - how is this probability calculated - not clear.

      We have clarified in the revised text that the probability of exiting the cave within 15 seconds is defined as the number of bats that exited the cave within that time divided by the total number of bats in each scenario, see lines 159160.

      Line 142: What are the sample sizes here - i.e. how many simulation replicates were performed?

      We have clarified the number of repetitions in each scenario the revised text, as detailed in the Public Review above.

      Line 151: 'The jamming probability,...number of jammed echoes divided by the total number of reflected echoes' - it seems like these are referring to 'own' echoes or first-order reflections, it is important to clarify this.

      The reviewer is right. We have clarified it in the revised text, see lines 173175.

      Line 153: '..with a maximum difference of ...' - how is this difference calculated? What two quantities are being compared - not clear.

      We have revised the text to clarify that the 14.3% value reflects the maximum difference in jamming probability between the RM and PK models, which occurred at a density of 10 bats. The values at each density are shown in Figure 2D, see lines 175-177.

      Line 221: '..temporal aggregation helps..' - I'm assuming the authors meant temporal integration? However, I would caution against using the exact term 'temporal integration' as it is used in the field of audition to mean something different. Perhaps something like 'sensory integration' , or 'multi-call integration'

      To avoid ambiguity and better reflect the process modeled in our work, we have replaced the term "temporal aggregation" with "multi-call integration" throughout the revised manuscript. This term more accurately conveys the idea of combining information from multiple echolocation calls without conflicting with existing terminology.

      (4) Discussion

      Lines 302: 'Our model suggests...increasing the call-rate..' - not clear where this is explicitly tested or referred to in this manuscript. Can't see what was done to measure/quantify the effect of this variable in the Methods or anywhere else.

      We have rephrased this paragraph as detailed in the Public Review above, see lines 346-349.

      Line 319: 'spatial interference' - unclear what this means. This reviewer would strongly caution against creating new terms unless there is an absolute need for it. What is meant by 'interference' in this paper is hard to assess given that the word seems to be used as a synonym for jamming and also for actual physical wave-based interference.

      We have rephrased this paragraph as detailed in the Public Review above, see line 119-120, 366-367.

      Line 323: '..no benefit beyond a certain level...' - also not clear where this is explicitly tested. It seems like there was a set of simulations run for a variety of parameters but this is not written anywhere explicitly. What type of parameter search was done, was it all possible parameter combinations - or only a subset? This is not clear.

      We have rephrased this paragraph as detailed in the Public Review above, see lines 372-375.

      Line 324: '..ca. 110 dB-SPL.' - what reference distance?

      All call levels were simulated and reported in dB-SPL, referenced at 0.1 meters from the emitting bat. We have clarified it in the revised text in the relevant contexts and specifically in line 529.

      (5) Methods

      Line 389 : '...over a 2 x 1.5 m2 area..' It took a while to understand this statement and put it in context. Since there is no previous description of the entire L-arena, the reviewer took it to mean the simulations happened over the space of a 2 x 1.5 m2 area. Include a top-down description of the simulation's spatial setup and rephrase this sentence.

      To address the confusion, we revised the text to clarify that the full simulation environment represents a corridor-shaped cave measuring 14.5 × 2.5 meters, with a right-angle turn located 5.5 meters before the exit, as shown in Figure 1A. The 2 × 1.5 m area refers specifically to the small zone at the far end of the cave where bats begin their flight. The revised description now includes a clearer spatial overview to prevent ambiguity, see lines 456-460.

      Line 398: Replace 'High proximity' with 'Close proximity'

      Replaced.

      Line 427: 'uniform target strength of -23 dB' - at what distance is this target strength defined? Given the reference distance can vary by echolocation convention (0.1 or 1 m), one can't assess if this is a reasonable value or not.

      The reference distance for the reported target strength is 1 meter, in line with standard acoustic conventions. We have revised the text to clarify this explicitly (line 531).

      Also, independent of the reference distance, particularly with reference to bats, the target strength is geometry-dependent, based on whether the wings are open or not. Using the entire wingspan of a bat to parametrise the target strength is an overestimate of the available reflective area. The effective reflective area is likely to be somewhere closer to the surface area of the body and a fraction of the wingspan together. This is important to note and/or mention explicitly since the value is not experimentally parametrised.

      For comparison, experimentally based measurements used in Goetze et al. 2016 are -40 dB (presumably at 1 m since the source level is also defined at 1 m?), and Beleyur & Goerlitz 2019 show a range between -43 to -34 dB at 1 m.

      We agree with the reviewer that target strength in bats is strongly influenced by their geometry, particularly wing posture during flight. In our model, we simplified this aspect by using a constant target strength, as the detailed temporal variation in body and wing geometry is pseudo-random and not explicitly modeled. We acknowledge that this is a simplification, and have now stated this limitation clearly in the revised manuscript. We chose a fixed value of –23 dB at 1 meter to reflect a plausible mid-range estimate, informed by anatomical data and consistent with values reported for similarly sized species (Beleyur and Goerlitz, 2019). To support this, we directly measured the target strength of a 3D-printed RM bat model, obtaining –32dB. 

      Moreover, a sensitivity analysis across a wide range (–49 to –23 dB) confirmed that performance metrics remain largely stable, indicating that our conclusions are not sensitive to this parameter, and suggesting that our results hold for different-sized bats. See lines 384-390, 533-538, and Supplementary Figures 3 and 4 in the revised article. 

      Line 434: 'To model the bat's cochlea...'. Bats have two cochleas. This model only describes one, while the agents are also endowed with the ability to detect sound direction - which requires two ears/cochleas.... There is missing information about the steps in between that needs to be provided.

      We appreciate the reviewer’s observation. Indeed, our model is monaural, and simulates detection using a single cochlear-like filter bank receiver. We have clarified this in the revised text to avoid confusion. This paragraph specifically describes the detection stage of the auditory processing pipeline. The localization process, which builds on detection and includes directional estimation, is described in the following paragraph (see line 583 onward), as discussed in the next comment and response.

      Line 457: 'After detection, the bat estimates the range and Direction of Arrival...' This paragraph describes the overall idea, but not the implementation. What were the inputs and outputs for the range and DOA calculation performed by the agent? Or was this information 'fed' in by the simulation framework? If there was no explicit DOA step that the agent performed, but it was assumed that agents can detect DOA, then this needs to be stated.

      In the current simulation, the Direction of Arrival (DOA) was not modeled via an explicit binaural processing mechanism. Instead, based on experimental studies (Simmons et al., 1983; Popper and Fay, 1995).  we assumed that bats can estimate the direction of an echo with an angular error that depends on the signal-to-noise ratio (SNR). Accordingly, the inputs to the DOA estimation were the peak level of the desired echo, noise level, and the level of acoustic interference. The output was an estimated direction of arrival that included a random angular error, drawn from a normal distribution whose standard deviation varied with the SNR. We have revised the relevant paragraph (Lines 583-592) to clarify this implementation.

      Line 464: 'To evaluate the impact of the assumption...' - the 'self' and 'non-self' echoes can be distinguished perhaps using pragmatic time-delay cues, but also using spectro-temporal differences in individual calls/echoes. Do the agents have individual call structures, or do all the agents have the same call 'shape'? The echolocation parameters for the two modelled species are given, but whether there is call parameter variation implemented in the agents is not mentioned.

      In our relatively simple model, all individuals emit the same type of chirp call, with parameters adapted only based on the distance to the nearest detected object. However, individual variation is introduced by assigning each bat a terminal frequency drawn from a normal distribution with a standard deviation of 1 kHz, as described in the revised version -lines 519-520. This small variation is not used explicitly as a spectro-temporal cue for echo discrimination.

      In our model, all spectro-temporal variations—whether due to call structure or variations resulting from overlapping echoes from nearby reflectors—are processed through the filter bank, which compares the received echoes to the transmitted call during the detection stage. As such, the detection process itself can act as a discriminative filter, to some extent, based on similarity to the emitted call.

      We acknowledge that real bats likely rely on a variety of spectro-temporal features for distinguishing self from non-self-echoes—such as call duration, received level, multi-harmonic structure, or amplitude modulation. In our simulation, we focus on comparing two limiting conditions: full recognition of self-generated echoes versus full confusion. Implementing a more nuanced self-recognition mechanism based on temporal or spectral cues would be a valuable extension for future work.

      (6) References

      Reference 22: Formatting error - and extra '4' in the reference.

      The error has been fixed.

      (7) Thoughts/comments

      Even without 'recogntion' of walls & conspecifics, bats may be able to avoid obstacles - this is a neat result. Also, using their framework the authors show that successful 'blind' object-agnostic obstacle avoidance can occur only when supported by some sort of memory. In some sense, this is a nice intermediate step showing the role of memory in bat navigation. We know that bats have good long-term and long-spatial scale memory, and here the authors show that short-term spatial memory is important in situations where immediate sensory information is unreliable or unavailable.

      We appreciate the reviewer’s thoughtful summary. Indeed, one of the main takeaways of our study is that successful obstacle avoidance can occur even without explicit recognition of walls or conspecifics—provided that a clustered multi-call integration is in place. Our model shows that when immediate sensory information is unreliable, integrating detections over time becomes essential for effective navigation. This supports the broader view that memory, even on short timescales, plays an important role in bat behavior.

      (8) Reporting GLM results

      The p-value, t-statistic, and degrees of freedom are reported consistently across multiple GLM results. However, the most important part which is the effect size is not consistently reported - and this needs to be included in all results, and even in the table. The effect size provides an indicator of the parameter's magnitude, and thus scientific context.

      We agree that the effect size provides essential scientific context. In fact, we already include the effect size explicitly in Table 1, as shown in the “Effect Size” column for each tested parameter. These values describe the magnitude of each parameter’s effect on exit probability, jamming probability, and collision rate. In the main text, effect sizes are presented as concrete changes in performance metrics (e.g., “exit probability increased from 20% to 87%,” or “with a decrease of 3.5%±8% to 5.5%±5% (mean ± s.e.)”), which we believe improves interpretability and scientific relevance.  

      To further clarify this in the main text, we have reviewed the reported results and ensured that effect sizes are mentioned more consistently wherever GLM outcomes are discussed. Additionally, we have added a brief note in the table caption to emphasize that effect sizes are provided for all tested parameters.

      The 'tStat' appears multiple times and seems to be the output of the MATLAB GLM function. This acronym is specific to the MATLAB implementation and needs to be replaced with a conventionally used acronym such as 't', or the full form 't-statistic' too. This step is to keep the results independent of the programming language used.

      We have replaced all instances of tStat with the more conventional term ‘t’ throughout the manuscript to maintain consistency with standard reporting practices.

      Reviewer #2 (Recommendations for the authors):

      In addition to my public review, I had a few minor points that the authors may want to consider when revising their paper.

      (1) Figures 2, 3, and 4 may benefit from using different marker styles, in addition to different colors, to show the different cases.

      Thank you for the suggestion. In Figures 2–4, the markers represent means with standard error bars. To maintain clarity and consistency across all conditions, we have chosen to keep a standardized marker style – and we clarify this in the legend. We found that varying only the colors is sufficient for distinguishing between conditions without introducing visual clutter.

      (2) The text "PK" in the inset for Figure 2A is very difficult to read. I would suggest using grey as with "RM" in the other inset.

      We have updated the insert in Figure 2A to improve legibility.

      (3) Are the error bars in Figure 3 very small? I wasn't able to see them. If that is the case, the authors may want to mention this in the caption.

      You are correct—the error bars are present in all plots but appear very small due to the large number of simulation repetitions and low variability. We have revised the caption to explicitly mention this.

      (4) The species name of PK is spelled inconsistently (kuhli, khulli, and kuhlii).

      We have corrected the species name throughout the manuscript.

      (5) Table 1 is a great condensation of all the results, but the time to exit is missing. It may be helpful if summary statistics on that were here as well.

      We have added time-to-exit to the effect size column in Table 1, alongside the other performance metrics, to provide a more complete summary of the simulation results.

      (6) I may have missed it, but why are there two values for the exit probability when nominal flight speed is varied?

      The exit probability was not monotonic with flight speed, but rather showed a parabolic trend with a clear optimum. Therefore, we reported two values representing the effect before and after the peak. We have clarified this in the revised table and updated the caption accordingly.

      (7) Table 2 has an extra header after the page break on page 18.

      The extra header in Table 2 after the page break has been removed in the revised manuscript.

      (8) The G functions have 2 arguments in their definitions and Equation 1, but only one argument in Equations 2 and 3. I wasn't able to see why.

      Thank you for pointing this out. You are correct—this was a typographical error. We have corrected the argument notation in Equations 2 and 3 and explicitly included the frequency dependence of the gain (G) functions in both equations.

      (9) D_txrx was not defined but it was used in Equation 2.

      The variable D_txrx is defined in the equation notation section as: D<sub>₍ₜₓ</sub>r<sub>ₓ</sub> – the distance [m] between the transmitting conspecific and the receiving focal bat, from the transmitter’s perspective. We have now ensured that this definition is clearly linked to Equation 2 in the revised text. Moreover, we have added a supplementary figure that illustrates the geometric configuration defined by the equations to further support clarity, as described in the Public Review above.

      (10) It was hard for me to understand what was meant by phi_rx and phi_tx. These were described as angles between the rx or tx bats and the target, but I couldn't tell what the point defining the angle was. Perhaps a diagram would help, or more precise definitions.

      We have revised the caption to provide clearer and more precise definitions Additionally, we have included a geometric diagram as a supplementary figure, as noted in the Public Review above, to visually clarify the spatial relationships and angle definitions used in the equations, see lines 498-499.

      (11) Was the hearing threshold the same for both species?

      Yes. We have clarified it in the revised version.

      (12) Collision avoidance is described as turning to the "opposite direction" in the supplemental figure explaining the model. Is this 90 degrees or 180 degrees? If 90 degrees, how do these turns decide between right and left?

      In our model, the bat does not perform a fixed 90° or 180° turn. Instead, the avoidance behavior is implemented by setting the maximum angular velocity in the direction opposite to the detected echo. For example, if the obstacle or conspecific is detected on the bat’s right side, the bat begins turning left, and vice versa.

      This turning direction is re-evaluated at each decision step, which occurs after every echolocation pulse. The bat continues turning in the same direction if the obstacle remains in front, otherwise it resumes regular pathfinding. We have clarified this behavior in the updated figure caption and model description, see lines 478-493.

      Reviewer #3 (Recommendations for the authors):

      (1) Lines 27-31: These sentences mischaracterize the results. This claim appears to equate "the model works" with "this is what bats actually do." Also, the model does not indicate that bats' echolocation strategies are robust enough to mitigate the effects of jamming - this is self-evident from the fact that bats navigate successfully via echolocation in dense groups.

      Thank you for the comment. Our aim was not to claim that the model confirms actual bat behavior, but rather to demonstrate that simple and biologically plausible strategies—such as signal redundancy and basic pathfinding—are sufficient to explain how bats might cope with acoustic interference in dense settings. We have revised the wording to better reflect this goal and to avoid overinterpreting the model's implications.

      See abstract in the revised version.  

      (2) Line 37: This number underestimates the number of bats that form some of the largest aggregations of individuals worldwide - the free-tailed bats can form aggregations exceeding several million bats.

      We have revised the text to reflect that some bat species, such as free-tailed bats, are known to form colonies of several million individuals, which exceed the typical range. The updated sentence accounts for these extreme cases, see lines 36-37.

      (3) The flight densities explained in the introduction and chosen references are not representative of the literature - without providing additional justification for the chosen species, it can be interpreted that the selection of the species for the simulation is somewhat arbitrary. If the goal is to model dense emergence flight, why not use a species that has been studied in terms of acoustic and flight behavior during dense emergence flights---such as Tadarida brasiliensis?

      Our goal was to develop a general model applicable to a broad class of FMecholocating bat species. The two species we selected—Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM)—span a wide range of signal characteristics: from wideband (PK) to narrowband (RM), providing a representative contrast in call structure. 

      Although we did not include Tadarida brasiliensis (TB) specifically, its echolocation calls are acoustically similar to RM in terminal frequency and fall between PK and RM in bandwidth. Therefore, we believe our findings are likely to generalize to TB and other FM-bats.

      Moreover, as noted in a previous response, the average inter-bat distance in our highest-density simulations (0.27 m) is still smaller than those reported for Tadarida brasiliensis during dense emergences—further supporting the relevance of our model to such scenarios.

      To support broader applicability, we also provide a supplementary graphical user interface (GUI) that allows users to modify key echolocation parameters and explore their impact on behavior—making the framework adaptable to additional species, including TB.

      (4) Line 78: It is not clear how (or even if) the simulated bats estimate the direction of obstacles. The explanation given in lines 457-463 is quite confusing. What is the acoustic/neurological mechanism that enables this direction estimation? If there is some mechanism (such as binaural processing), how does this extrapolate to 3D?

      This comment echoes a similar concern raised by a previous reviewer. As explained earlier, in the current simulation, the Direction of Arrival (DOA) was not modeled via an explicit binaural processing mechanism. The complete  is detailed in  to Reviewer #1, Line 457. This implementation is now clarified in the revised text, and a detailed description of the localization process is also provided in the Methods section (lines 583-592).

      (5) The authors propose they are modeling the dynamic echolocation of bats in the simulation (line 79), but it appears (whether this is due to a lack of information in the manuscript or true lack in the simulation) that the authors only modeled a flight response. How did the authors account for bats dynamically changing their echolocation? This is unclear and from what I can tell may just mean that the bats can switch between foraging phase call types depending on the distance to a detected obstacle. Can the authors elaborate more on this?

      The echolocation behavior of the bats—including dynamic call adjustments— was implemented in the simulation and is described in detail in the Methods section (lines 498-520 and Table 2). To avoid redundancy, the Results chapter originally referred to this section, but we have now added a brief explanation in the Results to clarify that the bats’ call parameters (IPI, duration, and frequency range) adapt based on the distance to detected objects, following empirically documented echolocation phases ("search," "approach," "buzz"). These dynamics are consistent with established bat behavior during navigation in cluttered environments such as caves.

      (6) Figure 1 C3: "Detection threshold": what is this and how was it derived?

      The caption also mentions yellow arrows, but they are absent from the figure. C4: Each threshold excursion is marked with an asterisk, but there are many more excursions than asterisks. Why are only some marked? Unclear.

      C3: The detection threshold is determined dynamically. It is set to the greater of either 7 dB above the noise level (0 dB-SPL)(Kick, 1982; Saillant et al., 1993; Sanderson et al., 2003; Boonman et al., 2013) or the maximal received level minus 70 dB, effectively applying a dynamic range of 70 dB. This clarification has been added to the Methods section. The yellow arrow has been added.

      C4: Thank you for this important observation. Only peaks marked with asterisks represent successful detections—those that were identified in both the interference-free and full detection conditions, as explained in the Methods. Other visible peaks result from masking signals or overlapping echoes from nearby reflectors, but they do not meet the detection criteria. To keep the figure caption concise, we have elaborated on this process more clearly in the revised Methods section. We added this information to the legend

      (7) Figure 2: A line indicating RM, No Masking is absent

      Thank you for pointing this out. The missing line for RM, No Masking has now been added in the revised version of Figure 2.

      (8) Line 121: "reflected off conspecifics". Does this mean echoes due to conspecifics?

      The phrase "reflected off conspecifics" refers to echoes originating from the bat’s own call and reflected off the bodies of nearby conspecifics. We have clarified the wording in the revised text to avoid confusion

      (9) Line 125: Why are low-frequency channels stimulated by higher frequencies? This needs further clarification.

      The cochlear filter bank in our model is implemented using gammatone filters, each modeled as an 8th-order Butterworth filter. Due to the non-ideal filter response and relatively broad bandwidths—especially in the lower-frequency channels—strong energy from the beginning of the downward FM chirp (at higher frequencies) can still produce residual activation in lower-frequency channels. While these stimulations are usually below the detection threshold, they may still be visible as early sub-threshold responses. Given the technical nature of this explanation (a property of the filter implementation) and it does not influence the detection outcomes, we have chosen not to elaborate on it in the figure caption or Methods.

      (10) Lines 146-150: This is an interesting finding. Is there a theoretical justification for it?

      This outcome arises directly from the simulation results. As noted in the Discussion (lines 359-365), although Pipistrellus kuhlii (PK) shows a modest advantage in jamming resistance due to its broader bandwidth, the redundancy in sensory information across calls—enabled by frequent echolocation—appears to compensate for these signal differences. As a result, the small variations in echo quality between species do not translate into significant differences in performance. We speculate that if the difference in jamming probability had been larger, performance disparities would likely have emerged.

      (11) Line 151: The authors define a jammed echo as an echo entirely missed due to masking. Is this appropriate? Doesn't echo mis-assignment also constitute jamming?

      We agree that echo mis-assignment can also degrade performance; however, in our model, we distinguish between two outcomes: (1) complete masking (echo not detected), and (2) detection with a localization error. As explained in the Methods (lines 500–507), we run the detection analysis twice—once with only desired echoes (“interference-free detection”) and once including masking signals (“full detection”). If a previously detected echo is no longer detected, it is classified as a jammed echo. If the echo is still detected but the delay shifts by more than 100 µs compared to the interference-free condition, it is also considered jammed. If the delay shift is smaller, it is treated as a detection with localization error rather than full jamming. We have clarified this distinction in the revised Methods section.

      (12) Figure 2-E: Detection probability statistics are of limited usefulness without accompanying false alarm rate (FAR) statistics. Do the authors have FAR numbers?

      We understand FAR to refer to instances where masking signals or other acoustic phenomena are mistakenly interpreted as real echoes from physical objects. As explained in the manuscript, we implemented two model versions: one without confusion, and one with full confusion.

      Figure 2E reports detection performance under the non-confusion model, in which only echoes from actual physical reflectors are used, and no false detections occur—hence, the false alarm rate is effectively zero in this condition. In the full-confusion model, all detected echoes—including those originating from masking signals or conspecific calls—are treated as valid detections, which may include false alarms. However, we did not explicitly quantify the false alarm rate as a separate metric in this simulation.

      We agree that tracking FAR could be informative and will consider incorporating it into future versions of the model.

      (13) Line 161: RM bats suffered from a significantly higher probability of the "desired conspecific's echoes" being jammed. What does "desired conspecific's echoes" mean? This is unclear.

      The term “desired conspecific's echoes” refers to echoes originating from the bat’s own call, reflected off nearby conspecifics, which are treated as relevant reflectors for collision avoidance. We have revised the wording in the text for clarity.

      (14) Line 188: Why didn't the size of the integration window affect jamming probability? I couldn't find this explained in the discussion.

      The jamming probability in our analysis is computed at the individual-echo level, prior to any temporal integration. Since the integration window is applied after the detection step, it does not influence whether a specific echo is masked (i.e., jammed) or not. Therefore, as expected, we did not observe a significant effect of integration window size on jamming probability.

      (15) Line 217-218: Why do the authors think this would be?

      Thank you for the thoughtful question. We agree that, in theory, increasing call intensity should raise the levels of both desired echoes and masking signals proportionally. However, in our model, the environmental noise floor and detection threshold remain constant, meaning that higher call intensities increase the signal-to-noise ratio (SNR) more effectively for weaker echoes, especially those at longer distances or with low reflectivity. This could lead to a higher likelihood of those echoes crossing the detection threshold, resulting in a small but measurable reduction in jamming probability.

      Additionally, the non-linear behavior of the filter-bank receiver—including such as thresholding at multiple stages—can introduce asymmetries in how increased signal levels affect the detection of target versus masking signals.

      That said, the effect size was small, and the improvement in jamming probability did not translate into any significant gain in behavioral performance (e.g., exit probability or collision rate), as shown in Figure 3C.

      (16) Line 233: I'm not sure I understand how a slightly improved aggregation model that clustered detected reflectors over one-second periods is different. Doesn't this just lead to on average more calls integrated into memory?

      While increasing the memory duration does lead to more detections being available, the enhanced aggregation model (we now refer to as multi-call clustering) differs fundamentally from the simpler one. As detailed in the Methods, it includes additional processing steps: clustering spatially close detections, removing outliers, and estimating wall directions based on the spatial structure of clustered echoes. In contrast, the simpler model treats each detection as an isolated point without estimating obstacle orientation. These additional steps allow for more robust environmental interpretation and significantly improve performance under high-confusion conditions. We have clarified it in revised text (lines 606-616) and added a Supplementary Figure 2B.

      (17) Table 1: What about conspecific target strength?

      We have now added the conspecific target strength as a tested parameter in Table 1, along with its tested range, default value, and measured effect sizes. A detailed sensitivity analysis is also presented in Supplementary Figure 4, demonstrating that variations in conspecific target strength had relatively minor effects on performance metrics.  

      (18) Figure 3-A: The x-axis is the number of calls in the integration window. But the leftmost sample on each curve is at 0 calls. Shouldn't this be 1?

      “0 calls” refers to the case where only the most recent call is used for pathfinding—without integrating any information from prior calls. The x-axis reflects the number of previous calls stored in memory, so a value of 0 still includes the current call. We’ve clarified this terminology in the figure caption.

      (19) Lines 282-283: This statement needs to be clarified that it is with the constraints of using a 2D simulation with at most 33 bats/m^2. It also should be clarified that it is assumed the bat can reliably distinguish between its own echoes and conspecific echoes, which is a very important caveat.

      We have revised the text to clarify that the results are based on a 2D simulation with a maximum tested density of 33 bats/m². We also now explicitly state that the model assumes bats can distinguish between their own echoes and those generated by conspecifics—an assumption we recognize as a simplification. These clarifications help place the results within the scope and constraints of the simulation. Moreover, as described in the text (and noted in previous response): the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m

      (20) Line 294: What is this sentence referring to?

      The sentence refers to the finding that, even under high bat densities, a substantial portion of the echoes—particularly those reflected from nearby obstacles (e.g., 1 m away)—were jammed due to masking. Nevertheless, the bats in the simulation were still able to navigate successfully using partial sensory input. We have clarified the sentence in the revised text to make this point more explicit, see line 333-336.

      (21) Line 302: Was jamming less likely when IPI was higher or lower? I could not find this demonstrated anywhere in the manuscript.

      We agree that the original text was not sufficiently clear on this point. While we did not explicitly test fixed IPI values as a parameter, the model does simulate the natural behavior of decreasing IPI as bats approach obstacles. This behavior is supported by empirical observations and is incorporated into the echolocation dynamics of the simulation. We have clarified this point in the revised text (see Lines 346-351) and explained that while lower IPI introduces more acoustic overlap, it also increases redundancy and improves detection through temporal integration.

      (22) Lines 313-314: This is an interesting assumption, but it is not evident that is substantiated by the references.

      The claim is based on well-established principles in signal processing and bioacoustics. Wideband signals—such as those emitted by PK bats— distribute their energy over a broader frequency range, which makes them inherently more resistant to narrowband interference and masking. This concept is commonly applied in both biological and artificial sonar systems and is supported by empirical studies in bats and theory in acoustic sensing.

      For example, Beleyur & Goerlitz (2019) demonstrate that broader bandwidth calls improve detection in cluttered and jamming-prone environments. Similarly, Ulanovsky et al. (2004) and Schnitzler & Kalko (200) discuss how FM bats' wideband calls enhance temporal and spatial resolution, helping to reduce the impact of overlapping signals from conspecifics. These findings align with communication theory where spread-spectrum techniques improve robustness in noisy environments.

      We agree with the reviewer that this is an important point and we have updated the manuscript to clarify this rationale and cite the relevant literature accordingly – lines 631-363,

      (23) Lines 318-319: What is the justification for "probably"? Isn't this just a supposition?

      We agree with the reviewer’s point and have rephrased the sentence

      (24) Line 320: How does this 63% performance match the sentence in line 295?

      The sentence in Line 295 refers to the overall ability of the bats to navigate successfully despite high jamming levels, highlighting the robustness of the strategy under challenging conditions. The figure in Line 320 (63%) quantifies this performance under the most extreme simulated scenario (100 bats / 3 m²), where both spatial and acoustic interferences are maximal. We have rephrased the text in the revised version (lines 324-327).

      (25) Lines 341-345: It seems like this is more likely to be the main takeaway of the paper.

      As noted in the Public Review above, there is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from those of conspecifics (e.g., Schnitzler, Bioscience, 2001; Kazial et al., 2001, 2008; Burnett & Masters, 2002; Chiu et al., 2009; Yovel et al., 2009; Beetz & Hechavarría, 2022). Therefore, we consider our assumption of selfrecognition to be well-supported, at least under typical conditions. That said, we agree that the impact of echo confusion on performance is significant and highlights a critical challenge in dense environments.

      To our knowledge, this is the first computational model to explicitly simulate both self-recognition and full echo confusion under high-density conditions. We believe that the combination of modeled constraints and the demonstrated robustness of simple sensorimotor strategies, even under worst-case assumptions, is what makes this contribution both novel and meaningful.

      (26) Lines 349-350: What is the aggregation model? What is meant by "integration"?

      We have revised the text to clarify that the “aggregation model” refers to a multi-call clustering process that includes clustering of detections, removal of outliers, and estimation of wall orientation, as described in detail in the revised Methods and Results sections.

      (27) Line 354: Again, why isn't this the assumption we're working under?

      As addressed in our response to Comment 25, our primary model assumes that bats can recognize their own echoes—an assumption supported by substantial empirical evidence. The alternative "full confusion" model was included to explore a worst-case scenario and highlight the behavioral consequences of failing to distinguish self from conspecific echoes. We assume that real bats may experience some degree of echo misidentification; however, our assumption of full confusion represents a worst-case scenario.

      (28) Line 382: "Under the assumption that..." I agree that bats probably can, but if we assume they can differentiate them all, where's the jamming problem?

      The assumption that bats can theoretically distinguish between different signal sources applies after successful detection. However, the jamming problem arises during the detection and localization stages, where acoustic interference can prevent echoes from crossing the detection threshold or distort their timing.

      (29) Lines 386-387: The paper referenced focused on JAR in the context of foraging. What changes were made to the simulation to switch to obstacle avoidance?

      While the simulation framework in Mazar & Yovel (2020) was developed to study jamming avoidance during foraging, the core components—such as the acoustic calculations, receiver model, and echolocation behavior—remain applicable. For the current study, we adapted the simulation extensively to address colony-exit behavior. These modifications include modeling cave walls as acoustic reflectors, implementing a pathfinding algorithm, integrating obstacle-avoidance maneuvers, and adapting the integration window and integration processes. These updates are detailed throughout the Methods section.

      (30) Line 400-402: Something doesn't add up with the statement: each decision relies on an integration window that records estimated locations of detected reflectors from the last five echolocation calls, with the parameter being tested between 1 and 10 calls. Can the authors reword this to make it less confusing?

      We have reworded the sentence to clarify that the default integration window includes five calls, while we systematically tested the effect of using 1 to 10 calls, see lines 486-487.

      (31) Line 393: "30 deg/sec" why was this value chosen?

      The turning rate of 30 deg/sec was manually selected to approximate the curvature of natural foraging flight paths observed in Rhinopoma microphyllum using on-board tags. Moreover, in Mazar & Yovel (2020), we showed that the flight dynamics of simulated bats in a closed room closely matched those of Pipistrellus kuhlii flying in a room of similar dimensions. However, in the current simulation, bats rarely follow a random-walk trajectory due to the structured environment and frequent obstacle detection. As a result, this parameter has no meaningful impact on the simulation outcomes.

      (32) Line 412: "Harmony" --- do you mean harmonic? And what is the empirical evidence that RM bats use the 2nd harmonic compared to the 1st?

      Perhaps showing a spectrogram of a real RM signal would be helpful.

      The typo-error was corrected. For reference See (Goldshtein et al., 2025)

      (33) Table 2: Something is incorrect with the table. The first row on the next page is the wrong species name. Also, where are the citations for these parameter values?

      The table header has been corrected in the revised version. The parameter values for flight and echolocation behavior were derived from existing literature and empirical data: Pipistrellus kuhlii parameters were based on Kalko (1995), and Rhinopoma microphyllum parameters were extracted from our own recordings using on-board tags, as described in Goldstein et al. (2025). We have added the appropriate citations to Table 2.

      (34) Line 442: How was the threshold level chosen?

      The detection threshold in each level is set to the greater of either 7 dB above the noise level (0 dB-SPL) or the maximal received level minus 70 dB, effectively applying a dynamic range of 70 dB.

      (35) Line 445: 100 micros: This is about 3cm. The resolution of PK is about 1cm. For RM it's about 10cm. So, this window is generous for PK, but too strict for RM.

      To keep the model simple and avoid introducing species-specific detection thresholds, we selected a biologically plausible compromise that could reasonably apply to both species. This simplification ensures consistency across simulations while remaining within the known behavioral range.

      (36) Line 448: What is the spectrum of the Gaussian noise, and did it change between PK and RM?

      We used the same white Gaussian noise with a flat spectrum across the relevant frequency range (10–80 kHz) for both species. We have clarified this in the revised text in lines 570-572.

      (37) Line 451: 4 milliseconds is 1.3m. Is this appropriate?

      The 4 milliseconds window was selected based on established auditory masking thresholds described in Mazar & Yovel (2020), and supported by (Popper and Fay, 1995) ch. 2.4.5, ((Blauert, 1997),  ch. 3.1 and (Mohl and Surlykke, 1989). These values provide conservative lower bounds on bats’ ability to cope with masking (Beleyur and Goerlitz, 2019). For simplicity, we used constant thresholds within each window, see lines 574-576.  

      (38) Line 452: Citation for the forward and backward masking durations?

      See the  to the previous comment.

      (39) Lines 460-461: This is unclear. How does the bat get directional information? The authors claim to be able to measure direction-of-arrival for each detection, but it is not clear how this is done

      As noted in our response to Reviewer 1 (Comment on Line 457), directional information is not computed via an explicit binaural model. Instead, we assume the bat estimates the direction of arrival with an angular error that depends on the SNR, based on established studies (e.g., Simmons et al., 1983; Popper & Fay, 1995). We have clarified this in the revised text in lines 583-592.

      (40) Line 467: It seems like the authors are modeling pulse-echo ambiguity, at least in this one alternative model, which is good! However the alternative model doesn't get much attention in the paper. Is there a reason for this?

      We would like to clarify that we did not model pulse-echo. In our confusion model, all echoes received within the IPI are attributed to the bat’s most recent call. This includes echoes that may in fact originate from conspecific calls, but the model does not assign self-echoes to earlier pulses or span multiple IPIs. Therefore, while the model captures echo confusion, it does not include true pulse-echo ambiguity. We have clarified this point in the revised text in lines 551-553.

      (41) Line 41: "continuous" is more appropriate than "constant".

      Thank you, we have rephrased the text accordingly.

      (42) Line 69: "band width" should be one word.

      Thank you, we have corrected it to “bandwidth”.

      (43) Line 79: "bats" should be in the possessive.

      Thank you, the text has been rephrased.

      (44) Line 128: "convoluted" don't you mean "convolved"?

      We have replaced “convoluted” with the correct term “convolved” in the revised text.

      (45) Please check your references, as there are some incomplete citations and typos.

      Thank you, we have reviewed and corrected all references for completeness and consistency.

      References

      Beetz, M.J. and Hechavarría, J.C. (2022) ‘Neural Processing of Naturalistic Echolocation Signals in Bats’, Frontiers in Neural Circuits, 16, p. 899370. Available at: https://doi.org/10.3389/FNCIR.2022.899370/BIBTEX.

      Beleyur, T. and Goerlitz, H.R. (2019) ‘Modeling active sensing reveals echo detection even in large groups of bats’, Proceedings of the National Academy of Sciences of the United States of America, 116(52), pp. 26662–26668. Available at: https://doi.org/10.1073/pnas.1821722116.

      Betke, M. et al. (2008) ‘Thermal Imaging Reveals Significantly Smaller Brazilian Free-Tailed Bat Colonies Than Previously Estimated’, Journal of Mammalogy, 89(1), pp. 18–24. Available at: https://doi.org/10.1644/07-MAMM-A-011.1.

      Blauert, J. (1997) ‘Spatial Hearing: The Psychophysics of Human Sound Localization (rev. ed.)’.

      Boerma, D.B. et al. (2019) ‘Wings as inertial appendages: How bats recover from aerial stumbles’, Journal of Experimental Biology, 222(20). Available at: https://doi.org/10.1242/JEB.204255/VIDEO-3.

      Boonman, A. et al. (2013) ‘It’s not black or white-on the range of vision and echolocation in echolocating bats’, Frontiers in Physiology, 4 SEP(September), pp. 1–12. Available at: https://doi.org/10.3389/fphys.2013.00248.

      Boonman, A.M., Parsons, S. and Jones, G. (2003) ‘The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses’, The Journal of the Acoustical Society of America, 113(1), p. 617. Available at: https://doi.org/10.1121/1.1528175.

      Burnett, S.C. and Masters, W.M. (2002) ‘Identifying Bats Using Computerized Analysis and Artificial Neural Networks’, North American Symposium on Bat Research, 9.

      Chili, C., Xian, W. and Moss, C.F. (2009) ‘Adaptive echolocation behavior in bats for the analysis of auditory scenes’, Journal of Experimental Biology, 212(9), pp. 1392–1404. Available at: https://doi.org/10.1242/jeb.027045.

      Fujioka, E. et al. (2021) ‘Three-Dimensional Trajectory Construction and Observation of Group Behavior of Wild Bats During Cave Emergence’, Journal of Robotics and Mechatronics, 33(3), pp. 556–563. Available at: https://doi.org/10.20965/jrm.2021.p0556.

      Gillam, E.H. et al. (2010) ‘Echolocation behavior of Brazilian free-tailed bats during dense emergence flights’, Journal of Mammalogy, 91(4), pp. 967–975. Available at: https://doi.org/10.1644/09-MAMM-A-302.1.

      Goldshtein, A. et al. (2025) ‘Onboard recordings reveal how bats maneuver under severe acoustic interference’, Proceedings of the National Academy of Sciences, 122(14), p. e2407810122. Available at: https://doi.org/10.1073/PNAS.2407810122.

      Griffin, D.R., Webster, F.A. and Michael, C.R. (1958) ‘THE ECHOLOCATION OF FLYING INSECTS BY BATS ANIMAL BEHAVIOUR , Viii , 3-4’.

      Hagino, T. et al. (2007) ‘Adaptive SONAR sounds by echolocating bats’, International Symposium on Underwater Technology, UT 2007 - International Workshop on Scientific Use of Submarine Cables and Related Technologies 2007, pp. 647–651. Available at: https://doi.org/10.1109/UT.2007.370829.

      Hiryu, S. et al. (2008) ‘Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field’, The Journal of the Acoustical Society of America, 124(2), pp. EL51–EL56. Available at: https://doi.org/10.1121/1.2947629.

      Jakobsen, L. et al. (2024) ‘Velocity as an overlooked driver in the echolocation behavior of aerial hawking vespertilionid bats’. Available at: https://doi.org/10.1016/j.cub.2024.12.042. Jakobsen, L., Brinkløv, S. and Surlykke, A. (2013) ‘Intensity and directionality of bat echolocation signals’, Frontiers in Physiology, 4 APR(April), pp. 1–9. Available at: https://doi.org/10.3389/fphys.2013.00089.

      Jakobsen, L. and Surlykke, A. (2010) ‘Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit’, 107(31). Available at:

      https://doi.org/10.1073/pnas.1006630107.

      Kalko, E.K. V. (1995) ‘Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchirptera)’, Animal Behaviour, 50(4), pp. 861–880.

      Kazial, K.A., Burnett, S.C. and Masters, W.M. (2001) ‘ Individual and Group Variation in Echolocation Calls of Big Brown Bats, Eptesicus Fuscus (Chiroptera: Vespertilionidae) ’, Journal of Mammalogy, 82(2), pp. 339–351. Available at: https://doi.org/10.1644/15451542(2001)082<0339:iagvie>2.0.co;2.

      Kazial, K.A., Kenny, T.L. and Burnett, S.C. (2008) ‘Little brown bats (Myotis lucifugus) recognize individual identity of conspecifics using sonar calls’, Ethology, 114(5), pp. 469– 478. Available at: https://doi.org/10.1111/j.1439-0310.2008.01483.x.

      Kick, S.A. (1982) ‘Target-detection by the echolocating bat, Eptesicus fuscus’, Journal of Comparative Physiology □ A, 145(4), pp. 431–435. Available at: https://doi.org/10.1007/BF00612808/METRICS.

      Kothari, N.B. et al. (2014) ‘Timing matters: Sonar call groups facilitate target localization in bats’, Frontiers in Physiology, 5 MAY. Available at: https://doi.org/10.3389/fphys.2014.00168.

      Mohl, B. and Surlykke, A. (1989) ‘Detection of sonar signals in the presence of pulses of masking noise by the echolocating bat , Eptesicus fuscus’, pp. 119–124.

      Moss, C.F. and Surlykke, A. (2010) ‘Probing the natural scene by echolocation in bats’, Frontiers in Behavioral Neuroscience. Available at: https://doi.org/10.3389/fnbeh.2010.00033.

      Neretti, N. et al. (2003) ‘Time-frequency model for echo-delay resolution in wideband biosonar’, The Journal of the Acoustical Society of America, 113(4), pp. 2137–2145. Available at: https://doi.org/10.1121/1.1554693.

      Popper, A.N. and Fay, R.R. (1995) Hearing by Bats. Springer-Verlag.

      Roy, S. et al. (2019) ‘Extracting interactions between flying bat pairs using model-free methods’, Entropy, 21(1). Available at: https://doi.org/10.3390/e21010042.

      Sabol, B.M. and Hudson, M.K. (1995) ‘Technique using thermal infrared-imaging for estimating populations of gray bats’, Journal of Mammalogy, 76(4). Available at: https://doi.org/10.2307/1382618.

      Saillant, P.A. et al. (1993) ‘A computational model of echo processing and acoustic imaging in frequency- modulated echolocating bats: The spectrogram correlation and transformation receiver’, The Journal of the Acoustical Society of America, 94(5). Available at: https://doi.org/10.1121/1.407353.

      Salles, A., Diebold, C.A. and Moss, C.F. (2020) ‘Echolocating bats accumulate information from acoustic snapshots to predict auditory object motion’, Proceedings of the National Academy of Sciences of the United States of America, 117(46), pp. 29229–29238. Available at: https://doi.org/10.1073/PNAS.2011719117/SUPPL_FILE/PNAS.2011719117.SAPP.PDF.

      Sanderson, M.I. et al. (2003) ‘Evaluation of an auditory model for echo delay accuracy in wideband biosonar’, The Journal of the Acoustical Society of America, 114(3), pp. 1648– 1659. Available at: https://doi.org/10.1121/1.1598195.

      Schnitzler, H., Bioscience, E.K.- and 2001, undefined (no date) ‘Echolocation by insecteating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation ’, academic.oup.comHU Schnitzler, EKV KalkoBioscience, 2001•academic.oup.com [Preprint]. Available at: https://academic.oup.com/bioscience/article-abstract/51/7/557/268230 (Accessed: 17 March 2025).

      Schnitzler, H.-U. et al. (1987) ‘The echolocation and hunting behavior of the bat,Pipistrellus kuhli’, Journal of Comparative Physiology A, 161(2), pp. 267–274. Available at: https://doi.org/10.1007/BF00615246.

      Simmons, J.A. et al. (1983) ‘Acuity of horizontal angle discrimination by the echolocating bat , Eptesicus fuscus’. Simmons, J.A. and Kick, S.A. (1983) ‘Interception of Flying Insects by Bats’, Neuroethology and Behavioral Physiology, pp. 267–279. Available at: https://doi.org/10.1007/978-3-64269271-0_20.

      Surlykke, A., Ghose, K. and Moss, C.F. (2009) ‘Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus’, Journal of Experimental Biology, 212(7), pp. 1011–1020. Available at: https://doi.org/10.1242/JEB.024620.

      Theriault, D.H. et al. (no date) ‘Reconstruction and analysis of 3D trajectories of Brazilian free-tailed bats in flight’, cs-web.bu.edu [Preprint]. Available at: https://csweb.bu.edu/faculty/betke/papers/2010-027-3d-bat-trajectories.pdf (Accessed: 4 May 2023).

      Ulanovsky, N. and Moss, C.F. (2008) ‘What the bat’s voice tells the bat’s brain’, Proceedings of the National Academy of Sciences of the United States of America, 105(25), pp. 8491– 8498. Available at: https://doi.org/10.1073/pnas.0703550105. Vanderelst, D. and Peremans, H. (2018) ‘Modeling bat prey capture in echolocating bats : The feasibility of reactive pursuit’, Journal of theoretical biology, 456, pp. 305–314.

      Yovel, Y. et al. (2009) ‘The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls’, PLoS Computational Biology, 5(6). Available at: https://doi.org/10.1371/journal.pcbi.1000400.

      Yovel, Y. and Ulanovsky, N. (2017) ‘Bat Navigation’, The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, pp. 333–345. Available at: https://doi.org/10.1016/B978-0-12-809324-5.21031-6.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Based on the below reviews, we propose the following revision plan. Briefly:

      • We will re-focus the manuscript on the developmental data providing a molecular and cellular blueprint __of lining macrophage development. The __novelty and relevance of our developmental data have been highlighted by all three reviewers, and they have also praised the rigor of these experiments and their interpretation. We thus believe that this re-focus will improve the manuscript's message.
      • We will include our data on CSF1 as a key signal. Whilst previously appreciated as a factor required for tissue-resident macrophages, including those in the joint, our study is the first to show the requirement of lining macrophages over a complete developmental time course, using modern readouts, and in a model that circumvents the limitations of previously used approaches (see point-by-point response for details).
      • However, we will remove the functional data on TGFβ signaling and mechanical loading/mechanosensing. We agree with the reviewers that we would need to generate additional histological and molecular data from conditional knockout mice, antibody and (ant)agonist treatments and the optogenetic model to determine their exact involvement in lining macrophage maturation. These experiments require significant time and other resources. We would therefore like to uncouple this question for a follow-on manuscript, and to re-focus the current study as a developmental atlas. Removal of (some) of these data has been suggested in the reviewers' comments as well.
      • To further elevate our developmental atlas, we are proposing to include additional data and new analyses delineating the developmental dynamics of synovial fibroblasts on single cell (transcriptomic) level. This change to the original manuscript had not been requested by the reviewers, but we are proposing this pro-actively because we believe this would be an impactful addition to a revised version of our study, providing data also on the maturation of the synovial (lining) macrophage niche. Again, this will re-focus the manuscript on the developmental data and provide a novel, valuable resource for those interested in joint biology.
      • We will otherwise respond to all individual reviewer comments and implement the requested changes, unless technically not possible. We are convinced that this revision plan will result in a manuscript that fits very well with the remit of Genes & Development.

      Please find below detailed point-by-point answers.

      Reviewer #1

      Evidence, reproducibility and clarity

      In their manuscript entitled "The synovial lining macrophage layer develops in the first weeks of life in a CSF1- and TGFβ-dependent but monocyte-independent process," the authors explore the developmental trajectory of synovial lining macrophages. They demonstrate that the formation of this specialized macrophage layer is age-dependent and governed by a distinct developmental program that proceeds independently of circulating monocytes. Through scRNA-Seq, the authors show that synovial lining macrophages originate locally from Aqp1⁺ macrophages and are marked by the expression of Csf1r, Tgfbr, and Piezo1. Notably, genetic ablation of each of these factors impaired the development of lining macrophages to varying degrees, suggesting differential contributions of CSF1, TGFβ, and PIEZO1 signaling pathways to their maturation and maintenance.

      The manuscript is well written, and the data quality and representation is of a high standard. The authors have employed a sophisticated array of state-of-the-art mouse models and cutting-edge technologies to elucidate the developmental origin of synovial lining macrophages. Notably, the supporting scRNA-Seq datasets are of excellence and provide valuable insights that will likely be of significant interest to researchers in the field of immunology and joint biology. Accordingly, the experimental approach and interpretations regarding macrophage origin are well-founded and compelling. However, in the eye of the reviewer, the section addressing the underlying molecular mechanisms is a bit less convincing. This part of the study appears slightly underdeveloped, and some of the mechanistic claims lack sufficient experimental clarity. A more rigorous experimental investigation would be essential to reinforce the manuscript's conclusions, particularly concerning the data related to Tgfbr and Piezo1, where the current evidence appears insufficiently substantiated.

      We thank the reviewer for their positive and constructive evaluation of our manuscript. We agree with them (and the other reviewers) that our functional data on the involvement of TGFβ signaling and mechanical loading/mechanosensing are comparably less convincing and substantiated than our developmental data. We are very grateful for their (and the other reviewers') suggestions to provide more support for the involvement of these factors in lining macrophage development. However, we think that carrying this out to the same high standard will require substantial time and other resources. We have therefore decided to uncouple this from the developmental data and pursue this in follow-up work. We will re-focus the current manuscript on the developmental data. We have proposed to the editors to instead include additional data on synovial fibroblast development, to complement our macrophage data and also delineate the maturation of their niche, thereby providing a conclusive developmental atlas.

      Major point:

      1. The numbers of VSIG4⁺ macrophages appear either unaffected or only minimally altered in both Csf1rMerCreMer Tgfbr2floxed and Fcgr1Cre Piezo1floxed mouse models, respectively. This raises an important question: was the gene deletion efficiency sufficient in each model? Accordingly, the authors are encouraged to include quantitative data on gene deletion efficiency for both mouse models, as this information is critical for interpreting the observed phenotypic outcomes and validating the conclusions regarding gene function. Furthermore, to better assess the impact of Tgfbr2 and Piezo1 disruption, the authors should provide more comprehensive flow cytometry analyses and histological data for these mouse models. Given the apparent homogeneity of VSIG4⁺ macrophages (as shown by the authors themselves), bulk RNA-Seq of sorted Tgfbr2- and Piezo1-deficient VSIG4⁺ macrophages (or from TGFβ-treated animals) would offer valuable insights into both the effectiveness of gene deletion and the molecular pathways governed by TGFβ and PIEZO1 in lining macrophages.

      As outlined above, we have decided to uncouple our functional data on TGFβ, Piezo1 and mechanical loading. The points raised here are all very valid, and we will implement your suggestions in our follow-up functional work focusing on signaling events regulating lining macrophage development. On the suggestion to perform bulk RNA sequencing for VSIG4+ macrophages: This is a good one in principle - although we will not be able to use this strategy where we want to assess the consequences of experimental treatments or genetic models on lining macrophage maturation, because acquisition of VSIG4 is a key maturation event that might be impaired in these conditions.

      Minor points:

      Consistent usage of Cx3cr1-GFP+ nomenclature (for instance: Fig. S1 legend "adult mouse synovial tissue, showing PDGFRα⁺ fibroblasts (yellow) and CX3CR1-GFP⁺ cells (cyan)." versus Fig. 1 legend "Automated spot detection highlights Cx3cr1-GFP⁺ macrophages)".

      We will implement these changes.

      Unclear Fig. 3 legend: "Representative immunofluorescence images of synovial tissue from Clec9aCre:Rosa26lsl-tdT mice at 3 weeks and in adulthood, showing and tdTomato (yellow) and stained for DAPI (blue), VSIG4 (cyan)" Check 'showing and tdTomato.'

      We will implement these changes.

      For greater clarity, it would have been helpful if the transcript names had been directly included within Figures 3C, S3A, and S3C.

      We will implement these changes.

      Page 24: "(Mki67CreERT2:Rosa26lsl-tdT)" Last bracket not superscript.

      We will implement these changes.

      Page 25: "we again leveraged our scRNAsequencing dataset" Missing punctuation.

      We will implement these changes.

      Page 27: Fig. 5C legend: " of synovial tissue of 1 week-old, 3 weeks-old and adult mice." Please specify and change to 'adult Csf1rΔFIRE/ΔFIRE mice'.

      We will implement these changes.

      Page 30: The outcome observed in the Acta1-rtTA:tetO-Cre:ChR2-V5fl mouse model appears to be inconclusive: "This approach resulted in an increased density of VSIG4+ and total (F4/80+) macrophages in the exposed leg of some 5 days-old pups, but others showed the opposite trend (Figure S5D)." This variability may reflect low efficiency of the model or other technical limitations (e.g. muscle contractions frequency or time point of analysis). Given this ambiguity, it is worth reconsidering whether the data are sufficiently robust to warrant inclusion. Should the authors choose to include these findings, further experimentation of appropriate depth and precision is required to allow a conclusive interpretation (either it increases the density of VSIG4+ macrophages or not). The same applies to the Yoda1-treated mice, for which additional data are needed to determine whether VSIG4⁺ macrophage density is truly affected.

      We have decided to remove the data on the optogenetic mouse model and Yoda1 treatment and follow-on separately, implementing these suggestions, including proof of concept data for optogenetically induced muscle contractions.

      Significance

      General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed? This is a well-designed study that uses cutting-edge methodologies to investigate the developmental trajectory of synovial lining macrophages under homeostatic conditions. The authors present robust experimental evidence and compelling interpretations concerning synovial macrophage origin, which are both well-substantiated and impactful. Nonetheless, from the reviewer's perspective, the section exploring the molecular mechanisms underlying macrophage differentiation is comparatively less convincing. This section appears somewhat underdeveloped, as some of the mechanistic claims lack sufficient depth and experimental rigor to fully substantiate the conclusions.

      Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field: In contrast to earlier studies (PMID: 31391580, 32601335), the inclusion of fate-mapping experiments adds an important dimension, offering novel insight into the ontogeny of synovial macrophages. This expanded perspective may prove particularly valuable in advancing our understanding of joint immunology, especially regarding the local origins and lineage relationships of macrophage populations.

      Furthermore, the authors present novel insights into the molecular pathways underlying the differentiation and development of synovial lining macrophages. By demonstrating previously unrecognized regulatory mechanisms, this work significantly deepens our understanding of the cellular and transcriptional programs that drive macrophage specialization within the joint microenvironment.

      Place the work in the context of the existing literature (provide references, where appropriate): This study builds upon previous work characterizing the macrophage compartment in the joint (PMID: 31391580, 32601335), yet provides a substantially more comprehensive dataset that spans multiple developmental time points and data on the origin of this specialized macrophage subset.

      State what audience might be interested in and influenced by the reported findings: Immunologist, clinicians

      Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. This study falls well within the scope of the reviewer's expertise in innate immunity.

      Reviewer #2

      Evidence, reproducibility and clarity

      In the manuscript „The synovial lining macrophage layer develops in the first weeks of life in a CSF1- and TGFβ- dependent but monocyte-independent process", Magalhaes Pinto and colleagues carefully employ a wide range of technologies including single cell profiling, imaging and an exceptional combination of fate mapping models to characterize the ontogeny and development of lining macrophages in the joint, thus dissecting their maturation during postnatal development. Over the last decade, several landmark studies highlighted the imprinting of tissue-resident macrophages by a combination of ontogenetic and tissue-specific niche factors during development. So far, the ontogeny and the tissue niche factors governing the development and maturation of lining macrophages have not been described. Therefore, the results of this study offers insights on a small highly adapted macrophage population with relevance in many disease settings in the joint. Furthermore, the findings are nicely showcasing how macrophages are specializing to even very small tissue niches across development within one bigger anatomical compartment to serve dedicated functions within this niche.

      This manuscript is beautifully written and highlights many novel, highly relevant findings on lining macrophage biology and the authors employ a wide range of different technologies to carefully dissect the postnatal development of lining macrophages.

      In particular, the combination of scRNA-seq and fate mapping is providing a unique the link of transcriptional programs to ontogeny within the tissue niche. Furthermore, the integrative use of distinct fate mapping strategies, transgenic mouse lines, and treatment paradigms to elucidate key niche factors guiding the development and maturation of lining macrophages provides many interesting findings and data that are highly relevant to the field. I really enjoyed reading this manuscript.

      Thank you for your complimentary and constructive assessment of our manuscript, and the detailed comments below, which are very helpful. Please find point-by-point responses below.

      Major points:

      The authors show dynamic regulation of VSIG4 in lining macrophages during development, therefore VSIG4 is maybe not an ideal choice for gating strategies to define lining macrophages or to show as a single markers in immunofluorescence (IF) stainings to demonstrate their abundance across development (even though it is clear that this is the reason why the F4/80 staining is shown next to it). To demonstrate the increase of lining macrophages during development in IF, it would be more helpful if the authors would show quantifications of all F4/80+ cells and additionally VSIG4+ as a proportion of F4/80+ cells (or VSIG4+ F4/80+ and all F4/80+ in a stacked bar plot). We agree with the assessment of VSIG4 not being ideal since this is a key marker of mature lining macrophages only.

      We agree with the assessment of VSIG4 not being ideal since this is a key marker of mature lining macrophages only. We will provide additional data and analyses.

      In Figure 1C, the authors nicely demonstrate that the lining macrophages get closer in their distance across development to build the epithelial-like macrophage structure along the adult lining. Is the close proximity between lining macrophages already fully "matured" at 3 weeks of age and comparable to adults? Please quantify the distance in adult linings.

      We will provide additional data for adult joints.

      Can the authors explain how the grouping was performed between the analyzed human fetal joints? It is not clear why the cut was chosen between the groups at 16/17 weeks of age. Maybe it would be also beneficial if the authors would consider not grouping these samples but rather show the specific quantifications for each samples individually and estimate via linear regression the expansion over time across human development. Furthermore, can the authors give additional information about the distancing of lining macrophages in the human fetal samples, it would be great to see if they follow the same dynamics as in mouse. Maybe comparison to human juvenile/adult joints would also add on to substantiate the findings in human samples (if possible).

      We will show samples ungrouped and perform new linear regression analysis as suggested.

      The scRNA-seq analysis leaves several questions open and some conclusions and workflows cannot be easily followed.

      We appreciate this comment and the complexity of the data, and will implement the below recommendations, and clarify the issues raised. Detailed:

      a. It is not clear how and especially why the signature genes to define macrophages vs. monocytes were chosen. Especially as the signature genes for monocytes would not include patrolling monocytes and the macrophage signature genes seem to be highly regulated during development, see also Apoe expression in NB vs. adult in Figure S2e. Why did the authors not take classical markers such as Itgam, Fcgr1a, Csf1r?

      We will include new analyses using these markers.

      b. Can dendritic cell signatures be excluded? Cluster 11 and 12 show indeed some DC markers, are these really macrophages?

      We will include new analyses to account for DC markers.

      c. The authors provide several figure panels showing TOP marker genes or key marker genes for the identified clusters, however it is not clear if these are TOP DE genes or if the genes were hand chosen. Somehow, the authors give the impression that the clusters were chosen and labeled not based on DE genes, but more on existing literature that previously reported these macrophage populations. DE gene lists for all annotated cell types and macrophage clusters need to be provided within the manuscript.

      We will provide the full DEG analysis results.

      d. The authors claim that Clusters 1 and 4 are "developing" macrophages. How is this defined? Why are these developing cells compared to other clusters? And why are these clusters later on not considered as progenitors of Aqp1 macrophages and Vsig4 macrophages? Why are Aqp1+ macrophages not labeled as developing when they are later on in the manuscript shown as potential intermediate progenitors of lining macrophages?

      As per below comment, we will expand on this and clarify nomenclature and (potential) relationships between these and other macrophages.

      e. Furthermore, it is again confusing that markers are used throughout Figure 2 which are labeled as "key marker genes" for a population and then later on they are claimed to be regulated during development within this population, see for example Figure 2D and 2H.

      We will clarify this as per above answer.

      f. It is appreciated that the authors distinguished cycling clusters such as 8, 9, and 10 based on their cycling gene signature. Here it would be very exciting to see a cell cycle analysis across all clusters and time points to see when exactly the cells are expanding during development; this would also substantiate the data later shown for the Mki67-CreERT2 mouse model.

      We will perform the proposed cell cycle analysis, and implement this and the other reviewer's suggestions for marker selection and cluster annotation (this is also covered in below comments from other reviewers).

      g. Can the authors identify certain gene modules during development of lining macrophages (and/or their progenitors) which are associated with certain functions (e.g. GO terms, GSEA enrichment)?

      This will be included in the revised manuscript.

      To determine the actual presence of the identified macrophage clusters from the scRNA-seq as macrophage populations in the joint, the authors should perform IF or FACS for key markers. Especially, Aqp1+ macrophages should be shown in the developing joint.

      We will provide additional data on Aqp1+ macrophages in the developing joint, and related these to a study by collaborators currently in revision at Immunity, which characterizes the Aqp1+ population in detail (we are hoping to have a doi available during our revision process).

      The authors used a wide range of fate mapping models, which is quite unique and highly appreciated. The obtained results and the conclusions made from the models raise a couple of questions: Whereas contribution of HSC-derived/monocyte-derived macrophages to the lining compartment seems to be minor, there is still labeling across different models. Various aspects would need to be clarified.

      We will clarify these data throughout as per below suggestions.

      a. For example, the authors employ Ms4a3-Cre as a tracing model for GMP-derived monocytes, however all quantifications of the labeling efficiency are not normalized to the labeling in monocytes or another highly recombined cell population. This should be shown, similar to the other fate mapping models (Figure 3 F-I).

      Labelling efficacy for Ms4a3-Cre is near complete for GMP-derived monocytes (and neutrophils) with the Rosa-lsl-tdT (aka Ai14) reporter we have used (see also PMID: 31491389 and doi: 10.1101/2024.12.03.626330); but we will include normalized data as requested.

      b. Please show Ms4a3 expression across clusters across time points, to exclude expression in fetal-derived clusters.

      We will include this in the revised supplementary information, but there is indeed very little at birth (in line with the original report for other tissues PMID: 31491389).

      c. In line with the question raised above, if the authors can exclude a development of the Egfr1+ and Clec4n+ developing macrophages into Aqp1+ macrophages and subsequently into Vsig4 lining macrophages, the obtained data from the Ms4a3-Cre model highly suggests a correlative labeling across these clusters what could implicate a relation. However, the authors do not discuss throughout the manuscript the role of these developing macrophages. It is highly encouraged to include this into the manuscript and it would be of high relevance to understand lining macrophage development.

      This is an interesting point and we agree it deserves consideration in the revised manuscript. Indeed, our trajectory analyses do not predict differentiation of the Egfr1+ and Clec4n+ developing macrophages into Aqp1+ macrophages, and hence, ultimately lining macrophages. Conversely, Aqp1+ cells might also convert into Egfr1+ and Clec4n+ developing macrophages. We will elaborate on this more in the revised manuscript.

      d. The authors conclude from the pseudo bulk transcriptomic profiling of the different macrophage clusters that TdT+ and TdT- macrophages do not differ in their gene expression profile and that this is due to niche imprinting rather than origin imprinting. Even though the data supports that conclusion, the authors should verify if inkling cells early during development also show this similar gene expression profile and gene expression should be compared at the different developmental time points. Tissue niche imprinting is happening within the niche during development, most likely in a stepwise progress, and therefore there should be differences in the beginning.

      This is another important point that we will address in the revised manuscript by performing additional differential gene expression analyses at the different developmental time points, including the earliest stages, as suggested.

      The trajectorial analysis using different pseudotime pipelines is very interesting and nicely points out the potential role of Aqp1 macrophages as intermediates of Vsig4 lining macrophages. From my point of view, all trajectories seem to suggest that Egfr1 developing macrophages and Clec4n developing macrophages might differentiate into Aqp1 macrophages, however the authors are not exploring this further and the role of both developing macrophage clusters is not further discussed (see also comments above).

      We will address and discuss this in the revised manuscript.

      How was the starting point of the trajectorial analyses defined and is it the same for each pipeline used?

      We will clarify this in the revised manuscript.

      Are there potentially two trajectories? It looks like there is one in the beginning of postnatal life and a second one appearing from the monocyte-compartment later in life. If this is true, that would rather speak for a dual ontogeny of Vsig4+ macrophages, wouldn't it?

      We will discuss this in the revised manuscript.

      A heatmap (transcriptional shift) of trajectories between more clusters should be shown at least for Cluster 0,1,2, and 3. It is not sufficient to demonstrate this only between two clusters.

      We will add these analyses during revision.

      To show the similarity between Aqp1 macrophages and proliferating macrophage clusters, the authors should remove the cycling signature and compare these clusters to show that the cycling cells might be Aqp1 macrophages or earlier developing macrophage progenitors aka Clec4n or Egfr1 macrophages.

      We will address this in the revised manuscript.

      The conclusions made from the Mki67-CreERT2 data are a bit difficult to understand, whereas all progenitors (monocyte progenitors and macrophage progenitors will proliferate at the neonatal time point and no conclusions can be made if the cells expand in the niche. The authors should employ Confetti mice or other models (Ubow mice) to analyze clonal expansion in the niche.

      We acknowledge that interpretation of the Mki67-CreERT2 data is complicated by labeling of other cells, and notably, labeling observed in BM-derived cells. To complement the Mki67-CreERT2 data, and specifically account for proliferation of BM-derived cells, we have tried using Ms4a3-Cre:Ubow mice to quantify expansion of the few monocyte-derived macrophages in the joint (lining). However, this yielded

      All predicted cell-cell interactions between macrophages and fibroblasts should be provided in a supplementary table. Are the interactions shown in Figure 5 chosen interactions or the TOP predicted ones? Whereas the authors show different numbers of interactions, it is most likely hand-picked and therefore biased.

      We will provide a full list of all predicted interactions in the revised supplementary material in addition to a list of the full differential gene expression analysis.

      The authors further aim to dissect the factors involved in the developmental niche imprinting of lining macrophages. Even though it is highly appreciated that the authors used so many experimental setups to show the reliance of lining macrophages on Csf1 and TGF-beta as well as mechanosensation, the wide range of models the different methods used and selected developmental time points make it very difficult to really interpret the data. The authors should carefully choose time points and methods (either FACS analysis across all models or IF across all, or both). Often deletion efficiencies for transgenic models and proof of concept that the inhibitors and agonists are working in the treatment paradigm are not provided. For example, Csf1rMer-iCre-Mer Tgfbr2fl/fl mice are used but no deletion efficiency is shown or different time points of analysis, maybe the macrophages are not properly targeted in the set up.

      We have decided to uncouple our experimental data on Tgfb, Piezo1 and mechanosensing/mechanical loading, but are taking this into consideration for revision. In many cases, we have in fact performed flow cytometry and imaging analyses, and agree, we should be showing this consistently.

      The authors have shown the role of Csf1 and Tgfbr2 only for lining macrophages, is this specific in the joint to this population of are subliming macrophages affected in a similar manner.

      We will include data on sublining macrophages in the revised figure (for CSF1; Tgfb data will be uncoupled from this current manuscript).

      Can the authors confirm their results in CSF1R-FIRE mice with anti-Csf1 injections or in Csf1op/op mice?

      We will expand our discussion of the Csf1 findings, and aim to include data for anti-CSF1 antibody treatment during revision. Csf1 has previously been reported as a key factor required for maintenance of tissue-resident macrophages, including those in the joint (lining). Indeed, Csf1op/op mice are deficient in synovial lining macrophages, from 2 days of age onwards (PMID: 8050349), and lining macrophages are also absent from 2-weeks-old and adult Csf1r-/- mice (PMID: 11756160). However, a full developmental analysis has not been performed. We are thus the first to show a full developmental time course, using state-of-the-art experimental readouts, and specifically focusing on the early postnatal window of lining maturation that we have identified here in this study. Moreover, we have used a more specific model, Csf1rFIRE ko, in which Csf1 deficiency is restricted to myeloid cells. This model circumvents issues with other models, which show many developmental defects, some of which unrelated to macrophages. These include growth retardation and skeletal defects, which may influence joint macrophage development. Therefore, although Csf1 dependence of synovial lining macrophage had indeed been previously reported in principle, our data substantially expand on and solidify these findings, thereby adding novelty.

      The setup in Figure S5G is very interesting to test the role of movement and mechanical load on the joint, however, there is basically no data on the model provided showing the efficiency of the induced optogenetic muscle contractions, and only one time point is shown.

      Data on mechanical loading will be uncoupled from the current manuscript and substantiated in a separate follow-up.

      The results regarding the role of Piezo1 and mechanosensation vary a lot. Could it be that analyses were done too early or that actually proper weight load on the joint must be applied for the maturation of the macrophages? The authors should test this to.

      We will uncouple these data from the current manuscript during revision in order to investigate the contribution of these (and other) factors in sufficient detail. However, this is a possibility that we have discussed. In fact, the most appropriate experimental approach to address the involvement of mechanical loading, onset of walking and specifically, weight bearing would be a loss-of-function approach (i.e. paralysis at the newborn stage), for which we unfortunately could not obtain ethics approval from the UK Home Office.

      The Rolipram experiment is shown in Figure S5G, but is not described in the result section. It only appears at some point in the discussion part. The authors should move it to results or remove it from the manuscript.

      We will incorporate these data with the revised section on developing synovial macrophage populations.

      Minor points:

      Please reference the Figure panels in numeric order throughout the text.

      We will change this where not the case already.

      Figure 2a and 2b are a bit out of the storyline, it is not obvious why this is shown here and maybe it would be good to move it to the supplements. Gating strategy is also not used for scRNA-seq. Therefore, it would better fit to the later analysis of joint macrophages across different transgenic mouse models and treatment paradigms. The gating strategies are changing across different experiments throughout the figures, it would be nice to have a similar gating strategy for all experiments, see also Figure 3 where the defining markers for joint macrophages are changing between models.

      We will revise Figures 2, 3 and the related supplementary figures.

      A lot of figure panels have very small labeling that is basically unreadable. Axes at FACS plots for example. Sometimes, it is even impossible to distinguish cluster labels especially when they have similar colors.

      We will revise this, thanks for pointing it out.

      In the text on page 14, many markers are named which are specifically regulated during development in lining macrophages, but these factors are not labeled anywhere in the volcano plot. It would be good to showcase at least some of these named genes in the figure panel, e.g. Trem2.

      We will do this for revision.

      Figure 2F and Figure S2F are really nicely showing the percentage of cells per cluster in each analyzed biological sample. Maybe the authors could additionally consider to show a stacked bar plot with the mean percentage of cells per cluster and how the clusters are distributed across time points?

      We will include this in the revised manuscript.

      Figure 3A: IF for adult lining macrophages and the quantification are missing.

      This will be included in the revised version.

      Reviewer #3 - Major

      Generally, the story could be more streamlined by introducing earlier reporter lines and lineage-origin logic. Clearly state which reporter/CreERT2 lines and acrosses are used. It was unclear in Figure 2 that cells of the cross of the Cx3cr1-GFP and Ms4a3Cre:Rosa26lsl-tdT reporter lines were used for the scRNA-seq. The principle that there are fetal-derived and bone marrow (GMP)-derived monocytes and macrophages doesn't need to be "hidden" until Figure 3. For example, also the imaging of Ms4a3Cre could be introduced before the scRNA-seq.

      We will revise the structure and order of the manuscript during revision. However, we will streamline this between reviewer comments, and would also like to point out that the 2 other reviewers were very complimentary about the writing and clarity, i.e. we may not follow every specific suggestion of reviewer 3, but are very much taking on board their overall comment on structure and clarity.

      Figure 1 could benefit from a cartoon visualizing the anatomy of the knee joint. The terms "sublining" and "synovium" are now a bit unclear, as it appears that sometimes the synovium is indicated as sublining and vice versa. Additionally, a schematic developmental timeline could be added to indicate the parallels between mouse and human development (fetal and postnatal development in mouse versus gestational age in human). Also, the various waves of hematopoiesis could be indicated in this timeline, which would be particularly helpful for Figure 3 for the lineage-tracing readouts. Lastly, the authors could end the manuscript (a new Figure 6) with a general cartoon summarizing all the results presented.

      We will include these illustrations as suggested.

      Figure 1 could be rearranged: first introduce the markers CX3CR1 and VSIG4 (Figure 1D) and then present the quantifications (Figure 1B/E). Where possible, co-visualization CX3CR1-GFP and VSIG4 on tissue sections to strengthen the claims on the relationship between these 2 markers. Tying the scRNA-seq insights (Figure 2) to the imaging would be elegant. Moreover, it would be informative to represent the CX3CR1+ and VSIG4+ macrophages as a percentage of F4/80+ macrophages (Figure 1B/E). Similarly, for the flow cytometry data in Figure 2, the relationship between the markers CX3CR1 and VSIG4 on macrophages could be more clearly displayed and discussed.

      Thanks for this remark. We will endeavour to show co-localization and analysis of both markers wherever possible. However, where we did not use Cx3cr1gfp mice, co-staining was limited by antibody choice and availability.

      The 3D imaging of the joint is a nice addition to the manuscript, as it provides more context to the anatomical structure; however, while the text suggests several newborn joints were imaged, Figure 1F visualizes (again) the knee joint. Could other joints also be represented by 3D imaging? If the knee joint is the only joint available for imaging, and previous confocal imaging focused specifically on the meniscus in the knee joint, could the meniscus also be highlighted in the lightsheet imaging?

      Apologies if this was not clear from the original manuscript text, but we have only imaged the knee joint in 3D. We will clarify this during revision. Whilst we want to maintain the focus on knee joints throughout this manuscript, but we will include additional 3D lightsheet imaging data from micro-dissected knee joints to further substantiate the original data.

      Clarification is requested regarding the imaging quantification representation. The M&M section under "Statistical analysis and reproducibility" states that individual data points are displayed, and bars represent the mean. However, some of the Figure legends (e.g., Figures 1B and S1C) specify that each dot corresponds to an individual mouse, with quantification based on 2-3 sections per mouse. While this appears to be a very reasonable representation of the data, does this mean that for each dot, the mean value from the 2-3 sections per mouse was calculated and plotted?

      We will clarify this.

      It is not clear how the differential expression analysis was performed on the Vsig4+ cells. Please specify if Cluster 0 was used for analysis, or all Vsig4-expressing cells? Not all cells in Cluster 0 have Vsig4+ expression. The authors described the expression dynamics of Aqp1 as intriguing, but lack a reasoning on why this is interesting.

      We will revise this section.

      Figure S3E: In line with the previous comment, can the authors justify that the tdTomato+/- comparisons are not biased by scRNA-seq dropout (scRNA-seq is zero-inflated, so some tdTomato- cells could be false negatives), and provide methodological details (thresholds, ambient RNA correction, etc.) to support this?

      We will clarify this and include additional representations of the tdTomato transcript data.

      Although the sex-related differences in macrophage composition and the absence of differential expression are interesting, they distract from the manuscript's main messages. Moreover, the Discussion does not elaborate on how these observations relate to joint (disease) biology. Consider removing this section or integrating it clearly into the relevant biological context.

      We will remove this section as suggested.

      CreERT2 transgenic lines are often not 100% efficient in recombination, also depending on whether tamoxifen or 4-OHT is used. Could the authors report the percentage of tdTomato+ cells in the joints and compare them to the recombination efficiencies in the monocytes/microglia under the same tamoxifen or 4-OHT conditions? This would help clarify how the interpret the macrophage labeling %'s.

      We will report labelling efficacies and/or show normalized data in the revised manuscript.

      Could the authors draw parallels between the observations in the mouse knee joint macrophage populations and literature on other joints in mouse and the knee joint in human (for example, as described in Alivernini et al., 2020 and in the very recent Raut et al., 2025)?

      We will include a section on this in the revised manuscript.

      Reviewer #3 - Minor comments:

      In general, the authors should clarify in the Results what each marker used for imaging, flow cytometry, or in the mouse reporter lines delineates. For example, mention that F4/80 is a marker for tissue-resident macrophages (correct?) in immunofluorescence, that IBA1 is a marker for macrophages on human tissue sections (Figure S1), and PDPN is GP38 (Figure S2 - align usage of marker reference across main text and figures).

      We will implement this request.

      Figure S1B: Is CX3CR1 also restricted to the lining macrophages in human? Could a co-staining with IBA1 be performed to strengthen the species similarities?

      To our knowledge, there is no antibody available that works for imaging of human CX3CR1. Moreover, CX3CR1 is only limited to the lining population in adult joints, in fetal and newborn (mouse) joints, all macrophages express this receptor, as do fetal progenitors to macrophages. However, Alivernini and colleagues have reported that TREM2high macrophages are the human counterpart of the mouse CX3CR1+ lining population (PMID: 32601335). We do not have access to postnatal human joint tissue samples, unfortunately, but we will attempt to stain for and quantify TREM2+ macrophages in human fetal joints for the revised manuscript.

      Adipocyte diameter quantification: Avoid plotting individual adipocytes from 2 mice without per-mouse visualization. Instead, report the mean adipocyte diameter per mouse and plot those means.

      We will implement this change.

      A little typo was spotted in the "Statistical analysis and reproducibility" section: it is Dunn's, not Bunn's multiple-comparison correction.

      Thanks for spotting this.

      Figure 2A: The gating strategy for the CX3CR1-GFP cells is missing.

      We will provide this in the revised manuscript or supplementary material.

      Improve the visualization of some plots. For example, Figure 2F is hard to read because of the big dot size. The dots seem to add no information to the graph and could be removed. Additionally, for comparing the clusters across the different time points, one could project the cells from the other time points in grey in the background.

      We will revise the presentation of these data.

      Figure S2: The dotplot is more informative than the heatmap, consider removing the heatmap.

      We will do that.

      Figure 3A: If technically feasible, image and visualize both the GFP and tdTomato expression. It would be informative to see the Cx3cr1+ and Ms4a3-derived cells in the same specimen.

      We will strive to show this in the revised manuscript.

      Figure 3C: Highlight that tdTomato expression is visualized here.

      We will do that.

      Figure 3G,F: The authors should place the schematics and graphs next to each other, so the data points can be more easily compared.

      We aim to do this in the revised manuscript.

      Figure 4B: Which co-staining was performed for the immunofluorescence to quantify the % of tdTomato+ cells?

      We co-stained for F4/80 and assessed localization in the lining or sublining. This will be clarified in the revised Figure legend.

      Figure 4C: The trajectory analysis appears to have an arrow pointing from the Ccr2+ macrophages to the Ly6c+ monocytes. Please verify this directionality, as its seems against the known biology.

      This will be addressed during revision.

      Figure 5 mentions that the Csfr1 levels were reduced in a tissue-specific manner, but it is unclear how this tissue specificity was achieved.

      We apologize for this misunderstanding. Csfr1FIRE mice are not tissue-specific knockouts, but they are more specific than global knockout mice, since only a (myeloid-specific) enhancer is affected. We will clarify this in the relevant section.

      For the TGFb perturbations (Tgfbr2 KO and systemic TGFb depletion): did the authors validate reduced TGFb pathway activity in the macrophages, for example, reduced pSMAD2/3 levels? This would validate the effectiveness of the perturbations.

      This is an important point, and assessing signaling events downstream of TGFb is a very good suggestion. As per above comment, we have decided to uncouple the functional data with exception of CSF1 from the revised version of the current manuscript, but we will be taking this into account for substantiating our functional data in follow-up work.

      Figure 5F could benefit from a timeline of the treatment.

      As for 15., we will be taking this into account for follow-up work on the uncoupled functional data.

      The Methods mention that Gene Ontology analysis was performed on the single-cell data, but the results are not plotted in a figure. It would be informative to include this GO/pathway analysis in the appropriate figure(s).

      We will include this in the revised (supplementary) information.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, Ganesh and colleagues use experimental data from Hi-C and from live-cell imaging to evaluate different polymer models of 3D genome organization in Drosophila based on both structural and dynamic properties. The authors consider several leading hypotheses, which are examined sequentially in increasing level of complexity - from the minimal Rouse polymer, to a model combining sequence-specific compartmentalization and loop-extrusion without extrusion blockers. They conclude that the combination of both compartmentalization and loop-extrusion gives the best agreement with the data. Their analysis also leads to concrete predictions about the processivity of cohesin loop extrusion in Drosophila, and a conclusion that the compartmental interaction strength is poised near criticality in the coil-globule phase space.

      Strengths:

      There is considerable interest in the field in understanding the mechanisms responsible for the 3D spatial organization genome and the dynamic movement of the genome, which has major implications for our understanding of long-range transcriptional regulation and other genome behaviors. The live-cell experimental work on which this study draws highlights the limitations of existing models to explain even the dynamic behaviors observed in the data, further exciting interest in further exploration. Therefore, this paper seeks to address an important gap in the field. The work is written in a well-organized, well-illustrated fashion. The text and figures are nicely integrated, easy to read, and explain challenging concepts with elegance and brevity in a manner that will be accessible to a broad audience.

      Weaknesses:

      The validity and utility of these conclusions are, in my view, substantially undermined by what appears to be unappreciated peculiarities of the live-cell data set that was used to constrain the model. The live-cell data comes from embryos were edited in a way that intentionally substantively changed both the 3D genome structure and dynamics specifically at the loci which are imaged, a case which is not at all explained by any of the models suggested nor acknowledged in the current work, nor compatible with the Hi-C data that simultaneously used to explain these models. As these ignored synthetic alterations have been previously shown to be determinative of transcriptional activity, the relevance of the author's work to transcriptional control (a prime motivation in the introduction) is unclear.

      The agreement in 3D organization, as represented in chromosome-scale contact frequency heatmaps, is substantially less impressive than the agreement seen in prior work with similar models. This discrepancy appears to be due in part to the unappreciated effects of the mentioned in the previous limitation, as well as inappropriate choices in metrics used to evaluate agreement. It is also not particularly surprising that combining more models, with more free parameters, results in an improvement in the quality of fit.

      Some major results, including both theoretical works and experimental ones, are ignored, despite their relevance to the stated objective of the work. The current manuscript and analysis could be improved substantially by a consideration of these works.

      I describe these issues in more detail below.

      Major issues:

      (1) The genetic element "homie" is present in a subset of the data: The experimental data used in this analysis come from different fly lines, half of which have been edited explicitly to alter genome structure and consequent transcriptional behavior, yet the authors are trying to fit with a common model - a problem which substantially undermines the utility of the analysis.

      Specifically, the authors evaluate the various models/simulations by comparing them to Hi-C from wildtype Drosophila embryos on the chromosome scale and 3D distances and dynamics from live cell imaging in genetically edited embryos, to a series of models in turn. The exercise fatally overlooks a critical fact, (admittedly not easily noticed in the work from Bruckner et al), that the fly embryos used for nearly all their analyses contain not only fluorescent labels, but also contain two copies of a powerful genetic sequence, "homie", known for its ability to dramatically change the 3D organization and dynamics of the genome. Whether or not the fluorescent labels themselves used in the study further alter structure and dynamics is not entirely clear (and will require further work beyond the scope of either study), but at least these fluorescent labels aren't known to dramatically affect 3D structure and dynamics the way homie is. The critical problem is that adding or removing the "homie", as shown in a collection of prior works I describe below in more detail, dramatically affects structure, dynamics, and gene expression. Whether or not the genome contains two distal cis-linked copies of homie fundamentally changes genome structure and dynamics, so to use one dataset which has this edit (the live-cell data) and one dataset which lacks it (the Hi-C data) is, in some sense, to guarantee failure of any model to match all the data.

      If the authors had chosen instead to focus exclusively on the 'no homie' genetic lines in the Brukner data, they would have a much smaller dataset (just 2 distances), which would not cover all the length scales of interest, but it would at least be a dataset not known to be contradictory to the Hi-C. The two 'no homie' lines make much more plausible candidates for the sort of generalizable polymer dynamics these authors seek to explain, as will hopefully be made more clear by a brief review of what is known about homie. I next describe the published data that support these conclusions about how homie affects 3D genome spatial organization and dynamics:

      What is "homie" and how does it affect 3D genome distances, dynamics, and gene expression?

      The genetic element "homie" was named by James Jaynes' lab ( Fujioka...Jaynes 2009) in reference to its remarkable "homing" ability - a fascinating and still poorly understood biological observation that some genetic sequences from Drosophila, when cloned on plasmids and reintegrated into the genome with p-elements, had a remarkable propensity to re-integrate near their endogenous sequence, (Hama et al., 1990; Kassis, 2002; Taillebourg and Dura, 1999; Bender and Hudson, 2000; Fujioka...Jaynes 2009). By contrast, most genetic elements tend to incorporate at random across the genome in such assays (with some bias for active chromatin).

      The Jaynes lab subsequently showed that flies carrying two copies of homie, one integrated in cis, ~140 kb distal from the endogenous element, formed preferential cis contacts with one another. Indeed, if a promoter and reporter gene were included at this distal integration site, the reporter gene would activate gene expression in the pattern normally seen by the gene, even-skipped. The endogenous copy of homie marks one border of ~16 kb mini-TAD which contains the even-skipped gene, (eve), and its developmental enhancers, so this functional interaction provides further evidence of physical proximity (as was also shown by 3C by Jaynes (Fujioka..., Schedl, Jaynes 2016), and later with elegant live imaging, by Jaynes and Gregor (Chen 2018)).

      Critically, if either copy of homie is deleted or substantially mutated, the 3D proximity is lost (Fujioka 2016, Chen 2018, Bruckner 2023), and the expression of the transgene is dramatically reduced (at 58 kb) or lost. Given the author's motivation of understanding "E-P" interactions, the fact that the increased 3D proximity provided by homie is as essential for transcription as the promoter itself at the ~150 kb distance, underscores that these are not negligible changes.

      These effects can be seen by plotting the data from Bruckner 2023, which includes data from labels with separations of 58 kb and ~150 kb "no homie" as well as homie. Unfortunately, the authors don't plot this data in the manuscript in the comparison of 3D distances, though the two-point MSD can be seen in Figure S13C, and laudably, the data is made public in a well-annotated repository on Zenodo, noted in the study. Note that the distance data in Figure S13 were filtered to exclude the transcriptionally off state, and are thus not the quantity the current authors are interested in. If they plot the published data for no homie, they will see the clear effect on the average 3D distance, R(s), and a somewhat stronger effect on the contact frequency P(s), which causes significant deviation from the trend-line followed by the homie-containing data.

      (2) The agreement between the "best performing" simulations for all models and the Hi-C data is not on par with prior studies using similar approaches, apparently due to some erroneous choices in how the optimization is carried out:

      Hi-C-comparison

      The 'best fit' simulation Hi-C looks strikingly different from the biological data in all comparisons, with clearly lower agreement than other authors have shown using highly similar methods (e.g., Shi and Thirumalai 2023; Di Pierro et al. 2017; Nuebler et al. 2018; Esposito et al. 2022; Conte et al. 2022), among many others. I believe this results from a few issues with how the current authors select and evaluate the data in their work:

      (a) Most works have used Pearson's correlation rather than Spearman's correlation when comparing simulation and Hi-C contact frequencies. Pearson's correlation is more appropriate when we expect the values to be linearly related, which they should be in this case, as they are constructed indeed to be measuring the same thing (contact frequency), just derived from two different methods. Spearman's correlation would have been justifiable for comparing how transcription output correlates with contact frequency. This may fix the bafflingly low correlations reported at lower adhesion values in Figure S2C.

      (b) Choice of adhesion strengths - The Hi-C map comparison in Figure 3 strongly suggests that a much more striking visual agreement would have been achieved if much weaker (but still non-zero) homotypic monomer affinity had been selected. In the authors' simulation, the monomer state (A/B identity) strongly dominates polymer position, resulting in the visual appearance of an almost black-and-white checkerboard. The data, meanwhile, look like a weak checkerboard superimposed on the polymer.

      (c) A further confounding problem is the aforementioned issue that the Hi-C data don't come from the edited cell lines, and that the interaction of the two Homie sites is vastly stronger than the compartment interactions of this region of the genome.

      (3) Some important concepts from the field are ignored:

      The crumpled/fractal globule model is widely discussed in the literature (including the work containing the data used in this study) - its exclusion from this analysis thus appears as a substantial gap/oversight:

      A natural alternative to the much-discussed Rouse polymer model is the "crumpled polymer" (Grosberg et al. 1988; Grosberg 2016; Halverson et al. 2011; Halverson et al. 2011), also known as the "fractal globule" (Lieberman-Aiden et al. 2009; Mirny 2011; Dekker and Mirny 2016; Boettiger et al. 2016), much discussed for the way it captures the ⅓ scaling of R(s), found for much of the genome (or, equivalently, the -1 exponent of the probability of contact as a function of genome separation, P(s)). Given the 1/3rd scaling in the data, and the fact that the original authors highlighted the crumpled model in addition to the Rouse model, it seems that this comparison would be instructive and the lack of discussion an oversight. Moreover, while prior works (e.g., Buckner, Gregor, 2023) used some traditional simplifying assumptions to estimate the MSD and relaxation time scaling of this model, I believe a more rigorous analysis with explicit simulations (as in Figure 1 for the Rouse model) would be instructive for the crumpled polymer simulations. Note the crumpled globule is not necessarily the same as the globule in the coil-globule transition discussed here - it requires some assumptions about non-entanglement to stay trapped in the meta-stable state which has the 1/3rd R(s) scaling that is indicative of this model, and not the 1/2 exhibited by equilibrium globules (for s<< length of the polymer) and dilute polymers alike.

      While the fit in Figure 2 appears to get closer to the 1/3rd exponent (B= 0.32), this appears to be a largely coincidental allusion of agreement - the simulation data in truth shows a systematic deviation, returning to the 1/2 scaling for distances from 500 kb to whole chromosomes. This feature is not very evident as the authors restrict the analysis to only the few points available in the experimental data, though had they tested intervening distances I expect they would show log-log P(s) is nonlinear (non-powerlaw) for distances less than the typical loop length up to a few fold larger than the loop length, and thereafter returns to the scaling provided by the 'base' polymer behavior. This appears to be Rouse-like in these authors' model, with R(s) going like 1/2, even though the data are closer to 1/3rd, as indeed most published simulated P(s) curves based on loop extrusion - e.g., (Fudenberg et al. 2016; Nuebler et al. 2018). In this vein, it would be instructive to the readers if the authors would include additional predictions from the simulation on the plot that lie at genomic separation distances not tested in the data, to better appreciate the predictions.

      Minor issues

      (1) I think it is too misleading to only describe the experimental data from Brukner as "E-P" interactions from Drosophila. It is important to note somewhere that this is not an endogenous interaction with a functional role in Drosophila - it is a synthetic interaction between enhancers in the vicinity of the eve gene and a synthetic promoter placed at a variable distance away. The uniformity is elegant - (it is the same pair of elements being studied at all distances), but also provides limited scope for generalization as suggested by the current text. Moreover, the enhancers were not directly labeled; rather, the 3D position of nascent RNA transcribed from eve was tracked with an RNA-binding protein and used as a proxy for the 3D position of the enhancers. There is not an individual enhancer at the eve locus that interacts with the transgene, but rather a collection of enhancers is distributed at different positions throughout the entire TAD, which contains eve, and must form separate loops to reach eve. Indeed, it was previously reported that differences in the local position of these enhancers, relative to eve, affect their ability to interact with the distal reporter gene and the endogenous eve gene (Chen 2018). There is also reported competition between these enhancers and the distal gene, which further complicates the analysis (especially since the state of eve and of its enhancers varies among the different cells as a function of stripe position) - see Chen 2018. All of this is ignored in the current work, despite the assertion of the application to understanding E-P interaction. A detailed discussion of these issues is not necessary, but I fear that ignoring them entirely is to invite further confusion and error.

      (2) I believe this sentence is overstated, given available data: " TAD borders are characterized by transitions between epigenetic states rather than by preferentially-bound CTCF [4, 23, 24]." Indeed, this claim has been repeatedly made in the literature as cited here. However, other data clearly demonstrate a strong enrichment of CTCF at TAD borders (and at epigenetic borders, which in Drosophila have a high correspondence with TAD borders, as the authors have already appropriately noted). See, for example, Figure 4 of Sexton Cell 2012, and compare to Figure 2 of Dixon 2012. Of minor note, CTCF peaks co-occupied by the Zinc Finger TF CP190 are more likely to be TAD borders than CTCF alone. How big a species-specific difference this is remains unclear, as it appears some mammalian CTCF-marked TAD boundaries may be co-occupied by additional ZNFs. While plenty of Drosophila TAD boundaries indeed lack CTCF, many are marked by CTCF, this is enriched relative to what would be expected by chance (or relative to the alignment of other TFs, like Twist or Eve with TAD boundaries), and it has been shown that CTCF loss is sufficient to remove a subset of these, see for example Figure 5 of (Kaushal et al. 2021) (though it is possible, most will require mutation of the all the border-associated factors that collectively bind many of the borders, dCTCF, CP190, mod(mdg4) and others).

      (3) This assertion is overstated given available data: "Although TAD boundaries in Drosophila are often associated with insulator proteins [20], there is no direct evidence that these elements block LEFs in vivo. Therefore, we did not impose boundary constraints in our simulations; LEFs were allowed to move freely unless stalled by collisions with other LEFs, with the possibility of crossover.". Deletion of insulator in Drosophila that lie within a common epigenetic state leads to fusion of TADs (e.g., Mateo et al., 2019 - deletion of the CTCF-marked Fub insulator, in posterior tissues where both flanks of Fub are active; Kaushal, 2021, has examples as well). Loss of CTCF causes a small number of TADs to fuse as measured by Hi-C. This is far from 'direct evidence that insulators block LEFs' - as the authors have already noted, even the idea that cohesin extrudes loops in Drosophila in the first place is indeed controversial. However, LEF activity and stalling at insulators would provide a very natural explanation of why chromatin in a shared epigenetic state should form distinct TADs, and why these TADs should fuse upon insulator deletion. Justifying the lack of stalling sites based on empirical data is thus not very convincing to this reviewer. I believe it would be more apt to simply describe this as a simplifying assumption, rather than the above phrase, which may be misleading.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary

      In this investigation Kapustin et al. demonstrate that vascular smooth muscle cells (VSMCs) exposed to the extracellular matrix fibronectin stimulates the release of small extracellular vesicles (sEVs). The authors provide experimental evidence that stimulation of the actin cytoskeleton boosts sEV secretion and posit that sEVs harbor both fibronectin and collagen IV protein themselves which also, in turn, alter cell migration parameters. It is well established that fibronectin is associated with increased cell migration and adherence; therefore, this association with VSMCs is not novel.

      The reviewer is correct that FN has been associated with migration and adherence in previous studies.  However we have extended these observations to show that the extracellular fibronectin matrix stimulates small extracellular vesicle (sEVs) secretion by modulating the actin cytoskeleton. We also showed that sEVs are trapped in the extracellular matrix and that by presenting collagen VI induce early focal adhesion formation, reduce excessive cellular spreading and guide cell invasion directionality though a 3D matrix. Hence, sEVs mediate cell-matrix cross talk and change cell behaviour in the context of fibronectin matrix. This is critically important for vasculature where regulated VSMC invasion is essential for repair with its deregulation leading to pathology.

      The authors purport that sEV are largely born of filopodia origin; however, this data is not well executed and seems generally at odds with the presented data.

      Our experimental data showed that CD63 MVs are associated with filopodia in fixed and live cells (Fig 2E, 2F and Video S1) and that inhibition of filopodia formation using the formin inhibitor, SMIFH2 reduced sEV secretion on FN (Fig 2B). However, we agree with the reviewer that further studies are required to connect sEV secretion to filopodia.  To address this we have provided further data analysis but also toned down our conclusions regarding this point: . Changes include:

      (1) Title: Matrix-associated extracellular vesicles modulate smooth muscle cell adhesion and directionality by presenting collagen VI.

      (2) Results, section title: 2. FN-induced sEV secretion is modulated by Arp2/3 and formin-dependent actin cytoskeleton remodelling

      (3) Results, page 6 Line 27-44 and conclusion page 7, Ln 3 “Interestingly, CD63+ MVBs can be observed in filopodia-like structures suggesting that sEV secretion can also occur spatially via cellular protrusion-like filopodia but more studies are needed to confirm this hypothesis.”

      (4) Discussion, page 12, line 19. “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”

      Similarly, the effect of sEVs on parameters of cell migration has almost no magnitude of effect, making mechanism exploration somewhat nebulous.

      VSMC are mesenchymal-type cells with a low migration rate and we agree that the changes in the motility are not of great magnitude even for the positive controls suggesting that this is a complex, multifactorial process for VSMCs. In our experiments we collected data from >5000 individual cells to measure the average speed and found that fibronectin matrix on its own increased VSMC speed from ~0.61 um/min to ~0.68 μm/min (~12% raise) which was statistically significant (Fig 5A). Addition of a sEV inhibitor caused a modest but significant decrease in cellular speed. Interestingly, addition of ECM-associated sEVs did not influence cell speed in 2D or 3D assays. However in a 3D model we observed a 22% change in cell directionality (Fig 5G) and  a 235% change in cell alignment index (FMI, Fig 5H) which we believe is very strong evidence that VSMC-derived sEVs are involved in a regulation of VSMC invasion directionality.  These data are also in agreement with sEV effects in tumour cells (Sung et al., 2015) though this previous study did not identify the factor driving the directionality and we think our Collagen VI data extends significantly these previous observations. 

      Results, page 9: “Hence, ECM-associated sEVs have modest influence on VSMC speed but influence VSMC invasion directionality.”.  

      Lastly, the proposed mechanism of VSMCs responding to, and depositing, ECM proteins via sEVs was not rigorously executed; again, making the conclusions challenging for the reader to interpret.

      We appreciate the reviewer’s comment regarding the mechanistic aspects of VSMCs responding to and depositing ECM proteins via sEVs. In our revised manuscript, we have expanded the data demonstrating that sEVs can be retained within the extracellular matrix (see Figs 3A, 3B, S3A, S3B). Additionally, we show that collagen VI is present on the surface of sEVs, where it may modulate cell adhesion and influence the directionality of cell invasion (Fig 7E). Our results further indicate that both fibronectin (FN) and collagen VI can be recycled through multivesicular bodies (see Figs S3C, S3D, S3E–S3G). However, we acknowledge that the precise mechanisms governing the selective loading of ECM proteins onto sEVs, as well as the specific contributions of sEVs to overall ECM organization, remain to be fully elucidated and warrant further investigation. Based on our current evidence, we propose that collagen VI–loaded sEVs act primarily in a signaling capacity by modulating focal adhesion formation but are not directly involved in ECM structural remodeling.

      Results, page 7: To quantify ECM-trapped sEVs we applied a modified protocol for the sequential extraction of extracellular proteins using salt buffer (0.5M NaCl) to release sEVs which are loosely-attached to ECM via ionic interactions, followed by 4M guanidine HCl buffer (GuHCl) treatment to solubilize strongly-bound sEVs (Fig S3A) [42]. We quantified total sEV and characterised the sEV tetraspanin profile in conditioned media, and the 0.5M NaCl and GuHCl fractions using ExoView. The total particle count showed that EVs are both loosely bound and strongly trapped within the ECM. sEV tetraspanin profiling showed differences between these 3 EV populations.  While there was close similarity between the conditioned media and the 0.5M NaCl fraction with high abundance of CD63+/CD81+ sEVs as well as CD63+/CD81+/CD9+ in both fractions (Fig S3A). In contrast, the GuHCl fraction was particularly enriched with CD63+ and CD63+/CD81+ sEVs with very low abundance of CD9+ EVs (Fig S3A). The abundance of CD63+/CD81+ sEVs was confirmed independently by a CD63+ bead capture assay in the media and loosely bound fractions (Fig S3B).

      Results, page 7: We previously found that the serum protein prothrombin binds to the sEV surface both in the media and MVB lumen showing it is recycled in sEVs and catalyses thrombogenesis being on the sEV surface43. So we investigated whether FN can also be associated with sEV surface where it can be directly involved in sEV-cell cross-talk43.   We treated serum-deprived primary human aortic VSMCs with FN-Alexa568 and found that it was endocytosed and subsequently delivered to early and late endosomes together with fetuin A, another abundant serum protein that is a recycled sEV cargo and elevated in plaques (Figs S3C and S3D). CD63 visualisation with a different fluorophore (Alexa488) confirmed FN colocalization with CD63+ MVBs (Fig S3E). Next, we stained non-serum deprived VSMC cultured in normal growth media (RPMI supplemented with 20% FBS) with an anti-FN antibody and observed colocalization of CD63 and serum-derived FN.  Co-localisation was reducd likely due to competitive bulk protein uptake by non-deprived cells (Fig S3F). Notably, when we compared FN distribution in sparsely growing VSMCs versus confluent cells we found that FN intracellular spots, as well as colocalization with CD63, completely disappeared in the confluent state (Fig S3F and S3G). This correlated with nearly complete loss of CD63+/CD81+ sEV secretion by the confluent cells indicating that confluence abrogates intracellular FN trafficking as well as sEV secretion by VSMCs (Fig S3H). Finally, FN could be co-purified with sEVs from VSMC conditioned media (Fig S3I) and detected on the surface of sEVs by flow cytometry confirming its loading and secretion via sEVs (Fig 3C).

      Results: page 10  Collagen VI was the most abundant protein in VSMC-derived sEVs (Fig 7B, Table S7) and  was previously implicated in the interaction with the proteoglycan NG2[53] and suppression of cell spreading on FN[54]. To confirm the presence of collagen VI in ECM-associated sEVs we analysed sEVs extracted from the 3D matrix using 0.5M NaCl treatment and showed that both collagen VI and FN are present (Fig 7D). Next, we analysed the distribution of collagen VI using dot-blot. Alix staining was bright only upon permeabilization of sEV indicating that it is preferentially a luminal protein (Fig 7E). On the contrary, CD63 staining was similar in both conditions showing that it is surface protein (Fig 7E). Interestingly, collagen VI staining revealed that 40% of the protein is located on the outside surface with 60% in the sEV lumen (Fig 7E). 

      Discussion page 12. “In fact, we observed that an extensive secretion of sEVs effectively ceased protrusion activity; also VSMCs acquired a rounded morphology when “hovering” over the FN matrix decorated with sEVs (data not shown). Hence, it will be interesting in future studies to investigate whether sEVs can stimulate Rho activity by presenting adhesion modulators—particularly collagen VI—on their surface, thereby guiding cell directionality during invasion..”

      Discussion, page 14 “In summary, cooperative activation of integrin signalling and F-actin cytoskeleton pathways results in the secretion of sEVs which associate with the ECM and play a signalling role by controling FA formation and cell-ECM crosstalk. Further studies are needed to test these mechanisms across various cell types and ECM matrices.     

      Strengths

      The authors provide a comprehensive battery of cytoskeletal experiments to test how fibronectin and sEVs impact both sEV release and vascular smooth muscle cell migratory activation.

      We appreciate this comment reflecting our efforts to apply a range of orthogonal methods to show the role of the integrin/actin cytoskeleton in ECM-stimulated sEV secretion.

      Weaknesses

      Unfortunately, this article suffers from many weaknesses. First, the rigor of the experimental approach is low, which calls into question the merit of the conclusions. In this vein, there is a lack of proper controls or inclusion of experiments addressing alternative explanations for the phenotype or lack thereof.

      We acknowledge this comment and agree that there was not sufficient evidence to conclude that sEV secretion occurs via filopodia despite the microscopy/inhibitory data so this claim has now been excluded from the study. However we believe that our experimental data does clearly show that FN stimulates the secretion of collagenVI-loaded sEVs which are trapped by the ECM and have the capacity to modulate VSMC adhesion and invasion directionality. To support this, we have now extended the dataset in the revised version:

      (1) In addition to the use of inhibitors and live cell analysis we have added quantitative data confirming that a large proportion of CD63+ endosomes are associated with F-actin/cortactin tails and this colocalization is increased upon the inhibition of sEV secretion with 3-OMS (Fig  2D, Fig S2B).

      (2) We developed a method to extract ECM-associated sEVs and quantified/characterized these using ExoView Assays further confirming significant sEV entrapment by the ECM (Figs 3B, S3A, S3B).    

      (3) We extended the controls to confirm FN delivery to CD63+ endosomes and showed that FN recycling is stopped upon reaching cell confluence (Figs S3F, S3G and Fig S3H).

      (4) We included more intensive characterisation of human atherosclerotic plaque morphology (H&E, Masson’s trichrome staining, Orcein, elastin fibers staining) to confirm predominant accumulation of sEV in the neointima (Figs S4A, S4B and S4C). We also excluded an endothelial origin for the  CD81+ sEVs (Fig 4G).

      (5) We included individual cellular tracks to the 2D migration analysis to confirm the statistical significance and concluded that ECM-associated sEVs regulate cell invasion directionality but not the cell speed (Figs 5A and 5B).

      (6) We showed surface localisation of collagen VI on sEVs confirming that it can activate signalling pathways leading to early FA formation on the FN matrix  (Figs 7D and 7E).

      (7) We included alternative explanations for some of our data in the discussion.      

      Reviewer #2 (Public Review):

      Extracellular vesicles have recently gained significant attention across a wide variety of fields, and they have therefore been implicated in numerous physiological and pathophysiological processes. When such a discovery and an explosion of interest occur in science, there is often much excitement and hope for answers to mechanisms that have remained elusive and poorly understood. Unfortunately, there is an equal amount of hype and overstatement that may also be put forth in the name of "impact", but this temptation must be avoided so that scientists and the broader public are not misled by overreaching interpretations and statements that lack rigorous and fully convincing evidence.

      Thank you for your comment and we agree that investigating sEVs is particularly challenging due to the their heterogeneity and nano-size, as well as complex biogenesis mechanisms. ECM-associated sEVs is a very new direction for the EV field but one that is particularly relevant to the vasculature where cells must invade through a thick ECM and where the accumulation of ECM-bound EVs is a unique and documented phenomenon.  To further strengthen out conclusions we have included new data to support our statements but also excluded statements re: filopodia as the origin of sEVs, that are out of scope of our study and need to be investigated further.

      The study presented by Kapustin et al. is certainly intriguing and timely, and it offers an interesting working hypothesis for the fields of extracellular vesicles and vascular biology to consider. The authors do a reasonable job at detecting these small extracellular vesicles, though some aspects of data presentation are missing such as full Western blots with accompanying size markers for the viewer to more fully appreciate that data and comparisons being made (see Figures 1 and 7).

      We agree with the reviewer and have now included molecular weight markers (Fig 1F, 7C, 7D, S3I, S4E) and provided all original western blot scans (uncropped and unedited) to the eLife editor. 

      Much of the imaging data from cell-based experiments is strong and conducted with many cutting-edge tools and approaches. That said, the static images and the dynamic imaging fall short of being fully convincing that the small extracellular vesicles found in the neighboring extracellular matrix are indeed being deposited there via the smooth muscle cell filopodia. Many of the lines of evidence presented suggest that this could occur, but alternative hypotheses also exist that were not fully ruled out, such as the ECM-deposited vesicles were secreted more from the soma and/or the lamellipodia that are also emitted and retracted from the cells. In particular, the authors show very nice dynamic imaging (Supplementary Figure S2A and Supplemental Video S1) that is interpreted as "extracellular vesicles being released from the cell" and these are seen as "bursts" of fluorescent signal; however, none of these appear to occur in filopodia as they appear within the cell proper (a "burst" of signal vs. a more intense "streak" of signal), which would be a stronger and more consistent observation predicted by the working model proposed by the authors.

      Our live and fixed cell microscope data as well as inhibitor analysis showed that sEV secretion can be associated with the filopodia. However we agree with the reviewer that the data generated using pHluoron GFP marker clearly indicate that the majority of sEVs are secreted from the cell soma toward the ECM:

      To reflect this, we have added further changes:

      (1) Title: Matrix-associated extracellular vesicles modulate smooth muscle cell adhesion and directionality by presenting collagen VI.

      (2) Results, section title: 2. FN-induced sEV secretion is modulated by Arp2/3 and formin-dependent actin cytoskeleton remodelling

      (3)  Results, page 6 Line 27-36 “Formins and the Arp2/3 complex play a crucial role in the formation of filopodia, a cellular protrusion required for sensing the extracellular environment and cell-ECM interactions36. To test whether MVBs can be delivered to filopodia, we stained VSMCs for Myosin-10 (Myo10)37. We observed no difference between total filopodia number per cell on plastic or FN matrices (n=18±8 and n=14±3, respectively) however the presence of endogenous CD63+ MVBs along the Myo10-positive filopodia were observed in both conditions (Fig 2E, arrows). Filopodia have been implicated in sEV capture and delivery to endocytosis “hot-spots”38, so next we examined the directionality of CD63+ MVB movement in filopodia by overexpressing Myo10-GFP and CD63-RFP in live VSMCs. Importantly, we observed anterograde MVB transport toward the filopodia tip (Fig 2F and Supplementary Video S2) indicative of MVB secretion”.

      (4) Results, page 6, Ln 37-44 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)”.

      (5) Results, page 7 Ln 3 “Interestingly, CD63+ MVBs can be observed in filopodia-like structures suggesting that sEV secretion can also occur spatially via cellular protrusion-like filopodia but more studies are needed to confirm this hypothesis.”

      (6) Discussion, page 12, line 19. “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”

      Imaging of related human samples is certainly a strength of the paper, and the authors are commended for attempting to connect the findings from their cell culture experiments to an important clinical scenario. However, the marker selected for marking extracellular vesicles is CD81, which has been described as present on the endothelium of atherosclerotic plaques with a proposed role in the recruitment of monocytes into diseased arteries (Rohlena et al. Cardiovasc Res 2009). More data should address this potentially confounding interpretation of the signals presented in images within Figure 4.

      We thank the reviewer for this insightful comment that the  sEV marker CD81 can originate from endothelial cells in agreement with Rohlena et al., 2009.   To address this we investigated the spatial overlap between CD81 and the endothelial marker, CD31. We observed very strong CD81 staining in the intact endothelial cell (intima) layer and occasional CD31 positive cells in the neointima. Importantly, quantification of colocalization confirmed that 80% of CD81 in the neointima does not overlap with CD31 excluding an endothelial origin of these sEVs. (Fig 4G).  Moreover, we included complete morphological characterisation of the atherosclerotic plaques confirming that CD81 sEVs were primarily observed in the neointima where VSMCs constitute the cellular majority (Fig S4A, S4B, S4C and S4D).

      On a conceptual level, the idea that the small extracellular vesicles contain Type VI Collagen, and this element of their cargo is modulating smooth muscle cell migration, is an intriguing aspect of the authors' working model. Nevertheless, the evidence supporting this potential mechanism does not quite fit together as presented. It is not entirely clear how the collagen VI within the vesicles is somehow accessed by the smooth muscle cell filopodia during migration. Are the vesicles lysed open once on the extracellular matrix? If so, what is the proposed mechanism for that to occur? If not, how are the adhesion molecules on the smooth muscle cell surface engaging the collagen VI fibers that are contained within the vesicles? This aspect of the model does not quite fit together with the proposed mechanism and may be an interesting speculative interpretation, warranting further investigation, but it should not be considered a strong conclusion with sufficient convincing data supporting this idea.

      We thank the reviewer for their insightful comments regarding the mechanism by which collagen VI associated with sEVs could modulate smooth muscle cell adhesion and migration. To clarify, our new data suggest that collagen VI is predominantly present on the surface of the sEVs, as evidenced by Fig 7E. This surface localization strongly implies that collagen VI can be directly accessed by cell surface adhesion receptors, without the need for vesicle lysis or opening. While we cannot entirely rule out all alternative mechanisms, we consider vesicle rupture or lysis within the extracellular matrix to be a highly unlikely route for collagen VI exposure, given the known stability of sEVs under physiological conditions. We have added these points to clarify:

      (1) Results, page 10, Ln 45 “To confirm the presence of collagen VI in ECM-associated sEVs we analysed sEVs extracted from the 3D matrix using 0.5M NaCl treatment and showed that both collagen VI and FN are present (Fig 7D). Next, we analysed the distribution of collagen VI using dot-blot. Alix staining was bright only upon permeabilization of sEV indicating that it is preferentially a luminal protein (Fig 7E). On the contrary, CD63 staining was similar in both conditions showing that it is surface protein (Fig 7E). Interestingly, collagen VI staining revealed that 40% of the protein is located on the outside surface with 60% in the sEV lumen (Fig 7E).”

      (2) Discussion, page 13, Ln 2 “Hence, it will be interesting in future studies to investigate whether sEVs can stimulate Rho activity by presenting adhesion modulators—particularly collagen VI—on their surface, thereby guiding cell directionality during invasion..”

      (3) Discussion, page 14, Ln 30: In addition to collagen VI the unique adhesion cluster in VSMC-derived sEVS also includes EGF-like repeat and discoidin I-like domain-containing protein (EDIL3), transforming growth factor-beta-induced protein ig-h3 (TGFBI) and the lectin galactoside-binding soluble 3 binding protein (LGALS3BP) and these proteins are also directly implicated in activation of integrin signalling and cellular invasiveness85-87. Although we found that collagen VI plays the key role in sEV-induced early formation of FAs in VSMCs, it is tempting to speculate that the high sEV efficacy in stimulating FA formation is driven by cooperative action of this unique adhesion complex on the sEVs surface and targeting this novel sEV-dependent mechanism of VSMC invasion may open-up new therapeutic opportunities to modulate atherosclerotic plaque development or even to prevent undesired VSMC motility in restenosis.    .   

      (4) Abstract Figure

      On a technical level, some of the statistical analysis is not readily understood from the data presented. It is very much appreciated that the authors show many of the graphs with technical and biological replicate values in addition to the means and standard deviations (though this is not clearly stated in all figure legends). However, in figures such as Figure 5, there are bars shown and indicated to be different by statistical comparison (see panel B in Figure 5). It is not clear how the values for Group 1 (no FN, no 3-OMS, no sEV) are statistically different (denoted by three asterisks but no p value provided in the legend) than Group 3 (no FN, 3-OMS added, no sEV), when their means and standard deviations appear almost identical. If this is an oversight, this needs to be corrected. If this is truly the outcome, further explanation is warranted. A higher level of transparency in such instances would certainly go a long way in helping address the current crisis of mistrust within the scientific community and at the interface with society at-large.

      We thank the reviewer for their careful reading and important comments on the statistical analysis. We acknowledge that the technical and biological replicate data were not clearly reported in all figure legends and that the statistical approach for Figures 5A and 5B required clarification. In response, we have made several changes for greater transparency and rigor:

      First, we have now explicitly included the numbers of biological replicates (N) and technical replicates (n) in all relevant figure legends for Figures 1–7. In addition, the number of individual cell tracks is now annotated for the migration/invasion analyses, along with the mean values for each dataset.

      Upon review, we found that the original statistical analyses for Figures 5A and 5B were conducted using pooled averaged data. To address this, we have repeated the statistical tests using pooled individual cell track data, applying the Kruskal–Wallis test with Dunn’s multiple comparison correction. This more stringent approach revealed revised p-values, which are now indicated in Figures 5A and 5B.

      With these corrections, we reconfirm our major findings: In the 2D model, fibronectin (FN) coating promotes VSMC velocity, while inhibition of sEV secretion with 3-OMS leads to reduced cell speed (Fig. 5A). Addition of sEVs to the ECM had no effect on VSMC speed at baseline but did rescue cell speed and distance in the presence of 3-OMS, consistent with EVs acting primarily on invasion directionality rather than speed in both 2D and 3D models (Fig. 5A, 5D). Furthermore, sEVs continue to significantly impact VSMC invasion directionality (Figs. 5G, 5H), in agreement with previous reports in tumor cells (Sung et al., 2015).

      In summary, we have implemented the following revisions:

      (1) Figures 5A and 5B: Individual cell track data are now shown, and statistical analyses have been repeated using the Kruskal–Wallis test with Dunn’s multiple comparisons.

      (2) Figure legends and results sections: Numbers of biological and technical replicates, as well as individual data points, are now clearly stated.

      Results, page 9, line 14: The text has been updated to clarify the statistical approach and major findings as described above.

      We hope that these changes address the reviewer’s concerns and improve the transparency and reproducibility of our data presentation

      Reviewer #1 (Recommendations For The Authors):

      We are very thankful for the comprehensive review and comments which helped to improve our data.

      Figure 1.<br /> The authors clearly show that FN stimulation (immobilized or cell-derived) promotes sEV secretion via canonical integrin pathways. FN is a promigratory substrate, hence its extensive use as a cell adhesion aid; thus one could assume that simply plating on FN induces a pro-migratory phenotype (later data supports this notion). Does the addition of growth factors also increase sEV release? An endogenous function of FN is siloing of various GFs during clot formation. Also, FAK and SRC networks intersect with canonical RTK signaling in terms of promoting Rac1, CDC42 and other migration mediators. The reason I believe this is important is because the data could be interpreted in two ways: 1) FN induces pro-migration signaling and then sEVs are released, or visa versa, FN induces sEV release and migration is initiated. GF supplementation in the absence of FN would clarify this relationship.

      We thank the reviewer for this insightful comment regarding the possible role of growth factors (GFs) and the mechanistic relationship between FN stimulation, sEV secretion, and cell migration. We agree that FN is a well-established promoter of cell migration, and it is important to distinguish whether FN directly induces a pro-migratory phenotype or does so via sEV-mediated signaling.

      Our data show that FN stimulation markedly increases VSMC motility, as reflected by enhanced cell speed (Fig. 5A), an increased number of focal adhesions (Fig. 6E), and facilitated centripetal movement of FAs (Fig. 6F). Interestingly, ECM-associated sEVs appear to play a complementary but distinct role: they do not significantly affect cell migration speed (Fig. 5A) but instead guide cell invasion directionality (Figs. 5G, 5H), reduce the number of FAs per cell (Fig. 6E), and promote early peripheral FA formation (Fig. 6F). In light of these findings, we have updated our graphical abstract to reflect the unique cross-talk mediated by sEVs between VSMCs and the ECM.

      Regarding the influence of growth factors, we acknowledge that FN can bind and present different GFs, which could also contribute to changes in sEV secretion. Although our inhibition studies and integrin-blocking antibody results support a primary role for β1 integrin activation and actin assembly in triggering sEV secretion, we cannot entirely exclude the possibility that FN-bound growth factors play a role in this process. We have now incorporated this point into the discussion to address the reviewer’s suggestion.

      Discussion, page 14 , Ln 7 “Although our small inhibitors and integrin modulating antibody data clearly indicate that β1 activation triggers sEV secretion via activation of actin assembly we cannot fully rule out that FN may also be modulating growth factor activity which in turn contributes to sEV secretion by VSMCs<sup>23</sup>.  Excessive collagen and elastin matrix breakdown in atheroma has been tightly linked to acute coronary events hence it will be interesting to study the possible link between sEV secretion and plaque stability as sEV-dependent invasion is also likely to influence the necessary ECM degradation induced by invading cells<sup>96</sup>

      Figure 2.<br /> • The authors provide no evidence (or references) that SMIFH2 or CK666 halts filopodia extensions.

      Thank you for this important note. We have included the corresponding references:

      Results, page 5: “So next we tested the contribution of Arp2/3 and formins by using the small molecule inhibitors, CK666 and SMIFH2, respectively31, 32”.  

      • Is there an increase in filopodia density when plated on FN vs plastic? Similarly, if there are more filopodia present is that associated with more sEV? Please provide evidence in this regard.

      We agree that connecting the number of filopodia with the secretion level of sEVs may be an important clue if sEV secretion can be driven by FN-induced filopodia formation. However, Myosin10 staining to quantify filopodia (Fig 2E) showed no difference between VSMCs plated on plastic versus FN matrix. Therefore, we agree with the reviewer that the filopodia contribution to sEV secretion needs to be investigated further.  This idea is reflected in the following comments:

      (1) Results, page 6, Ln 29 “We observed no difference between total filopodia number per cell on plastic or FN matrices (n=18±8 and n=14±3, respectively) however the presence of endogenous CD63+ MVBs along the Myo10-positive filopodia were observed in both conditions (Fig 2E, arrows).

      (2) Results, page 6, Ln 37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (3) Discussion, page 12, Ln 15 : “Focal complexes either disassemble or mature into the elongated centripetally located FAs48. In turn, these mature FAs anchor the ECM to actin stress fibres and the traction force generated by actomyosin-mediated contractility pulls the FAs rearward and the cell body forward12, 13. Here we report that β1 integrin activation triggers sEV release followed by sEV entrapment by the ECM. Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells..”

      As hinted above, this data could be interpreted in the light of generally inhibiting cell migration to blunt sEV shedding. Does cell confluence affect sEV release? If cells are cultured to 100% confluency this would limit filopodia formation regardless of ECM type. If sEV secretion remains elevated on FN in this culture condition it would suggest a lack of dependency on filopodia.

      We thank the reviewer for this thoughtful suggestion regarding the influence of cell confluence on sEV release and filopodia formation. To directly address this hypothesis, we performed additional experiments comparing VSMCs cultured at low and high confluency. As described in the revised Results (page 7, line 39), we found that high cellular confluency reduced FN recycling, as indicated by the marked decrease in intracellular FN-positive spots and loss of colocalization with CD63 (Figs S3F, S3G). Importantly, this was accompanied by a significant reduction in CD63+/CD81+ sEV secretion by confluent cells (Fig S3H). These results suggest that VSMC confluence, which suppresses filopodia formation, nearly abolishes both intracellular FN trafficking and sEV secretion, even in the presence of FN. Thus, under our experimental conditions, sEV secretion by VSMCs appears to be closely linked to dynamic cell–matrix interactions and is dramatically reduced when these processes are limited by confluence:

      (1) Results, page 7, Ln 39 : “Notably, when we compared FN distribution in sparsely growing VSMCs versus confluent cells we found that FN intracellular spots, as well as colocalization with CD63, completely disappeared in the confluent state (Fig S3F and S3G). This correlated with nearly complete loss of CD63+/CD81+ sEV secretion by the confluent cells indicating that confluence abrogates intracellular FN trafficking as well as sEV secretion by VSMCs (Fig S3H)..  

      • Inhibition of branched actin polymerization has been shown to reduce both exocytic and endocytic activity. Thus, it is hard to interpret the results of Fig. 2B than anything more than a generalized effect of losing actin.

      We thank the reviewer for this important point regarding the broad cellular functions of branched actin polymerization, and agree that generalized actin loss can influence both exocytic and endocytic pathways. To address this, we performed additional experiments and analyses to better define the relationship between branched actin structures and sEV-related processes in VSMCs.

      As described in the revised Results (page 6), we overexpressed ARPC2-GFP (an Arp2/3 subunit) together with F-tractin-RFP in VSMCs and carried out live-cell imaging. This approach revealed that Arp2/3 and F-actin organize into lamellipodial scaffolds at the cell cortex, as expected (Fig. S2A; Supplementary Video S2). Additionally, and more unexpectedly, we observed numerous Arp2/3– and F-actin–positive dynamic spots within the VSMC cytoplasm. These structures resemble actin comet tails seen in other systems, previously implicated in endosomal propulsion (Fig. S2A, arrow; Supplementary Video S2).

      Quantitative analysis confirmed that a substantial fraction of these dynamic F-actin/cortactin spots colocalized with CD63+ endosomes (Fig. 2D), and that these structures are indeed branched actin tails based on cortactin immunostaining. Furthermore, inhibition of SMPD3 (with 3-OMS) induced enlarged cortactin/F-actin/CD63+ complexes, morphologically similar to invadopodia (Fig. 2D, arrowheads), supporting a functional link between actin branching and MVB dynamics.

      To quantify the association, we calculated Manders’ colocalization coefficients for F-actin tails and CD63+ endosomal structures in fixed VSMCs, observing that ~50% of F-actin tails were associated with ~13% of endosomes. Upon 3-OMS treatment, this overlap increased further (Fig. S2B).

      Finally, using live-cell imaging (Fig 2C; Supplementary Video S4), we directly observed CD63+ MVBs being propelled through the cytoplasm by Arp2/3-driven actin tails, suggesting a mechanistic role for branched actin assembly in MVB intracellular transport, rather than a generalized effect of actin disruption alone.

      We believe these combined data reinforce a more specific mechanistic role for Arp2/3-mediated branched actin in MVB/endosome transport and, consequently, in sEV secretion in VSMCs—over and above an indirect effect of global actin loss. We hope these additional experiments and quantitative analyses address the reviewer’s concern and clarify the functional relevance of branched actin structures to sEV trafficking:

      (1) Results, page 6, Ln 3 “As regulators of branched actin assembly, the Arp2/3 complex and cortactin are thought to contribute to sEV secretion in tumour cells by mediating MVB intracellular transport and plasma membrane docking[28, 33]. Therefore, we overexpressed the Arp2/3 subunit, ARPC2-GFP and the F-actin marker, F-tractin-RFP in VSMCs and performed live-cell imaging. As expected, Arp2/3 and F-actin bundles formed a distinct lamellipodia scaffold in the cellular cortex (Fig S2A and Supplementary Video S2). Unexpectedly, we also observed numerous  Arp2/3/F-actin positive spots moving  through the VSMC cytoplasm that resembled previously described endosome actin tails observed in Xenopus eggs[33] and parasite infected cells where actin comet tails propel parasites via filopodia to neighbouring cells[34, 35] (Fig S2A, arrow, and Supplementary Video S2). Analysis of the intracellular distribution of Arp2/3 and CD63-positive endosomes in VSMCs showed CD63-MVB propulsion by the F-actin tail in live cells (Fig 2C and Supplementary Video S4).”

      (2) Results, New data Fig 2D, page 6, Ln 14. “we observed numerous F-actin spots in fixed VSMCs that were positive both for F-actin and cortactin indicating that these are branched-actin tails (Fig 2D). Moreover, cortactin/F-actin spots colocalised with CD63+ endosomes and addition of the SMPD3 inhibitor, 3-OMS, induced the appearance of enlarged doughnut-like cortactin/F-actin/CD63 complexes resembling invadopodia-like structures similar to those observed in tumour cells (Fig 2D, arrowheads)[18].”

      (3) Results, New data Fig S2B, page 6, Ln 19 “To quantify CD63 overlap with the actin tail-like structures, we extracted round-shaped actin structures and calculated the thresholded Manders colocalization coefficient (Fig S2B).  We observed overlap between F-actin tails and CD63 as well as close proximity of these markers in fixed VSMCs (Fig S2B). Approximately 50% of the F-actin tails were associated with 13% of all endosomes (tM1=0.44±0.23 and tM2= 0.13±0.06, respectively, N=3). Addition of 3-OMS enhanced this overlap further (tM1=0.75±0.18 and tM2=0.25±0.09) suggesting that Arp2/3-driven branched F-actin tails are involved in CD63+ MVB intracellular transport in VSMCs”

      • In video 1 the author states (lines 8-9; pg6) "intense CD63 staining along filopodia" Although, there is some fluorescence (not strong) in these structures, there was no visible exocytic activity. This data is more suggestive that sEVs (marked by CD63) are not associated with filopodia. The following conclusion statement the authors make is overreaching given this result.

      We thank the reviewer for this careful observation and agree that the previous conclusion regarding sEV release from filopodia was overstated. In response, we have revised both the Results and Discussion sections to more accurately reflect the data..

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      • Fig 2D and video 2 are wholly unconvincing with regard to sEV secretion sites. The authors could use their CD63-pHluroin construct to count exocytic events in the filopodia vs the whole cell. Given the movie, I have a suspicion this would not be significant. The authors could also perform staining CD63 in non-permeabilized cells to capture and count exocytic events at the plasma membrane as well as their location between groups.

      We thank the reviewer for these constructive suggestions and their critical assessment of our current data regarding the sites of sEV secretion. We agree that our CD63-pHluorin approach clearly indicates sEV secretion events in the soma at the cell–ECM interface, while we did not observe comparable events in filopodia. Accordingly, we have clarified these points in the revised manuscript.

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      • Fig. 2E and video 4. Again, the conclusions drawn from this data are very strained. First, no co-localization quantification is presented on the proportion of CD63 vesicles with actin. Once again, the movie, if anything convinces the reader that 95-99% of all CD63 vesicles are not associated with actin; therefore, this is an unlikely mechanism of transport.

      We thank the reviewer for this valuable comment and for highlighting the need for quantitative co-localization analysis. In response, we developed a method to systematically quantify F-actin and CD63 co-localization in fixed VSMCs, as now presented in new Figures 2D and S2B. We acknowledge that the majority of CD63+ endosomes are not associated with F-actin, consistent with the reviewer’s interpretation. However, our quantitative data now show that a specific subpopulation of MVBs appears to utilize this actin-based mechanism for transport. We believe this addresses the concern and more accurately reflects the prevalence and significance of the mechanism described.

      (1) Results, page 6 , Ln 19. “To quantify CD63 overlap with the actin tail-like structures, we extracted round-shaped actin structures and calculated the thresholded Manders colocalization coefficient (Fig S2B).  We observed overlap between F-actin tails and CD63 as well as close proximity of these markers in fixed VSMCs (Fig S2B). Approximately 50% of the F-actin tails were associated with 13% of all endosomes (tM1=0.44±0.23 and tM2= 0.13±0.06, respectively, N=3). Addition of 3-OMS enhanced this overlap further (tM1=0.75+/-0.18 and tM2=0.25+/-0.09) suggesting that Arp2/3-driven branched F-actin tails are involved in CD63+ MVB intracellular transport in VSMCs.”

      • Are there perturbations that increase filopodia numbers? A gain of function experiment would be valuable here.

      We thank the reviewer for this important suggestion regarding the potential value of gain-of-function experiments to clarify filopodia’s contribution to sEV release. In agreement with the reviewer’s scepticism, we have removed statements linking filopodia to sEV release from both the title and abstract to avoid overinterpretation. At present, our understanding of filopodia biology and the lack of robust tools to selectively and substantially increase filopodia numbers in VSMCs prevent us from directly addressing this question through gain-of-function assays. We acknowledge that future studies using established methods—such as overexpression of filopodia-inducing proteins (e.g., mDia2 or fascin)—could provide insight into whether an increased number of filopodia affects sEV release. However, such experiments are beyond the scope of the current manuscript. We have made the following changes to clarify these points:

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      Figure 3<br /> • Fig 3A. The CD63 staining is strongly associated with the entire plasma membrane. How are the authors distinguishing between normal membrane shedding and bona fida sEVs based on this staining alone (?)- this is insufficient as all membrane structures are seemingly positive. Additionally, there are very few sEVs in scrutinizing the provided images. For the "sEV secretion, fold change" graphs in previous figures, could the authors provide absolute values, or an indication of what these values are in absolute terms?

      We thank the reviewer for raising this important point regarding the specificity of CD63 staining and the need to distinguish bona fide sEVs from membrane fragments or general membrane shedding. We agree that CD63 staining alone at the plasma membrane or in the extracellular matrix is not sufficient to unequivocally identify sEVs. To address this, we employed several complementary approaches to rigorously characterize ECM-associated sEVs:

      First, using high-resolution iSIM imaging, we confirmed the association of CD63-positive particles specifically with the FN-rich matrix, and demonstrated that SMPD3 knockdown significantly reduced the number of CD63+ particles in the matrix (Fig. 3B; revised from Fig. S3A).

      Second, by incubating FN matrices with purified and fluorescently labeled sEVs, we directly observed efficient entrapment of these labeled sEVs within the matrices (Fig. 3E), confirming that sEVs can interact with and be retained by the ECM.

      Third, we developed and applied a sequential extraction protocol using mild salt buffer (0.5M NaCl) and strong denaturant (4M guanidine HCl) to selectively extract ECM-associated sEVs based on the strength of their association (see new Figs. S3A and S3B). Extracted vesicles were then characterized by ExoView analysis, which demonstrated a tetraspanin profile (CD63+/CD81+/CD9+) closely matching that of sEVs from conditioned media, providing evidence that these particles are true sEVs and not merely membrane debris. We also found that the more weakly bound (NaCl-extracted) fraction closely resembles media-derived sEVs, while the strongly bound (GuHCl-extracted) fraction is more enriched in CD63+ and CD63+/CD81+ sEVs but contains very few CD9+ vesicles, further supporting distinct extracellular vesicle subpopulations within the ECM.

      In addition, the abundance of CD63+/CD81+ sEVs in both media and ECM-derived fractions was independently validated by CD63 bead-capture assay (Fig. S3B).

      We hope these clarifications and the expanded data set address the reviewer’s concerns about sEV identification and quantification in the extracellular matrix:

      (1) Results, page 7, Ln 16. To quantify ECM-trapped sEVs we applied a modified protocol for the sequential extraction of extracellular proteins using salt buffer (0.5M NaCl) to release sEVs which are loosely-attached to ECM via ionic interactions, followed by 4M guanidine HCl buffer (GuHCl) treatment to solubilize strongly-bound sEVs (Fig S3A) 42. We quantified total sEV and characterised the sEV tetraspanin profile in conditioned media, and the 0.5M NaCl and GuHCl fractions using ExoView. The total particle count showed that EVs are both loosely bound and strongly trapped within the ECM. sEV tetraspanin profiling showed differences between these 3 EV populations.  While there was close similarity between the conditioned media and the 0.5M NaCl fraction with high abundance of CD63+/CD81+ sEVs as well as CD63+/CD81+/CD9+ in both fractions (Fig S3A). In contrast, the GuHCl fraction was particularly enriched with CD63+ and CD63+/CD81+ sEVs with very low abundance of CD9+ EVs (Fig S3A). The abundance of CD63+/CD81+ sEVs was confirmed independently by a CD63+ bead capture assay in the media and loosely bound fractions (Fig S3B).

      • A control of fig 3b would be helpful to parse out random uptake of extracellular debris verses targeted sEV internalization. It would be helpful if the authors added particles of similar size to that of the sEVs to test whether these structures are endocytosed/micropinocytosed at similar levels.

      We thank the reviewer for this useful suggestion regarding the need for better controls to distinguish specific sEV uptake from nonspecific internalization of extracellular debris or similarly sized particles. As a comparison, in our study we analyzed the uptake of both sEVs and serum proteins such as fibronectin and fetuin-A (Figs S3C and S3D), and observed similar patterns of intracellular trafficking. However, we acknowledge that inert nanoparticles or beads of a similar size to sEVs could serve as potential controls to assess nonspecific micropinocytosis or endocytosis.

      It is important to note, however, that the uptake of sEVs is strongly influenced by their surface protein composition and the so-called “protein corona.” Recent work from Prof. Khuloud T. Al-Jamal’s group underscores that exosome uptake mechanisms may be highly specific (Liam-Or et al., 2024), and studies from Mattias Belting’s lab have also shown the importance of heparan sulfate proteoglycans in exosome endocytosis (Cerezo-Magana et al., 2021). As a result, uptake comparisons with inert particles or beads may not fully recapitulate the specificity of sEV internalization, and distinct nanoparticle classes may rely on different uptake pathways.

      Figure 4<br /> • Fig. 4E,F,G. How are the authors determining the neointima and media compartments without ancillary staining for basement membrane or endothelial markers? Anatomic specific markers need to be incorporated here for the reader to evaluate the specificity of the FN and CD81 staining. It is also hard to understand the severity of the atherosclerotic lesion without a companion H&E cross section.

      We thank the reviewer for highlighting the need for more rigorous characterization of atherosclerotic lesion architecture and anatomical compartments in our study. In response, we have incorporated additional histological analyses and now provide ancillary staining and companion images to enable clear identification of the neointima and medial compartments, as well as to assess lesion severity (see new Figs S4A–S4D):

      (1)Results, page  8, Ln 28. . “To test if FN associates with sEV markers in atherosclerosis, we investigated the spatial association of FN with sEV markers using the sEV-specific marker CD81. Staining of atherosclerotic plaques with haematoxylin and eosin revealed well-defined regions with the neointima as well as tunica media layers formed by phenotypically transitioned or contractile VSMCs, respectively (Fig S4A). Masson's trichrome staining of atherosclerotic plaques showed abundant haemorrhages in the neointima, and sporadic haemorrhages in the tunica media (Fig S4B). Staining of atherosclerotic plaques with orcein indicated weak connective tissue staining in the atheroma with a confluent extracellular lipid core, and strong specific staining at the tunica media containing elastic fibres which correlated well with the intact elastin fibrils in the tunica media (Figs S4C and S4D). Using this clear morphological demarcation, we found that FN accumulated both in the neointima and the tunica media where it was significantly colocalised with the sEV marker, CD81 (Fig. 4D, 4E and 4F). Notably CD81 and FN colocalization was particularly prominent in cell-free, matrix-rich plaque regions (Figs. 4E and 4F).”

      • Figs s4c, S4d- proper controls are not provided. Again, a non-FN internalization control as well as a 4oC cold block negative control is required to interpret this data.

      We thank the reviewer for this valuable suggestion. To enhance the rigor of our internalization assays, we have now included several additional controls using alternative treatments, fluorophore combinations, and internalization conditions:

      a) We performed FN-Alexa568 uptake assays, followed by immunostaining for CD63 with a distinct fluorophore (Alexa488), to confirm the colocalization of internalized FN with CD63+ endosomal compartments in VSMCs (new Fig. S3E).

      b) We also stained VSMCs, cultured under normal growth conditions, with an anti-FN antibody to visualize intracellular serum-derived FN and again observed colocalization with CD63 (new Figs. S3F and S3G). Notably, in cells grown to confluence, we observed a complete loss of intracellular FN staining and FN/CD63 colocalization, suggesting that FN recycling is prominent in sparse, motile cells, but not in confluent populations.

      These additional controls strengthen our conclusions regarding FN internalization pathways and the conditions under which FN trafficking to the endosomal system occurs:

      (1) Results, page 7, Ln 31  We treated serum-deprived primary human aortic VSMCs with FN-Alexa568 and found that it was endocytosed and subsequently delivered to early and late endosomes together with fetuin A, another abundant serum protein that is a recycled sEV cargo and elevated in plaques (Figs S3C and S3D). CD63 visualisation with a different fluorophore (Alexa488) confirmed FN colocalization with CD63+ MVBs (Fig S3E). Next, we stained non-serum deprived VSMC cultured in normal growth media (RPMI supplemented with 20% FBS) with an anti-FN antibody and observed colocalization of CD63 and serum-derived FN.  Co-localisation was reduced likely due to competitive bulk protein uptake by non-deprived cells (Fig S3F). Notably, when we compared FN distribution in sparsely growing VSMCs versus confluent cells we found that FN intracellular spots, as well as colocalization with CD63, completely disappeared in the confluent state (Fig S3F and S3G)..

      • Can the authors please provide live and fixed imaging of FN and CD63-mediate filopodial secretion to amply support their conclusions.

      We have observed CD63 MVBs in both fixed (Fig 2E) and live VSMCs (Fig 2F) yet we agree that further studies are required to establish the contribution of filopodia to sEV secretion. Therefore, we have added the following changes:

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      Figure 5

      • Fig. 5A,B. The authors claim that sEV supplementation enhances VSMC migration speed and distance. The provided graphs show only a marginal increase in speed with sEV addition (A) but, concerningly, there is a four-star significant difference between the FN condition compared with FN+sEV (B) while the means appear the same. How are these conditions statistically different? The statistics seem off for these comparisons.

      We thank the reviewer for highlighting concerns regarding the statistical analysis in Figures 5A and 5B. In response, we have carefully re-examined our data and statistical approach to ensure accuracy and transparency.

      First, we have now included all individual cell migration tracks in the data representation for these figures. The statistical tests were repeated using the Kruskal–Wallis test with Dunn’s multiple comparison correction across all groups. This more stringent analysis confirmed our key findings: fibronectin (FN) stimulates VSMC migration speed, while inhibition of sEV secretion (with 3-OMS) reduces cellular speed (Fig. 5A). Addition of exogenous ECM-associated sEVs modestly restored cell speed in the presence of 3-OMS, but had no effect on baseline migration speed in 2D or 3D models (Figs. 5A, 5D).

      Regarding the four-star significance observed in the original Fig. 5B, the previous result reflected an analysis based on pooled group averages, which may have overstated marginal differences. The revised analysis, based on individual cell tracks, does not support a substantial difference between FN and FN+sEV groups. The revised p-values and comparisons are now provided directly on the figures and described in the figure legends. We also clearly report the numbers of biological replicates, technical replicates, and individual data points for every condition.

      Further, the modest effect of ECM-associated sEVs on speed is consistent with our observation that sEVs influence invasion directionality rather than baseline migration velocity, in agreement with previous findings in tumor models (Sung et al., 2015).

      The manuscript has been revised accordingly, with updates in:

      (1) Figures 5A and 5B: Individual cell track data are now shown, and statistical analyses have been repeated using the Kruskal–Wallis test with Dunn’s multiple comparisons.

      (2) Figure legends and results sections: Numbers of biological and technical replicates, as well as individual data points, are now clearly stated.

      (3) Results, page 9, line 14:  “FN as a cargo in sEVs promotes FA formation in tumour cells and increases cell speed14, 15. As we found that FN is loaded into VSMC-derived sEVs we hypothesized that ECM-entrapped sEVs can enhance cell migration by increasing cell adhesion and FA formation in the context of a FN-rich ECM. Therefore, we tested the effect of sEV deposition onto the FN matrix on VSMC migration in 2D and 3D models. We found that FN coating promoted VSMC velocity and inhibition of bulk sEV secretion with 3-OMS reduced VSMC speed in a 2D single-cell migration model (Figs. 5A, 5B) in agreement with previous studies using tumour cells14, 15. However, addition of sEVs to the ECM had no effect on VSMC speed at baseline but rescued cell speed and distance in the presence of the sEV secretion inhibitor, 3-OMS suggesting the EVs are not primarily regulating cell speed (Figs 5A and 5B).”

      (4) Results, page 9, Ln 29 “Hence, ECM-associated sEVs have modest influence on VSMC speed but influence VSMC invasion directionality.”.

      We hope that these changes address the reviewer’s concerns and improve the transparency and reproducibility of our data presentation

      • Fig d-h. Generally, the magnitude of the difference between the presented conditions are biologically insignificant. Several of the graphs show a four-star difference with means that appear equivalent with overlapping error bars. Do the authors conclude that a 0.1%, or less, effect between groups is biologically meaningful?

      We thank the reviewer for drawing attention to the apparent mismatch between statistical significance and biological relevance in Figures 5d–h. In response, we have reanalyzed the data using individual cell tracks and more stringent non-parametric statistical tests, as described above. This reanalysis confirmed that the magnitude of differences in migration speed and related parameters between the groups is minimal and not biologically meaningful. Thus, we no longer claim that sEVs significantly affect VSMC migration speed under these conditions in either 2D or 3D assays. Our revised manuscript now accurately reflects this finding in both the Results and Discussion sections, and the updated figures and legends clarify the true extent of any differences observed.

      Figure 6

      • Generally, the author's logic for looking into adhesion, focal adhesion and traction forces is hard to follow. If there are sEV-mediated migration differences, then there would inexorably be focal adhesion alterations. However, the data indicates few differences brought on by sEVs, which speaks to the lack of migration differences presented in Fig. 5. Overall, the sEV migration phenotype has so little of an effect, to then search for a mechanism seems destine to not turn up anything significant.

      We thank the reviewer for highlighting the importance of connecting the observed phenotypic effects of sEVs to the investigation of adhesion and focal adhesion mechanisms. While our revised analysis confirms that sEVs have little to no effect on VSMC migration speed or distance in 2D and 3D models, we did observe a robust effect of sEVs on the directionality of cell invasion (Figs. 5G and 5H). This prompted us to look more closely at pathways involved in cell guidance rather than bulk cell motility.

      Our proteomic comparison between larger EVs (10K fraction) and sEVs (100K fraction) revealed a unique adhesion complex present specifically on the sEVs—comprising collagen VI, TGFBI, LGALS3BP, and EDIL3 (Figs. 7A–C)—each of which has previously been implicated in integrin signaling, cell adhesion, or invasion. Functional blocking and knockdown studies further identified collagen VI as a key mediator in the regulation of cell adhesion and invasion directionality influenced by sEVs (Figs. 7F and 7I).

      In response to this mechanistic insight, we have modified the graphical abstract and discussion to clarify our approach:

      We now explicitly state that our focus has shifted from analyzing baseline migration speed to mechanisms guiding invasion directionality, in line with our key phenotypic findings.We highlight that the unique adhesion cluster identified on sEVs—including collagen VI and its cooperative partners—provides a strong mechanistic rationale for examining focal adhesion dynamics and ECM interactions, even in the absence of changes in migration velocity.Discussion excerpts (pages 13–14) have been updated to reflect this rationale and to summarize the potential significance of these findings for vascular biology and disease.

      We hope this clarifies the logic underlying our approach and justifies the mechanistic studies performed in this context:

      (1) Discussion, page 13, Ln 2  “Hence, it will be interesting in future studies to investigate whether sEVs can stimulate Rho activity by presenting adhesion modulators—particularly collagen VI—on their surface, thereby guiding cell directionality during invasion.”

      (2) Discussion, page 13, Ln 30  “In addition to collagen VI the unique adhesion cluster in VSMC-derived sEVS also includes EGF-like repeat and discoidin I-like domain-containing protein (EDIL3), transforming growth factor-beta-induced protein ig-h3 (TGFBI) and the lectin galactoside-binding soluble 3 binding protein (LGALS3BP) and these proteins are also directly implicated in activation of integrin signalling and cellular invasiveness85-87. Although we found that collagen VI plays the key role in sEV-induced early formation of FAs in VSMCs, it is tempting to speculate that the high sEV efficacy in stimulating FA formation is driven by cooperative action of this unique adhesion complex on the sEVs surface and targeting this novel sEV-dependent mechanism of VSMC invasion may open-up new therapeutic opportunities to modulate atherosclerotic plaque development or even to prevent undesired VSMC motility in restenosis”.    . 

      (3) Discussion, page 14, Ln 14 “In summary, cooperative activation of integrin signalling and F-actin cytoskeleton pathways results in the secretion of sEVs which associate with the ECM and play a signalling role by controlling FA formation and cell-ECM crosstalk. Further studies are needed to test these mechanisms across various cell types and ECM matrices.     ”.    

      Figure 7<br /> • The authors need to provide additional evidence Col IV is harbored in sEVs and not a contaminant of sEV isolation as VSMCs secrete a copious amount of this in culture. For instance, IHC of isolated sEVs stained for CD63 and Col IV as well as single cell staining of the same sort.

      We thank the reviewer for this important comment regarding the specificity of collagen VI detection in sEVs. To ensure that collagen VI is associated with bona fide sEVs—rather than being a contaminant resulting from high extracellular abundance—we performed a comparative analysis of vesicles isolated from the same conditioned media. Both proteomic mass spectrometry and western blotting revealed that collagen VI was exclusively present in the small EV (100K pellet) fraction and not in the larger EVs (10K pellet), as shown in Figs. 7B and 7C. Collagen VI was further identified in sEVs extracted from the ECM using our salt/guanidine protocol (new Fig. 7D).

      Reviewer #2 (Recommendations For The Authors):

      The authors have presented a nice collection of data with strong approaches to address their hypotheses. Nevertheless, an additional section within the Discussion would be welcome in addressing the potential limitations and important caveats to be considered alongside their study. These caveats and limitations could be reshaped by additional data supporting the ideas that: (1) small extracellular vesicles can be directly observed during their secretion from filopodia, (2) CD81 labeling in tissue can be interpreted clearly as extracellular vesicles and not the cell surface of other cell types (co-staining with an endothelial cell marker such as PECAM-1 perhaps), and (3) collagen VI within the vesicles is somehow accessed by adhesion molecules on the cell surface of migrating cells.

      We thank the reviewer for these important suggestions and we have now added further studies and modified our conclusions to reflect the data more accurately:

      (1) Results. Page 6, Ln37  “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)”..  

      (2) Discussion, page 12, Ln18: “Here we report that β1 integrin activation triggers sEV release followed by sEV entrapment by the ECM. Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells”..

      We quantified the colocalization of CD81 and CD31 to exclude the endothelial cell origin of sEVs and extended the characterisation of the atherosclerotic matrix as well as highlighting any limitations to interpretation ie re  CD81 ECM localisation: 

      (1) Results, page 8, Ln 43 “An enhanced expression of CD81 by endothelial cells in early atheroma has been previously reported so to study the contribution of CD81+ sEVs derived from endothelial cells  we investigated the localisation of CD31 and CD8145. In agreement with a previous study, we found that the majority of CD31 colocalises with CD81 (Thresholded Mander's split colocalization coefficient 0.54±0.11, N=6) indicating that endothelial cells express CD81 (Fig 4G)45. However, only a minor fraction of total CD81 colocalised with CD31 (Thresholded Mander's split colocalization coefficient 0.24±0.06, N=6) confirming that the majority of CD81 in the neointima is originating from the most abundant VSMCs.. 

      (2) Results, page 8, Ln 28: “To test if FN associates with sEV markers in atherosclerosis, we investigated the spatial association of FN with sEV markers using the sEV-specific marker CD81. Staining of atherosclerotic plaques with haematoxylin and eosin revealed well-defined regions with the neointima as well as tunica media layers formed by phenotypically transitioned or contractile VSMCs, respectively (Fig S4A). Masson's trichrome staining of atherosclerotic plaques showed abundant haemorrhages in the neointima, and sporadic haemorrhages in the tunica media (Fig S4B). Staining of atherosclerotic plaques with orcein indicated weak connective tissue staining in the atheroma with a confluent extracellular lipid core, and strong specific staining at the tunica media containing elastic fibres which correlated well with the intact elastin fibrils in the tunica media (Figs S4C and S4D). Using this clear morphological demarcation, we found that FN accumulated both in the neointima and the tunica media where it was significantly colocalised with the sEV marker, CD81 (Fig. 4D, 4E and 4F). Notably CD81 and FN colocalization was particularly prominent in cell-free, matrix-rich plaque regions (Figs. 4E and 4F). .”

      We showed that collagen VI is presented on the surface of sEVs:

      (1) Results, page 10, Ln43: “Collagen VI was the most abundant protein in VSMC-derived sEVs (Fig 7B, Table S7) and  was previously implicated in the interaction with the proteoglycan NG253 and suppression of cell spreading on FN54. To confirm the presence of collagen VI in ECM-associated sEVs we analysed sEVs extracted from the 3D matrix using 0.5M NaCl treatment and showed that both collagen VI and FN are present (Fig 7D). Next, we analysed the distribution of collagen VI using dot-blot. Alix staining was bright only upon permeabilization of sEV indicating that it is preferentially a luminal protein (Fig 7E). On the contrary, CD63 staining was similar in both conditions showing that it is surface protein (Fig 7E). Interestingly, collagen VI staining revealed that 40% of the protein is located on the outside surface with 60% in the sEV lumen (Fig 7E)

    1. Reviewer #3 (Public review):

      Summary:

      The present manuscript investigates and proposes different mechanisms for the effects of two therapeutic approaches - cognitive distancing technique and use of antidepressants - on subjective ratings of happiness, confidence, and task engagement, and on the influence of such subjective experiences on choice behavior. Both approaches were found to link to changes in affective state dynamics in a choice task, specifically reduced drift (cognitive distancing) and increased baseline (antidepressant use). Results also suggest that cognitive distancing may reduce the weighing of recent expected values in the happiness model, while antidepressant use may reduce forgetting of choices and outcomes.

      Strengths:

      This is a timely topic and a significant contribution to ongoing efforts to improve our mechanistic understanding of psychopathology and devise effective novel interventions. The relevance of the manuscript's central question is clear, and the links to previous literature and the broader field of computational psychiatry are well established. The modelling approaches are thoughtful and rigorously tested, with appropriate model checks and persuasive evidence that modelling complements the theoretical argument and empirical findings.

      Weaknesses:

      Some vagueness and lack of clarity in theoretical mechanisms and interpretation of results leave outstanding questions regarding (a) the specific links drawn between affective biases, therapies aimed at mitigating them, and mental health function, and (b) the structure and assumptions of the modelling, and how they support the manuscript's central claims. Broadly, I do not fully understand the distinction between how choice behavior vs. affect are impacted separately or together by cognitive distancing. Clarification on this point is needed, possibly through a more explicit proposal of a mechanism (or several alternative mechanisms?) in the introduction and more explicit interpretation of the modelling results in the context of the cyclical choice-affect mechanism.

      (1) Theoretical framework and proposed mechanisms

      The link between affective biases and negative thinking patterns is a bit unclear. The authors seem to make a causal claim that "affective biases are precipitated and maintained by negative thinking patterns", but it is unclear what precisely these negative patterns are; earlier in the same paragraph, they state that affective biases "cause low mood" and possibly shift choices toward those that maintain low mood. So the directionality of the mechanism here is unclear - possibly explaining a bit more of the cyclic nature of this mechanism, and maybe clarifying what "negative thinking patterns" refer to will be helpful.

      More generally, this link between affect and choices, especially given the modelling results later on, should be clarified further. What is the mechanism by which these two impact each other? How do the models of choice and affect ratings in the RL task test this mechanism? I'm not quite sure the paper answers these questions clearly right now.

      The authors also seem to implicitly make the claim that symptoms of mental ill-health are at least in part related to choice behavior. I find this a persuasive claim generally; however, it is understated and undersupported in the introduction, to the point where a reader may need to rely on significant prior knowledge to understand why mitigating the impact of affective biases on choice behavior would make sense as the target of therapeutic interventions. This is a core tenet of the paper, and it would be beneficial to clarify this earlier on.

      It would be helpful to interpret a bit more clearly the findings from 3.4. on decreased drift in all three subjective assessments in the cognitive distancing group. What is the proposed mechanism for this? The discussion mentions that "attenuated declines [...] over time, [add] to our previously reported findings that this psychotherapeutic technique alters aspects of reward learning" - but this is vague and I do not understand, if an explanation for how this happens is offered, what that explanation is. Given the strong correlation of the drift with fatigue, is the explanation that cognitive distancing mitigates affect drift under fatigue? Or is this merely reporting the result without an interpretation around potential mechanisms?

      (Relatedly, aside from possibly explaining the drift parameter, do the fatigue ratings link with choice behavior in any way? Is it possible that the cognitive distancing was helping participants improve choices under fatigue?)

      (2) Task Structure and Modelling

      It is unclear what counted as a "rewarding" vs. "unrewarding" trial in the model. From my understanding of the task description, participants obtained positive or no reward (no losses), and verbal feedback, Correct/Incorrect. But given the probabilistic nature of the task, it follows that even some correct choices likely had unrewarding results. Was the verbal feedback still "Correct" in those cases, but with no points shown? I did not see any discussion on whether it is the #points earned or the verbal feedback that is considered a reward in the model. I am assuming the former, but based on previous literature, likely both play a role; so it would be interesting - and possibly necessary to strengthen the paper's argument - to see a model that assigns value to positive/negative feedback and earned points separately.

      From a theory perspective, it's interesting that the authors chose to assume separate learning rates for rewarding and non-rewarding trials. Why not, for example, separate reward sensitivity parameters? E.g., rather than a scaling parameter on the PE, a parameter modifying the r term inside the PE equation to, perhaps, assign different values to positive and zero points? (While I think overall the math works out similarly at the fitting time, this type of model should be less flexible on scaling the expected value and more flexible on scaling the actual #points / the subjective experience of the obtained verbal feedback, which seems more in line with the theoretical argument made in the introduction). The introduction explicitly states that negative biases "may cause low mood by making outcomes appear less rewarding" - which in modelling equations seems more likely to translate to different reward-perception biases, and not different learning rates. Alternatively, one might incorporate a perseveration parameter (e.g., similar to Collins et al. 2014) that would also accomplish a negative bias. Either of these two mechanisms seems perhaps worth testing out in a model - especially in a model that defines more clearly what rewarding vs. unrewarding may mean to the participant.

      If I understand correctly, the affect ratings models assume that the Q-value and the PE independently impact rating (so they have different weights, w2 and w3), but there is no parameter allowing for different impact for perceived rewarding and unrewarding outcomes? (I may be misreading equations 4-5, but if not, Q-value and PE impact the model via static rather than dynamic parameters.) Given the joint RL-affect fit, this seems to carry the assumption that any perceptual processing differences leading to different subjective perceptions of reward associated with each outcome only impact choice behavior, but not affect? (whereas affect is more broadly impacted, if I'm understanding this correctly, just by the magnitude of the values and PEs?) This is an interesting assumption, and the authors seem to have tested it a bit more in the Supplementary material, as shown in Figure S4. I'm wondering why this was excluded from the main text - it seems like the more flexible model found some potentially interesting differences which may be worth including, especially as they might shed additional insight into the influence of cognitive distancing on the cyclical choice-affect mechanisms proposed.

      Minor comments:

      If fatigue ratings were strongly associated with drift in the best-fitting model (as per page 13), I wonder if it would make sense to use those fatigue ratings as a proxy rather than allow the parameter to vary freely? (This does not in any way detract from the winning model's explanatory power, but if a parameter seems to be strongly explained by a variable we have empirical data for, it's not clear what extra benefit is earned by having that parameter in the model).

    1. and that the Lord may behold us as a People offering Praise and thereby glorifying Him

      They want to receive praise from God for offering a day of peace where pilgrims and natives can feast together. I interpret this to mean that they view God as kind and forgiven and therefore think he will favor them if they behave similarly even though they view them as heathens. This helps me understand how they interacted with the Native Americans and how they thought about God at the time and what interpretations they used. This provides changes over time with what we know celebrate Thanksgiving as and how it originally started.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models. 

      We thank the reviewer for the positive comments about our work. We agree that further work is needed in the field of substitution models of molecular evolution to enable more accurate predictions of specific amino acid sequences in evolutionary processes.

      Major concerns: 

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model. 

      The model proposed by Neher, et al. (2014), which incorporates a death rate (d) higher than 0 for any variant, was implemented and applied in the present method. In general, this model did not yield results different from those obtained using the model that assumes d = 1 – b, suggesting that this aspect may not be crucial for the study system. Next, the imposition of arbitrary death events based on an arbitrary death rate could be a point of concern. Regarding the original model, a variant with d = 0 can experience a decrease in fitness through the mutation process. In an evolutionary process, each variant is subject to mutation, and Markov models allow for the incorporation of mutations that decrease fitness (albeit with lower probability than beneficial ones, but they can still occur). All this information is included in the manuscript.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction. 

      AU: The study protein datasets showed different levels of sequence divergence over their evolutionary times, as indicated for each dataset in the manuscript. For some metrics, we evaluated the accuracy (or error) of the predictions through direct comparisons between real and predicted protein variants using percentages to facilitate interpretation: 0% indicates a perfect prediction (no error), while 100% indicates a completely incorrect prediction (total error). Regarding normalization of these evaluations, we respectfully disagree with the suggestion because diverse factors can affect (not only the substitution rate, but also the sample size, structural features of the protein that may affect stability when accommodating different sequences, among others) and this complicates defining a consistent and meaningful normalization criterion. Given that the manuscript provides detailed information for each dataset, we believe that the presentation of the prediction accuracy through direct comparisons between real and predicted protein variants, expressed as percentages of similarity, is the clearest way.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space. 

      We agree with this reflection. Mutations can have different effects on folding stability, which are accounted for by the model presented in this study. However, accurately predicting the exact sequences of protein variants with similar stability remains difficult with current structurally constrained substitution models, and therefore, further work is needed in this regard. This aspect is indicated in the manuscript.

      We want to thank the reviewer again for taking the time to revise our work and for the insightful and helpful comments.

      Reviewer #2 (Public review): 

      In this study, the authors aim to forecast the evolution of viral proteins by simulating sequence changes under a constraint of folding stability. The central idea is that proteins must retain a certain level of structural stability (quantified by folding free energy, ΔG) to remain functional, and that this constraint can shape and restrict the space of viable evolutionary trajectories. The authors integrate a birth-death population model with a structurally constrained substitution (SCS) model and apply this simulation framework to several viral proteins from HIV-1, SARS-CoV-2, and influenza.

      The motivation to incorporate biophysical constraints into evolutionary models is scientifically sound, and the general approach aligns with a growing interest in bridging molecular evolution and structural biology. The authors focus on proteins where immune pressure is limited and stability is likely to be a dominant constraint, which is conceptually appropriate. The method generates sequence variants that preserve folding stability, suggesting that stability-based filtering may capture certain evolutionary patterns. 

      Correct. We thank the reviewer for the positive comments about our study.

      However, the study does not substantiate its central claim of forecasting. The model does not predict future sequences with measurable accuracy, nor does it reproduce observed evolutionary paths. Validation is limited to endpoint comparisons in a few datasets. While KL divergence is used to compare amino acid distributions, this analysis is only applied to a single protein (HIV-1 MA), and there is no assessment of mutation-level predictive accuracy or quantification of how well simulated sequences recapitulate real evolutionary paths. No comparison is made to real intermediate variants available from extensive viral sequencing datasets which gather thousands of sequences with detailed collection date annotation (SARS-CoV-2, Influenza, RSV). 

      There are several points in this comment.

      The presented method accurately predicts folding stability of forecasted variants, as shown through comparisons between real and predicted protein variants. However, as the reviewer correctly indicates, predicting the exact amino acid sequences remains challenging. This limitation is discussed in detail in the manuscript, where we also suggest that further improvements in substitution models of protein evolution are needed to better capture the evolutionary signatures of amino acid change at the sequence level, even between amino acids with similar physicochemical properties. Regarding the time points used for validation, the studied influenza NS1 dataset included two validation points. A key limitation in increasing the number of time points is the scarcity of datasets derived from monitoring protein evolution with sufficient molecular diversity between samples collected at consecutive time points (i.e., at least more than five polymorphic amino acid sites). 

      As described in the manuscript, calculating Kullback-Leibler (KL) divergence requires more than one sequence per studied time point. However, most datasets in the literature include only a single sequence per time point, typically a consensus sequence derived from bulk population sequencing. Generating multiple sequences per time point is experimentally more demanding, often requiring advanced methods such as single-virus sequencing or amplification of sublineages in viral subpopulations, as was done for the first dataset used in the study (Arenas, et al. 2016), which enabled the calculation of KL divergence. The extent to which the simulated sequences resemble real evolution is evaluated in the method validation. As noted, intermediate time point validation was performed using the influenza NS1 protein dataset. Although, as the reviewer indicates, thousands of viral sequences are available, these are usually consensus sequences from bulk sequencing. Indeed, many viral variants mainly differ through synonymous mutations, where the number of accumulated nonsynonymous mutations is small. For example, from the original Wuhan strain to the Omicron variant, the SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes, respectively.

      Analyzing intermediate variants of concern (i.e., Gamma or Delta) would reduce this number affecting statistics. In addition, many available viral sequences are not consecutive in evolutionary terms (one dataset does not represent the direct origin of another dataset at a subsequent time point), which further limits their applicability in this study. There is little data from monitored protein evolution with consecutive samples. The most suitable studies usually involve in vitro virus evolution, but the data from these studies often show low genetic variability between samples collected at different time points. Finally, it is important to note that the presented method can only be applied to proteins with known 3D structures, as it relies on selection based on folding stability. Non-structural proteins cannot be analyzed using this approach. Future work could incorporate additional selection constraints, which may improve the accuracy of predictions. These considerations and limitations are indicated in the manuscript.

      The selection of proteins is narrow and the rationale for including or excluding specific proteins is not clearly justified. 

      The viral proteins included in the study were selected based on two main criteria, general interest and data availability. In particular, we included proteins from viruses that affect humans and for which data from monitored protein evolution, with sufficient molecular diversity between consecutive time points, is available. These aspects are indicated in the manuscript.

      The analyzed datasets are also under-characterized: we are not given insight into how variable the sequences are or how surprising the simulated sequences might be relative to natural diversity. Furthermore, the use of consensus sequences to represent timepoints is problematic, particularly in the context of viral evolution, where divergent subclades often coexist - a consensus sequence may not accurately reflect the underlying population structure. 

      The manuscript indicates the sequence identity among protein datasets of different time points, along with other technical details. Next, the evaluation based on comparisons between simulated and real sequences reflects how surprising the simulated sequences might be relative to natural diversity, considering that the real dataset is representative. We believe that the diverse study real datasets are useful to evaluate the accuracy of the method in predicting different molecular patterns. Regarding the use of consensus sequences, we agree that they provide an approximation. However, as previously indicated, most of the available data from monitored protein evolution consist of consensus sequences obtained through bulk sequencing. Additionally, analyzing every individual viral sequence within a viral population, which is typically large, would be ideal but computationally intractable.

      The fitness function used in the main simulations is based on absolute ΔG and rewards increased stability without testing whether real evolutionary trajectories tend to maintain, increase, or reduce folding stability over time for the particular systems (proteins) that are studied. While a variant of the model does attempt to center selection around empirical ΔG values, this more biologically plausible version is underutilized and not well validated.

      The applied fitness function, based on absolute ΔG, is well stablished in the field (Sella and Hirsh 2005; Goldstein 2013). The present study independently predicts ΔG for the real and simulated protein variants at each sampling point. This ΔG prediction accounts not only for negative design, informed by empirical data, but also for positive design based on the study data (Arenas, et al. 2013; Minning, et al. 2013), thereby enabling the detection of variation in folding stability among protein variants. These aspects are indicated in the manuscript. Therefore, in our view, the study provides a proper comparison of real and predicted evolutionary trajectories in terms of folding stability.

      Ultimately, the model constrains sequence evolution to stability-compatible trajectories but does not forecast which of these trajectories are likely to occur. It is better understood as a filter of biophysically plausible outcomes than as a predictive tool. The distinction between constraint-based plausibility and sequence-level forecasting should be made clearer. Despite these limitations, the work may be of interest to researchers developing simulation frameworks or exploring the role of protein stability in viral evolution, and it raises interesting questions about how biophysical constraints shape sequence space over time. 

      The presented method estimates the fitness of each protein variant, which can reflect the relative survival capacity of the variant. Therefore, despite the error due to evolutionary constraints not considered by the method, it indicates which variants are more likely to become fixed over time. In our view, the method does not merely filter plausible variants, rather, it generates predictions of variant survival through predicted fitness based on folding stability and simulations of protein evolution under structurally constrained substitution models integrated with birth-death population genetics approaches. The use of simulation-based approaches for prediction is well established in population genetics. For example, approaches such as approximate Bayesian computation (Beaumont, et al. 2002) rely on this strategy, and it has also been applied in other studies of forecasting evolution (e.g., Neher, et al. 2014). We believe that the distinction between forecasting folding stability and amino acid sequence is clearly shown in the manuscript, including the main text and the figures.

      Reviewer #2 (Recommendations for the authors): 

      I thank the authors for addressing the question about template switching, their clarification was helpful. However, the core concerns I raised remain unresolved: the claim that the method is useful for forecasting is not substantiated.  In order to support the paper's central claims or to prove its usefulness, several key improvements could be incorporated: 

      (1) Systematic analysis of more proteins: 

      The manuscript would be significantly strengthened by a systematic evaluation of model performance across a broader set of viral proteins, beyond the examples currently shown. Many human influenza and SARS-CoV-2 proteins have wellcharacterized structures or high-quality homology templates, making them suitable candidates. In the light of limited success of the method, presenting the model's behavior across a more comprehensive protein set, including those with varying structural constraints and immune pressures, would help assess generalizability and clarify the specific conditions under which the model is applicable. 

      Following a comment from the reviewer in a previous revision of the study, we included the analysis of an influenza NS1 protein dataset that contains two evaluation time points. Next, to validate the prediction method, it is necessary to have monitored protein sequences collected at least at two consecutive time points, with sufficient divergence between them to capture evolutionary signatures that allow for proper evaluation. Additionally, many data involve sequences that are not consecutive in evolutionary terms (one dataset is not a direct ancestor of another dataset existing at a posterior time point), which disallows their applicability in this study. Little data from monitored protein evolution with trustable consecutive (ancestor-descendant) samples exist. The most suitable studies often involve in vitro virus evolution, but they usually show low genetic variability between samples collected at different time points. Although thousands of sequences are available for some viruses, they are usually consensus sequences from bulk sequencing and often show a low number of nonsynonymous mutations at the study protein-coding gene between time points. For example, from the original Wuhan strain and the Omicron variant, the SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes, respectively. Analyzing intermediate variants of concern (i.e., Gamma or Delta) would reduce this number affecting statistics. Thus, in practice, we found scarcity of data derived from monitoring protein evolution, with trustable ancestor and corresponding descendant data at consecutive time points and with sufficient molecular diversity between them (i.e., at least more than five polymorphic amino acid sites). In all, we believe that the diverse viral protein datasets used in the present study, along with the multiple analyzed datasets collected from monitored HIV-1 populations present in different patients, provide a representative application of the method, since notice that similar patterns were generally generated from the analysis of the different datasets.

      (2) Present clear data statistics: For each analyzed dataset, the authors should provide basic information about the number of unique sequences, levels of variability, and evolutionary divergence between start and end sequences. This would contextualize the forecasting task and clarify whether the simulations are non-trivial. In particular, it should be shown that the consensus sequence is indeed representative of the viral population at a given time point. In viral evolution we frequently observe co-circulation of subclades and the consensus sequence is then not representative. 

      For each dataset analyzed, the manuscript provides the sequence identity between samples at the study time points (which also informs about sequence variability), sample sizes, representative protein structure, and other technical details. The study assumes that consensus sequences, typically generated by bulk sequencing, are representative of the viral population. Next, samples at different time points should involve ancestor-descendant relationships, which is a requirement and one of the limitations to find appropriate data for this study, as noted in our previous response.

      (3) Explore other metrics for population level sequence comparison: 

      In the light of possible existence of subclades, mentioned above, the currently used metrics for sequence comparison may underestimate performance of the simulations. It would be sufficient to see some overlap of simulated clades and and the observed clades. 

      We found this to be a good idea. However, in practice, we believe that the criteria used to define subclades could introduce biases into the results. For some metrics, we evaluated the accuracy of the predictions through direct comparisons between all real and predicted protein variants, using percentages to facilitate interpretation. We believe that using subclades could potentially reduce the current prediction errors, but this would complicate the interpretation of the results, as they would be influenced by the subjective criteria used to define the subclades.

      Currently, the manuscript presents a plausible filtering framework rather than a predictive model. Without these additional analyses, the main claims remain only partially supported. 

      Please see our reply to the comment of the reviewer just before the section titled “Recommendations for the authors”.

      Response to some rebuttal statements: 

      (1) "Sequence comparisons based on the KL divergence require, at the studied time point, an observed distribution of amino acid frequencies among sites and an estimated distribution of amino acid frequencies among sites. In the study datasets, this is only the case for the HIV-1 MA dataset, which belongs to a previous study from one of us and collaborators where we obtained at least 20 independent sequences at each sampling point (Arenas, et al. 2016)" 

      The available Influenza and SARS-CoV-2 data gathers isolates annotated with exact collection dates, providing reach datasets for such analysis. 

      The available influenza and SARS-CoV-2 sequences are typically derived from bulk sequencing and, therefore, they are consensus sequences. As a result, they cannot be used to calculate KL divergence. Additionally, many of the indicated sequences from databases are not demonstrated to be consecutive in evolutionary terms (one dataset is not a direct ancestor of another dataset existing at a posterior time point), which disallows their applicability in this study. The most suitable studies often involve in vitro virus evolution, but they usually show low genetic variability between samples collected at different time points.

      (2) "Regarding extending the analysis to other time points (other variants of concern), we kindly disagree because Omicron is the variant of concern with the highest genetic distance to the Wuhan variant, and a high genetic distance is  required to properly evaluate the prediction method." 

      There have been many more variants of concern subsequent to Omicron which circulated in 2021. 

      A key aspect is the accumulation of diversity in the study proteins across different time points. The SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes from the original Wuhan variant to Omicron, respectively.

      Analyzing intermediate variants of concern (e.g., Gamma or Delta) or those closely related to Omicron would reduce the number of accumulated mutations even further.   

      We want to thank the reviewer again for taking the time to revise our work and for the insightful and helpful comments.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is constrained by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral structural proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which have struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death. Unfortunately, though, the model shows little improvement over neutral models in predicting protein evolution, and this ultimately appears to be due to fundamental conceptual problems with how fitness is modeled and linked to the phylodynamic birth-death model. 

      AU: We thank the reviewer for the positive comments about our work.

      Regarding predictive power, the study showed a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Next, predicting the exact sequences was more challenging. In this revised version, where we added additional real data, we found that the accuracy of this prediction can vary among proteins (i.e., the SCS model was more accurate than the neutral model in predicting sequences of the influenza NS1 protein at different time points). Still, we consider that efforts are required in the field of substitution models of molecular evolution. For example, amino acids with similar physicochemical properties can result in predictions with appropriate folding stability while different specific sequence. The development of accurate substitution models of molecular evolution is an active area of research with ongoing progress, but further efforts are still needed. Next, forecasting the folding stability of future real proteins is fundamental for proper forecasting protein evolution, given the essential role of folding stability in protein function and its variety of applications. Regarding the conceptual concerns related to fitness modeling, we clarify them in detail in our responses to the specific comments below.

      Major concerns:

      (1) Fitness model: All lineages have the same growth rate r = b-d because the authors assume b+d=1. But under a birth-death model, the growth r is equivalent to fitness, so this is essentially assuming all lineages have the same absolute fitness since increases in reproductive fitness (b) will simply trade off with decreases in survival (d). Thus, even if the SCS model constrains sequence evolution, the birthdeath model does not really allow for non-neutral evolution such that mutations can feed back and alter the structure of the phylogeny. 

      We thank the reviewer for this comment that aims to improve the realism of our model. In the model presented (but see later another model, derived from the proposal of the reviewer, that we have now implemented into the framework and applied it to the study data), the fitness predicted from a protein variant is used to obtain the corresponding birth rate of that variant. In this way, protein variants with high fitness have high birth rates leading to overall more birth events, while protein variants with low fitness have low birth rates resulting in overall more extinction events, which has biological meaning for the study system. The statement “All lineages have the same growth rate r = b-d” in our model is incorrect because, in our model, b and d can vary among lineages according to the fitness. For example, a lineage might have b=0.9, d=0.1, r=0.8, while another lineage could have b=0.6, d=0.4, r=0.2. Indeed, the statement “this is essentially assuming all lineages have the same absolute fitness” is incorrect. Clearly, assuming that all lineages have the same fitness would not make sense, in that situation the folding stability of the forecasted protein variants would be similar under any model, which is not the case as shown in the results. In our model, the fitness affects the reproductive success, where protein variants with a high fitness have higher birth rates leading to more birth events, while those with lower fitness have higher death rates leading to more extinction events. This parameterization is meaningful for protein evolution because the fitness of a protein variant can affect its survival (birth or extinction) without necessarily affecting its rate of evolution. While faster growth rate can sometimes be associated with higher fitness, a variant with high fitness does not necessarily accumulate substitutions at a faster rate. Regarding the phylogenetic structure, the model presented considers variable birth and death events across different lineages according to the fitness of the corresponding protein variants, and this affects the derived phylogeny (i.e., protein variants selected against can go extinct while others with high fitness can produce descendants). We are not sure about the meaning of the term “mutations can feed back” in the context of our system. Note that we use Markov models of evolution, which are well-stablished in the field (despite their limitations), and substitutions are fixed mutations, which still could be reverted later if selected by the substitution model (Yang 2006). Altogether, we find that the presented birth-death model is technically correct and appropriate for modeling our biological system. Its integration with structurally constrained substitution (SCS) models of protein evolution as Markov models follows general approaches of molecular evolution in population genetics (Yang 2006; Carvajal-Rodriguez 2010; Arenas 2012; Hoban, et al. 2012). We have now provided a more detailed description of the models in the manuscript.

      Apart from these clarifications about the birth-death model used, we could understand the point of the reviewer and following the suggestion we have now incorporated an additional birth-death model that accounts for variable global birth-death rate among lineages. Specifically, we followed the model proposed by Neher et al (2014), where the death rate is considered as 1 and the birth rate is modeled as 1 + fitness. In this model, the global birth-death rate can vary among lineages. We implemented this model into the computer framework and applied it to the data used for the evaluation of the models. The results indicated that, in general, this model yields similar predictive accuracy compared to the previous birth-death model. Thus, accounting for variability in the global birth-death rate does not appear to play a major role in the studied systems of protein evolution. We have now presented this additional birth-death model and its results in the manuscript.

      (2) Predictive performance: Similar performance in predicting amino acid frequencies is observed under both the SCS model and the neutral model. I suspect that this rather disappointing result owes to the fact that the absolute fitness of different viral variants could not actually change during the simulations (see comment #1). 

      As indicated in our previous answer, our study shows a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Next, predicting the exact sequences was more challenging, which was not surprising considering previous studies. In particular, inferring specific sequences is considerably challenging even for ancestral molecular reconstruction (Arenas, et al. 2017; Arenas and Bastolla 2020). Indeed, observed sequence diversity is much greater than observed structural diversity (Illergard, et al. 2009; Pascual-Garcia, et al. 2010), and substitutions between amino acids with similar physicochemical properties can yield modeled protein variants with more accurate folding stability, even when the exact amino acid sequences differ. As indicated, further work is demanded in the field of substitution models of molecular evolution. Next, in this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. In any case, as previously indicated, we believe that efforts are required in the field of substitution models of molecular evolution. Apart from that, forecasting the folding stability of future real proteins is an important advance in forecasting protein evolution, given the essential role of folding stability in protein function (Scheiblhofer, et al. 2017; Bloom and Neher 2023) and its variety of applications.

      Next, also as indicated in our previous response, the birth-death model used in this study accounts for variation in fitness among lineages producing variable reproductive success. The additional birth-death model that we have now incorporated, which considers variation of the global birth-death rate among lineages, produced similar prediction accuracy, suggesting a limited role in protein evolution modeling. Molecular evolution parameters, particularly the substitution model, appear to be more critical in this regard. We have now included these aspects in the manuscript.

      (3) Model assessment: It would be interesting to know how much the predictions were informed by the structurally constrained sequence evolution model versus the birth-death model. To explore this, the authors could consider three different models: 1) neutral, 2) SCS, and 3) SCS + BD. Simulations under the SCS model could be performed by simulating molecular evolution along just one hypothetical lineage. Seeing if the SCS + BD model improves over the SCS model alone would be another way of testing whether mutations could actually impact the evolutionary dynamics of lineages in the phylogeny. 

      In the present study, we compared the neutral model + birth-death (BD) with the SCS model + BD. Markov substitution models Q are applied upon an evolutionary time (i.e., branch length, t) and this allows to determine the probability of substitution events during that time period [P(t) = exp (Qt)]. This approach is traditionally used in phylogenetics to model the incorporation of substitution events over time. Therefore, to compare the neutral and SCS models in terms of evolutionary inference, an evolutionary time is required, in this case it is provided by the birth-death process. Thus, the cases 1) and 2) cannot be compared without an underlined evolutionary history. Next, comparisons in terms of likelihood, and other aspects, between models that ignore the protein structure and the implemented SCS models are already available in previous studies based on coalescent simulations or given phylogenetic trees (Arenas, et al. 2013; Arenas, et al. 2015). There, SCS models outperformed models that ignore evolutionary constraints from the protein structure, and those findings are consistent with the results obtained in the present study where we explored the application of these models to forecasting protein evolution. We would like to emphasize that forecasting the folding stability of future real proteins is a significant finding, folding stability is fundamental to protein function and has a variety of applications. We have now indicated these aspects in the manuscript.

      (4) Background fitness effects: The model ignores background genetic variation in fitness. I think this is particularly important as the fitness effects of mutations in any one protein may be overshadowed by the fitness effects of mutations elsewhere in the genome. The model also ignores background changes in fitness due to the environment, but I acknowledge that might be beyond the scope of the current work. 

      AU: This comment made us realize that more information about the features of the implemented SCS models should be included in the manuscript. In particular, the implemented SCS models consider a negative design based on the observed residue contacts in nearly all proteins available in the Protein Data Bank (Arenas, et al. 2013; Arenas, et al. 2015). This data is distributed with the framework, and it can be updated to incorporate new structures (further details are provided in the distributed framework documentation and practical examples). Therefore, the prediction of folding stability is a combination of positive design (direct analysis of the target protein) and negative design (consideration of background proteins from a database to improve the predictions), thus incorporating background molecular diversity. We have now indicated this important aspect in the manuscript. Regarding the fitness caused by the environment, we agree with the reviewer. This is a challenge for any method aiming to forecast evolution, as future environmental shifts are inherently unpredictable and may affect the accuracy of the predictions. Although one might attempt to incorporate such effects into the model, doing so risks overparameterization, especially when the additional factors are uncertain or speculative. We have now mentioned this aspect in the manuscript.

      (5) In contrast to the model explored here, recent work on multi-type birth-death processes has considered models where lineages have type-specific birth and/or death rates and therefore also type-specific growth rates and fitness (Stadler and Bonhoeffer, 2013; Kunhert et al., 2017; Barido-Sottani, 2023). Rasmussen & Stadler (eLife, 2019) even consider a multi-type birth-death model where the fitness effects of multiple mutations in a protein or viral genome collectively determine the overall fitness of a lineage. The key difference with this work presented here is that these models allow lineages to have different growth rates and fitness, so these models truly allow for non-neutral evolutionary dynamics. It would appear the authors might need to adopt a similar approach to successfully predict protein evolution. 

      We agree with the reviewer that robust birth-death models have been developed applying statistics and, in many cases, the primary aim of those studies is the development and refinement of the model itself. Regarding the study by Rasmussen and Stadler 2019, it incorporates an external evaluation of mutation events where the used fitness is specific for the proteins investigated in that study, which may pose challenges for users interested in analyzing other proteins. In contrast, our study takes a different approach. We implement a fitness function that can be predicted and evaluated for any type of structural protein (Goldstein 2013), making it broadly applicable. Actually, in this revised version we added the analysis of additional data of another protein (influenza NS1 protein) with predictions at different time points. In addition, we provide a freely available and well-documented computational framework to facilitate its use. The primary aim of our study is not the development of novel or complex birthdeath models. Rather, we aim to explore the integration of a standard birth-death model with SCS models for the purpose of predicting protein evolution. In the context of protein evolution, substitution models are a critical factor (Liberles, et al. 2012; Wilke 2012; Bordner and Mittelmann 2013; Echave, et al. 2016; Arenas, et al. 2017; Echave and Wilke 2017), and the presented combination with a birth-death model constitutes a first approximation upon which next studies can build to better understand this evolutionary system. We have now indicated these considerations in the manuscript.

      Reviewer #2 (Public review): 

      Summary: 

      In this study, "Forecasting protein evolution by integrating birth-death population models with structurally constrained substitution models", David Ferreiro and coauthors present a forward-in-time evolutionary simulation framework that integrates a birth-death population model with a fitness function based on protein folding stability. By incorporating structurally constrained substitution models and estimating fitness from ΔG values using homology-modeled structures, the authors aim to capture biophysically realistic evolutionary dynamics. The approach is implemented in a new version of their open-source software, ProteinEvolver2, and is applied to four viral proteins from HIV-1 and SARS-CoV-2. 

      Overall, the study presents a compelling rationale for using folding stability as a constraint in evolutionary simulations and offers a novel framework and software to explore such dynamics. While the results are promising, particularly for predicting biophysical properties, the current analysis provides only partial evidence for true evolutionary forecasting, especially at the sequence level. The work offers a meaningful conceptual advance and a useful simulation tool, and sets the stage for more extensive validation in future studies.

      We thank the reviewer for the positive comments on our study. Regarding the predictive power, the results showed good accuracy in predicting the folding stability of the forecasted protein variants. In this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. Still, we believe that further efforts are required in the field in improving the accuracy of substitution models of molecular evolution. Altogether, accurately forecasting the folding stability of future real proteins is fundamental for predicting their protein function and enabling a variety of applications. Also, we implemented the models into a freely available computer framework, with detailed documentation and a variety of practical examples.

      Strengths: 

      The results demonstrate that fitness constraints based on protein stability can prevent the emergence of unrealistic, destabilized variants - a limitation of traditional, neutral substitution models. In particular, the predicted folding stabilities of simulated protein variants closely match those observed in real variants, suggesting that the model captures relevant biophysical constraints. 

      We agree with the reviewer and appreciate the consideration that forecasting the folding stability of future real proteins is a relevant finding. For instance, folding stability is fundamental for protein function and affects several other molecular properties.

      Weaknesses: 

      The predictive scope of the method remains limited. While the model effectively preserves folding stability, its ability to forecast specific sequence content is not well supported. 

      Our study showed a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Predicting the exact sequences was more challenging, which was not surprising considering previous studies. In particular, inferring specific sequences is considerably challenging even for ancestral molecular reconstruction (Arenas, et al. 2017; Arenas and Bastolla 2020). Indeed, observed sequence diversity is much greater than observed structural diversity (Illergard, et al. 2009; Pascual-Garcia, et al. 2010), and substitutions between amino acids with similar physicochemical properties can yield modeled protein variants with more accurate folding stability, even when the exact amino acid sequences differ. As indicated, further work is demanded in the field of substitution models of molecular evolution. Next, in this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. In any case, as previously indicated, we believe that efforts are required in the field of substitution models of molecular evolution. Apart from that, forecasting the folding stability of future real proteins is an important advance in forecasting protein evolution, given the essential role of folding stability in protein function (Scheiblhofer, et al. 2017; Bloom and Neher 2023) and its variety of applications. We have now expanded these aspects in the manuscript.

      Only one dataset (HIV-1 MA) is evaluated for sequence-level divergence using KL divergence; this analysis is absent for the other proteins. The authors use a consensus Omicron sequence as a representative endpoint for SARS-CoV-2, which overlooks the rich longitudinal sequence data available from GISAID. The use of just one consensus from a single time point is not fully justified, given the extensive temporal and geographical sampling available. Extending the analysis to include multiple timepoints, particularly for SARS-CoV-2, would strengthen the predictive claims. Similarly, applying the model to other well-sampled viral proteins, such as those from influenza or RSV, would broaden its relevance and test its generalizability. 

      The evaluation of forecasting evolution using real datasets is complex due to several conceptual and practical aspects. In contrast to traditional phylogenetic reconstruction of past evolutionary events and ancestral sequences, forecasting evolution often begins with a variant that is evolved forward in time and requires a rough fitness landscape to select among possible future variants (Lässig, et al. 2017). Another concern for validating the method is the need to know the initial variant that gives rise to the corresponding future (forecasted) variants, and it is not always known. Thus, we investigated systems where the initial variant, or a close approximation, is known, such as scenarios of in vitro monitored evolution. In the case of SARS-CoV-2, the Wuhan variant is commonly used as the starting variant of the pandemic. Next, since forecasting evolution is highly dependent on the used model of evolution, unexpected external factors can be dramatic for the predictions. For this reason, systems with minimal external influences provide a more controlled context for evaluating forecasting evolution. For instance, scenarios of in vitro monitored virus evolution avoid some external factors such as host immune responses. Another important aspect is the availability of data at two (i.e., present and future) or more time points along the evolutionary trajectory, with sufficient genetic diversity between them to identify clear evolutionary signatures. Additionally, using consensus sequences can help mitigate effects from unfixed mutations, which should not be modeled by a substitution model of evolution. Altogether, not all datasets are appropriate to properly evaluate or apply forecasting evolution. These aspects are indicated in the manuscript. Sequence comparisons based on the KL divergence require, at the studied time point, an observed distribution of amino acid frequencies among sites and an estimated distribution of amino acid frequencies among sites. In the study datasets, this is only the case for the HIV-1 MA dataset, which belongs to a previous study from one of us and collaborators where we obtained at least 20 independent sequences at each sampling point (Arenas, et al. 2016). This aspect is now more clearly indicated in the manuscript. Regarding the Omicron datasets, we used 384 curated sequences of the Omicron variant of concern to construct the study data and we believe that it is a representative sample. The sequence used for the initial time point was the Wuhan variant (Wu, et al. 2020), which is commonly assumed to be the origin of the pandemic in SARS-CoV-2 studies. As previously indicated, the use of consensus sequences is convenient to avoid variants with unfixed mutations. Regarding extending the analysis to other time points (other variants of concern), we kindly disagree because Omicron is the variant of concern with the highest genetic distance to the Wuhan variant, and a high genetic distance is required to properly evaluate the prediction method. Actually, we noted that earlier variants of concern show a small number of fixed mutations in the study proteins, despite the availability of large numbers of sequences in databases such as GISAID. Additionally, we investigated the evolutionary trajectories of HIV-1 protease (PR) in 12 intra-host viral populations with predictions for up to four different time points. Apart from those aspects, following the proposal of the reviewer, we have now incorporated the analysis of an additional dataset of influenza NS1 protein (Bao, et al. 2008), with predictions for two different time points, to further assess the generalizability of the method. We have now included details of this influenza NS1 protein dataset and the predictions derived from it in the manuscript.

      It would also be informative to include a retrospective analysis of the evolution of protein stability along known historical trajectories. This would allow the authors to assess whether folding stability is indeed preserved in real-world evolution, as assumed in their model.

      Our present study does not aim to investigate the evolution of the folding stability over time, although it provides this information indirectly at the studied time points. Instead, the present study shows that the folding stability of the forecasted protein variants is similar to the folding stability of the corresponding real protein variants for diverse viral proteins, which provides an important evaluation of the prediction method. Next, the folding stability can indeed vary over time in both real and modeled evolutionary scenarios, and our present study is not in conflict with this. In that regard, which is not the aim of our present study, some previous phylogenetic-based studies have reported temporal fluctuations in folding stability for diverse protein data (Arenas, et al. 2017; Olabode, et al. 2017; Arenas and Bastolla 2020; Ferreiro, et al. 2022).

      Finally, a discussion on the impact of structural templates - and whether the fixed template remains valid across divergent sequences - would be valuable. Addressing the possibility of structural remodeling or template switching during evolution would improve confidence in the model's applicability to more divergent evolutionary scenarios.

      This is an important point. For the datasets that required homology modeling (in several cases it was not necessary because the sequence was present in a protein structure of the PDB), the structural templates were selected using SWISS-MODEL, and we applied the best-fitting template. We have now included in a supplementary table details about the fitting of the structural templates. Indeed, our proposal assumes that the protein structure is maintained over the studied evolutionary time, which can be generally reasonable for short timescales where the structure is conserved (Illergard, et al. 2009; Pascual-Garcia, et al. 2010). Over longer evolutionary timescales, structural changes may occur and, in such cases, modeling the evolution of the protein structure would be necessary. To our knowledge, modeling the evolution of the protein structure remains a challenging task that requires substantial methodological developments. Recent advances in artificial intelligence, particularly in protein structure prediction from sequence, may offer promising tools for addressing this challenge. However, we believe that evaluating such approaches in the context of structural evolution would be difficult, especially given the limited availability of real data with known evolutionary trajectories involving structural change. In any case, this is probably an important direction for future research. We have now included this discussion in the manuscript.

      Reviewer #1 (Recommendations for the authors): 

      (1) Abstract: "expectedly, the errors grew up in the prediction of the corresponding sequences" <- Not entirely clear what is meant by "errors grew up" or what the errors grew with.

      This sentence refers to the accuracy of sequence prediction in comparison to that of folding stability prediction. We have now clarified this aspect in the manuscript.

      (2) Lines 162-165: "Alternatively, if the fitness is determined based on the similarity in folding stability between the modeled variant and a real variant, the birth rate is assumed to be 1 minus the root mean square deviation (RMSD) in folding stability." <- What is the biological motivation for using the RMSD? It seems like a more stable variant would always have higher fitness, at least according to Equation 1.

      RMSD is commonly used in molecular biology to compare proteins in terms of structural distance, folding stability, kinetics, and other properties. It offers advantages such as minimizing the influence of small deviations while amplifying larger differences, thereby enhancing the detection of remarkable molecular changes. Additionally, RMSD would facilitate the incorporation of other biophysical parameters, such as structural divergences from a wild-type variant or entropy, which could be informative for fitness in future versions of the method. We have now included this consideration in the manuscript.

      (3) Lines 165-166: "In both cases, the death rate (d) is considered as 1-b to allow a constant global (birth-death) rate" <- This would give a constant R = b / (1-b) over the entire phylogenetic tree. For applications to pathogens like viruses with epidemic dynamics, this is extremely implausible. Is there any need to make such a restrictive assumption? 

      Regarding technical considerations of the model, we refer to our answer to the first public review comment. Next, a constant global rate of evolution was observed in numerous genes and proteins of diverse organisms, including viruses (Gojobori, et al.1990; Leitner and Albert 1999; Shankarappa, et al. 1999; Liu, et al. 2004; Lu, et al. 2018; Zhou, et al. 2019). However, following the comment of the reviewer, and as we indicated in our answer to the first public review comment, we have now implemented and evaluated an additional birth-death model that allows for variation in the global birth-death rate among lineages. We have implemented this additional model in the framework and described it along with its results in the manuscript.

      (4) Lines 187-188: "As a consequence, since b+d=1 at each node, tn is consistent across all nodes, according to (Harmon, 2019)." <- This would also imply that all lineages have a growth rate r = b - d, which under a birth-death model is equivalent to saying all lineages have the same fitness! 

      We clarified this aspect in our answer to the first public review comment. In particular, in the model presented, protein variants with higher fitness have higher birth rates, leading to more birth events, while protein variants with lower fitness have lower birth rates leading to more extinction events, which presents biological meaning for the study system. In our model b and d can vary among lineages according to the corresponding fitness (i.e., a lineage may have b=0.9, d=0.1, r=0.8; while another one may have b=0.6, d=0.4, r=0.2). Since the reproductive success varies among lineages in our model, the statement “this is essentially assuming all lineages have the same absolute fitness” is incorrect, although it could be interpreted like that in certain models. Fitness affects reproductive success, but fitness and growth rate of evolution are different biological processes (despite a faster growth rate can sometimes be associated with higher fitness, a variant with a high fitness not necessarily has to accumulate substitutions at a higher rate). An example in molecular adaptation studies is the traditional nonsynonymous to synonymous substitution rates ratio (dN/dS), where dN/dS (that informs about selection derived from fitness) can be constant at different rates of evolution (dN and dS). In any case, we thank the reviewer for raising this point, which led us to incorporate an additional birth-death model and inspired some ideas.  Thus, following the comment of the reviewer and as indicated in the answer to the first public review comment, we have now implemented and evaluated an additional birthdeath model that allows for variation in the global birth-death rate among lineages. The results indicated that this model yields similar predictive accuracy compared to the previous birth-death model. We have now included these aspects, along with the results from the additional model, in the manuscript.

      (5) Line 321-322: "For the case of neutral evolution, all protein variants equally fit and are allowed, leading to only birth events," <- Why would there only be birth events? Lineages can die regardless of their fitness. 

      AU: In the neutral evolution model, all protein variants have the same fitness, resulting in a flat fitness landscape. Since variants are observed, we allowed birth events. However, it assumed the absence of death events as no information independent of fitness is available to support their inclusion and quantification, thereby avoiding the imposition of arbitrary death events based on an arbitrary death rate. We have now provided a justification of this assumption in the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) Clarify the purpose of the alternative fitness mode ("ΔG similarity to a target variant"): 

      The manuscript briefly introduces an alternative fitness function based on the similarity of a simulated protein's folding stability to that of a real protein variant, but does not provide a clear motivation, usage scenario, or results derived from it. 

      The presented model provides two approaches for deriving fitness from predicted folding stability. The simpler approach assumes that a more stable protein variant has higher fitness than a less stable one. The alternative approach assigns high fitness to protein variants whose stability closely matches observed stability, acknowledging that the real observed stability is derived from the real selection process, and this approach considers negative design by contrasting the prediction with real information. For the analyses of real data in this study, we used the second approach, guided by these considerations. We have now clarified this aspect in the manuscript.

      (2) Report structural template quality and modeling confidence: 

      Since folding stability (ΔG) estimates rely on structural models derived from homology templates, the accuracy of these predictions will be sensitive to the choice and quality of the template structure. I recommend that the authors report, for each protein modeled, the template's sequence identity, coverage, and modeling quality scores. This will help readers assess the confidence in the ΔG estimates and interpret how template quality might impact simulation outcomes. 

      We agree with the reviewer and we have now included additional information in a supplementary table regarding sequence identity, modeling quality and coverage of the structural templates for the proteins that required homology modeling. The selection of templates was performed using the well-established framework SWISS-MODEL and the best-fitting template was chosen. Next, a large number of protein structures are available in the PDB for the study proteins, which favors the accuracy of the homology modeling. For some datasets, homology modeling was not required, as the modeled sequence was already present in an available protein structure. We have now included this information in the manuscript and in a supplementary table.

      (3) Clarify whether structural remodeling occurs during simulation: 

      It appears that folding stability (ΔG) for all simulated protein variants is computed by mapping them onto a single initial homology model, without remodeling the structure as sequences evolve. If correct, this should be clearly stated, as it assumes that the structural fold remains valid across all simulated variants. A discussion on the potential impact of structural drift would be welcome.

      We agree with the reviewer. As indicated in our answer to a previous comment, our method assumes that the protein structure is maintained over the studied evolutionary time, which is generally acceptable for short timescales where the structure is conserved (Illergard, et al. 2009; Pascual-Garcia, et al. 2010). At longer timescales the protein structure could change, requiring the modeling of structural evolution over the evolutionary time. To our knowledge, modeling the evolution of the protein structure remains a challenging task that requires substantial methodological developments. Recent advances in artificial intelligence, particularly in protein structure prediction from sequence, can be promising tools for addressing this challenge. However, we believe that evaluating such approaches in the context of structural evolution would be difficult, especially given the limited availability of real datasets with known evolutionary trajectories involving structural change. In any case, this is probably an important direction for future research. We have now included this discussion in the manuscript.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study, the authors develop a complete integral drive system in Anopheles gambiae malaria mosquitoes. This type of gene drive is interesting, with special advantages and disadvantages compared to more common designs. Here, the authors develop the Cas9 element and combine it with a previously developed antimalaria effector element. The new element performs very well in terms of drive efficiency, but it has unintended fitness costs, and a higher than desirable rate of functional resistance allele formation. Nevertheless, this study represents a very good step forward toward developing effective gene drives and is thus of high impact.

      The format of the manuscript is a bit suboptimal for review. Please add line numbers next time for easy reference. It would also help to have spaces between paragraphs and to have figures (with legends) added to the text where they first appear.

      It might be useful to add subsections to the results, just like in the methods section. It could even be expanded a bit with some specific parts from the discussion, through this is optional.

      Abstract: The text says: "As a minimal genetic modification, nanosd does not induce widespread transcriptomic perturbations." However, it does seem to change things based on Figure 3c.

      Page 2: "drive technologies for public health and pest control applications" needs a period afterward.

      Page 2: "The fitness costs, homing efficiency, and resistance rate of the gene drive is" should be "The fitness costs, homing efficiency, and resistance rate of the gene drive are".

      Page 2: "When they target important mosquito genes, gene drives are designed to ensure that the nuclease activity window (germline) does not overlap with that of the target gene (somatic)." is note quite correct. This is, of course, sensible for suppression drives, but it's not a necessary requirement for modification drives with rescue elements in many situations.

      Page 2: "recessive somatic fitness cost phenotypes" is unclear. I think that you are trying to avoid the recessive fitness cost of null alleles becoming a dominant fitness cost from a gene drive allele (in drive-wild-type heterozygotes).

      Page 2: "This optimization approach has had only limited success, and suboptimal performance is commonly attributed to not capturing all the regulatory elements specific to the germline gene's expression9,12". I don't think this is correct. There are several examples where a new promoter helped a lot. The zpg promoter in Anopheles gambiae allowed success at the dsx site in suppression cage studies (Kyrou et al 2018), and nanos gave big improvement to modification drives at the cardinal locus (Carballer et al 2020). In flies, several promoters were tested, and one allowed success in cage experiments (Du et al 2024). In Aedes, the shu promoter allowed for high drive performance (Anderson et al 2023), though this last one hasn't been tested in more difficult situations. I think you could certainly argue in the general case that not all promoters will work the way their transcriptome says, but there are many examples where they seem to be pretty good.

      Page 2: "make it more likely that mutations that disrupt the drive components are selected against though loss of function of the host gene." I think that this needs a bit more explanation. You are referring to mutations in regulatory elements or frameshift mutations. This will make it more resistant to mutation. Also, these mutations would tend to have a minor effect expect perhaps in the cargo gene of a modification drive. By using a cargo gene in an integral drive, you could still keep it somewhat safer, but whether this is 1.2x or 10x safer is unclear.

      Page 3: "they can incur severe unintended fitness costs". This is central to integral drives and this manuscript. It's worth elaborating on.

      Page 3: "Regulatory elements from germline genes that have worked sub-optimally in traditional gene drive designs for the reasons outlined above may work well in an IDG design20." This is setting up the integral drive with nanos, but nanos DOES work well in traditional Anopheles gambiae gene drive designs. It is possible that you might end up with less somatic expression than Hammond et al 2020 (though the comparison is unclear due to batch effects in that study), but there is no direct comparison in this manuscript to that.

      Page 3: "This suggests an impact of maternal deposition on drive efficiency only in female drive carriers." This is quite strange. Usually, I would expect to see an equal reduction in efficiency between male and female progeny. Could this be due to limited sample size? Random idea: It's also possible that almost all maternal deposition was mosaic and wouldn't be enough to direct affect drive conversion. However, it could cause enough of a fitness cost TOGETHER with new drive expression in females that perhaps only tissues with randomly low expression rates properly developed and led to progeny, reducing drive inheritance? Another possibility: Could the drive/resistance males have impaired fertility, so these ones are underrepresented in the batch cross? If nanos is needed in males and a single drive copy is not quite enough for good fertility or mating competitiveness, they may be underrepresented in your crosses. They might have worse fertility than drive homozygous males, which at least have two partially working copies of nanos rather than just one (in many cells, at least). Maybe check the testis for abnormal phenotypes?

      Overall, it would be favorable if the drive allele was somewhere more fit than a nonfunctional resistance allele. This could already be achieved in this drive, but it doesn't get much mention.

      Page 3: There should be a comma after, "Interestingly, while many of the observed mutations were predicted to abolish nanos expression" and "This could indicate that in these experiments".

      Page 3 last sentence: Please improve the clarity.

      Removing the EGFP is supposed to restore the fitness, and this was helpful in some previous integral drive constructs. This could get a bit more mention (it is possible that I missed this somewhere in the manuscript).

      Page 4: The MM-CP line and it's association with the integral drive strategy could get a little more introduction. Maybe even a supplemental figure showing the general idea.

      Page 5: "cassette is predicted to disrupt the CP function entirely (Fig. 5d)" also lacks a period.

      Page 5: "The subsequent stabilization of the nanosd frequency and the lack of rapid loss suggests that any associated fitness cost is primarily recessive." This is not quite correct because by this point, drive/wild-type heterozygotes are rare, and this is where you'd find a potential dominant fitness cost. It should be correct in the end stages where it is a mix of drive and functional/nonfunctional resistance alleles (though the nonfunctional resistance alleles may cause greater fitness costs when together with a drive - see above).

      Page 6: "Maternal deposition of Cas9, or Cas9;gRNA, into the zygote can lead to cutting at stages when homing is not favoured, and has been commonly observed for canonical Anopheles nanos drives9,10,35." Reference 35 (which is more suitable for referencing an example of nanos in other Anopheles) found some resistance alleles by deep sequencing, but the timing that they formed was unclear (it's not certain if it was maternal deposition). This study may be a more suitable reference: Carballar-Lejarazú R, Tushar T, Pham TB, James AA. Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae. Genetics, 2022.

      Page 8: "could further reduce the likelihood of resistance allele formation by increasing the frequency of HDR events." Multiple gRNAs would mostly help by reducing functional resistance allele formation, especially since drive conversion is already very high in Anopheles.

      Page 8, last paragraph: This conclusion is perhaps a little optimistic considering the functional resistance alleles, which should get a little more attention in the summary or elsewhere in the discussion section.

      Figure 1d: The vertical text saying "Non-WT" is confusing. The circles themselves show + and -. Also, "-" isn't necessarily a knockout allele, so I'm not sure if - is the best symbol for resistance.

      Figure 2e: The vertical scale is not the most intuitive. Consider rearranging it to "Transition from larvae to pupae" starting at zero and going to 1 when all the larvae become pupae.

      Figure 2e-f: For both of these, there are clear differences between males and females. Thus, when comparing drive homozygotes to wild-type, it would probably be better to have separate statistical comparisons for males and females.

      Figure 3: Can any of these transcription results in individual genes potentially explain the observed fitness cost?

      Figure 3b: The scale here also doesn't quite make sense. It's the fraction of underdeveloped ovaries, but the graph is also perhaps trying to show whether just 1-2 ovaries are present, or maybe how many ovaries are undeveloped, but then it would say "zero"? This should be clarified. Number of ovaries and how well-developed they are is separate (it can be put on the same graph, but needs to be more clear).

      Figure 4f: The vertical axis should say "ONNV."

      Figure 5c-d: These should be labeled as the most common resistance allele. Also, I'm not sure how relevant it is, but we also found an alternate start codon here: Hou S, Chen J, Feng R, Xu X, Liang N, Champer J. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance. J Genet Genomics, 2024. Maybe this is a more common problem than one would expect?

      Figure 5cd,S4,S5: They have a bit of a weird plot. Why not make four line graphs for each? Also, some alleles use the  symbol. + is wild-type, which is well understood, but - as resistance is not always clear, and seeing them together may confuse readers. Additionally, the fact that you have the most common resistance allele in Figure 5cd might mean that you know more about the genotype? If so, it would be best to separate wild-type and resistance alleles in whatever the final figure looks like.

      Some supplemental raw data files would be useful if they were available, but the figures are through enough that this isn't essential.

      Review by:

      Jackson Champer, with major assistance from Ruobing Feng (essentially section B) and Jie Du

      Referee cross-commenting

      We don't have any cross-comments, other than supporting the idea of slightly more comparisons to the authors' previous construct.

      Significance

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      A key innovation of the nanosd gene drive is its integral gene drive (IGD) design, which inserts the drive cassette directly into the A. gambiae nanos gene, incorporating only the minimal components necessary for drive function. The drive achieves high transmission rates, without causing widespread disruption of gene expression or increasing susceptibility to malaria parasites, and imposes an acceptable fitness cost-primarily a reduction in female fecundity when homozygous. The strong performance of nanosd can be attributed to its design: Cas9 is expressed in the correct cells and timing to induce efficient homing, effectively hijacking the nanos gene's natural expression profile. However, despite the careful design aimed at preserving nanos function, the rescue was incomplete: homozygous female drive carriers exhibited a clear reduction in ovarian function.

      In caged population trials, both the drive and a co-introduced anti-malaria effector gene reached high frequencies, even in the presence of emerging resistance alleles. Because the drive is inserted into an essential gene, nonfunctional resistance alleles are selected against and tend to be purged over time. Nonetheless, functional resistance remains a concern. The use of a single, though precisely positioned gRNA targeting the native nanos gene ATG site increases the likelihood of generating functional resistance alleles. Over the long term, if the drive imposes fitness costs, it may be outcompeted by such functional resistance alleles, potentially undermining the goal of sustained population modification.

      Overall, this study represent a notable advance in Anopheles mosquito gene drive development and can be considered as high impact. - Place the work in the context of the existing literature (provide references, where appropriate).

      Previous IGD efforts in Drosophila, mice and mosquitoes have demonstrated nearly super‐Mendelian inheritance but often at the expense of host fitness. For example, Nash et al. built an intronic‐gRNA Cas9 drive at the D. melanogaster rcd-1r locus that propagated efficiently through cage populations (Nash et al., 2022), and Gonzalez et al. reported that a Cas9 drive inserted at the germline zpg locus in Anopheles stephensi biased inheritance by ~99.8% (Gonzalez et al., 2025). However, these strong drives disrupted essential genes: in A. gambiae, inserting Cas9 into zpg produced efficient homing but rendered females largely sterile (Ellis et al., 2022). A similar germline Cas9 knock-in in Mus musculus enabled gene conversion in both sexes, albeit with only modest efficiency and potential fitness trade-offs (Weitzel et al., 2021). The current nanosd IGD is explicitly designed to overcome this limitation by selecting a more permissive gene target and using a minimal drive cassette, so as to preserve mosquito viability while maintaining robust drive efficiency, although still with reduced female drive homozygotes fertility.

      This nanosd gene drive like previous homing drives in Anopheles, is capable of achieving a high level of inheritance bias. Although it uses the endogenous nanos regulatory elements, which have less leaky somatic expression compared to using vasa (Gantz et al., 2015; Hammond et al., 2016; Hammond et al., 2017) or zpg promoters(Hammond et al., 2021; Kyrou et al., 2018), to drive Cas9 expression and thereby reduces somatic expression-induced female sterility, the incomplete rescue of nanos function still leads to reduced female fertility in drive homozygotes. - State what audience might be interested in and influenced by the reported findings.

      It's worth noting the broad audience that will find this work relevant. Gene drive developers and molecular geneticists will be impressed by the good drive performance and directly influenced by the design principles showcased here. The study's integral gene drive architecture that leverages the endogenous nanos regulatory elements, in-frame E2A peptide linkage for co-expression, and intronic insertion of gRNA and selectable markers addresses long-standing challenges in promoter leakage, somatic fitness costs, and resistance allele evolution. What's more, vector biologists and malaria researchers will be interested in the successful deployment of a gene drive in A. gambiae that actually carries a disease-blocking trait. - Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      We have worked on CRISPR gene drive development in both fruit flies and Anopheles mosquitoes and have experience with modeling their spread.

      References

      Ellis, D.A., Avraam, G., Hoermann, A., Wyer, C.A.S., Ong, Y.X., Christophides, G.K., and Windbichler, N. (2022). Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae. PLOS Genetics 18, e1010244-e1010244.

      Gantz, V.M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V.M., Bier, E., and James, A.A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112, E6736-E6743.

      Gonzalez, E., Anderson, M.A.E., Ang, J.X.D., Nevard, K., Shackleford, L., Larrosa-Godall, M., Leftwich, P.T., and Alphey, L. (2025). Optimization of SgRNA expression with RNA pol III regulatory elements in Anopheles stephensi. Scientific Reports 15, 13408.

      Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., et al. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34, 78-83.

      Hammond, A., Karlsson, X., Morianou, I., Kyrou, K., Beaghton, A., Gribble, M., Kranjc, N., Galizi, R., Burt, A., Crisanti, A., et al. (2021). Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLOS Genetics 17, e1009321-e1009321.

      Hammond, A.M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., Kranjc, N., Carpi, F.M., D'Aurizio, R., Crisanti, A., et al. (2017). The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genetics 13, e1007039-e1007039.

      Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., and Crisanti, A. (2018). A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology 36, 1062-1066.

      Nash, A., Capriotti, P., Hoermann, A., Papathanos, P.A., and Windbichler, N. (2022). Intronic gRNAs for the construction of minimal gene drive systems. Frontiers in Bioengineering and Biotechnology 0, 570-570. Weitzel, A.J., Grunwald, H.A., Ceri, W., Levina, R., Gantz, V.M., Hedrick, S.M., Bier, E., and Cooper, K.L. (2021). Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. Plos Biol 19, e3001478-e3001478.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03064

      Corresponding author(s): Massimo, Hilliard; Sean, Coakley

      1. General Statements

      We are grateful to the reviewers for taking time to review our manuscript and for providing such clear, insightful and actionable suggestions. The consensus between 4 independent reviewers that this story is of general interest to cell biologists, neurobiologists and clinical researchers is remarkable. In addition to our mechanistic insights into the regulation of GTPase activity, we think that the experimental systems we have developed will be of great value to study how GTPases their associated GAPs and GEFs function to maintain the nervous system, especially due to the demonstrated conservation of these molecules. We believe that our data provides a powerful and tractable model to study such molecules in a physiological context.

      We agree with the reviewers' concerns and propose the following plan below to address them.

      2. Description of the planned revisions

      Reviewer #1(Evidence, reproducibility and clarity (Required)):


      __Summary Stability of the PLM axon in C. elegans is maintained through interactions with the epidermis. Previous studies by this group found that loss of the tbc-10 Rab GTPase Activating Protein strongly enhanced the PLM axon break phenotype of unc-70/beta-spectrin mutants. TBC-10 is a GAP for RAB-35 and thus loss of rab-35 suppresses the tbc-10 phenotype. Of the two RAB-35 GEFs, loss of RME-4 partially suppressed the tbc-10 phenotype and FLCN-1 was not involved suggesting that there may be an additional GEF involved. Here Bonacossa-Pereira et al identify a point mutation in agef-1a (vd92) as a suppressor of tbc-10 PLM axon break phenotype (all experiments also have a dominant allele of unc-70) and confirm that point mutation is causative by replicating the mutation via genome editing (vd123). Rescue experiments demonstrate that AGEF-1a is required in the epidermis and not PLM as previous demonstrated with tbc-10 and unc-70. Rescue is dependent on a functional SEC7/GEF activity. AGEF-1a is a functional ortholog to human BIG2/ArfGEF2 as its expression fully rescues tbc-10. AGEF-1a functions upstream of RAB-35 as expression of activated RAB-35 can suppress loss of agef-1. AGEF-1a functions in parallel to RME-4 as the double has stronger suppression of tbc-10. AGEF-1a is an ARF GEF, however it functions independently of ARF-1.2 as loss of arf-1.2 does not suppress tbc-10. They demonstrate that AGEF-1a interacts with RAB-35 through colocalization experiments suggesting that AGEF-1a could directly activate RAB-35. Finally, they demonstrate that AGEF-1a regulates the localization of the LET-805 epidermal attached complex component as it restores localization in a tbc-10 mutant.

      Major comments

      The manuscript is well written and easy to understand.

      The experiments are well done and controlled.

      I enjoyed reading this paper. However...

      Some of the claims are not supported by the data.__

      __1) The claim that AGEF-1a directly interacts with RAB-35 was not demonstrated. The evidence provided to support a direct interaction are colocalization experiments in Figure 3. AGEF-1a does partially colocalize with RAB-35 in the epidermis. However, colocalization does not indicate a physical interaction direct or indirect. A simple fix would be to change the claim to that they partially colocalize. Optional, a physical interaction could be done with the split-GFP since they already have the AGEF-1 strain or they could perform co-IP experiments, though neither of those are proof of direct interactions.

      __

      We agree that the biochemical co-IP experiment could provide some answers, however, using a full length AGEF-1a would not only represent a significant technical challenge but will also not prove a direct interaction in a physiological context. To overcome this limitation, and to directly test their interaction in vivo, we propose to use a split-GFP approach as suggested by the reviewer. In this experiment, we will generate an endogenously tagged GFP1-10::rab-35 allele and combine it with the previously generated and available tagged agef-1a::GFP11x7. If AGEF-1 and RAB-35 closely interact, we should observe the reconstitution of full length GFP. It is possible that the endogenously tagged versions only provide a very weak GFP signal that will be difficult to detect. As an alternative approach, we will generate the same tagged molecules as overexpressed transgenes under epidermal-specific promoters (such as Pdpy-7). If the results are still negative, we agree to temper our claim that these molecules physically interact and rephrase the manuscript to reflect the new data.

      • *

      2) The claim that AGEF-1a facilitates RAB-35 activation is not supported. While it is likely that AGEF-1a facilitates RAB-35 activation based on the epistasis experiments as well as studies in mammalian cells there were no experiments to demonstrate that modulating AGEF-1a activity resulted in a change in RAB-35 activity. I would suggest tempering this claim to something along the line that the data are consistent with AGEF-1a regulating RAB-35 activity as shown in mammalian cells. An optional experiment would be to look at the colocalization of RAB-35 with a known effector in wild type and agef-1(vd92) with the expectation that there would be a higher level of colocalization in agef-1 mutants. Effector pull-down experiments or perhaps a cell based GEF assay could be used (PMID: 35196081).


      We welcome this suggestion and acknowledge the limitations of these experiments. While we might be able to determine if AGEF-1 and RAB-35 physically interact in vivo with the experiments proposed above, screening for the relevant rab-35 effector in this context and/or doing effector pull-down/cell based GEF assays would be a significant technical challenge. We propose to temper our claim as suggested.

      3) The claim that AGEF-1a functions independently of ARF-1.2 is not well supported. The fact that the ARF-1.2 mutant does not suppress tbc-10 suggests that ARF-1.2 may not be involved but does not eliminate the possibility that ARF-1.2 functions redundantly with ARF-5 or WARF-1/ARF-1.1. This can be resolved by toning down the claim. Alternatively, this can be tested by RNAi of arf-5 and warf-1 in tbc-10 and arf-1.2; tbc-10 mutants.

      We agree that warf-1 and arf-5 could be functioning redundantly with arf-1.2. We have attempted to generate an AID::arf-5 allele to test the effect of cell-specific degradation, but homozygous AID::arf-5 animals were lethal. We have not yet examined warf-1. We believe the best way to test these two molecules is through RNAi knockdown, and we propose to do this experiment and adjust our interpretation and discussion according to the new data.

      Minor comments

      Figure 1C the CRISPR generated allele (vd123) is referred to as [S784L] and then in 1E vd92 is referred to as [S784L]. Perhaps it would be clearer if the allele name was used instead of the amino acid change.

      We will reformat the manuscript to include the allele names instead of amino acid change.

      Page 6 "We reasoned that if the S784L mutation we isolated causes a similar loss of the GTPase activation function, then SKIN::AGEF-1a[E608K] would not have the capacity to restore the rate of PLM axon breaks to background levels in agef-1[S784L]; tbc-10; vdSi2 animals." It was unclear to me whether you were testing if the S784L mutation could be disrupting a GEF independent function or might disrupt the nucleotide exchange activity as might be tested in a biochemical assay. There are many reasons this change could cause a loss of function phenotype (ie. Improper folding, mislocalization, etc.). The most clear explanation would be that you were testing if GEF function was required for rescue rather than testing if the S784L mutation disrupted GEF activity.

      Indeed, this experiment reveals that reducing the activation of the AGEF-1 target phenocopies the effect of S784L and does not further enhance the effect of S784L. However, it does not answer if, specifically, the GEF function is affected by S784L. We propose to rewrite the quoted sentence as follows: "We asked whether the GEF function is required for axonal damage. If that is the case, then SKIN::AGEF-1a[E608K] overexpression should phenocopy the effect of AGEF-1a[S784L]."

      • *

      Page 13. It was unclear how testing if AGEF-1, RME-4, ARF-5 and RAB-35 form complexes in vivo (I assume you are suggesting colocalize based on figure 3 interpretation) would resolve how AGEF-1 was regulating RAB-35.


      We apologize that our phrasing was not clear. We will rewrite this section to better reflect the following idea. Given literature data showing an allosteric interaction between RME-4/DENND1 and ARF-5/Arf5, and our own data showing that AGEF-1 regulates RAB-35, we believe these molecules could form a complex. Considering that we do not have data to support this notion, mostly due to the inability to test the effect of ARF-5, we will present this possibility in the discussion section.


      __**Cross-commenting**

      I agree with the comments made by the other reviewers and I stand by my own as well. I will echo that it is important to know the nature of their agef-1 allele.

      Reviewer #1 (Significance (Required)):

      Bonacossa-Pereira et al identify AGEF-1 as a regulator of axon integrity that functions in a pathway with RAB-35 in the epidermis is an exciting finding. As pointed out in the discussion, mutations in the human ortholog cause neurodevelopmental defects which leads to obvious characterization of BIG2/ArfGEF2 in neurons while this study indicates that this protein can have cell non-autonomous roles in regulating neurons. These findings could have important implications for understanding the etiology of these defects that would be of interest to neurobiologists and clinical researchers.

      The finding of this paper would also be of interest to cell biologists and particularly those studying the roles of Rab and Arf GTPases in membrane trafficking, such as myself. The idea that AGEF-1 might function as a Rab35 GEF is provocative and would generate a lot of interest and skepticism from the field. However, there is no data to support that AGEF-1 would be a direct regulator of Rab35 over the previously demonstrated cross regulation of Rab35 by Arf GTPases. Therefore, it would be fine to speculate in the discussion a direct interaction, but I would refrain from suggesting this as a model and elsewhere in the manuscript.

      __

      Although we agree that current evidence is not sufficient to support the model where AGEF-1 is a direct regulator of RAB-35, our data points to the direction where there is an important genetic relationship between these molecules in a physiological context in a living animal, with a defined phenotype relevant to the nervous system maintenance. We think that the proposed revision experiments will provide a better understanding of how AGEF-1 functions with RAB-35 and we agree with the suggestion to rephrase our manuscript to reflect the limitations of our results.


      __Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This interesting manuscript reports the outcome of a fruitful C. elegans genetic screen with a complex but clever design. Through it, the authors identify AGEF-1 as a GEF that likely regulates the active state of the GTPase RAB-35 in the skin to protect touch receptor axons from mechanical breakage.

      Major points: 1. Based on localization experiments, the authors claim "AGEF-1a interacts with RAB-35 in the epidermis" (Results heading) and state "these data demonstrate that AGEF-1a interacts with a subset of RAB-35 molecules in the epidermis." In general, localization studies cannot be used to conclude physical interaction (with some exceptions such as single-molecule kinetics). In this case, the data in my view do not even make a compelling argument for co-localization. There is a lot of AGEF-1 and RAB-35 signal everywhere and it may not be meaningful that the signals sometimes overlap. A more quantitative approach with controls would be needed to conclude meaningful co-localization. Importantly, this would still not demonstrate interaction.__

      We thank the reviewer for the comment. Indeed, co-localization does prove a physical interaction, and we appreciate the concern about our imaging data not making a compelling argument. To address this notion, we plan to perform an experiment using a more robust, quantitative and physiologically relevant strategy. We will generate an endogenously tagged mScarlet3::rab-35 allele for precise endogenous localization. In addition, as a positive control, we will generate an endogenous rme-4::GFP11x7 allele to cell-specifically demonstrate the level of colocalization of RME-4 with mScarlet3::RAB-35 within the epidermis. To address the possible interaction between AGEF-1a and RAB-35 we will leverage a split-GFP approach to assess their interaction in vivo, in the context relevant to the phenotypes we observed (see reply to reviewer #1 point 1).

      __2. The effect of the AGEF-1(S784L) mutation is not clear to me. Naively, as the S784L mutation lies in the auto-inhibitory domain, I would have expected AGEF-1 to become constitutively active, not inactive as the authors seem to suggest. Is the idea that it is constitutively auto-inhibited? The main evidence for a loss of function effect seems to be that a putative dominant negative mutation AGEF-1(E608K) does not further supress axon breakage when co-expressed in trans to AGEF(S784L), but in my view this only shows that, once the defect is suppressed, it cannot be suppressed any further. Defining the nature of the S784L allele is important. Some suggestions, although the authors may come up with different approaches: use of an inducible or cell-specific depletion system like AID/TIR1, Cre/lox, or FLP/FRT to circumvent the lethality of agef-1(0) and reveal what a true loss-of-function looks like; testing if deletion of the auto-inhibitory domain phenocopies S784L to test if this mutation impairs autoinhibition.

      __

      This is an very insightful comment. To address this point, we will follow the reviewer's suggestion and deplete AGEF-1 cell-specifically in the epidermis using the auxin-inducible degron system. Specifically, we will generate an agef-1::AID allele to degrade this molecule in a spatially and temporally controlled fashion, which will allow to circumvent the lethality of agef-1(0) and determine whether the S784L allele mimics the depletion of AGEF-1.

      Although it would be interesting to further dissect the effect of this mutation on AGEF-1 activity, we believe that this falls outside of the scope of this manuscript. As an alternative, we propose to elaborate more in the discussion the implications of the possible roles for the S784L mutation to clarify our model of its function. Our data supports a model in which this mutation reduces AGEF-1 function leading to a reduction in the activity of its downstream target GTPases. It is possible that this is due to AGEF-1 becoming constitutively autoinhibited, or that this mutation affects the structure of the molecule in a way that it reduces its affinity towards its downstream effectors.

      Minor points: 1. I am not able to see the "vesicle-like structures with a clear luminal space" or RAB-35 being "notably enriched at the membrane near the epidermal furrow" in Fig. 3. The "3D surface rendering" in Fig. 3e is grossly oversampled and should not be included.

      We will rectify this section and include new super-resolved images using Airyscan confocal microscopy. We hope these will yield a better-quality representation of these concepts. __ 2. As the agef-1a isoform is specifically referenced throughout, please describe the different agef-1 isoforms somewhere to save readers from having to look this up.__

      Yes, we will include a description of the isoforms. In C. elegans there are two: AGEF-1a which has been confirmed by cDNA and AGEF-1b which is predicted and partially confirmed by cDNA. The mutation we isolated exclusively affects AGEF-1a.

      3. The authors include an interesting speculation in the Discussion: "Future investigations of BIG2-associated neurological disorders should consider... hyper-activity of BIG2 as a driver of neuropathology." If the authors have the tools to test the effect of hyperactive BIG2 in this system, it could be an exciting addition.


      This is an exciting idea that we would like to keep in the Discussion. The biology of BIG2 activity regulation is a nascent field of research and we believe that to accurately generate and characterise a hyperactive BIG2 would be beyond the scope of this manuscript.

      __ On a personal note, since GEFs act oppositely to GTPase Activating Proteins (GAPs), I had to stop and re-read carefully whenever the authors referred to a GEF "activating" a GTPase. I understand their meaning (i.e., putting the GTPase in its active GTP-bound state, not activating its GTPase function) but I wanted to point out this potential confusion in case there is a way to better define terms in the Introduction or change word choice. I realize this may be a standard jargon in the field.__

      Indeed, this is confusing nomenclature and a difficult concept to deliver in an accurate and succinct manner. We propose to include a clearer, more didactic explanation of their function. In a simple explanation, GTPases perform cellular functions when bound to GTP. GAPs terminate GTPase activity by catalysing GTP hydrolysis, generating GDP. GEFs initiate GTPase activity by catalysing the release of GDP and allowing GTP binding.

      __ Please check the correct nomenclature for CRISPR/Cas9.__


      We will rectify where appropriate.

      __6. p.7 "these molecules act in synergy", consider replacing with "redundantly".

      __

      We will rectify where appropriate.

      __Reviewer #2 (Significance (Required)):

      The significance of this story is to show that GEF-GTPases pairing can be highly context-dependent. Previous studies have identified GEFs that pair with RAB-35 and GTPases that pair with AGEF-1, but the authors find that these factors have at best a modest role in the context of skin-axon interactions. Instead, the authors suggest a novel GTPase-GEF pairing of RAB-35 with AGEF-1 and provide evidence that this relationship is conserved in the human homolog of AGEF-1. These results suggest that GTPase-GEF pairings depend not only on chemical affinity but also cellular context.

      The main strength of the study is its clever genetics. For the screen, the authors looked for suppressors of a synthetic defect in axon integrity caused in part by elevated activity of RAB-35 due to loss of its GAP TBC-10. It is satisfying that this screen isolated a mutation in a GEF that in principle could counterbalance the loss of a GAP.

      The main weakness of the study is the lack of direct evidence for an AGEF-1/RAB-35 interaction. While not necessary for publication, the inclusion of biochemical data to support the role of AGEF-1 as a GEF for RAB-35 and the effect of the S784L mutation on this activity would strongly elevate the study. The genetic data for this interaction are consistent with the model but not conclusive, and in my view the colocalization data are not compelling. Nevertheless this is a solid genetic story with a clever screen.__

      __ __We appreciate the feedback and are grateful for the positive comments on the significance of our study. As explained in the significance section related to Reviewer 1, if we find evidence of a direct interaction between AGEF-1 and RAB-35 in the proposed new experiments, we will include it in the manuscript; alternatively, we will present it as a possibility in the discussion section, as suggested. We agree that a more nuanced understanding of the effect of the S784L is interesting and that our colocalization data can be improved, and we have proposed experiments to address these concerns.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This paper investigates the mechanism by which molecular pathways in the skin protect the processes of nerves that innervate them from damage. The authors previously showed that spectrin and the small GTPase RAB-35 act in the epidermis of C. elegans to protect mechanosensory axons from breaking. In this paper they used a suppression screen to identify another gene involved in this process, an ARF-GEF called AGEF-1. Partial loss-of-function mutations in agef-1 suppress the axon-breakage phenotype of spectrin mutations, and genetic experiments by the authors are consistent with the possibility that AGEF-1 could act directly as an exchange factor for RAB-35. Consistent with this model, they show that AGEF-1 and RAB-35 colocalise in the skin.

      Major comments: The experiments in this paper are well-designed and well-controlled, and the interpretations of the results are all reasonable. On the other hand, I don't think the authors' hypothesis that AGEF-1 acts directly as an exchange factor for RAB-35, or that these two proteins directly interact, is definitively proven. This is not an issue of the authors overinterpreting their data--the paper is very carefully and thoughtfully written. However, the most interesting and counterintuitive finding--that an ARF-GEF could also be a RAB-GEF--might be strengthened with more experiments (for example, could they more directly show protein-protein interaction through co-IP or mass spec?).__

      We thank the reviewer for the suggestion. We propose to further investigate the notion that AGEF-1a might be a direct interactor of RAB-35 using a split-GFP approach to assess whether these molecules closely interact, in vivo, in the physiological context that is relevant for the maintenance of the touch sensing neurons (please see reply to reviewer #1 major point 1 and reviewer #2 major point 1 for more details).

      Minor comments: There are also two places where the fact that null mutations are lethal (for agef-1 and arf-5) prevented the authors from addressing the effect of agef-1 loss of function in the skin, and addressing whether ARF-5 could be an AGEF-1 target, respectively. In principle, they could have tried to make a CRISPR line in which these genes could be cell-specifically deleted in the skin (using a dpy-7-driven recombinase). I don't think either of these experiments are essential, but if it is feasible to make these lines it would tie up a couple of loose ends.

      We agree to explore the roles of agef-1 and arf-5 loss-of-function. We propose to tissue-specifically degrade agef-1 using an auxin-inducible degradation strategy (please see reviewer #2 major point 2 reply for more details). For arf-5, we propose knocking-down its function using RNAi to overcome lethality (please see reviewer #1 major point 3 reply for more details).

      __Reviewer #3 (Significance (Required)):

      Overall I think this is an interesting paper on a topic of general interest. The most interesting finding is that an exchange factor for an ARF (a small GRPase involved in vesicle coating/uncoating) could also be an exchange factor for a RAB (a small GTPase involved in vesicle tethering). The evidence presented is suggestive and intriguing, though as noted above not completely definitive. In summary, I think it is an interesting paper in its current form, and anything it could do to more firmly establish a direct interaction between AGEF-1 and RAB-35 would increase its impact and importance.

      __

      We thank the reviewer for the positive evaluation of the significance of our study.

      __ Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary: In this study Bonacossa-Pereira et al. identify AGEF-1a, an Arf-GEF, as a factor that functions in the epidermis through RAB-35 to regulate axonal integrity of the PLM mechanosensory neurons in C. elegans. Specifically, epidermal attachment sites are regulated by these genes form the epidermis and compromising these attachment sites results in axonal degeneration. The study provides some evidence that that RAB-35 and AGEF-1 at least partially colocalize in the skin. Finally, the authors provide evidence that the human orthologue BIG2 is capable of functionally replacing AGEF-1a in C. elegans. Overall, the experiments are well designed and the paper is clear and succinct. The conclusions are supported by the findings and provide an important extension of the author's findings a few back, when they identified the role of rab-35 in mediating the epidermal-neuronal attachment sites.

      Major comments: 1. AGEF-1/BIG2 are known to regulate other GTPases such as ARF-5 or ARF-2. The authors exclude a non-redundant function for ARF-2, but are unable to establish a role for ARF-5 because of the lethality associated with the mutation. Alternative approaches, such as cell specific knock out or knock down experiment. In addition, studies to test potentially physical interaction such as pull-down assays, co-IP experiments and FRET could be used to test whether AGEF-can bind RAB-35 or ARF-5.__

      We thank the reviewer for this suggestion. We propose addressing these concerns using a tissue-specific degradation for AGEF-1a (please see reviewer #1 major point 2 for details). To establish a role for ARF-5 we propose to do an RNAi mediated knock-down to overcome lethality (please see reviewer #1 major point 3 for details). Finally, we plan to use a split-GFP approach to test the physical interaction between agef-1a and rab-35 in vivo (please see reviewer #1 major point 1 for details)

      __ Phenotypic readout has been limited to only axon breaks. It may be interesting to also test other aspects such as axonal deformities including swellings and vesiculation in other parts of the nervous system. Moreover, behavioral or functional experiments such as response to gentle touch or synaptic integrity could be informative.__

      We have not observed any obvious touch receptor neurons axonal phenotypes other than axonal breaks in these mutants, and we will include a statement that reflects this concept. In relation to the behavior, we have not tested it as the results will be difficult to interpret for two reasons: first, the breaks are not always bilateral and one neuron is sufficient to provide mechanical response; second, the mixed identity of the PLM neurite allows it to retain some function despite being severed. However, if deemed essential, we will perform these experiments.

      __ Overexpression constructs such as SKIN::RAB-35[Q69L], SKIN::BIG2, SKIN::AGEF-1a[E608K] in extrachromosomal transgenes could lead to non-physiological localization or effects. Single copy expression using MosSCI or CRISPR insertions are generally considered better approaches (other than endogenous reporters) to provide accurate insights at the physiological level. While the authors tacitly acknowledge this by conducting the experiments in a rab-35 mutant background and very low transgene concentration, at the very least this caveat regarding the localization should be discussed.__

      This is an important remark, and we appreciate the comment. We acknowledge that experiments using extrachromosomal arrays have inherent caveats, especially for localization studies. To address the RAB-35 localization concern we plan to repeat the localization studies using an endogenously tagged RAB-35 using CRISPR to overcome the possible artifacts caused by extrachromosomal array driven expression (please see reviewer #1 point 1 for more details). For the cell-specific rescues or dominant-negative constructs expression, we believe that using extrachromosomal arrays is sufficient, since this allows us to compare genetically identical transgenic vs non-transgenic siblings of independent lines. Moreover, given these constructs are already driven by a tissue-specific promoter that is inherently stronger than their respective endogenous promoters, even a single-copy insertion would have the same caveats.

      __4. The study does not address clearly whether AGEF-1a acts in parallel to spectrin or upstream/ downstream to it. Epistasis experiments could help to figure out the signaling pathway involved.

      __

      Indeed, this is a concept that we need to communicate more clearly. We have data showing that a mutation in agef-1 does not cause axonal damage on its own, and that it has no effect on the axonal damage caused by unc-70 dominant negative mutation alone. We only detect an effect of agef-1 when tbc-10 is mutated together with unc-70 (Fig. 1a of manuscript). Together, these data indicate that agef-1 functions upstream of rab-35, thus acting in parallel to unc-70 (see schematic below) to ensure the mechanical stability of neuron epidermal attachment. We plan to include this data and the following schematic as a supplement to better convey the idea and discuss the results appropriately.

      __ The finding that BIG2 rescues the mutant defect is an important finding and rightfully finds its place in the abstract. I wonder whether a reference to the human diseases caused by loss of BIG2 in the abstract and introduction would not increase interest/impact for the study, rather than burying this potentially interesting connection in the discussion.

      __

      We appreciate the reviewer's comment, and welcome the suggestion. We propose to include relevant background about BIG2-related human diseases in the abstract and introduction as suggested and expand the discussion regarding BIG2 mutations.

      __Minor comments:

      1. Some explanation about how mutating the autoinhibitory domain could impact the catalytic activity of a GEF might be helpful.__

      2. *

      We acknowledge that this notion was not well communicated. We propose to elaborate more about why we think a mutation in the autoinhibitory domain might be affecting the GEF activity and we plan to do further experiments to dissect how this might be happening. Please see reviewer #2 major point 2 for a more detailed explanation.

      __ The paper refers to rme-4(b1001) as a null allele while wormbase refers to the same as a missense allele. It would be more accurate to refer rme-4(b1001) as a strong loss of function or putative null.__

      We agree and will refer to b1001 as a strong loss-of-function.

      __ The paper does not clearly discuss limitations of the hypomorphic agef-1[S784L] and that the observed phenotypes in this hypomorph might underestimate the complete role of AGEF-1a.__

      • *

      We thank the reviewer for this suggestion. We propose to elaborate more on these limitations, especially considering the possible new results from the experiments suggested in reply to reviewer #2 major comment point 2.

      __ In figure 1, where there really only one extrachromosomal transgenic line for some of the construct tested? __

      • *

      For the Pdpy-7::AGEF-1a lines we have scored 3 transgenic lines (data not included) and only one yielded a full rescue. For all extrachromosomal lines presented, we tested 3 independent transgenic lines. For brevity, we only included the result for the positive rescues (1 for BIG2 and 1 for AGEF-1a), except for the Pmec-4 lines, of which none rescued the phenotype (data included in Table S2). We will update Table S2 to include all the lines tested.

      __ The concentrations of transgenes vary in different transgenes. Is there a rationale behind this? __

      Yes, we have attempted multiple concentrations of injections for each transgene and there was some variability for each construct injected, thus we only included the ones where we observed an effect. As mentioned in point 4 above, we will update Table S2 to include details of all lines tested.

      __ In Fig.1e: I may be useful to also show the "WT" phenotype, i.e. the strong defects to get a visual comparison for the degree of rescue. __

      • *

      We think this suggestion will help the readers. We will include this as a representative dashed line showing the WT phenotype.

      __Reviewer #4 (Significance (Required)):

      The study has identified AGEF-1a as a regulator of axonal maintenance, functioning to protect neurons against mechanical stress by acting through RAB-35. Additionally, this epidermal GEF, AGEF-1a is functionally conserved as its human orthologue BIG2 can replace AGEF-1a in C. elegans for axonal protection. Important points here are that the findings extend prior work by the authors of non-autonomous mechanism that regulates epidermal-neuronal attachment. In my humble opinion, the human disease connection, in particular with regard to the unexplained neuronal phenotypes in patients could be better developed in the manuscript. It may also increase impact/interest of a wonderful story that right now reads a bit 'wormy'.__


      This is an important remark and we are grateful for the positive comments. The fact that human BIG2 is also conserved in C. elegans points to a fundamental role of this molecule in multicellular life, and it provides a tractable model to investigate the function of this molecule in a physiological context. We welcome the suggestion to elaborate more the connection with the unexplained neuronal phenotypes in patients and use a more accessible language to convey our findings to a wider audience.


      3. Description of the revisions that have already been incorporated in the transferred manuscript

      N/A

      4. Description of analyses that authors prefer not to carry out

      __Reviewer #1 __


      "...studies to test potentially physical interaction such as pull-down assays, co-IP experiments and FRET could be used to test whether AGEF-can bind RAB-35 or ARF-5."


      While pull-down assays, co-IP and FRET would reveal whether AGEF-1a can form a complex with RAB-35, we believe that using a full length AGEF-1a would not only represent a significant technical challenge but will also not prove a direct interaction in a physiological context.


      "...An optional experiment would be to look at the colocalization of RAB-35 with a known effector in wild type and agef-1(vd92) with the expectation that there would be a higher level of colocalization in agef-1 mutants. Effector pull-down experiments or perhaps a cell based GEF assay could be used (PMID: 35196081)."


      We think that screening for the relevant rab-35 effector in this context and/or doing effector pull-down/cell based GEF assays would be a significant technical challenge. We propose to address this concern by tempering our claim as suggested by the reviewer.


      "...It may be interesting to also test other aspects such as axonal deformities including swellings and vesiculation in other parts of the nervous system. Moreover, behavioral or functional experiments such as response to gentle touch or synaptic integrity could be informative."

      As indicated above in major point 2 of reviewer 4, these are interesting ideas that might answer how the function of these neurons might be affected. However, in addition to the challenges indicated above, they will not provide further insights into how their integrity is maintained. We believe these will fall outside the scope of the manuscript, but if deemed essential we will perform behavioral analysis.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      McDougal et al. aimed to characterize the antiviral activity of mammalian IFIT1 orthologs. They first performed three different evolutionary selection analyses within each major mammalian clade and identified some overlapping positive selection sites in IFIT1. They found that one site that is positively selected in primates is in the RNA-binding exit tunnel of IFIT1 and is tolerant of mutations to amino acids with similar biochemical properties. They then tested 9 diverse mammalian IFIT1 proteins against VEEV, VSV, PIV3, and SINV and found that each ortholog has distinct antiviral activities. Lastly, they compared human and chimpanzee IFIT1 and found that the determinant of their differential anti-VEEV activity may be partly attributed to their ability to bind Cap0 RNA. 

      Strengths: 

      The study is one of the first to test the antiviral activity of IFIT1 from diverse mammalian clades against VEEV, VSV, PIV3, and SINV. Cloning and expressing these 39 IFIT1 orthologs in addition to single and combinatorial mutants is not a trivial task. The positive connection between anti-VEEV activity and Cap0 RNA binding is interesting, suggesting that differences in RNA binding may explain differences in antiviral activity. 

      Weaknesses: 

      The evolutionary selection analyses yielded interesting results, but were not used to inform follow-up studies except for a positively selected site identified in primates. Since positive selection is one of the two major angles the authors proposed to investigate mammalian IFIT1 orthologs with, they should integrate the positive selection results with the rest of the paper more seamlessly, such as discussing the positive selection results and their implications, rather than just pointing out that positively selected sites were identified. The paper should elaborate on how the positive selection analyses PAML, FUBAR, and MEME complement one another to explain why the tests gave them different results. Interestingly, MEME which usually provides more sites did not identify site 193 in primates that was identified by both PAML and FUBAR. The authors should also provide the rationale for choosing to focus on the 3 sites identified in primates only. One of those sites, 193, was also found to be positively selected in bats, although the authors did not discuss or integrate that finding into the study. In Figure 1A, they also showed a dN/dS < 1 from PAML, which is confusing and would suggest negative selection instead of positive selection. Importantly, since the authors focused on the rapidly evolving site 193 in primates, they should test the IFIT1 orthologs against viruses that are known to infect primates to directly investigate the impact of the evolutionary arms race at this site on IFIT1 function. 

      We thank the reviewer for their assessment and for acknowledging the breadth of our dataset regarding diverse IFIT1s, number of viruses tested, and the functional data that may correlate biochemical properties of IFIT1 orthologous proteins with antiviral function. We have expanded the introduction and results sections to better explain and distinguish between PAML, FUBAR, and MEME analyses. Furthermore, we have expanded the discussion to incorporate the observation that site 193 is rapidly evolving in bats, as well as the observation that nearby sites to the TPR4 loop were identified as rapidly evolving in all clades of mammals tested. We also do observe an overall gene dN/dS of <1, however this is simply the average across all codons of the entire gene and does not rule out positive selection at specific sites. This is observed for other restriction factors, as many domains are undergoing purifying selection to retain core functions (e.g enzymatic function, structural integrity) while other domains (e.g. interfaces with viral antagonists or viral proteins) show strong positive selection. Specific examples include the restriction factors BST-2/Tetherin (PMID: 19461879) and MxA (PMID: 23084925). Furthermore, we agree that testing more IFIT1-sensitive viruses that naturally infect primates with our IFIT1 193 mutagenesis library would shed light on the influence of host-virus arms races at this site. However, VEEV naturally does also infect humans as well as at least one other species of primate (PMID: 39983680).

      Below we individually address the reviewers' claims of inaccurate data interpretation.

      Some of the data interpretation is not accurate. For example: 

      (1) Lines 232-234: "...western blot analysis revealed that the expression of IFIT1 orthologs was relatively uniform, except for the higher expression of orca IFIT1 and notably lower expression of pangolin IFIT1 (Figure 4B)." In fact, most of the orthologs are not expressed in a "relatively uniform" manner e.g. big brown bat vs. shrew are quite different. 

      We have now included quantification of the western blots to allow the reader to compare infection results with the infection data (Updated Figure 4B and 4G). We have also removed the phrase “relatively uniform” from the text and have instead included text describing the quantified expression differences.

      (2) Line 245: "...mammalian IFIT1 species-specific differences in viral suppression are largely independent of expression differences." While it is true that there is no correlation between protein expression and antiviral activity in each species, the authors cannot definitively conclude that the species-specific differences are independent of expression differences. Since the orthologs are clearly not expressed in the same amounts, it is impossible to fully assess their true antiviral activity. At the very least, the authors should acknowledge that the protein expression can affect antiviral activity. They should also consider quantifying the IFIT1 protein bands and normalizing each to GAPDH for readers to better compare protein expression and antiviral activity. The same issue is in Line 267. 

      We have now included quantification and normalization of the western blots to allow the reader to compare infection results with the infection data (Updated Figure 4B and 4G). Furthermore, we acknowledge in the text that expression differences may affect antiviral potency in infection experiments.

      (3) Line 263: "SINV... was modestly suppressed by pangolin, sheep, and chinchilla IFIT1 (Figure 4E)..." The term "modestly suppressed" does not seem fitting if there is 60-70% infection in cells expressing pangolin and chinchilla IFIT1. 

      We have modified the text to say “significantly suppressed” rather than “modestly suppressed.”

      (4) The study can be significantly improved if the authors can find a thread to connect each piece of data together, so the readers can form a cohesive story about mammalian IFIT1. 

      We appreciate the reviewer’s suggestion and have tried to make the story including more cohesive through commentary on positive selection and by using the computational analysis to first inform potential evolutionary consequences of IFIT1 functionality first by an intraspecies (human) approach, and then later an interspecies approach with diverse mammals that have great sequence diversity. Furthermore, we point out that almost all IFIT1s tested in the ortholog screen were also included in our computational analysis allowing for the potential to connect functional observations with those seen in the evolutionary analyses.

      Reviewer #2 (Public review): 

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit the replication of different viruses, indicating that the evolution of IFIT1 across mammals has resulted in host speciesspecific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in the direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race". 

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data, although there are some important analyses that need to be done to remove any confounding effects from gene recombination that has previously been described between IFIT1 and its paralog IFIT1B. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below. 

      Strengths: 

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit the replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described. 

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins. 

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function. 

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species. 

      Weaknesses: 

      (1) The evolutionary analyses the authors perform appear to indicate that IFIT1 genes in several mammalian groups have evolved under positive selection. However, IFIT1 has previously been shown to have undergone recurrent instances of recombination with the paralogous IFIT1B, which can confound positive selection analyses such as the ones the authors perform. The authors should analyze their alignments for evidence of recombination using a tool such as GARD (in the same HyPhy package along with MEME and FUBAR). Detection of recombination in these alignments would invalidate their positive selection inferences, in which case the authors need to either analyze individual non-recombining domains or limit the number of species to those that are not undergoing recombination. While it is likely that these analyses will still reveal a signature of positive selection, this step is necessary to ensure that the signatures of selection and sites of positive selection are accurate. 

      (2) The choice of IFIT1 homologs chosen for study needs to be described in more detail. Many mammalian species encode IFIT1 and IFIT1B proteins, which have been shown to have different antiviral specificity, and the evolutionary relationship between IFIT1 and IFIT1B paralogs is complicated by recombination. As such, the assertion that the proteins studied in this manuscript are IFIT1 orthologs requires additional support than the percent identity plot shown in Figure 3B. 

      (3) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the chimpanzee data are interesting, but it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis is somewhat confusing. It would be more clear to discuss this as a natural loss of function of this IFIT1, which has occurred elsewhere repeatedly across the mammalian tree. 

      (4) In other places in the manuscript, the strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of VSV versus VEEV from Figure 3C and 3D, but it is difficult for a reader to assess this as most of the dots are unlabeled and the primary data are not uploaded. A few potential suggestions would be to have a table of each ortholog with % infection by VSV and % infection by VEEV. Another possibility would be to plot these data as an XY scatter plot. This would highlight any species that deviate from the expected linear relationship between the inhibition of these two viruses, which would provide a larger panel of interesting IFIT1 antiviral specificities than the smaller number of species shown in Figure 4. 

      We thank the reviewer for their fair assessment of our manuscript. As the reviewer requested, we performed GARD analysis on our alignments used for PAML, FUBAR, and MEME (New Supp Fig 1). By GARD, we found 1 or 2 predicted breakpoints in each clade. However, much of the sequence was after or between the predicted breakpoints. Therefore, we were able to reanalyze for sites undergoing positive selection in the large region of the sequence that do not span the breakpoints. We were able to validate almost all sites originally identified as undergoing positive selection still exhibit signatures of positive selection taking these breakpoints into account: primates (11/12), bats (14/16), ungulates (30/37), and carnivores (2/4). To further validate our positive selection analysis, we used Recombination Detection Program 4 (RDP4) to remove inferred recombinant sequences from the primate IFIT1 alignment and performed PAML, FUBAR, and MEME. Once again, the sites in our original anlaysis were largely validated by this method. Importantly, sites 170, 193, and 366 in primates, which are discussed in our manuscript, were found to be undergoing positive selection in 2 of the 3 analyses using alignments after the indicated breakpoint in GARD and after removal of recombinant sequences by RDP4. We have updated the text to acknowledge IFIT1/IFIT1B recombination more clearly and include the GARD analysis as well as PAML, FUBAR, and MEME reanalysis taking into account predicted breakpoints by GARD and RDP4. Furthermore, to increase evidence that the sequences used in this study for both computational and functional analysis are IFIT1 orthologs rather than IFIT1B, we have included a maximum likelihood tree after aligning coding sequences on the C-terminal end (corresponding to bases 907-1437 of IFIT1). In Daughtery et al. 2016 (PMID: 27240734) this strategy was used to distinguish between IFIT1 and IFITB. All sequences used in our study grouped with IFIT1 sequences (including many confirmed IFIT1 sequences used in Daughterty et al.) rather than IFIT1B sequences or IFIT3. This new data, including the GARD, RDP4, and maximum likelihood tree is included as a new Supplementary Figure 1.

      We also agree with the reviewer that it is possible that chimpanzee IFIT1 has lost antiviral function due to the residues 364 and 366 that differ from human IFIT1. We have updated the discussion sections to include the possibility that chimpanzee IFIT1 is an example of a natural loss of function that has occurred in other species over evolution as well as the potential consequences of this occurrence. Regarding highlighting the strength of differences in antiviral activity between IFIT1 orthologs, we have included several updates to strengthen the ability of the reader to assess these differences. First, we have included a supplementary table that includes the infection data for each ortholog from the VEEV and VSV screen to allow for readers to evaluate ranked antiviral activity of the species that suppress these viruses. In addition, the silhouettes next to the dot plots indicate the top ranked hits in order of viral inhibition (with the top being the most inhibitory) giving the reader a visual representation in the figure of top antiviral orthologs during our screen. We have also updated the figure legend to inform the reader of this information.

      Reviewer #3 (Public Review):  

      Summary: 

      This manuscript by McDougal et al, demonstrates species-specific activities of diverse IFIT1 orthologs and seeks to utilize evolutionary analysis to identify key amino acids under positive selection that contribute to the antiviral activity of this host factor. While the authors identify amino acid residues as important for the antiviral activity of some orthologs and propose a possible mechanism by which these residues may function, the significance or applicability of these findings to other orthologs is unclear. However, the subject matter is of interest to the field, and these findings could be significantly strengthened with additional data.

      Strengths:

      Assessment of multiple IFIT1 orthologs shows the wide variety of antiviral activity of IFIT1, and identification of residues outside of the known RNA binding pocket in the protein suggests additional novel mechanisms that may regulate IFIT1 activity.

      Weaknesses:

      Consideration of alternative hypotheses that might explain the variable and seemingly inconsistent antiviral activity of IFIT1 orthologs was not really considered. For example, studies show that IFIT1 activity may be regulated by interaction with other IFIT proteins but was not assessed in this study.

      Given that there appears to be very little overlap observed in orthologs that inhibited the viruses tested, it's possible that other amino acids may be key drivers of antiviral activity in these other orthologs. Thus, it's difficult to conclude whether the findings that residues 362/4/6 are important for IFIT1 activity can be broadly applied to other orthologs, or whether these are unique to human and chimpanzee IFIT1. Similarly, while the hypothesis that these residues impact IFIT1 activity in an allosteric manner is an attractive one, there is no data to support this.  

      We thank the reviewer for their fair assessment of our manuscript. To address the weaknesses that the reviewer has pointed out we have expanded the discussion to more directly address alternate hypotheses, such as the possibility of IFIT1 activity being regulated by interaction with other IFIT proteins. Furthermore, we expanded the discussion to include an alternate hypothesis for the role of residues 364 and 366 in primate IFIT1 besides allosteric regulation. In addition, we did not intend to claim or imply that residues 364/6 are the key drivers of antiviral activity for all IFITs tested. However, we speculate that within primates these residues may play a key role as these residues differ between chimpanzee IFIT1 (which lacks significant antiviral activity towards the viruses tested in this study) and human IFIT1 (which possesses significant antiviral activity). In addition, these residues seem to be generally conserved in primate species, apart from chimpanzee IFIT1. We have included changes to the text to more clearly indicate that we highlight the importance of these residues specifically for primate IFIT1, but not necessarily for all IFIT1 proteins in all clades.

      Reviewer #1 (Recommendations for the authors): 

      (1) The readers would benefit from a more detailed background on the concept and estimation of positive selection for the readers, including the M7/8 models in PAML. 

      We have included more information in the text to provide a better background for the concepts of positive selection and how PAML tests for this using M7 and M8 models.

      (2) Presentation of data 

      a) Figure 3C and 3D: is there a better way to present the infection data so the readers can tell the ranked antiviral activity of the species that suppress VEEV? 

      We have included a supplementary table that includes the infection data for each ortholog from the VEEV and VSV screen to allow for readers to evaluate ranked antiviral activity of the species that suppress these viruses. In addition, the silhouettes next to the dot plots indicate the top ranked hits in order of viral inhibition (with the top being the most inhibitory). We have updated the figure legend to inform the reader of this information as well.

      b) Figure 4C and 4D: consider putting the western blot in Supplementary Figure 1 underneath the infection data or with the heatmap so readers can compare it with the antiviral activity. 

      We have also included quantification of the western blots performed to evaluate IFIT1 expression during the experiments shown in Figure 4C and 4D in an updated Figure 4B. We have also included normalized expression values with the heatmap shown in an updated Figure 4G so the reader can evaluate potential impact of protein expression on antiviral activity for all infection experiments shown in figure 4.

      (3) Line 269-270: as a rationale for narrowing the species to human, black flying fox, and chimp IFIT1, human and black flying fox were chosen because they strongly inhibit VEEV, but pangolin wasn't included even though it had the strongest anti-VEEV activity? 

      The rationale for narrowing the species to human, black flying fox, and chimpanzee IFIT1 was related to the availability of biological tools, high quality genome/transcriptome sequencing databases, and other factors. Specifically human and chimp IFIT1 are closely related but have variable antiviral activities, making their comparison highly relevant. Bats are well established as reservoirs for diverse viruses, whereas the reservoir status of many other mammals is less well defined. Furthermore, purifying large amounts of high quality IFIT1 protein after bacterial expression was another limitation to functional studies. We have added this information into the manuscript text.

      (4) Figure 5A: to strengthen the claim that "species-specific antiviral activities of IFIT1s can be partly explained by RNA binding potential", it would be good to include one more positive and one more negative control. In other words, test the cap0 RNA binding activity of an IFIT1 ortholog that strongly inhibits VEEV and an ortholog that does not. It would also be good to discuss why chimp IFIT1 still shows dose-dependent RNA binding yet it is one of the weakest at inhibiting VEEV. 

      We appreciate the reviewer's suggestion to include more controls and expand the dataset. While we understand the potential value of expanding the dataset, we believe that human IFIT1 serves as a robust positive control and human IFIT1 R187 (RNA-binding deficient) serves as an established negative control. Future experiments with other purified IFITs from other species will indeed strengthen evidence linking IFIT1 species-specific activity and RNA-binding.

      Regarding chimpanzee IFIT1, we acknowledge there appears to be some dose-dependent Cap0 RNA-binding. However, the binding affinity is much weaker than that of human or black flying fox IFIT1. We speculate that during viral infection reduced binding affinity could impair the ability of chimpanzee IFIT1 to efficiently sequester viral RNA and inhibit viral translation. This reduction in binding affinity may, therefore, allow the cell to be overwhelmed by the exponential increase in viral RNA during replication resulting in an ineffective antiviral IFIT1. In the literature, a similar phenomenon is observed by Hyde et. al (PMID: 24482115). In this study, the authors test mouse Ifit1 Cap0 RNA binding by EMSA of the 5’ UTR sequence of VEEV RNA containing an A or G at nucleotide position 3. EMSA shows binding of both the A3 and G3 Cap0 VEEV RNA sequences, however stronger Ifit1 binding is observed for A3 Cap0 RNA sequence. The consequences of the reduced Ifit1 binding of the G3 Cap0 VEEV RNA are observed in vitro by a substantial increase in viral titers produced from cells as well as an increase in protein produced in a luciferase-based translation assay. The authors also show in vivo relevance of this reduction of Ifit1 binding as WT B6 mice infected with VEEV containing the A3 UTR exhibited 100% survival, while WT B6 mice infected with VEEV containing the G3 UTR survived at a rate of only ~25%. Therefore, the literature supports that a decrease in Cap0 RNA binding by an IFIT protein (while still exhibiting Cap0 RNA binding) observed by EMSA can result in considerable alterations of viral infection both in vitro and in vivo.

      Minor: 

      (1) Line 82: "including 5' triphosphate (5'-ppp-RNA), or viral RNAs..." having a comma here will make the sentence clearer. 

      We have improved the clarity of this sentence. It now reads, “IFIT1 binds uncapped 5′triphosphate RNA (5′-ppp-RNA) and capped but unmethylated RNA (Cap0, an m<sup>7</sup>G cap lacking 2′-O methylation).”

      (2) Line 100: "...similar mechanisms have been at least partially evolutionarily conserved in IFIT proteins to restrict viral infection by IFIT proteins". 

      We have updated the text to improve clarity by revising the sentence to “VEEV TC-83 is sensitive to human IFIT1 and mouse Ifit1B, indicating at least partial conservation of antiviral function by IFIT proteins."

      (3) Line 109: "signatures of rapid evolution or positive selection" would put positive selection second because that is the more technical term that can benefit from the more layperson term (rapid evolution). 

      We have updated this sentence incorporating this suggestion. “Positive selection, or rapid evolution, is denoted by a high ratio of nonsynonymous to synonymous substitutions (dN/dS >1).”

      (4) Lines 116-117: "However, this was only assessed in a few species" would benefit from a citation. 

      We have inserted the citation.

      (5) Line 127 heading: "IFIT1 is rapidly evolving in mammals" would be more accurate to say "in major clades of mammals". 

      We have updated the text to include this suggestion.

      (6) Line 165: "IFIT1 L193 mutants". 

      We have updated the text to rephrase this for clarity.

      (7) Line 170: two strains of VEEV were mentioned in the Intro, so it would be good to specify which strain of VEEV was used?

      We have updated the text to clarify the VEEV strain. In this study, all experiments were performed using the VEEV TC-83 strain.

      (8) Line 174: "Indeed, all mutants at position 193, whether hydrophobic or positively charged, inhibited VEEV similarly to the WT..." It should read "all hydrophobic and positively charged mutants inhibited VEEV similarly to the WT...". 

      We corrected as suggested. 

      (9) Line 204: what are "control cells"? Cells that are mock-infected, or cells without IFIT1? 

      We have updated the text to improve clarity. What we refer to as control cells, were cells expressing an empty vector control rather than an IFIT1.

      (10) Need to clarify n=2 and n=3 replicates throughout the manuscript. Does that refer to three independent experiments? Or an experiment with triplicate wells/samples? 

      We have updated the text to say “independent experiments” instead of “biological replicates” to prevent any confusion.  All n=2 or n=3 replicates denote independent experiments.

      (11) Line 254: "dominant antiviral effector against the related human parainfluenza virus type 5..." 

      We have updated the text to improve clarity.

      (12) Line 271: "The black flying fox (Pteropus alecto), is a model megabat species..." scientific name was italicized here but not elsewhere. Remove comma.

      We have updated the text accordingly.

      (13) Line 293: "...chimpanzee IFIT1 lacked these properties" but chimp IFIT1 can bind cap0 RNA, just at a lower level. 

      We have updated the text to acknowledge that chimpanzee IFIT1 can bind cap0 RNA, albeit at a lower level than human IFIT1.

      (14) Figure 6B: please fix the x-axis labels. They're very cramped. 

      We have updated the x-axis labels for figure 6B and figure 6D to improve clarity.

      (15) Line 609: "...trimmed and aligned"? 

      Our phrasing is to indicate that coding sequences were aligned, and gaps were removed to reduce the chance of false positive signal by underrepresented codons such as gaps or short insertions. We have removed “trimmed” from the text and changed the text to say “aligned sequences” to increase clarity.

      Reviewer #2 (Recommendations for the authors): 

      (1) Numbers less than 10 should be spelled out throughout the manuscript (e.g. line 138). 

      We have updated the text to reflect the request.

      (2) Line 165: "expression of IFIT1 193 mutants" should be rephrased. 

      We have updated the text to rephrase this sentence for clarity.

      (3) A supplemental table or file should be included that contains the accession number and species names of sequences used for evolutionary analyses and for functional testing. In addition, the alignments that were used for positive selection can be included.  

      We have included a supplemental file containing accession numbers, species names for evolutionary analysis and functional studies. In addition, this table includes the infection data for each IFIT1 homolog for the screen performed in figure 3.

      (4) The discussion of potential functions of the C-terminus of IFIT1 should include possible interactions with other proteins. In particular, the C-terminus of IFIT1 has been shown to interact with IFIT3 in a way that modulates its activity (PMID: 29525521). Although residues 362-366 were not shown in that paper to interact with a fragment of IFIT3, it is possible that these residues may be important for interaction with full-length IFIT3 or some other IFIT1 binding partner. 

      We thank the reviewer for their suggestion. We have expanded the discussion to explore the possibility that residues 364 and 366 of IFIT1 may be involved in IFIT1-IFIT3 interactions and consequently Cap0 RNA-binding and antiviral activity.

      (5) The quantification of the EMSAs should be described in more detail. In particular, from looking at the images shown in Figure 5A, it would appear that human and chimpanzee IFIT1 show similar degrees of probe shift, while the human R187H panel shows no shifting at all. However, the quantification shows chimpanzee IFIT1 as being statistically indistinguishable from human R187H. Additional information on how bands were quantified and whether they were normalized to unshifted RNA would be helpful in attempting to resolve this visual discordance. 

      EMSAs were quantified by determining Adj. Vol. Intensity in ImageLab (BioRad), which subtracts background signal, after imaging at the same exposure and SYBR Gold staining time. To determine Adj. Vol. Intensity, we drew a box (same size for each gel and lane for each replicate) for each lane above the free probe. These values were not normalized to unshifted RNA, however equal RNA was loaded. While the ANOVA shows no significant difference, between human R187H and chimpanzee IFIT1 band shift intensity, this is potentially due to the between group variance in the ANOVA. The increase in the AUC value for chimpanzee IFIT1 is 36.4% higher than R187H.

      The AUC of Adj. Vol. Intensity of human IFIT1 band shift is roughly 2-fold more than that of chimpanzee IFIT1. We believe this matches with the visual representation as well, as human IFIT1 has a darker “upper” band in the shift, as well as a clear dark “lower” band that is not well defined in the chimpanzee shift. Furthermore, the upper band of the chimpanzee IFIT1 shift appears to be as intense in the 400nM as the upper band in the 240nM human IFIT1 lane, without taking into account the lower band seen for human IFIT1 as well. We included this quantification as kD was unable to be calculated due to no clear probe disappearance and we do not intend for this quantification to act as a substitute for binding affinity calculations, rather to aid the reader in data interpretation.

      Reviewer #3 (Recommendations for the authors): 

      (1) IFIT1 has been demonstrated to function in conjunction with other IFIT proteins, do you think the absence of antiviral activity is due to isolated expression of IFIT1 without these cofactors, and therefore might explain why there was little overlap observed in orthologs that inhibited the viruses tested (Figure 3, lines 209-210). 

      We do not believe that isolated expression of IFIT1 without cofactors (such as orthologous IFIT proteins) would fully explain the disparities in antiviral activity as many IFIT1s that expressed inhibited either VSV or VEEV in our screen. However, we acknowledge that the expression of IFIT1 alone does create a limitation in our study as IFIT1 antiviral activity and RNA-binding can be modulated by interactions with other IFIT proteins. Therefore, we do believe that it is possible that co-expression of IFIT1 with other IFITs from a given species might potentially enhance antiviral activity. Future studies may shed light on this.

      (2) Figure 5 - Calculating the Kd for each protein would be more informative. How does the binding affinity of these IFIT1 proteins compare to that which has previously been reported? 

      We are unable to accurately determine kD as there is not substantial diminished signal of the free probe. Therefore, we are only able to compare IFIT1 protein binding between species without accurate mathematical calculation of binding affinity. Our result does appear similar to that of mouse Ifit1 binding to VEEV RNA (PMID: 24482115), in which the authors also do not calculate a kD for their RNA EMSA.

      (3) Mutants 364 and 366 may not have direct contact with RNA, but RNA EMSA data presented suggest that the binding affinity may be different (though this is hard to conclude without Kd data). Additional biochemical data with these mutants might provide more insight here. 

      We agree that further studies using 364 and 366 double mutant human and chimpanzee protein in EMSAs would provide additional biochemical data and provide insight into the role of these residues in direct RNA binding. We acknowledge this is a limitation of our study as we provide only genetic data demonstrating the importance of these residues.

      (4) Given that there appears to be very little overlap observed in orthologs that inhibited the viruses tested, it's possible that other amino acids may be key drivers of antiviral activity in these other orthologs. Thus, it's difficult to conclude whether the findings that residues 362/4/6 are important for IFIT1 activity can be broadly applied to other orthologs. A more systematic assessment of the role of these mutations across multiple diverse orthologs would provide more insight here. Do other antiviral proteins show this trend (ie exhibit little overlap in orthologs that inhibit these viruses). What do you think might be driving this? 

      We agree that other residues outside of 364 and 366 may be key drivers of antiviral activity across the IFTI1 orthologs tested. We do not hypothesize that this will broadly apply across IFIT1 from diverse clades of mammals as overall amino acid identity can differ by over 30%. However, based on the chimpanzee and human IFIT1 data, as well as sequence alignment within primates specifically, we believe these residues may be key for primate (but not necessarily other clades of mammals) IFIT1 antiviral activity.

      Regarding if other antiviral proteins show little overlap in orthologs that inhibit a given virus, to our knowledge such a functional study with this large and divergent dataset of orthologs has not been performed. However, there are many examples of restriction factors exhibiting speciesspecific antiviral activity when ortholog screens have been performed. For example, HIV was reported to be suppressed by MX2 orthologs from human, rhesus macaque, and African green monkey, but not sheep or dog MX2 (PMID: 24760893). In addition, foamy virus was inhibited by the human and rhesus macaque orthologs of PHF11, but not the mouse and feline orthologs (PMID: 32678836). Furthermore, studies from our lab have shown variability in RTP4 ortholog antiviral activity inhibition towards viruses much as hepatitis C virus (HCV), West Nile virus (WNV), and Zika virus (ZIKV) (PMID: 33113352).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      Weiss and co-authors presented a versatile probabilistic tool. aTrack helps in classifying tracking behaviors and understanding important parameters for different types of single particle motion types: Brownian, Confined, or Directed motion. The tool can be used further to analyze populations of tracks and the number of motion states. This is a stand-alone software package, making it user-friendly for a broad group of researchers. 

      Strengths: 

      This manuscript presents a novel method for trajectory analysis. 

      Weaknesses: 

      (1) In the results section, is there any reason to choose the specific range of track length for determining the type of motion? The starting value is fine, and would be short enough, but do the authors have anything to report about how much is too long for the model? 

      We chose to test the range of track lengths (five-to-hundreds of steps) to cover the broad range of scenarios arising from single proteins or fluorophores to brighter objects with more labels.  While there is no upper-limit per se, the computation time of our method scales linearly with track length, 100 time-points takes ~2 minutes to run on a standard consumer-level desktop CPU. We have added the following sentence to note the time-cost with trajectory length:  

      “The recurrent formula enables our model computation time to scale linearly with the number of time points.”

      (2) Robustness to model mismatches is a very important section that the authors have uplifted diligently. Understanding where and how the model is limited is important. For example, the authors mentioned the limitation of trajectory length, do the authors have any information on the trajectory length range at which this method works accurately? This would be of interest to readers who would like to apply this method to their own data. 

      We agree that limitations are important to estimate, and trajectory length is an important consideration when choosing how to analyze a dataset. We report the categorization certainty, i.e. the likelihood differences, for a range of track lengths (Fig. 2 a,c, Fig. 3c-d, and Fig. 4 c,g.).

      For example, here are the key plots from Fig. 2 quantifying the relative likelihoods, where being within the light region is necessary. The light areas represent a useful likelihood ratio.

      We only performed analysis up to track lengths of 600 time steps but parameter estimations and significance can only improve when increasing the track length as long as the model assumptions are verified. The broader limitations and future opportunities for new methods are now expanded upon in the discussion, for example switching between states and model and state and model ambiguities (bound vs very slow diffusion vs very slow motion).

      (3) aTrack extracts certain parameters from the trajectories to determine the motion types. However, it is not very clear how certain parameters are calculated. For example, is the diffusion coefficient D calculated from fitting, and how is the confinement factor defined and estimated, with equations? This information will help the readers to understand the principles of this algorithm.

      We apologize for the confusion. All the model parameters are fit using the maximum likelihood approach. To make this point clearer in the manuscript, we have made three changes:

      (1) We modified the following sentence to replace “determined” with "fit”:

      “Finally, Maximum Likelihood Estimation (MLE) is used to fit the underlying parameter value”

      (2) We added the following sentence in the main text :

      “In our model, the velocity is the characteristic parameter of directed motion and the confinement factor represents the force within a potential well. More precisely, the confinement factor $l$ is defined such that at each time step the particle position is updated by $l$ times the distance particle/potential well center (see the Methods section for more details).”.

      (3) We have added a new section in the methods, called Fitting Method, where we have added the explanation below:

      “For the pure Brownian model, the parameters are the diffusion coefficient and the localization error. For the confinement model, the parameters are the diffusion coefficient, the localization error, confinement factor, and the diffusion coefficientof the potential well. For the directed model, the parameters are the diffusion coefficient, the localization error, the initial velocity and the acceleration variance.

      These parameters are estimated using the maximum likelihood approach which consists in finding the parameters that maximize the likelihood. We realize this fitting step using gradient descent via a TensorFlow model. All the estimates presented in this article are obtained from a single set of initial parameters to demonstrate that the convergence capacity of aTrack is robust to the initial parameter values.”

      (4) The authors mentioned the scenario where a particle may experience several types of motion simultaneously. How do these motions simulated and what do they mean in terms of motion types? Are they mixed motion (a particle switches motion types in the same trajectory) or do they simply present features of several motion types? It is not intuitive to the readers that a particle can be diffusive (Brownian) and direct at the same time. 

      In the text, we present an example where one can observe this type of motion to help the reader understand when this type of motion can be met: “Sometimes, particles undergo diffusion and directed motion simultaneously, for example, particles diffusing in a flowing medium (Qian 1991).”

      This is simulated by the addition of two terms affecting the hidden position variable before adding a localization term to create the observed variable. In the analysis, this manifests as non-zero values for the diffusion coefficient and the linear velocity. For example, Figure 4g and the associated text, where a single particle moves with a directed component and a Brownian diffusion component at each step.

      We did not simulate transitions between types of motion. Switching is not treated by this current model; however, this limitation is described in the discussion and our team and others are currently working on addressing this challenge.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors present a software package "aTrack" for identification of motion types and parameter estimation in single-particle tracking data. The software is based on maximum likelihood estimation of the time-series data given an assumed motion model and likelihood ratio tests for model selection. They characterized the performance of the software mostly on simulated data and showed that it is applicable to experimental data. 

      Strengths: 

      A potential advantage of the presented method is its wide applicability to different motion types. 

      Weaknesses: 

      (1) There has been a lot of similar work in this field. Even though the authors included many relevant citations in the introduction, it is still not clear what this work uniquely offers. Is it the first time that direct MLE of the time-series data was developed? Suggestions to improve would include (a) better wording in the introduction section, (b) comparing to other popular methods (based on MSD, step-size statistics (Spot-On, eLife 2018;7:e33125), for example) using the simulated dataset generated by the authors, (c) comparing to other methods using data set in challenges/competitions (Nat. Comm (2021) 12:6253).  

      We thank the reviewer for this suggestion and agree that the explanation of the innovative aspects of our method in the introduction was not clear enough. We have now modified the introduction to better explain what is improved here compared to previous approaches.

      “The main innovations of this model are: 1) it uses analytical recurrence formulas to perform the integration step for complex motion, improving speed and accuracy; 2) it handles both confined and directed motion; 3) anomalous parameters, such as the center of the potential well and the velocity vector are allowed to change through time to better represent tracks with changing directed motion or confinement area; and lastly 4) for a given track or set of tracks, aTrack can determine whether tracks can be statistically categorized as confined or directed, and the parameters that best describe their behavior, for example, diffusion coefficient, radius of confinement, and speed of directed motion.”

      Regarding alternatives, we compare our method in the text to the best-performing algorithm of the

      2021 Anomalous Diffusion (AnDi) Challenge challenge mentioned by the reviewer in Figure 6 (RANDI, Argun et al, arXiv, 2021, Muñoz-Gil et al, Nat Com. 2021). Notably, both methods performed similarly on fBm, but ours was more robust in cases where there were small differences between the process underlying the data and the model assumptions, a likely scenario in real datasets. Regarding Spot-On, this was not mentioned as it only deals with multiple populations of Brownian diffusers, preventing a quantitative comparison.

      (2) The Hypothesis testing method presented here has a number of issues: first, there is no definition of testing statistics. Usually, the testing statistics are defined given a specific (Type I and/or Type II) error rate. There is also no discussion of the specificity and sensitivity of the testing results (i.e. what's the probability of misidentification of a Brownian trajectory as directed? etc).

      We now explain our statistical approach and how to perform hypothesis testing with our metric in a new supplementary section, Statistical test. 

      We use the likelihood ratio as a more conservative alternative to the p-value. In Fig S2, we show that our metric is an upper bound of the p-value and can be used to perform hypothesis testing with a chosen type I error rate. 

      Related, it is not clear what Figure 2e (and other similar plots) means, as the likelihood ratio is small throughout the parameter space. Also, for likelihood ratio tests, the authors need to discuss how model complexity affects the testing outcome (as more complex models tend to be more "likely" for the data) and also how the likelihood function is normalized (normalization is not an issue for MLE but critical for ratio tests). 

      We present the likelihood ratio as an upper bound of the p-value. Therefore, we can reject the null hypothesis if it is smaller than a given threshold, e.g. 0.05, but this number should be decreased if multiple tests are performed. The colorscale we show in the figure is meant to highlight the working range (light), and ambiguous range (dark) of the method.

      As the reviewer mentions, we expect the alternative hypothesis to result in higher likelihoods than the simpler null hypothesis for null hypothesis tracks, but, as seen in the Fig S2, the likelihood ratio of a dataset corresponding to the null hypothesis is strongly skewed toward its upper limit 1. This means that for most of the tracks, the likelihood is not (or little) affected by the model complexity. The likelihoods of all the models are normalized so their integrals over the data equals 1/A with A the area of the field of view which is independent of the model complexity.

      (3) Relating to the mathematical foundation (Figure 1b). The measured positions are drawn as direct arrows from the real position states: this infers instantaneous localization. In reality, there is motion blur which introduces a correlation of the measured locations. Motion blur is known to introduce bias in SPT analysis, how does it affect the method here? 

      The reviewer raises an important point as our model does not explicitly consider motion blur. We have now added a paragraph that presents how our model performs in case of motion blur in the section called Robustness to model mismatches. This section and the corresponding new Supplemental Fig. S7 demonstrate that the estimated diffusion length is accurate so long as the static localization error is higher than the dynamic localization error. If the dynamic localization error is higher, our model systematically underestimates the diffusion length by a factor 0.81 = (2/3)<sup>0.5</sup> which can be corrected for with an added post-processing step.  

      (4) The authors did not go through the interpretation of the figure. This may be a matter of style, but I find the figures ambiguous to interpret at times.  

      We thank the reviewer for their feedback on improving the readability. To avoid overly repetitive and lengthy sections of text, we have opted for a concise approach. This allows us to present closely related panels at the same point in the text, while not ignoring important variations and tests. Considering this feedback and the reviewers, we have added more information and interpretation throughout our manuscript to improve interpretability.

      (5) It is not clear to me how the classification of the 5 motion types was accomplished. 

      We have modified the specific text related to this figure to describe an illustrative example to show how one could use aTrack on a dataset where not that much is known: First, we present the method to determine the number of states; second, we verify the parameter estimates correspond to the different states.  

      Classifying individual tracks is possible. While not done in the section corresponding to Fig. 5, this is done in Fig. 7 and a new supplementary plot, Fig. S9b (shown below). In brief, this is accomplished with our method by computing the likelihood of each track given each state. The probability that a given track is in state k equals the likelihood of the track given the state divided by the sum of the likelihoods given the different states. 

      (6) Figure 3. Caption: what is ((d_{est}-0.1)/0.1)? Also panel labeled as "d" should be "e". 

      Thank you for bringing these errors to our attention, the panel and caption have been corrected.

      Reviewer #3 (Public Review): 

      Summary: 

      In this work, Simon et al present a new computational tool to assess non-Brownian single-particle dynamics (aTrack). The authors provide a solid groundwork to determine the motion type of single trajectories via an analytical integration of multiple hidden variables, specifically accounting for localization uncertainty, directed/confined motion parameters, and, very novel, allowing for the evolution of the directed/confined motion parameters over time. This last step is, to the best of my knowledge, conceptually new and could prove very useful for the field in the future. The authors then use this groundwork to determine the motion type and its corresponding parameter values via a series of likelihood tests. This accounts for obtaining the motion type which is statistically most likely to be occurring (with Brownian motion as null hypothesis). Throughout the manuscript, aTrack is rigorously tested, and the limits of the methods are fully explored and clearly visualised. The authors conclude with allowing the characterization of multiple states in a single experiment with good accuracy and explore this in various experimental settings. Overall, the method is fundamentally strong, wellcharacterised, and tested, and will be of general interest to the single-particle-tracking field. 

      Strengths: 

      (1) The use of likelihood ratios gives a strong statistical relevance to the methodology. There is a sharp decrease in likelihood ratio between e.g. confinement of 0.00 and 0.05 and velocity of 0.0 and 0.002 (figure 2c), which clearly shows the strength of the method - being able to determine 2nm/timepoint directed movement with 20 nm loc. error and 100 nm/timepoint diffusion is very impressive. 

      We apologize for the confusion, the directed tracks in Fig 2 have no Brownian-motion component, i.e. D=0. We have made this clearer in the main text. Specifically, this section of the text refers to a track in linear motion with 2 nm displacements per step. With 70 time points (69 steps), a single particle which moved from 138 nm with a localization error of 20 nm (95% uncertainty range of 80 nm) can be statistically distinguished from slow diffusive motion.

      In Fig. 4g, we explore the capabilities of our method to detect if a diffusive particle also has a directed motion component. 

      (2) Allowing the hidden variables of confinement and directed motion to change during a trajectory (i.e. the q factor) is very interesting and allows for new interpretations of data. The quantifications of these variables are, to me, surprisingly accurate, but well-determined. 

      (3) The software is well-documented, easy to install, and easy to use. 

      Weaknesses: 

      (1) The aTrack principle is limited to the motions incorporated by the authors, with, as far as I can see, no way to add new analytical non-Brownian motion. For instance, being able to add a dynamical stateswitching model (i.e. quick on/off switching between mobile and non-mobile, for instance, repeatable DNA binding of a protein), could be of interest. I don't believe this necessarily has to be incorporated by the authors, but it might be of interest to provide instructions on how to expand aTrack.  

      We agree that handling dynamic state switching is very useful and highlight this potential future direction in the discussion. The revised text reads:

      “An important limitation of our approach is that it presumes that a given track follows a unique underlying model with fixed parameters. In biological systems, particles often transition from one motion type to another; for example, a diffusive particle can bind to a static substrate or molecular motor (46). In such cases, or in cases of significant mislinkings, our model is not suitable. However, this limitation can be alleviated by implicitly allowing state transitions with a hidden Markov Model (15) or alternatives such as change-point approaches (30, 47, 48), and spatial approaches (49).”

      (2) The experimental data does not very convincingly show the usefulness of aTrack. The authors mention that SPBs are directed in mitosis and not in interphase. This can be quantified and studied by microscopy analysis of individual cells and confirming the aTrack direction model based on this, but this is not performed. Similarly, the size of a confinement spot in optical tweezers can be changed by changing the power of the optical tweezer, and this would far more strongly show the quantitative power of aTrack. 

      We agree with the reviewer and have revised the biological experiment section significantly to better illustrate the potential of aTrack in various use cases.

      Now, we show an experiment to quantify the effect of LatA, an actin inhibitor, on the fraction of directed tracks obtained with aTrack. We find that LatA significantly decreases directed motion while a LatA-resistant mutant is not affected (Fig7a-c).

      As suggested by the reviewer, we have expanded the optical tweezer experiment by varying the laser power. As expected, increasing the laser power decreases the confinement radius.

      (3) The software has a very strict limit on the number of data points per trajectory, which is a user input. Shorter trajectories are discarded, while longer trajectories are cut off to the set length. It is not explained why this is necessary, and I feel it deletes a lot of useful data without clear benefit (in experimental conditions).

      We thank the reviewer for this recommendation; we have now modified the architecture of our model to enable users to consider tracks of multiple lengths. Note that the computation time is proportional to the longest track length times the number of tracks.  

      Reviewer #2 (Recommendations For The Authors): 

      Develop a better mathematical foundation for the likelihood ratio tests. 

      We added more explanation of the likelihood ratio tests and their interpretation a new section entitled Statistical test in the supplementary information to address this recommendation.

      Place this work in clearer contexts. 

      We have now revised the introduction to better contextualize this work.

      Improve manuscript clarity. 

      Based on reviewer feedback and input from others, we have addressed this point throughout the article to improve readability.

      Make the code available. 

      The code is available on https://github.com/FrancoisSimon/aTrack, now including code for track generation.

      Reviewer #3 (Recommendations For The Authors): 

      (1) I believe the underlying model presented in Figure 1 is of substantial impact, especially when considering it as a simulation tool. I would suggest the authors make their method also available as a simulator (as far as I can tell, this is not explicitly done in their code repository, although logically the code required for the simulator should already be in the codebase somewhere). 

      Thank you for this suggestion, the simulation scripts are now on the Github repository together with the rest of the analysis method. https://github.com/FrancoisSimon/aTrack

      (2) The authors should explore and/or discuss the effects of wrong trajectory linking to their method. Throughout the text, fully correct trajectory linking is assumed and assessed, while in real experiments, it is often the case that trajectory linking is wrong, e.g. due to blinking emitters, imaging artefacts, high-density localizations, etc etc. This would have a major impact on the accuracy of trajectories, and it is extremely relevant to explore how this is translated to the output of aTrack. 

      As the reviewer notes, our current model does not account for track mislinking. This limits the method to data with lower fluorophore-densities, which is the typical use-case for SPT. We have added a brief description of the issue into the discussion of limitations.  

      (3) aTrack only supports 2D-tracking, but I don't believe there is a conceptual reason not to have this expanded to three dimensions. 

      The stand-alone software is currently limited to 2D tracks, however, the aTrack Python package works for any number of dimensions (i.e. 1-3). Note that since the current implementation assumes a single localization error for all axes, more modifications may be required for some types of 3D tracking. See https://github.com/FrancoisSimon/aTrack for more details about aTrack implementations.

      (4) Crucial information is missing in the experimental demonstrations. Especially in the NP-bacteria dataset, I miss scalebars, and information on the number of tracks. It is not explained why 5 different states are obtained - especially because I would naively expect three states: immobile NPs (e.g. stuck to glass), diffusing NPs, and NPs attached to bacteria, and thus directed. Figure 7e shows three diffusive states (why more than one?), no immobile states (why?), and two directed states (why?). 

      We thank the reviewer for pointing out these issues. We have now added scalebars and more experimental details to the figure and text as well as modifying the plot to more clearly emphasize the directed nanoparticles that are attached to cells from the diffusive nanoparticles.  

      Likely, our focal plane was too high to see the particles stuck on glass. The multiple diffusive states may be caused by different sizes of nanoparticle complexes, the multiple directed states can be caused by the fact that directed motion of the cell-attached-nanoparticles occasionally shows drastic changes of orientations. We have also clarified in the text how multiple states can help handle a heterogeneous population as was shown by Prindle et al. 2022, Microbiol Spectr. The characterization and phenotyping of microbial populations by nanoparticle tracking was published in Zapata et al. 2022, Nanoscale. 

      (5) I don't think I agree that 'robustness to model mismatches' is a good thing. Very crudely, the fact that aTrack finds fractional Brownian motion to be normal Brownian motion is technically a downside - and this should be especially carefully positioned if (in the future) a fractional Brownian motion model would be added to aTrack. I think that the author's point can be better tested by e.g. widely varying simulated vs fitted loc precision/diffusion coefficient (which are somewhat interchangeable).

      In this context, our intention in describing the robustness to “model mismatches” refers to classifying subdiffusion as subdiffusive irrespective of the exact subdiffusion motion physics (as well as superdiffusion), that is, to use aTrack how MSD analysis is often deployed. This is important in the context of real-world applications where simple mathematical models cannot perfectly represent real tracks with greater complexity. 

      Inevitably, some fraction of tracks with a pure Brownian motion may appear to match with a fractional Brownian motion, and thus statistical tests are needed to determine if this is significant. In general, aTrack finds fBm to be normal Brownian motion only when the anomalous coefficient is near 1, i.e. when the two models are indeed the same. When analysing fBm tracks with anomalous coefficients of 0.5 or 1.5, aTrack find that these tracks are better explained by our confined diffusion model or directed motion model, respectively (Please see Fig. 6a, copied below). 

      To better clarify our objective, the section now has a brief introduction that reads:

      “One of the most important features of a method is its robustness to deviations from its assumptions. Indeed, experimental tracking data will inevitably not match the model assumptions to some degree, and models need to be resilient to these small deviations.”  

      Smaller points: 

      (1) It is not clear what a biological example is of rotational diffusion. 

      We modified the text to better explain the use of rotational diffusion.

      (2) The text in the section on experimental data should be expanded and clarified, there currently are multiple 'floating sentences' that stop halfway, and it does not clearly describe the biological relevance and observed findings.  

      We thank the reviewer for pointing out this issue. We have reworked the experimental section to better and more clearly explain the biological relevance of the findings.

      (3) Caption of figure 3: 'd' should be 'e'. 

      (4) Caption of Figure 7: log-likelihood should be Lconfined - Lbrownian, I believe. 

      (5) Equation number missing in SI first sentence. 

      (6) Supplementary Figure 1 top part access should be Lc-Lb instead of Ld-Lb. 

      We have made these corrections, thank you for bringing them to our attention.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their careful assessment and enthusiastic appreciation of our work.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __In this article, Thomas et al. use a super-resolution approach in living cells to track proteins involved in the fusion event of sexual reproduction. They study the spatial organization and dynamics of the actin fusion focus, a key structure in cell-cell fusion in Schizosaccharomyces pombe. The researchers have adapted a high-precision centroid mapping method using three-color live-cell epifluorescence imaging to map the dynamic architecture of the fusion focus during yeast mating. The approach relies on tracking the centroid of fluorescence signals for proteins of interest, spatially referenced to Myo52-mScarlet-I (as a robust marker) and temporally referenced using a weakly fluorescent cytosolic protein (mRaspberry), which redistributes strongly upon fusion. The trajectories of five key proteins, including markers of polarity, cytoskeleton, exocytosis and membrane fusion, were compared to Myo52 over a 75-minute window spanning fusion. Their observations indicate that secretory vesicles maintain a constant distance from the plasma membrane whereas the actin network compacts. Most importantly, they discovered a positive feedback mechanism in which myosin V (Myo52) transports Fus1 formin along pre-existing actin filaments, thereby enhancing aster compaction.

      This article is well written, the arguments are convincing and the assertions are balanced. The centroid tracking method has been clearly and solidly controlled. Overall, this is a solid addition to our understanding of cytoskeletal organization in cell fusion.

      Major comments: No major comment.

      Minor comments: _ Page 8 authors wrote "Upon depletion of Myo52, Ypt3 did not accumulate at the fusion focus (Figure 3C). A thin, wide localization at the fusion site was occasionally observed (Figure 3C, Movies S3)" : Is there a quantification of this accumulation in the mutant?

      We will provide the requested quantification. The localization is very faint, so we are not sure that quantification will capture this faithfully, but we will try.

      _ The framerate of movies could be improved for reader comfort: For example, movie S6 lasts 0.5 sec.

      We agree that movies S3 and S6 frame rates could be improved. We will provide them with slower frame rate.

      Reviewer #1 (Significance (Required)):

      This study represents a conceptual and technical breakthrough in our understanding of cytoskeletal organization during cell-cell fusion. The authors introduce a high-precision, three-color live-cell centroid mapping method capable of resolving the spatio-temporal dynamics of protein complexes at the nanometer scale in living yeast cells. This methodological innovation enables systematic and quantitative mapping of the dynamic architecture of proteins at the cell fusion site, making it a powerful live-cell imaging approach. However, it is important to keep in mind that the increased precision achieved through averaging comes at the expense of overlooking atypical or outlier behaviors. The authors discovered a myosin V-dependent mechanism for the recruitment of formin that leads to actin aster compaction. The identification of Myo52 (myosin V) as a transporter of Fus1 (formin) to the fusion focus adds a new layer to our understanding of how polarized actin structures are generated and maintained during developmentally regulated processes such as mating.

      Previous studies have shown the importance of formins and myosins during fusion, but this paper provides a quantitative and dynamic mapping that demonstrates how Myo52 modulates Fus1 positioning in living cells. This provides a better understanding of actin organization, beyond what has been demonstrated by fixed-cell imaging or genetic perturbation.

      Audience: Cell biologists working on actin dynamics, cell-cell fusion and intracellular transport. Scientists involved in live-cell imaging, single particle tracking and cytoskeleton modeling.

      I have expertise in live-cell microscopy, image analysis, fungal growth machinery and actin organization.

      We thank the reviewer for their appreciation of our work.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ A three-color imaging approach to use centroid tracking is employed to determine the high resolution position over time of tagged actin fusion focus proteins during mating in fission yeast. In particular, the position of different protein components (tagged in a 3rd color) were determined in relation to the position (and axis) of the molecular motor Myo52, which is tagged with two different colors in the mating cells. Furthermore, time is normalized by the rapid diffusion of a weak fluorescent protein probe (mRaspberry) from one cell to the other upon fusion pore opening. From this approach multiple important mechanistic insights were determined for the compaction of fusion focus proteins during mating, including the general compaction of different components as fusion proceeds with different proteins having specific stereotypical behaviors that indicate underlying molecular insights. For example, secretory vesicles remain a constant distance from the plasma membrane, whereas the formin Fus1 rapidly accumulates at the fusion focus in a Myo52-dependent manner.

      I have minor suggestions/points: (1) Figure 1, for clarity it would be helpful if the cells shown in B were in the same orientation as the cartoon cells shown in A. Similarly, it would be helpful to have the orientation shown in D the same as the data that is subsequently presented in the rest of the manuscript (such as Figure 2) where time is on the X axis and distance (position) is on the Y axis.

      We have turned each image in panel B by 180° to match the cartoon in A. For panel D, we are not sure what the reviewer would like. This panel shows the coordinates of each Myo52 position, whereas Figure 2 shows oriented distance (on the Y axis) over time (on the X axis). Perhaps the reviewer suggests that we should display panel D with a rotation onto the Y axis rather than the X axis. We feel that this would not bring more clarity and prefer to keep it as is.

      (2) Figure 2, for clarity useful to introduce how the position of Myo52 changes over time with respect to the fusion site (plasma membrane) earlier, and then come back to the positions of different proteins with respect to Myo52 shown in 2E. Currently the authors discuss this point after introducing Figure 2E, but better for the reader to have this in mind beforehand.

      We have added a sentence at the start of the section describing Figure 2, pointing out that the static appearance of Myo52 is due to it being used as reference, but that in reality, it moves relative to the plasma membrane: “Because Myo52 is the reference, its trace is flat, even though in reality Myo52 also moves relative to other proteins and the plasma membrane (see Figure 2E)”. This change is already in the text.

      (3) First sentence of page 8 "..., peaked at fusion time and sharply dropped post-fusion (Figure S3)." Figure S3 should be cited so that the reader knows where this data is presented.

      Thanks, we have added the missing figure reference to the text.

      (4) Figure 3D-H, why is Exo70 used as a marker for vesicles instead of Ypt3 for these experiments? Exo70 seems to have a more confusing localization than Ypt3 (3C vs 3D), which seems to complicate interpretations.

      There are two main reasons for this choice. First, the GFP-Ypt3 fluorescence intensity is lower than that of Exo70-GFP, which makes analysis more difficult and less reliable. Second, in contrast to Exo70-GFP where the endogenous gene is tagged at the native genomic locus, GFP-Ypt3 is expressed as additional copy in addition to endogenous untagged Ypt3. Although GFP-Ypt3 was reported to be fully functional as it can complement the lethality of a ypt3 temperature sensitive mutant (Cheng et al, MBoC 2002), its expression levels are non-native and we do not have a strain in which ypt3 is tagged at the 5’ end at the native genomic locus. For these reasons, we preferred to examine in detail the localization of Exo70. We do not think it complicates interpretations. Exo70 faithfully decorates vesicles and exhibits the same localization as Ypt3 in WT cells (see Figure 2D) and in myo52-AID (see Figure 3C-D). We realize that our text was a bit confusing as we opposed the localization of Exo70 and Ypt3, when all we wanted to state was that the Exo70-GFP signal is stronger. We have corrected this in the text.

      (5) Page 10, end of first paragraph, "We conclude...and promotes separation of Myo52 from the vesicles." This is an interesting hypothesis/interpretation that is consistent with the spatial-temporal organization of vesicles and the compacting fusion focus, but the underlying molecular mechanism has not be concluded.

      This is an interpretation that is in line with our data. Firm conclusion that the organization of the actin fusion focus imposes a steric barrier to bulk vesicle entry will require in vitro reconstitution of an actin aster driven by formin-myosin V feedback and addition of myosin V vesicle-like cargo, which can be a target for future studies. To make clear that it is an interpretation and not a definitive statement, we have added “likely” to the sentence, as in: “We conclude that the distal position of vesicles in WT cells is a likely steric consequence of the architecture of the fusion focus, which restricts space at the center of the actin aster and promotes separation of Myo52 from the vesicles”.

      (6) Figure 5F and 5G, the results are confusing and should be discussed further. Depletion of Myo52 decreases Fus1 long-range movements, indicating that Fus1 is being transported by Myo52 (5F). Similarly, the Fus1 actin assembly mutant greatly decreases Fus1 long-range movements and prevents Myo52 binding (5G), perhaps indicating that Fus1-mediated actin assembly is important. It seems the author's interpretations are oversimplified.

      We show that Myo52 is critical for Fus1 long-range movements, as stated by the reviewer. We also show that Fus1-mediated actin assembly is important. The question is in what way.

      One possibility is that FH2-mediated actin assembly powers the movement, which in this case represents the displacement of the formin due to actin monomer addition on the polymerizing filament. A second possibility is that actin filaments assembled by Fus1 somehow help Myo52 move Fus1. This could be for instance because Fus1-assembled actin filaments are preferred tracks for Myo52-mediated movements, or because they allow Myo52 to accumulate in the vicinity of Fus1, enhancing their chance encounter and thus the number of long-range movements (on any actin track). Based on the analysis of the K1112A point mutant in Fus1 FH2 domain, our data cannot discriminate between these three different options, which is why we concluded that the mutant allele does not allow us to make a firm conclusion. However, the Myo52-dependence clearly shows that a large fraction of the movements requires the myosin V. We have clarified the end of the paragraph in the following way: “Therefore, analysis of the K1112A mutant phenotype does not allow us to clearly distinguish between Fus1-powered from Myo52-powered movements. Future work will be required to test whether, in addition to myosin V-dependent transport, Fus1-mediated actin polymerization also directly contributes to Fus1 long-range movements.”

      (7) Figure 6, why not measure the fluorescence intensity of Fus1 as a proxy for the number of Fus1 molecules (rather than the width of the Fus1 signal), which seems to be the more straight-forward analysis?

      The aim of the measurement was to test whether Myo52 and Fus1 activity help focalize the formin at the fusion site, not whether these are required for localization in this region. This is why we are measuring the lateral spread of the signal (its width) rather than the fluorescence intensity of the signal. We know from previous work that Fus1 localizes to the shmoo tip independently of myosin V (Dudin et al, JCB 2015), and we also show this in Figure 6. However, the precise distribution of Fus1 is wider in absence of the myosins.

      We can and will measure intensities to test whether there is also a quantitative difference in the number of molecules at the shmoo tip.

      (8) Figure 7, the authors should note (and perhaps discuss) any evidence as to whether activation of Fus1 to facilitate actin assembly depends upon Fus1 dissociating from Myo52 or whether Fus1 can be activated while still associated with Myo52, as both circumstances are included in the figure.

      This is an interesting point. We have no experimental evidence for or against Fus1 dissociating from Myo52 to assemble actin. However, it is known that formins rotate along the actin filament double helix as they assemble it, a movement that seems poorly compatible with processive transport by myosin V. In Figure 7, we do not particularly want to imply that Myo52 associates with Fus1 linked or not with an actin filament. The figure serves to illustrate the focusing mechanism of myosin V transporting a formin, which is more evident when we draw the formin attached to a filament end. We have now added a sentence in the figure legend to clarify this point: “Note that it is unknown whether Myo52 transports Fus1 associated or not with an actin filament.”

      (9) Figure 7, the color of secretory vesicles should be the same in A and B.

      This is now corrected.

      Reviewer #2 (Significance (Required)):

      This is an impactful and high quality manuscript that describes an elegant experimental strategy with important insights determined. The experimental imaging strategy (and analysis), as well as the insight into the pombe mating fusion focus and its comparison to other cytoskeletal compaction events will be of broad scientific interest.

      We thank the reviewer for their appreciation of our work.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Fission yeast cell-cell fusion during mating is mediated by an actin-based structure called the 'fusion focus', which orchestrates actin polymerization by the mating-specific formin, Fus1, to direct polarized secretion towards the mating site. In the current study, Thomas and colleagues quantitatively map the spatial distribution of proteins mediating cell-cell fusion using a three-color fluorescence imaging methodology in the fission yeast Schizosaccharomyces pombe. Using Myo52 (Type V myosin) as a fluorescence reference point, the authors discover that proteins known to localize to the fusion focus have distinct spatial distributions and accumulation profiles at the mating site. Myo52 and Fus1 form a complex in vivo detected by co-immunoprecipitation and each contribute to directing secretory vesicles to the fusion focus. Previous work from this group has shown that the intrinsically disordered region (IDR) of Fus1 plays a critical role in forming the fusion focus. Here, the authors swap out the IDR of fission yeast Fus1 for the IDR of an unrelated mammalian protein, coincidentally called 'fused in sarcoma' (FUS). They express the Fus1∆IDR-FUSLC-27R chimera in mitotically dividing fission yeast cells, where Fus1 is not normally expressed, and discover that the Fus1∆IDR-FUSLC-27R chimera can travel with Myo52 on actively polymerizing actin cables. Additionally, they show that acute loss of Myo52 or Fus1 function, using Auxin-Inducible Degradation (AID) tags and point mutations, impair the normal compaction of the fusion focus, suggesting that direct interaction and coordination of Fus1 and Myo52 helps shape this structure.

      Major Comments:

      (1) In the Results section for Figure 2, the authors claim that actin filaments become shorter and more cross-linked they move away from the fusion site during mating, and suggest that this may be due to the presence of Myo51. However, the evidence to support this claim is not made clear. Is it supported by high-resolution electron microscopy of the actin filaments, or some other results? This needs to be clarified.

      Sorry if our text was unclear. The basis for the claim that actin filaments become shorter comes from our observation that the average position of tropomyosin and Myo51, both of which decorate actin filaments, is progressively closer to both Fus1 and the plasma membrane. Thus, the actin structure protrudes less into the cytosol as fusion progresses. The basis for claiming that Myo51 promotes actin filament crosslinking comes mainly from previously published papers, which had shown that 1) Myo51 forms complexes with the Rng8 and Rng9 proteins (Wang et al, JCB 2014), and 2) the Myo51-Rng8/9 not only binds actin through Myo51 head domain but also binds tropomyosin-decorated actin through the Rng8/9 moiety (Tang et al, JCB 2016; reference 27 in our manuscript). We had also previously shown that these proteins are necessary for compaction of the fusion focus (Dudin et al, PLoS Genetics 2017; reference 28 in our manuscript). Except for measuring the width of Fus1 distribution in myo51∆ mutants, which confirms previous findings, we did not re-investigate here the function of Myo51.

      We have now re-written this paragraph to present the previous data more clearly: “The distal localization of Myo51 was mirrored by that of tropomyosin Cdc8, which decorates linear actin filaments (Figure 2B) (Hatano et al, 2022). The distal position of the bulk of Myo51-decorated actin filaments was confirmed using Airyscan super-resolution microscopy (Figure 2B, right). Thus, the average position of actin filaments and decreasing distance to Myo52 indicates they initially extend a few hundred nanometers into the cytosol and become progressively shorter as fusion proceeds. Previous work had shown that Myo51 cross-links and slides Cdc8-decorated actin filaments relative to each other (Tang et al, 2016) and that both proteins contribute to compaction of the fusion focus in the lateral dimension along the cell-cell contact area (perpendicular to the fusion axis) (Dudin et al, 2017). We confirmed this function by measuring the lateral distribution of Fus1 along the cell-cell contact area (perpendicular to the fusion axis), which was indeed wider in myo51∆ than WT cells (see below Figure 6A-B).”

      (2) In Figure 4, the authors comment that disrupting Fus1 results in more disperse Myo52 spatial distribution at the fusion focus, raising the possibility that Myo52 normally becomes focused by moving on the actin filaments assembled by Fus1. This can be tested by asking whether latrunculin treatment phenocopies the 'more dispersed' Myo52 localization seen in fus1∆ cells? If Myo52 is focused instead by its direct interaction with Fus1, the latrunculin treatment should not cause the same phenotype.

      This is in principle a good idea, though it is technically challenging because pharmacological treatment of cell pairs in fusion is difficult to do without disturbing pheromone gradients which are critical throughout the fusion process (see Dudin et al, Genes and Dev 2016). We will try the experiment but are unsure about the likelihood of technical success.

      We note however that a similar experiment was done previously on Fus1 overexpressed in mitotic cells (Billault-Chaumartin et al, Curr Biol 2022; Fig 1D). Here, Fus1 also forms a focus and latrunculin A treatment leads to Myo52 dispersion while keeping the Fus1 focus, which is in line with our proposal that Myo52 becomes focused by moving on Fus1-assembled actin filaments. Similarly, we showed in Figure 5B that Latrunculin A treatment of mitotic cells expressing Fus1∆IDR-FUSLC-27R also results in Myo52, but not Fus1 dispersion.

      (3) The Fus1∆IDR-FUSLC-27R chimera used in Figure 5 is an interesting construct to examine actin-based transport of formins in cells. I was curious if the authors could provide the rates of movement for Myo52 and for Fus1∆IDR-FUSLC-27R, both before and after acute depletion of Myo52. It would be interesting to see if loss of Myo52 alters the rate of movement, or instead the movement stems from formin-mediated actin polymerization.

      We will measure these rates.

      (4) Also, Myo52 is known to interact with the mitotic formin For3. Does For3 colocalize with Myo52 and Fus1∆IDR-FUSLC-27R along actin cables?

      This is an interesting question for which we do not have an answer. For technical reasons, we do not have the tools to co-image For3 with Fus1∆IDR-FUSLC-27R because both are tagged with GFP. We feel that this question goes beyond the scope of this paper.

      (5) If Fus1∆IDR-FUSLC-27R is active, does having ectopic formin activity in mitotic cells affect actin cable architecture? This could be assessed by comparing phalloidin staining for wildtype and Fus1∆IDR-FUSLC-27R cells.

      We are not sure what the purpose of this experiment is, or how informative it would be. If it is to evaluate whether Fus1∆IDR-FUSLC-27R is active, our current data already demonstrates this. Indeed, Fus1∆IDR-FUSLC-27R recruits Myo52 in a F-actin and FH2 domain-dependent manner (shown in Figure 5B and 5G), which demonstrates that Fus1∆IDR-FUSLC-27R FH2 domain is active. Even though Fus1∆IDR-FUSLC-27R assembles actin, we predict that its effect on general actin organization will be weak. Indeed, it is expressed under endogenous fus1 promoter, leading to very low expression levels during mitotic growth, such that only a subset of cells exhibit a Fus1 focus. Furthermore, most of these Fus1 foci are at or close to cell poles, where linear actin cables are assembled by For3, such that they may not have a strong disturbing effect. Because analysis of actin cable organization by phalloidin staining is difficult (due to the more strongly staining actin patches), cells with clear change in organization predicted to be rare in the population, and the gain in knowledge not transformative, we are not keen to do this experiment.

      Minor Comments:

      Prior studies are referenced appropriately. Text and figures are clear and accurate. My only suggestion would be Figure 1E-H could be moved to the supplemental material, due to their extremely technical nature. I believe this would help the broad audience focus on the experimental design mapped out in Figure 1A-D.

      We are relatively neutral about this. If this suggestion is supported by the Editor, we can move these panels to supplement.

      Reviewer #3 (Significance (Required)):

      Significance: This study provides an improved imaging method for detecting the spatial distributions of proteins below 100 nm, providing new insights about how a relatively small cellular structure is organized. The use of three-color cell imaging to accurately measure accumulation rates of molecular components of the fusion focus provides new insight into the development of this structure and its roles in mating. This method could be applied to other multi-protein structures found in different cell types. This work uses rigorously genetic tools such as knockout, knockdown and point mutants to dissect the roles of the formin Fus1 and Type V myosin Myo52 in creating a proper fusion focus. The study could be improved by biochemical assays to test whether Myo52 and Fus1 directly interact, since the interaction is only shown by co-immunoprecipitation from extracts, which may reflect an indirect interaction.

      Indeed, future studies should dissect the Fus1-Myo52 interaction, to determine whether it is direct and identify mutants that impair it.

      I believe this work advances the cell-mating field by providing others with a spatial and temporal map of conserved factors arriving to the mating site. Additionally, they identified a way to study a mating specific protein in mitotically dividing cells, offering future questions to address.

      This study should appeal to a range of basic scientists interested in cell biology, the cytoskeleton, and model organisms. The three-colored quantitative imaging could be applied to defining the architecture of many other cellular structures in different systems. Myosin and actin scientists will be interested in how this work expands the interplay of these two fields.

      I am a cell biologist with expertise in live cell imaging, genetics and biochemistry.

      We thank the reviewer for their appreciation of our work.

    1. Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e. spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments including multiple species, tasks, behavioral modality, and pharmacological interventions.

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in figure 3b and c are provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide-open the possibilities for types of data, stimuli, and tasks a simplistic neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments - especially in the context of cross-experiment predictions.

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly.

      Weaknesses:

      The model boasts an incredible versatility across tasks and stimulus configurations and its overall scope of the model is to understand how and what relevant sensory information is extracted from a stimulus. We still need to exercise care when interpreting its parameters, especially considering the broader context of top-down control of perception and that some multisensory mappings may not be derivable purely from stimulus statistics (e.g., the complementary nature of some phonemes/visemes).

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e., spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments, including multiple species, tasks, behavioral modalities, and pharmacological interventions.

      Thanks for the kind words!

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even a single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli, and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in Figures 3b and c is provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - Drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide open the possibilities for types of data, stimuli, and tasks a simplistic, neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments, especially in the context of cross-experiment predictions (but see some criticism of that below).

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly (but see a related concern below).

      We sincerely thank the reviewer for their thoughtful and generous comments. We are especially pleased that the core strengths of the model—its stimulus-computable architecture, biological grounding, modularity, and cross-domain applicability—were clearly recognized. As the reviewer rightly notes, removing researcher-defined abstractions and working directly from naturalistic stimuli opens the door to uncovering previously overlooked dynamics in complex multisensory signals, such as the spatial and temporal richness of audiovisual speech.

      We also appreciate the recognition of the model’s origins in a simple organism and its generalization across species and behaviors. This phylogenetic continuity reinforces our view that the MCD captures a fundamental computation with wide-ranging implications. Finally, we are grateful for the reviewer’s emphasis on the model’s predictive power across tasks and datasets with few or no free parameters—a property we see as key to both its parsimony and explanatory utility.

      We have highlighted these points more explicitly in the revised manuscript, and we thank the reviewer for their generous and insightful endorsement of the work.

      Weaknesses:

      There is an insufficient level of detail in the methods about model fitting. As a result, it's unclear what data the models were fitted and validated on. Were models fit individually or on average group data? Each condition separately? Is the model predictive of unseen data? Was the model cross-validated? Relatedly, the manuscript mentions a randomization test, but the shuffled data produces model responses that are still highly correlated to behavior despite shuffling. Could it be that any stimulus that varies in AV onset asynchrony can produce a psychometric curve that matches any other task with asynchrony judgements baked into the task? Does this mean all SJ or TOJ tasks produce correlated psychometric curves? Or more generally, is Pearson's correlation insensitive to subtle changes here, considering psychometric curves are typically sigmoidal? Curves can be non-overlapping and still highly correlated if one is, for example, scaled differently. Would an error term such as mean-squared or root mean-squared error be more sensitive to subtle changes in psychometric curves? Alternatively, perhaps if the models aren't cross-validated, the high correlation values are due to overfitting?

      The reviewer is right: the current version of the manuscript only provides limited information about parameter fitting. In the revised version of the manuscript, we included a parameter estimation and generalizability section that includes all information requested by the reviewer.

      To test whether using the MSE instead of Pearson correlation led to a similar estimated set of parameter values, we repeated the fitting using the MSE. The parameter estimated with this method (TauV, TauA, TauBim) closely followed those estimated using Pearson correlation (TauV, TauA, TauBim). Given the similarity of these results, we have chosen not to include further figures, however this analysis is now included in the new section (pages 23-24).

      Regarding the permutation test, it is expected that different stimuli produce analogous psychometric functions: after all, all studies relied on stimuli containing identical manipulation of lags. As a result, MCD population responses tend to be similar across experiments. Therefore, it is not a surprise that the permuted distribution of MCD-data correlation in Supplementary Figure 1K has a mean as high as 0.97. However, what is important is to demonstrate that the non-permuted dataset has an even higher goodness of fit. Supplementary Figure 1K demonstrates that none of the permuted stimuli could outperform the non-permuted dataset; the mean of the non-permuted distribution is 4.7 (standard deviations) above the mean of the already high  permuted distribution.

      We believe the new section, along with the present response, fully addresses the legitimate concerns of the reviewer.

      While the model boasts incredible versatility across tasks and stimulus configurations, fitting behavioral data well doesn't mean we've captured the underlying neural processes, and thus, we need to be careful when interpreting results. For example, the model produces temporal parameters fitting rat behavior that are 4x faster than when fitting human data. This difference in slope and a difference at the tails were interpreted as differences in perceptual sensitivity related to general processing speeds of the rat, presumably related to brain/body size differences. While rats no doubt have these differences in neural processing speed/integration windows, it seems reasonable that a lot of the differences in human and rat psychometric functions could be explained by the (over)training and motivation of rats to perform on every trial for a reward - increasing attention/sensitivity (slope) - and a tendency to make mistakes (compression evident at the tails). Was there an attempt to fit these data with a lapse parameter built into the decisional model as was done in Equation 21? Likewise, the fitted parameters for the pharmacological manipulations during the SJ task indicated differences in the decisional (but not the perceptual) process and the article makes the claim that "all pharmacologically-induced changes in audiovisual time perception" can be attributed to decisional processes "with no need to postulate changes in low-level temporal processing." However, those papers discuss actual sensory effects of pharmacological manipulation, with one specifically reporting changes to response timing. Moreover, and again contrary to the conclusions drawn from model fits to those data, both papers also report a change in psychometric slope/JND in the TOJ task after pharmacological manipulation, which would presumably be reflected in changes to the perceptual (but not the decisional) parameters.

      Fitting or predicting behaviour does not in itself demonstrate that a model captures the underlying neural computations—though it may offer valuable constraints and insights. In line with this, we were careful not to extrapolate the implications of our simulations to specific neural mechanisms.

      Temporal sensitivity is, by definition, a behavioural metric, and—as the reviewer correctly notes—its estimation may reflect a range of contributing factors beyond low-level sensory processing, including attention, motivation, and lapse rates (i.e., stimulus-independent errors). In Equation 21, we introduced a lapse parameter specifically to account for such effects in the context of monkey eye-tracking data. For the rat datasets, however, the inclusion of a lapse term was not required to achieve a close fit to the psychometric data (ρ = 0.981). While it is likely that adding a lapse component would yield a marginally better fit, the absence of single-trial data prevents us from applying model comparison criteria such as AIC or BIC to justify the additional parameter. In light of this, and to avoid unnecessary model complexity, we opted not to include a lapse term in the rat simulations.

      With respect to the pharmacological manipulation data, we acknowledge the reviewer’s point that observed changes in slope and bias could plausibly arise from alterations at either the sensory or decisional level—or both. In our model, low-level sensory processing is instantiated by the MCD architecture, which outputs the MCDcorr and MCDlag signals that are then scaled and integrated during decision-making. Importantly, this scaling operation influences the slope of the resulting psychometric functions, such that changes in slope can arise even in the absence of any change to the MCD’s temporal filters. In our simulations, the temporal constants of the MCD units were fixed to the values estimated from the non-pharmacological condition (see parameter estimation section above), and only the decision-related parameters were allowed to vary. From this modelling perspective, the behavioural effects observed in the pharmacological datasets can be explained entirely by changes at the decisional level. However, we do not claim that such an explanation excludes the possibility of genuine sensory-level changes. Rather, we assert that our model can account for the observed data without requiring modifications to early temporal tuning.

      To rigorously distinguish sensory from decisional effects, future experiments will need to employ stimuli with richer temporal structure—e.g., temporally modulated sequences of clicks and flashes that vary in frequency, phase, rhythm, or regularity (see Fujisaki & Nishida, 2007; Denison et al., 2012; Parise & Ernst, 2016, 2025; Locke & Landy, 2017; Nidiffer et al., 2018). Such stimuli engage the MCD in a more stimulus-dependent manner, enabling a clearer separation between early sensory encoding and later decision-making processes. Unfortunately, the current rat datasets—based exclusively on single click-flash pairings—lack the complexity needed for such disambiguation. As a result, while our simulations suggest that the observed pharmacologically induced effects can be attributed to changes in decision-level parameters, they do not rule out concurrent sensory-level changes.

      In summary, our results indicate that changes in the temporal tuning of MCD units are not necessary to reproduce the observed pharmacological effects on audiovisual timing behaviour. However, we do not assert that such changes are absent or unnecessary in principle. Disentangling sensory and decisional contributions will ultimately require richer datasets and experimental paradigms designed specifically for this purpose. We have now modified the results section (page 6) and the discussion (page 11) to clarify these points.

      The case for the utility of a stimulus-computable model is convincing (as I mentioned above), but its framing as mission-critical for understanding multisensory perception is overstated, I think. The line for what is "stimulus computable" is arbitrary and doesn't seem to be followed in the paper. A strict definition might realistically require inputs to be, e.g., the patterns of light and sound waves available to our eyes and ears, while an even more strict definition might (unrealistically) require those stimuli to be physically present and transduced by the model. A reasonable looser definition might allow an "abstract and low-dimensional representation of the stimulus, such as the stimulus envelope (which was used in the paper), to be an input. Ultimately, some preprocessing of a stimulus does not necessarily confound interpretations about (multi)sensory perception. And on the flip side, the stimulus-computable aspect doesn't necessarily give the model supreme insight into perception. For example, the MCD model was "confused" by the stimuli used in our 2018 paper (Nidiffer et al., 2018; Parise & Ernst, 2025). In each of our stimuli (including catch trials), the onset and offset drove strong AV temporal correlations across all stimulus conditions (including catch trials), but were irrelevant to participants performing an amplitude modulation detection task. The to-be-detected amplitude modulations, set at individual thresholds, were not a salient aspect of the physical stimulus, and thus only marginally affected stimulus correlations. The model was of course, able to fit our data by "ignoring" the on/offsets (i.e., requiring human intervention), again highlighting that the model is tapping into a very basic and ubiquitous computational principle of (multi)sensory perception. But it does reveal a limitation of such a stimulus-computable model: that it is (so far) strictly bottom-up.

      We appreciate the reviewer’s thoughtful engagement with the concept of stimulus computability. We agree that the term requires careful definition and should not be taken as a guarantee of perceptual insight or neural plausibility. In our work, we define a model as “stimulus-computable” if all its inputs are derived directly from the stimulus, rather than from experimenter-defined summary descriptors such as temporal lag, spatial disparity, or cue reliability. In the context of multisensory integration, this implies that a model must account not only for how cues are combined, but also for how those cues are extracted from raw inputs—such as audio waveforms and visual contrast sequences.

      This distinction is central to our modelling philosophy. While ideal observer models often specify how information should be combined once identified, they typically do not address the upstream question of how this information is extracted from sensory input. In that sense, models that are not stimulus-computable leave out a key part of the perceptual pipeline. We do not present stimulus computability as a marker of theoretical superiority, but rather as a modelling constraint that is necessary if one’s aim is to explain how structured sensory input gives rise to perception. This is a view that is also explicitly acknowledged and supported by Reviewer 2.

      Framed in Marr’s (1982) terms, non–stimulus-computable models tend to operate at the computational level, defining what the system is doing (e.g., computing a maximum likelihood estimate), whereas stimulus-computable models aim to function at the algorithmic level, specifying how the relevant representations and operations might be implemented. When appropriately constrained by biological plausibility, such models may also inform hypotheses at the implementational level, pointing to potential neural substrates that could instantiate the computation.

      Regarding the reviewer’s example illustrating a limitation of the MCD model, we respectfully note that the account appears to be based on a misreading of our prior work. In Parise & Ernst (2025), where we simulated the stimuli from Nidiffer et al. (2018), the MCD model reproduced participants’ behavioural data without any human intervention or adjustment. The model was applied in a fully bottom-up, stimulus-driven manner, and its output aligned with observer responses as-is. We suspect the confusion may stem from analyses shown in Figure 6 - Supplement Figure 5 of Parise & Ernst (2025), where we investigated the lack of a frequency-doubling effect in the Nidiffer et al. data. However, those analyses were based solely on the Pearson correlation between auditory and visual stimulus envelopes and did not involve the MCD model. No manual exclusion of onset/offset events was applied, nor was the MCD used in those particular figures. We also note that Parise & Ernst (2025) is a separate, already published study and is not the manuscript currently under review. 

      In summary, while we fully agree that stimulus computability does not resolve all the complexities of multisensory perception (see comments below about speech), we maintain that it provides a valuable modelling constraint—one that enables robust, generalisable predictions when appropriately scoped. 

      The manuscript rightly chooses to focus a lot of the work on speech, fitting the MCD model to predict behavioral responses to speech. The range of findings from AV speech experiments that the MCD can account for is very convincing. Given the provided context that speech is "often claimed to be processed via dedicated mechanisms in the brain," a statement claiming a "first end-to-end account of multisensory perception," and findings that the MCD model can account for speech behaviors, it seems the reader is meant to infer that energetic correlation detection is a complete account of speech perception. I think this conclusion misses some facets of AV speech perception, such as integration of higher-order, non-redundant/correlated speech features (Campbell, 2008) and also the existence of top-down and predictive processing that aren't (yet!) explained by MCD. For example, one important benefit of AV speech is interactions on linguistic processes - how complementary sensitivity to articulatory features in the auditory and visual systems (Summerfield, 1987) allow constraint of linguistic processes (Peelle & Sommers, 2015; Tye-Murray et al., 2007).

      We thank the reviewer for their thoughtful comments, and especially for the kind words describing the range of findings from our AV speech simulations as “very convincing.”

      We would like to clarify that it is not our view that speech perception can be reduced to energetic correlation detection. While the MCD model captures low- to mid-level temporal dependencies between auditory and visual signals, we fully agree that a complete account of audiovisual speech perception must also include higher-order processes—including linguistic mechanisms and top-down predictions. These are critical components of AV speech comprehension, and lie beyond the scope of the current model.

      Our use of the term “end-to-end” is intended in a narrow operational sense: the model transforms raw audiovisual input (i.e., audio waveforms and video frames) directly into behavioural output (i.e., button press responses), without reliance on abstracted stimulus parameters such as lag, disparity or reliability. It is in this specific technical sense that the MCD offers an end-to-end model. We have revised the manuscript to clarify this usage to avoid any misunderstanding.

      In light of the reviewer’s valuable point, we have now edited the Discussion to acknowledge the importance of linguistic processes (page 13) and to clarify what we mean by end-to-end account (page 11). We agree that future work will need to explore how stimulus-computable models such as the MCD can be integrated with broader frameworks of linguistic and predictive processing (e.g., Summerfield, 1987; Campbell, 2008; Peelle & Sommers, 2015; Tye-Murray et al., 2007).

      References

      Campbell, R. (2008). The processing of audio-visual speech: empirical and neural bases. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1001-1010. https://doi.org/10.1098/rstb.2007.2155

      Nidiffer, A. R., Diederich, A., Ramachandran, R., & Wallace, M. T. (2018). Multisensory perception reflects individual differences in processing temporal correlations. Scientific Reports 2018 8:1, 8(1), 1-15. https://doi.org/10.1038/s41598-018-32673-y

      Parise, C. V, & Ernst, M. O. (2025). Multisensory integration operates on correlated input from unimodal transient channels. ELife, 12. https://doi.org/10.7554/ELIFE.90841

      Peelle, J. E., & Sommers, M. S. (2015). Prediction and constraint in audiovisual speech perception. Cortex, 68, 169-181. https://doi.org/10.1016/j.cortex.2015.03.006

      Summerfield, Q. (1987). Some preliminaries to a comprehensive account of audio-visual speech perception. In B. Dodd & R. Campbell (Eds.), Hearing by Eye: The Psychology of Lip-Reading (pp. 3-51). Lawrence Erlbaum Associates.

      Tye-Murray, N., Sommers, M., & Spehar, B. (2007). Auditory and Visual Lexical Neighborhoods in Audiovisual Speech Perception: Trends in Amplification, 11(4), 233-241. https://doi.org/10.1177/1084713807307409

      Reviewer #2 (Public review):

      Summary:

      Building on previous models of multisensory integration (including their earlier correlation-detection framework used for non-spatial signals), the author introduces a population-level Multisensory Correlation Detector (MCD) that processes raw auditory and visual data. Crucially, it does not rely on abstracted parameters, as is common in normative Bayesian models," but rather works directly on the stimulus itself (i.e., individual pixels and audio samples). By systematically testing the model against a range of experiments spanning human, monkey, and rat data, the authors show that their MCD population approach robustly predicts perception and behavior across species with a relatively small (0-4) number of free parameters.

      Strengths:

      (1) Unlike prior Bayesian models that used simplified or parameterized inputs, the model here is explicitly computable from full natural stimuli. This resolves a key gap in understanding how the brain might extract "time offsets" or "disparities" from continuously changing audio-visual streams.

      (2) The same population MCD architecture captures a remarkable range of multisensory phenomena, from classical illusions (McGurk, ventriloquism) and synchrony judgments, to attentional/gaze behavior driven by audio-visual salience. This generality strongly supports the idea that a single low-level computation (correlation detection) can underlie many distinct multisensory effects.

      (3) By tuning model parameters to different temporal rhythms (e.g., faster in rodents, slower in humans), the MCD explains cross-species perceptual data without reconfiguring the underlying architecture.

      We thank the reviewer for their positive evaluation of the manuscript, and particularly for highlighting the significance of the model's stimulus-computable architecture and its broad applicability across species and paradigms. Please find our responses to the individual points below.

      Weaknesses:

      (1) The authors show how a correlation-based model can account for the various multisensory integration effects observed in previous studies. However, a comparison of how the two accounts differ would shed light on the correlation model being an implementation of the Bayesian computations (different levels in Marr's hierarchy) or making testable predictions that can distinguish between the two frameworks. For example, how uncertainty in the cue combined estimate is also the harmonic mean of the unimodal uncertainties is a prediction from the Bayesian model. So, how the MCD framework predicts this reduced uncertainty could be one potential difference (or similarity) to the Bayesian model.

      We fully agree with the reviewer that a comparison between the correlation-based MCD model and Bayesian accounts is valuable—particularly for clarifying how the two frameworks differ conceptually and where they may converge.

      As noted in the revised manuscript, the key distinction lies in the level of analysis described by Marr (1982). Bayesian models operate at the computational level, describing what the system is aiming to compute (e.g., optimal cue integration). In contrast, the MCD functions at the algorithmic level, offering a biologically plausible mechanism for how such integration might emerge from stimulus-driven representations.

      In this context, the MCD provides a concrete, stimulus-grounded account of how perceptual estimates might be constructed—potentially implementing computations with Bayesian-like characteristics (e.g., reduced uncertainty, cue weighting). Thus, the two models are not mutually exclusive but can be seen as complementary: the MCD may offer an algorithmic instantiation of computations that, at the abstract level, resemble Bayesian inference.

      We have now updated the manuscript to explicitly highlight this relationship (pages 2 and 11). In the revised manuscript, we also included a new figure (Figure 5) and movie (Supplementary Movie 3), to show how the present approach extends previous Bayesian models for the case of cue integration (i.e., the ventriloquist effect).

      (2) The authors show a good match for cue combination involving 2 cues. While Bayesian accounts provide a direction for extension to more cues (also seen empirically, for eg, in Hecht et al. 2008), discussion on how the MCD model extends to more cues would benefit the readers.

      We thank the reviewer for this insightful comment: extending the MCD model to include more than two sensory modalities is a natural and valuable next step. Indeed, one of the strengths of the MCD framework lies in its modularity. Let us consider the MCDcorr​ output (Equation 6), which is computed as the pointwise product of transient inputs across modalities. Extending this to include a third modality, such as touch, is straightforward: MCD units would simply multiply the transient channels from all three modalities, effectively acting as trimodal coincidence detectors that respond when all inputs are aligned in time and space.

      By contrast, extending MCDlag is less intuitive, due to its reliance on opponency between two subunits (via subtraction). A plausible solution is to compute MCDlag in a pairwise fashion (e.g., AV, VT, AT), capturing relative timing across modality pairs.

      Importantly, the bulk of the spatial integration in our framework is carried by MCDcorr, which generalises naturally to more than two modalities. We have now formalised this extension and included a graphical representation in a supplementary section of the revised manuscript.

      Likely Impact and Usefulness:

      The work offers a compelling unification of multiple multisensory tasks- temporal order judgments, illusions, Bayesian causal inference, and overt visual attention - under a single, fully stimulus-driven framework. Its success with natural stimuli should interest computational neuroscientists, systems neuroscientists, and machine learning scientists. This paper thus makes an important contribution to the field by moving beyond minimalistic lab stimuli, illustrating how raw audio and video can be integrated using elementary correlation analyses.

      Reviewer #1 (Recommendations for the authors):

      Recommendations:

      My biggest concern is a lack of specificity about model fitting, which is assuaged by the inclusion of sufficient detail to replicate the analysis completely or the inclusion of the analysis code. The code availability indicates a script for the population model will be included, but it is unclear if this code will provide the fitting details for the whole of the analysis.

      We thank the reviewer for raising this important point. A new methodological section has been added to the manuscript, detailing the model fitting procedures used throughout the study. In addition, the accompanying code repository now includes MATLAB scripts that allow full replication of the spatiotemporal MCD simulations.

      Perhaps it could be enlightening to re-evaluate the model with a measure of error rather than correlation? And I think many researchers would be interested in the model's performance on unseen data.

      The model has now been re-evaluated using mean squared error (MSE), and the results remain consistent with those obtained using Pearson correlation. Additionally, we have clarified which parts of the study involve testing the model on unseen data (i.e., data not used to fit the temporal constants of the units). These analyses are now included and discussed in the revised fitting section of the manuscript (pages 23-24).

      Otherwise, my concerns involve the interpretation of findings, and thus could be satisfied with minor rewording or tempering conclusions.

      The manuscript has been revised to address these interpretative concerns, with several conclusions reworded or tempered accordingly. All changes are marked in blue in the revised version.

      Miscellanea:

      Should b0 in equation 10 be bcrit to match the below text?

      Thank you for catching this inconsistency. We have corrected Equation 10 (and also Equation 21) to use the more transparent notation bcrit instead of b0, in line with the accompanying text.

      Equation 23, should time be averaged separately? For example, if multiple people are speaking, the average correlation for those frames will be higher than the average correlation across all times.

      We thank the reviewer for raising this thoughtful and important point. In response, we have clarified the notation of Equation 23 in the revised manuscript (page 20). Specifically, we now denote the averaging operations explicitly as spatial means and standard deviations across all pixel locations within each frame.

      This equation computes the z-score of the MCD correlation value at the current gaze location, normalized relative to the spatial distribution of correlation values in the same frame. That is, all operations are performed at the frame level, not across time. This ensures that temporally distinct events are treated independently and that the final measure reflects relative salience within each moment, not a global average over the stimulus. In other words, the spatial distribution of MCD activity is re-centered and rescaled at each frame, exactly to avoid the type of inflation or confounding the reviewer rightly cautioned against.

      Reviewer #2 (Recommendations for the authors):

      The authors have done a great job of providing a stimulus computable model of cue combination. I had just a few suggestions to strengthen the theoretical part of the paper:

      (1) While the authors have shown a good match between MCD and cue combination, some theoretical justification or equivalence analysis would benefit readers on how the two relate to each other. Something like Zhang et al. 2019 (which is for motion cue combination) would add to the paper.

      We agree that it is important to clarify the theoretical relationship between the Multisensory Correlation Detector (MCD) and normative models of cue integration, such as Bayesian combination. In the revised manuscript, we have now modified the introduction and added a paragraph in the Discussion addressing this link more explicitly. In brief, we see the MCD as an algorithmic-level implementation (in Marr’s terms) that may approximate or instantiate aspects of Bayesian inference.

      (2) Simulating cue combination for tasks that require integration of more than two cues (visual, auditory, haptic cues) would more strongly relate the correlation model to Bayesian cue combination. If that is a lot of work, at least discussing this would benefit the paper

      This point has now been addressed, and a new paragraph discussing the extension of the MCD model to tasks involving more than two sensory modalities has been added to the Discussion section.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on the hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.

      Thanks.

      Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Thanks.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      This study was originally designed based on previous findings indicating that lifespan extension is only effective in males, leading to the exclusion of females from the analysis. The primary focus of our research was on the transcriptional changes and serum endocrine alterations induced by 17α-estradiol in aged males compared to untreated aged males. We believe that even in the absence of female subjects, the significant effects of 17α-estradiol on metabolism in the hypothalamus, synapses, and endocrine system remain evident, particularly regarding the expression levels of GnRH and testosterone. Notably, lower overall metabolism, increased synaptic activity, and elevated levels of GnRH and testosterone are strong indicators of health and well-being in males, supporting the validity of our primary conclusions. However, including female controls would enhance the depth of our findings. If female controls were incorporated, we propose redesigning the sample groups to include aged male control, aged female control, aged female treated, aged male treated, as well as young male control, young male treated, young female control, and young female treated. We regret that we cannot provide this data in the short term. Nevertheless, we believe this reviewer’s creative idea presents a valuable avenue for future research on this topic. In this study, we emphasize the role of 17α-estradiol in overall metabolism, synaptic function, GnRH, and testosterone in aged males and underscore the importance of supervised clustering of neuropeptide-secreting neurons in the hypothalamus.

      (2) It is not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension.

      Thanks for the reminding. 17α-estradiol was reported to extend lifespan in male rats similar to male mice (PMID: 33289482). We have added the valuable reference to introduction in the new version.  

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well-described (Figure 1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      We have reviewed reports describing changes in cell numbers following 17α-estradiol treatment in the brain, using the keywords "17α-estradiol," "17alpha-estradiol," and "microglia" or "astrocyte." Only a limited amount of data was obtained. We found one article indicating that 17α-estradiol treatment in Tg (AβPP(swe)/PS1(ΔE9)) model mice resulted in a decreased microglial cell number compared to the placebo (AβPP(swe)/PS1(ΔE9) mice), but this change was not significant when compared to the non-transgenic control (PMID: 21157032). The transgenic AβPP(swe)/PS1(ΔE9) mouse model may differ from our wild-type aging rat model in this context.

      Moreover, the calculation of cell numbers was based on visual observation under a microscope across several brain tissue slices. This traditional method often yields controversial results. For example, oligodendrocytes in the corpus callosum, fornix, and spinal cord have been reported to be 20-40% more numerous in males than in females based on microscopic observations (PMID: 16452667). In contrast, another study found no significant difference in the number of oligodendrocytes between sexes when using immunohistochemistry staining (PMID: 18709647). Such discrepancies arising from traditional observational methods are inevitable.

      We believe the data presented in this article are reliable because the cell number and cell ratio data were derived from high-throughput cell counting of the entire hypothalamus using single-cell suspension and droplet wrapping (10x Genomics).

      (4) A more detailed analysis of glial cell types within the hypothalamus in response to drugs should be provided.

      We provided more enrichment analysis data of differentially expressed genes between Y, O, and O.T in microglia and astrocytes in Figure 2—figure supplement 3. In this supplemental data, we found unlike that in neurons, Micro displayed lower levels of synapse-related cellular processes in O.T. compared to O.

      (5) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      We also noted the inappropriate claim and have changed "senescent phenotype" to "stressed phenotype" and "abnormal phenotype" in both the abstract and results sections. The stressed phenotype could be induced by heightened functional activity in the cells, potentially indicating higher cellular activity. The GnRH and CRH neurons discussed in this paper may represent such a case, as illustrated by the observed high serum GnRH, testosterone, and cortisol levels. This revision suggestion is highly valuable and constructive for our understanding of the unique physiological characteristics revealed by these data.

      Reviewer #2 (Public Review):

      Summary:

      Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels as those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons in mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.

      Strengths:

      (1) Single-nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.

      Thanks.

      (2) There is a variety of functions used that allow the differential analysis of a very complex type of data. This led to a better comparison between the different groups on many levels.

      Thanks.

      (3) There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression

      Thanks.

      Weaknesses

      (1) One main control group is missing from the study, the young males treated with 17α-Estradiol.

      Given that the treatment period lasts six months, which extends beyond the young male rats' age range, we aimed to investigate the perturbation of 17α-Estradiol on the normal aging process. Including data from young males could potentially obscure the treatment's effects in aged males due to age effects, though similar effects between young and aged animals may exist. Long-term treatment of hormone may exert more developmental effects on the young than the old. Consequently, we decided to exclude this group from our initial sample design. We apologize for this omission.

      (2) Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.

      The precise targets of 17α-Estradiol within the hypothalamus remain unresolved. Selecting a specific nucleus for study is challenging. The supervised clustering method described in this manuscript allows us to identify the more sensitive neuron subtypes influenced by 17α-Estradiol and aging across the entire hypothalamus, without the need to isolate specific nuclei in a disturbed hypothalamic environment.

      (3) Although the authors claim to have several findings, the data fail to support these claims. You may mean the claim as the senescent phenotype in Crh neuron induced by 17a-estradiol.

      Thanks. We have changed the "senescent phenotype" to "stressed phenotype" in the abstract and results to avoid such claim. The stressed phenotype may be induced by heightened functional activity in the cells, potentially indicating higher cellular activity.

      (4) The study is about improving ageing but no physiological data from the study demonstrated such a claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.

      The primary objective of this study is to elucidate the effects of 17α-Estradiol on the endocrine system in the aging hypothalamus; exploring anti-aging effects is not the main focus. From the characteristics of the aging hypothalamus, we know that down-regulated GnRH and testosterone levels, along with elevated mTOR signaling, are indicators of aging in these organs from previous publications (PMID: 37886966, PMID: 37048056, PMID: 22884327). The contrasting signaling networks related to metabolism and synaptic processes significantly differentiate young and aging hypothalami, and 17α-Estradiol helps rebalance these networks, suggesting its potential anti-aging effects.

      (5) Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression are related to metabolic, synaptic, or other functions.

      The study focuses on investigating cellular responses and endocrine changes in the aging hypothalamus induced by 17α-estradiol, utilizing single-nucleus RNA sequencing (snRNA-seq) and a novel data mining methodology to analyze various neuron subtypes. It is important to note that this study does not mainly aim to explore the anti-aging effects. Consequently, we have revised the claim in the abstract from “the effects of 17α-estradiol in anti-aging in neurons” to “the effects of 17α-estradiol on aging neurons.” We observed that the lower overall metabolism and increased expression levels of cellular processes in the synapses align with findings previously reported regarding 17α-estradiol. To address the lack of physiological data and the challenges in measuring multiple endocrine factors due to their volatile nature, we employed several bidirectional Mendelian analyses of various genome-wide association study (GWAS) data related to these serum endocrine factors to identify their mutual causal effects.

      Reviewing Editor Comment:

      Based on the Public Reviews and Recommendations for Authors, the Reviewers strongly recommend that revisions include an experimental demonstration of the physiological effects of the treatment on ageing in rats as well as the CRH-senescence link. Additional analysis of the glia would greatly strengthen the study, as would inclusion of females and young male controls. The important point was also raised that the work linking 17a-estradiol was performed in mice, and the link with lifespan in rats is not known. Discussion of this point is recommended.

      We thank the reviewers for their constructive feedback. Regarding the recommendations in the Public Reviews and Recommendations for Authors:

      a)  Physiological effects & CRH-senescence link:

      We acknowledge that 17α-estradiol has been reported to extend lifespan in male rats, consistent with findings in male mice (PMID: 33289482). This point has now been noted in the Introduction. We regret that further experimental validation of the treatment's physiological effects on aging in rats was beyond the scope of this study.

      b) Phenotype terminology:

      In response to concerns about the "senescent" characterization of CRH neurons, we have revised this terminology to "stressed phenotype" throughout the abstract and results. While we were unable to conduct additional experiments to confirm senescence markers, this revised description better reflects the heightened cellular activity observed (as evidenced by elevated serum GnRH and testosterone levels), without implying confirmed senescence.

      c) Glial cell analysis:

      To address questions about glial cell function during treatment, we have added new enrichment analysis data of differentially expressed genes in microglia and astrocytes from young (Y), old (O), and old treated (O.T) groups in Figure 2—figure supplement 3. This analysis reveals that microglia exhibit contrasting synaptic-related cellular processes compared to total neurons.

      d) Female and young controls:

      We sincerely apologize for the absence of female subjects and young male controls in the current study. The reviewers' suggestion to examine the male-specific effects of 17α-estradiol using female controls represents an excellent direction for future research, which we plan to pursue in upcoming studies.

      Reviewer #2 (Recommendations For The Authors):

      General comments:

      (1) The manuscript is very hard to read. Proofreading and editing by software or a professional seems necessary. The words "enhanced", "extensive" etc. are not always used in the right way.

      Thanks for the suggestion. We have revised the proofreading and editing. The words "enhanced" and "extensive" were also revised in most sentences.

      (2) The numbers of animals and samples are not well explained. Is it 9 rats overall or per group? If there are 8 testes samples per group, should we assume that there were 4 rats per group? The pooling of the hypothalamic how was it done? Were all the hypothalamic from each group pooled together? A small table with the animals per group and the samples would help.

      We appreciate your reminder regarding the initial mistake in our manuscript preparation. In the preliminary submission, we reported 9 rats based solely on sequencing data and data mining. The revised version (v1) now includes additional experimental data, with an effective total of 12 animals (4 per group). Unfortunately, we overlooked updating this information in the v1 submission. We have since added detailed information in the Materials and Methods sections: Animals, Treatment and Tissues, and snRNA-seq Data Processing, Batch Effect Correction, and Cell Subset Annotation.

      (3) The Clustering is wrong. There are genes in there that do not fall into any of the 3 categories: Neurotransmitters, Receptors, Hormones.

      We acknowledge the error in gene clustering and have implemented the following corrections:

      (a) The description has been updated to state: 'Vast majority of these subtypes were clustered by neuropeptides, hormones, and their receptors among all neurons.'

      (b) Genes not belonging to these three categories have been substantially removed.

      (c) The neuropeptide category (now including several growth hormones) has been expanded to 104 genes, while their corresponding receptors (including several sex hormone receptors) now comprise 105 genes.

      (4) The coloring of groups in the graphs is inconsistent. It must be more homogeneous to make it easier to identify.

      We have changed the colors of groups in Fig. 1D to make the color of cell clusters consistent in Fig. 1A-D.

      (5) The groups c1-c4 are not well explained. How did the authors come up with these?

      We have added more descriptions of c1-c4 in materials and methods in the new version.

      (6) In most cases it's not clear if the authors are talking about cell numbers that express a certain mRNA, the level of expression of a certain mRNA, or both. They need to do a better job using more precise descriptions instead of using general terms such as "signatures", "expression profiles", "affected neurons" etc. It is very hard to understand if the number of neurons is compared between the groups or the gene expression.

      We have changed the "signatures" to "gene signatures" to make it more accurate in meaning. The "affected neurons" were also changed to "sensitive neurons". But sorry that we were not able to find better alternatives to the "expression profiles".

      (7) Sometimes there are claims made without justification or a reference. For example, the claim about the senescence of CRH neurons due to the upregulation of mitochondrial genes and downregulation of adherence junction genes (lines 326-328) should be supported by a reference or own findings.

      The "senescence" here is not appropriate. We have changed it to "stressed phenotype" or "aberrant changes" in abstract and results.

      (8) Young males treated with Estradiol as a control group is necessary and it is missing.

      Your suggestion is appreciated; however, the treatment duration for aged mice (O.T) was set at 6 months, while the young mice were only 4 months old. This disparity makes it challenging to align treatment timelines for the young animals. The primary aim of this study is to investigate the perturbation of 17α-estradiol on the aging process, and any distinct effects due to age effect observed in young males might complicate our understanding of its role in aged males, though similar endocrine effects may exist in the young animals. Long-term treatment of hormone may exert more developmental effects on the young than the old. Therefore, we made the decision to exclude the young samples in our initial study design. We apologize for any confusion this may have caused.

      Specific Comments:

      Line 28: "elevated stresses and decreased synaptic activity": Please make this clearer. Can't claim changes in synaptic activity by gene expression.

      We have changed it to "the expression level of pathways involved in synapse"

      Line 32: "increased Oxytocin": serum Oxytocin.

      We have added the “serum”.

      Line 52 - 54: Any studies from rats?

      Thanks. In rats there is also reported that 17α-estradiol has similar metabolic roles as that in mice (PMID: 33289482) and we have added it to the refences. It’s very useful for this manuscript.

      Line 62 - 65: It wasn't investigated thoroughly in this paper so why was it suggested in the introduction?

      We have deleted this sentence as being suggested.

      Line 70: "synaptic activity" Same as line 28.

      We have changed it to "pathways involved in synaptic activity".

      Line 79: Why were aged rats caged alone and young by two? Could that introduce hypothalamic gene expression effects?

      The young males were bred together in peace. But the aged males will fight and should be kept alone.

      Lines 78, 99, 109-110: It is not clear how many animals per group were used and how many samples per group were used separately and/or grouped. Please be more specific.

      We have added these information to Materials and methods/Animals, treatment and tissues and Materials and methods/snRNA-seq data processing, batch effect correction, and cell subset annotation.

      Line 205: "in O" please add "versus young.".

      We have changed accordingly.

      Line 207: replace "were" with "was"

      We have alternatively changed the "proportion" to "proportions".

      Line 208: replace "that" with "compared to" and after "in O.T." add "compared to?"

      We have changed accordingly.

      Line 223: "O.T." compared to what? Figure?

      We have changed it accordingly.

      Line 227: Figure?

      We have added (Figure 1E) accordingly.

      Line 229: "synaptic activity" Same as line 28.

      We have revised it.

      Line 235: "synaptic activity" and "neuropeptide secretion" Same as line 28.

      We have revised it.

      Line 256:" interfered" please revise.

      We changed to "exerted".

      Line 263: "on the contrary" please revise.

      We have changed "on the contrary" to "opposite".

      Line 270: "conversed" did you mean "conserved"?

      We have changed "conversed" to "inversed".

      Line 296-298: Please explain. Why would these be side effects?

      It’s hard to explain, therefore, we deleted the words "side effects".

      Line 308: "synaptic activity" Same as line 28.

      We have changed it to "expression levels of synapse-related cellular processes".

      Line 314: "and sex hormone secretion and signaling"Isn't this expected?

      Yes, it is expected. We have added it to the sentence "and, as expected, sex hormone secretion and signaling".

      Line 325-328: Why is this senescence? Reference?

      We have added “potent” to it.

      Line 360-361: This doesn't show elevated synaptic activity.

      "elevated synaptic activity" was changed to "The elevated expression of synapse-related pathways"

      Line 363-364: "Unfortunately" is not a scientific expression and show bias.

      We have changed it to "Notably".

      Line 376: Similar as above.

      Yes, we have change it to "in contrast".

      Lines 382-385: This is speculation. Please move to discussion.

      Sorry for that. We think the causal effects derived from MR result is evidence. As such, we have not changed it.

      Line 389: Please revise "hormone expressing".

      We have changed it accordingly.

      Line 401: Isn't this effect expected due to feedback inhibition of the biochemical pathway? Please comment.

      The binding capability of 17alpha-estradiol to estrogen receptors and its role in transcriptional activation remain core questions surrounded by controversy. Earlier studies suggest that 17alpha-estradiol exhibits at least 200 times less activity than 17beta-estradiol (PMID: 2249627, PMID: 16024755). However, recent data indicate that 17alpha-estradiol shows comparable genomic binding and transcriptional activation through estrogen receptor α (Esr1) to that of 17beta-estradiol (PMID: 33289482). Additionally, there is evidence that 17alpha-estradiol has anti-estrogenic effects in rats (PMID: 16042770). These findings imply possible feedback inhibition via estrogen receptors. Furthermore, 17alpha-estradiol likely differs from 17beta-estradiol due to its unique metabolic consequences and its potential to slow aging in males, an effect not attributed to 17beta-estradiol. For instance, neurons are also targets of 17alpha-estradiol, with Esr1 not being the sole target (PMID: 38776045). Intriguingly, neurons expressing Ar and Esr1 ranked among the top 20 most perturbed receptor subtypes during aging (O vs Y), but were no longer ranked in this group following treatment (O.T vs Y and O.T vs O comparisons). This indicates that 17α-estradiol administration attenuated age-associated perturbation in these neuronal subtypes, which may be a consequence of potential feedback (Figure 3D). Nevertheless, the precise effective targets of 17alpha-estradiol are still unresolved.

      Line 409: This conclusion cannot be made because the effect is not statistically significant. Can say "trend" etc.

      Thanks for the recommendation. We have added "potential" in front of the conclusion.

      Line 426: "suggesting" please revise.

      sorry, it’s a verb.

      Lines 426-428: This is speculation. Please move to discussion.

      The elevated GnRH levels in O.T., observed through EIA analysis, suggest a deduction regarding the direct causal effects of 17alpha-estradiol on various endocrine factors related to feeding, energy homeostasis, reproduction, osmotic regulation, stress response, and neuronal plasticity through MR analysis. Thus, we have not amended our position. We apologize for any confusion.

      Lines 431-432: improved compared to what?

      The statement have been revised as " The most striking role of 17α-estradiol treatment revealed in this study showed that HPG axis was substantially improved in the levels of serum Gnrh and testosterone".

      Line 435: " Estrogen Receptor Antagonists". Please revise.

      Thanks for the recommendation. We have changed it to "estrogen receptor antagonists".

      Line 438" "Secrete". Please revise

      Sorry, it is "secret".

      Lines 439-449: None of this has been demonstrated. Please remove these conclusions.

      We appreciate the reviewer's scrutiny regarding lines 439-449. While these statements should not be interpreted as definitive conclusions from our current data, we propose they serve as clinically relevant discussion points worthy of exploration. Our findings demonstrate 17α-estradiol's role in modulating testosterone levels in aged males. This mechanistic insight warrants consideration of its therapeutic potential for age-related hypogonadism - a hypothesis we believe merits discussion given the compound's specific endocrine effects.

      Lines 450-457: No females were included in this study. Why? Also, why is this discussed? It is relevant but doesn't belong in this manuscript since it was not studied here.

      Testosterone levels are crucial for male health, while estradiol levels are essential for the health and fertility of females. Previous studies have demonstrated that 17α-estradiol does not contribute to lifespan extension in females. Given the effects of 17α-estradiol on males—specifically, its role in promoting testosterone and reducing estradiol levels—we believe it is important to discuss the potential sex-biased effects of 17α-estradiol, as this could inform future investigations. We have refined this section to clarify that these points represent mechanistic hypotheses derived from our male data and existing literature, not conclusions about unstudied female physiology. This framing maintains the discussion's scientific value while respecting the study's scope.

      Lines 458-459: This was not demonstrated in this article. Please remove.

      We have restricted the claim to "expression level of energy metabolism in hypothalamic neurons".

      Line 464: "Promoted lifespan extension" Not demonstrated. Please remove.

      At the end of the sentence it was revised as "which may be a contributing factor in promoting lifespan extension".

      Line 466: "Showed" No.

      The whole sentence was deleted in the new version.

      Line 483: "the sex-based effects". Not studied here.

      Since the changes in testosterone levels are significant in this dataset and this hormone has a sex-biased nature, we find it worthwhile to suggest this as a topic for future investigation. We have added "which needs further verification in the future" at the end of this sentence.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this manuscript, Dillard and colleagues integrate cross-species genomic data with a systems approach to identify potential driver genes underlying human GWAS loci and establish the cell type(s) within which these genes act and potentially drive disease. Specifically, they utilize a large single-cell RNA-seq (scRNA-seq) dataset from an osteogenic cell culture model - bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) - from a genetically diverse outbred mouse population called the Diversity Outbred (DO) stock to discover network driver genes that likely underlie human bone mineral density (BMD) GWAS loci. The DO mice segregate over 40M single nucleotide variants, many of which affect gene expression levels, therefore making this an ideal population for systems genetic and co-expression analyses. The current study builds on previously published work from the same group that used co-expression analysis to identify co-expressed "modules" of genes that were enriched for BMD GWAS associations. In this study, the authors utilize a much larger scRNA-seq dataset from 80 DO BMSC-OBs, infer co-expression-based and Bayesian networks for each identified mesenchymal cell type, focused on networks with dynamic expression trajectories that are most likely driving differentiation of BMSC-OBs, and then prioritized genes ("differentiation driver genes" or DDGs) in these osteogenic differentiation networks that had known expression or splicing QTLs (eQTL/sQTLs) in any GTEx tissue that colocalized with human BMD GWAS loci. The systems analysis is impressive, the experimental methods are described in detail, and the experiments appear to be carefully done. The computational analysis of the single-cell data is comprehensive and thorough, and the evidence presented in support of the identified DDGs, including Tpx2 and Fgfrl1, is for the most part convincing. Some limitations in the data resources and methods hamper enthusiasm somewhat and are discussed below. Overall, while this study will no doubt be valuable to the BMD community, the cross-species data integration and analytical framework may be more valuable and generally applicable to the study of other diseases, especially for diseases with robust human GWAS data but for which robust human genomic data in relevant cell types is lacking. 

      Specific strengths of the study include the large scRNA-seq dataset on BMSC-OBs from 80 DO mice, the clustering analysis to identify specific cell types and sub-types, the comparison of cell type frequencies across the DO mice, and the CELLECT analysis to prioritize cell clusters that are enriched for BMD heritability (Figure 1). The network analysis pipeline outlined in Figure 2 is also a strength, as is the pseudotime trajectory analysis (results in Figure 3). One weakness involves the focus on genes that were previously identified as having an eQTL or sQTL in any GTEx tissue. The authors rightly point out that the GTEx database does not contain data for bone tissue, but the reason that eQTLs can be shared across many tissues - this assumption is valid for many cis-eQTLs, but it could also exclude many genes as potential DDGs with effects that are specific to bone/osteoblasts. Indeed, the authors show that important BMD driver genes have cell-type-specific eQTLs. Furthermore, the mesenchymal cell type-specific co-expression analysis by iterative WGCNA identified an average of 76 co-expression modules per cell cluster (range 26-153). Based on the limited number of genes that are detected as expressed in a given cell due to sparse per-cell read depth (400-6200 reads/cell) and dropouts, it's hard to believe that as many as 153 co-expression modules could be distinguished within any cell cluster. I would suspect some degree of model overfitting here and would expect that many/most of these identified modules have very few gene members, but the methods list a minimum module size of 20 genes. How do the numbers of modules identified in this study compare to other published scRNA-seq studies that use iterative WGCNA? 

      In the section "Identification of differentiation driver genes (DDGs)", the authors identified 408 significant DDGs and found that 49 (12%) were reported by the International Mouse Knockout [sic] Consortium (IMPC) as having a significant effect on whole-body BMD when knocked out in mice. Is this enrichment significant? E.g., what is the background percentage of IMPC gene knockouts that show an effect on whole-body BMD? Similarly, they found that 21 of the 408 DDGs were genes that have BMD GWAS associations that colocalize with GTEx eQTLs/sQTLs. Given that there are > 1,000 BMD GWAS associations, is this enrichment (21/408) significant? Recommend performing a hypergeometric test to provide statistical context to the reported overlaps here. 

      We thank the reviewer for their constructive feedback and thoughtful questions. In regards to the iterativeWGCNA, a larger number of modules is sometimes an outcome of the analysis, as reported in the iterativeWGCNA preprint (Greenfest-Allen et al., 2017). While we did not make a comparison to other works leveraging this tool for scRNA-seq, it has been used broadly across other published studies, such as PMID: 39640571, 40075303, 33677398, 33653874. While model overfitting, as you mention, may be a cause for more modules, our Bayesian network analysis we perform after iterativeWGCNA highlights smaller aspects of coexpression modules, as opposed to focusing on the entirety of any given module.

      We did not perform enrichment or statistical tests as our goal was to simply highlight attributes or unique features of these genes for additional context.

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript, Farber and colleagues have performed single-cell RNAseq analysis on bone marrow-derived stem cells from DO Mice. By performing network analysis, they look for driver genes that are associated with bone mineral density GWAS associations. They identify two genes as potential candidates to showcase the utility of this approach. 

      Strengths: 

      The study is very thorough and the approach is innovative and exciting. The manuscript contains some interesting data relating to how cell differentiation is occurring and the effects of genetics on this process. The section looking for genes with eQTLs that differ across the differentiation trajectory (Figure 4) was particularly exciting. 

      Weaknesses: 

      The manuscript is in parts hard to read due to the use of acronyms and there are some questions about data analysis that need to be addressed. 

      We thank the reviewer for their feedback and shared enthusiasm for our work. We tried to minimize the use of technical acronyms as much as we could without compromising readability. Additionally, we addressed questions regarding aspects of data analysis. 

      Reviewer #1 (Recommendations for the authors):

      (1) For increased transparency and to allow reproducibility, it would be necessary for the scripts used in the analysis to be shared along with the publication of the preprint. Also, where feasible, sharing the processed data in addition to the raw data would allow the community greater access to the results and be highly beneficial. 

      Thank you for this suggestion. The raw data will be available via GEO accession codes listed in the data availability statement. We will make available scripts for some analyses on our Github (https://github.com/Farber-Lab/DO80_project) and processed scRNA-seq data in a Seurat object (.rds) on Zenodo (https://zenodo.org/records/15299631)

      (2) Lines 55-76: I think the summary of previous work here is too long. I understand that they would like to cover what has been done previously, but this seems like overkill. 

      Good suggestion. We have streamlined some of the summary of our previous work.

      (3) Did the authors try to map QTL for cell-type proportion differences in their BMSC-OBs? While 80 samples certainly limit mapping power, the data shown in Figs 4C/D suggest that you might identify a large-effect modifier of LMP/OB1 proportions. 

      We did try to map QTL for cell type proportion differences, but no significant associations were identified. 

      (4) Methods question: Does the read alignment method used in your analysis account for SNPs/indels that segregate among the DO/CC founder strains? If not, the authors may wish to include this in their discussion of study limitations and speculate on how unmapped reads could affect expression results. 

      The read alignment method we used does not account for SNPs/indels from the DO founder strains that fall in RNA transcripts captured in the scRNA-seq data. We have included this as a limitation in our discussion (line 422-424). 

      (5) Much of the discussion reads as an overview of the methods, while a discussion of the results and their context to the existing BMD literature is relatively lacking in comparison.

      We have added additional explanation of the results and context to the discussion (line 381-382, 396-407). 

      (6) Figure 1E and lines 146-149: Adjusted p values should be reported in the figure and accompanying text instead of switching between unadjusted and adjusted p values. 

      We updated Figure 1e to portray adjusted p-values, listed the adjusted p-values in legend of Figure 1e, and listed them in the main text (line 153-154).

      (7) Why do the authors bring the IMPC KO gene list into the analysis so late? This seems like a highly relevant data resource (moreso than the GTEx eQTLs/sQTLs) that could have been used much earlier to help identify DDGs. 

      Given that our scRNA-seq data is also from mice, we did choose to integrate information from the IMPC to highlight supplemental features of genes in networks (i.e., genes that have an experimentally-tested and significant effect on BMD in mice). However, our primary goal was to inform human GWAS and leverage our previous work in which we identified colocalizations between human BMD GWAS and eQTL/sQTL in a human GTEx tissue, which is why this information was used to guide our network analysis.

      (8) Does Fgfrl1 and/or Tpx2 have a cis-eQTL in your BMSC-OB scRNA-seq dataset? 

      We did not identify cis-eQTL effects for Fgfrl1 and Tpx2.

      (9) Figure 4B-C: These eQTLs may be real, but based on the diplotype patterns in Figure 4C, I suspect they are artifacts of low mapping power that are driven by rare genotype classes with one or two samples having outlier expression results. For example, if you look at the results in Fig 4C for S100a1 expression, the genotype classes with the highest/lowest expression have lower sample numbers. In the case of Pkm eQTL showing a PWK-low effect, the PWK genome has many SNPs that differ from the reference genome in the 3' UTR of this gene, and I wonder if reads overlapping these SNPs are not aligning correctly (see point 4 above) and resulting (falsely) in lower expression values for samples with a PWK haplotype. 

      As mentioned above, our alignment method did not consider DO founder genetic variation that is specifically located in the 3’ end of RNA transcripts in the scRNA-seq data. We have included this as a limitation in our discussion (line 422-424).

      In future studies, we intend to include larger populations of mice to potentially overcome, as you mention, any artifacts that may be attributable to low statistical power, rare genotype classes, or outlier expression.

      Reviewer #2 (Recommendations for the authors):

      Major Points 

      (1) The authors hypothesize "that many genes impacting BMD do so by influencing osteogenic differentiation or possibly bone marrow adipogenic differentiation". However, cell type itself does not correlate with any bone trait. Does this indicate that the hypothesis is not entirely correct, as genes that drive these phenotypes would not be enriched in one particular cell type? The authors have previously identified "high-priority target genes". So, are there any cell types that are enriched for these target genes? If not, this would indicate that all these genes are more ubiquitously expressed and this is probably why they would have a greater effect on the overall bone traits. Furthermore, are the 73 eGenes (so genes with eQTLs in a particular cell type that change around cell type boundaries) or the DDGs (Table 1) enriched for these high-priority target genes? 

      The bone traits measured in the DO mice are complex and impacted by many factors, including the differentiation propensity and abundance of certain cell types, both within and outside of bone. Though we did not identify correlations between cell type abundance and the bone traits we measured, we tailored our investigations to focus on cellular differentiation using the scRNA-seq data. However, future studies would need to be performed to investigate any connections between cellular differentiation, cell type abundance, and bone traits.

      We did not perform enrichment analyses of either the target genes identified from our other work or eGenes identified here, but instead used the target gene list to center our network analysis and the eGenes to showcase the utility of the DO mouse population.

      (2) The readability of the paper could be improved by minimising the use of acronyms and there are several instances of confusing wording throughout the paper. In many cases, this can be solved by re-organising sentences and adding a bit more detail. For example, it was unclear how you arrived at Fgfrl1 or Tpx2.

      One of the goals of our study was to identify genes that have (to our knowledge) little to no known connection to BMD. We chose to highlight Fgfrl1 and Tpx2 because there is minimal literature characterizing these genes in the context of bone, which we speak to in the results (line 296-297). Additionally, we prioritized these genes in our previous work and they were identified in this study by using our network analyses using the scRNA-seq data, which we mention in the results (line 276-279).

      (3) Technical aspects of the assay. In Figure 1d you show that the cell populations vary considerably between different DO mice. It would be useful to give some sense of the technical variance of this assay given that the assay involves culturing the cells in an exogenous environment. This could take the form of tests between mice within the same inbred strain, or even between different legs of the same DO mice to show that results are technically very consistent. It might also be prudent to identify that this is a potential limitation of the approach as in vitro culturing has the potential to substantially change the cell populations that are present. 

      We agree that in vitro culturing, in addition to the preparation of single cells for scRNA-seq, are unavoidable sources of technical variation in this study. However, the total number of cells contributed by each of the 80 DO mice after data processing does not appear to be skewed and the distribution appears normal (see added figures, now included as Supplemental Figure 3). Therefore, technical variation is at least consistent across all samples. Nevertheless, we have mentioned the potential for technical variation artifacts in our study in the discussion (line 414-416).

      (4) Need for permutation testing. "We identified 563 genes regulated by a significant eQTL in specific cell types. In total, 73 genes with eQTLs were also tradeSeq-identified genes in one or more cell type boundaries". These types of statements are fine but they need to be backed up with permutation testing to show that this level of enrichment is greater than one would expect by chance. 

      We did not perform enrichment tests as our only goal was to 1. determine if eQTL could be resolved in the DO mouse population using our scRNA-seq data and 2. predict in what cell type the associated eQTL and associated eGene may have an effect.

      (5) The main novelty of the paper seems to be that you have used single-cell RNA seq (given that you appear to have already detailed the candidates at the end). I don't think this makes the paper less interesting, but I think you need to reframe the paper more about the approach, and not the specific results. How you landed on these candidates is also not clear. So the paper might be improved by more robustly establishing the workflow and providing guidelines for how studies like this should be conducted in the future. 

      We sought to not only devise a rigorous approach to analyze our single cell data, but also showcase the utility of the approach in practice by highlighting targets for future research (i.e., Fgfrl1 and Tpx2).

      Our goal was to identify novel genes and we landed on these candidate genes (Fgfrl1 and Tpx2) because they had substantial data supporting their causality and they have yet to be fully characterized in the context of bone and BMD (line 295-297).

      In regards to establishing the workflow, we have included rationale for specific aspects of our approach throughout the paper. For example, Figure 2 itemizes each step of our network analysis and we explain why each step is utilized throughout various parts results (e.g., lines 168-170, 179-181, 191-193, 202-203, 257-260, 276-277).

      We have added a statement advocating for large-scale scRNA-seq from genetically diverse samples and network analyses for future studies (line 436-438).

      Minor Points 

      (1) In the summary you use the word "trajectory". Trajectories for what? I assume the transition between cell types, but this is not clear. 

      We added text to clarify the use of trajectory in the summary (line 34).

      (2) This sentence: "By 60 identifying networks enriched for genes implicated in GWAS we predicted putatively causal genes 61 for hundreds of BMD associations based on their membership in enriched modules." is also not clear. Do you mean: we predicted putatively causal genes by identifying clusters of co-expressed genes that were enriched for GWAS genes?" It is not clear how you identify the causal gene in the network. Is this just based on the hub gene? 

      The aforementioned sentence has since been removed to streamline the introduction, as suggested by Reviewer 1.

      In regards to causal gene identification, it is not based on whether it is hub gene. We prioritized a DDG (and their associated networks) if it was a causal gene that we identified in our previous work as having eQTL/sQTL in a GTEx tissue that colocalizes with human BMD GWAS.

      (3) Figure 3C. This is good but the labels are quite small. Would be good to make all the font sizes larger. 

      We have enlarged Figure 3C.

      (4) Line 341 in the Discussion should be "pseudotemporal". 

      We have edited “temporal” to “pseduotemporal”.

    1. Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes on decision-making. I think this is an important addition to the literature and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes rule. I also agree that they have built reinforcement learning models which do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple- per the author descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However more complex Bayes-based models exist, notably active inference but even the hierarchical gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is I think misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example) but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count? If word count is not an issue, I would recommend adding details of the experiments done and the results. One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such the central premise that biased learning is inherently non-normative or non-Bayesian I think would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above the conceptualization of Bayesian learning being equivalent to normative learning I think requires either further justification. Bayesian belief updating can be biased an non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      Results:

      I wonder why the agent was presented before the choice - since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point but would be interesting to get the authors' thoughts.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence; but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision making in the real world.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participant beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted. Indeed in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint to the possibility of longer term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context. Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and as such may be ingrained as a habit which requires effort to break at the individual level during a task such as this.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related, issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      Comments on revisions:

      In their updated version the authors have made some edits to address my concerns regarding the framing of the 'normative' bayesian model, clarifying that they utilized a simple bayesian model which is intended to adhere in an idealized manner to the intended task structure, though further simulations would have been ideal.

      The authors, however, did not take my recommendation to explore the symptoms in the symptom scales they collected as being a potential source of variability. They note that these were for hypothesis generation and were exploratory, fair enough, but this study is not small and there should have been sufficient sample size for a very reasonable analysis looking at symptom scores.

      However, overall the toned down claims and clarifications of intent are adequate responses to my previous review.

    2. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes in decision-making. I think this is an important addition to the literature, and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      We thank the reviewer for highlighting the strengths of this work.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes' rule. I also agree that they have built reinforcement learning models that do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple, per the author's descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However, more complex Bayes-based models exist, notably active inference, but even the hierarchical Gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is, I think, misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example), but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      We thank the reviewer for raising this crucial and insightful point regarding the framing of our results and the definitions of 'normative' and 'Bayesian' learning. Our primary aim in this work was to characterize specific behavioral signatures that demonstrate deviations from predictions generated by a strict, idealized Bayesian framework when learning from disinformation (which we term “biases”). We deliberately employed relatively simple Bayesian models as benchmarks to highlight these specific biases. We fully agree that more sophisticated Bayes-based models (as mentioned by the reviewer, or others) could potentially offer alternative mechanistic explanations for participant behavior. However, we currently do not have a strong notion about which Bayesian models can encompass our findings, and hence, we leave this important question for future work.

      To enhance clarity within the current manuscript we now avoided the use of the term “normative” to refer to our Bayesian models, using the term “ideal” instead. We also define more clearly what exactly we mean by that notion when the idea model is described:

      “This model is based on an idealized assumptions that during the feedback stage of each trial, the value of the chosen bandit is updated (based on feedback valence and credibility) according to Bayes rule reflecting perfect adherence to the instructed task structure (i.e., how true outcomes and feedback are generated).”

      Moreover, we have added a few sentences in the discussion commenting on how more complex Bayesian models might account for our empirical findings:

      “However, as hypothesized, when facing potential disinformation, we also find that individuals exhibit several important biases i.e., deviations from strictly idealized Bayesian strategies. Future studies should explore if and under what assumptions, about the task’s generative structure and/or learner’s priors and objectives, more complex Bayesian models (e.g., active inference (58)) might account for our empirical findings.”

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count. If word count is not an issue, I would recommend adding details of the experiments done and the results.

      We thank the reviewer for their valuable suggestion. We have now included more details about the experiment in the abstract:

      “In two experiments, participants completed a two-armed bandit task, where they repeatedly chose between two lotteries and received outcome-feedback from sources of varying credibility, who occasionally disseminated disinformation by lying about true choice outcome (e.g., reporting non reward when a reward was truly earned or vice versa).”

      One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such, the central premise that biased learning is inherently non-normative or non-Bayesian, I think, would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above, the conceptualization of Bayesian learning being equivalent to normative learning, I think requires further justification. Bayesian belief updating can be biased and non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      We appreciate the reviewer's thoughtful comment regarding the conceptualization of "normative" and "Bayesian" learning. We fully agree that the definition of "normative" is nuanced and can indeed depend on whether one considers reward-maximization or the underlying principles of belief updating. As explained above we now restrict our presentation to deviations from “ideal Bayes” learning patterns and we acknowledge the reviewer’s concern in a caveat in our discussion.

      Results:

      I wonder why the agent was presented before the choice, since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point, but it would be interesting to get the authors' thoughts.

      We thank the reviewer for raising this interesting point regarding the presentation of the agent before the choice. Our decision to present the agent at this stage was intentional, as our original experimental design aimed to explore the possible effects of "expected source credibility" on participants' choices (e.g., whether knowledge of feedback credibility will affect choice speed and accuracy). However, we found nothing that would be interesting to report.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence, but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section, where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision-making in the real world.

      Thanks for these additional important ideas which speak more to the notion that more complex Bayesian frameworks may account for biases we report.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of the individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      We included these questionnaires for exploratory purposes, with the aim of generating informed hypotheses for future research into individual differences in learning. Given the preliminary nature of these analyses, we believe further research is required about this important topic.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participants' beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      We thank the reviewer for this important recommendation. We agree and this point is included in our caveat (cited above) that future research should address what assumptions about the generative task structure can allow Bayesian models to account for our empirical patterns.

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted.<br /> Indeed, in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint at the possibility of longer-term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context.

      Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example, factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and, as such, may be ingrained as a habit that requires effort to break at the individual level during a task such as this.

      We thank the reviewer for these insightful suggestions speaking further to the point about more complex Bayesian models.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      We agree with the reviewer that a task involving performance-based bonuses, and particularly one where participants are explicitly told they are being lied to, might elicit weak emotional response. However, our primary point is that the degree of these responses is expected to be substantially weaker than those typically observed in the broader disinformation literature, which frequently deals with highly salient political, social, or identity-related topics that inherently carry strong emotional and personal ties for participants, leading to much more pronounced affective engagement and potential biases. Our task deliberately avoids such issues thus minimizing the potential for significant emotion-driven biases. We have toned down the discussion accordingly:

      “This occurs even when the decision at hand entails minimal emotional engagement or pertinence to deep, identity-related, issues.”

      Reviewer #2 (Public review):

      This valuable paper studies the problem of learning from feedback given by sources of varying credibility. The solid combination of experiment and computational modeling helps to pin down properties of learning, although some ambiguity remains in the interpretation of results.

      Summary:

      This paper studies the problem of learning from feedback given by sources of varying credibility. Two banditstyle experiments are conducted in which feedback is provided with uncertainty, but from known sources. Bayesian benchmarks are provided to assess normative facets of learning, and alternative credit assignment models are fit for comparison. Some aspects of normativity appear, in addition to deviations such as asymmetric updating from positive and negative outcomes.

      Strengths:

      The paper tackles an important topic, with a relatively clean cognitive perspective. The construction of the experiment enables the use of computational modeling. This helps to pinpoint quantitatively the properties of learning and formally evaluate their impact and importance. The analyses are generally sensible, and parameter recovery analyses help to provide some confidence in the model estimation and comparison.

      We thank the reviewer for highlighting the strengths of this work.

      Weaknesses:

      (1) The approach in the paper overlaps somewhat with various papers, such as Diaconescu et al. (2014) and Schulz et al. (forthcoming), which also consider the Bayesian problem of learning and applying source credibility, in terms of theory and experiment. The authors should discuss how these papers are complementary, to better provide an integrative picture for readers.

      Diaconescu, A. O., Mathys, C., Weber, L. A., Daunizeau, J., Kasper, L., Lomakina, E. I., ... & Stephan, K. E. (2014). Inferring the intentions of others by hierarchical Bayesian learning. PLoS computational biology, 10(9), e1003810.

      Schulz, L., Schulz, E., Bhui, R., & Dayan, P. Mechanisms of Mistrust: A Bayesian Account of Misinformation Learning. https://doi.org/10.31234/osf.io/8egxh

      We thank the reviewers for pointing us to this relevant work. We have updated the introduction, mentioning these precedents in the literature and highlighting our specific contributions:

      “To address these questions, we adopt a novel approach within the disinformation literature by exploiting a Reinforcement Learning (RL) experimental framework (36). While RL has guided disinformation research in recent years (37–41), our approach is novel in using one of its most popular tasks: the “bandit task”.”

      We also explain in the discussion how these papers relate to the current study:

      “Unlike previous studies wherein participants had to infer source credibility from experience (30,37,72), we took an explicit-instruction approach, allowing us to precisely assess source-credibility impact on learning, without confounding it with errors in learning about the sources themselves. More broadly, our work connects with prior research on observational learning, which examined how individuals learn from the actions or advice of social partners (72–75). This body of work has demonstrated that individuals integrate learning from their private experiences with learning based on others’ actions or advice—whether by inferring the value others attribute to different options or by mimicking their behavior (57,76). However, our task differs significantly from traditional observational learning. Firstly, our feedback agents interpret outcomes rather than demonstrating or recommending actions (30,37,72).”

      (2) It isn't completely clear what the "cross-fitting" procedure accomplishes. Can this be discussed further?

      We thank the reviewer for requesting further clarification on the cross-fitting procedure. Our study utilizes two distinct model families: Bayesian models and CA models. The credit assignment parameters from the CA models can be treated as “data/behavioural features” corresponding to how choice feedback affects choice-propensities. The cross fitting-approach allows us in effect to examine whether these propensity features are predicted from our Bayesian models. To the extent they are not, we can conclude empirical behavior is “biased”.

      Thus, in our cross-fitting procedure we compare the CA model parameters extracted from participant data (empirical features) with those that would be expected if our Bayesian agents performed the task. Specifically, we first fit participant behavior with our Bayesian models, then simulate this model using the best-fitted parameters and fit those simulations with our CA models. This generates a set of CA parameters that would be predicted if participants behavior is reduced to a Bayesian account. By comparing these predicted Bayesian CA parameters with the actual CA parameters obtained from human participants, the cross-fitting procedure allows us to quantitatively demonstrate that the observed participant parameters are indeed statistically significant deviations from normative Bayesian processing. This provides a robust validation that the biases we identify are not artifacts of the CA model's structure but true departures from normative learning.

      We also note that Reviewer 3 suggested an intuitive way to think about the CA parameters—as analogous to logistic regression coefficients in a “sophisticated regression” of choice on (recencyweighted) choice-feedback. We find this suggestion potentially helpful for readers. Under this interpretation, the purpose of the cross-fitting method can be seen simply as estimating the regression coefficients that would be predicted by our Bayesian agents, and comparing those to the empirical coefficients.

      In our manuscript we now explain this issues more clearly by explaining how our model is analogous to a logistic regression:

      “The probability to choose a bandit (say A over B) in this family of models is a logistic function of the contrast choice-propensities between these two bandits. One interpretation of this model is as a “sophisticated” logistic regression, where the CA parameters take the role of “regression coefficients” corresponding to the change in log odds of repeating the just-taken action in future trials based on the feedback (+/- CA for positive or negative feedback, respectively; the model also includes gradual perseveration which allows for constant log-odd changes that are not affected by choice feedback) . The forgetting rate captures the extent to which the effect of each trial on future choices diminishes with time. The Q-values are thus exponentially decaying sums of logistic choice propensities based on the types of feedback a bandit received.”

      We also explain our cross-fitting procedure in more detail:

      “To further characterise deviations between behaviour and our Bayesian learning models, we used a “crossfitting” method. Treating CA parameters as data-features of interest (i.e., feedback dependent changes in choice propensity), our goal was to examine if and how empirical features differ from features extracted from simulations of our Bayesian learning models. Towards that goal, we simulated synthetic data based on Bayesian agents (using participants’ best fitting parameters), but fitted these data using the CA-models, obtaining what we term “Bayesian-CA parameters” (Fig. 2d; Methods). A comparison of these BayesianCA parameters, with empirical-CA parameters obtained by fitting CA models to empirical data, allowed us to uncover patterns consistent with, or deviating from, ideal-Bayesian value-based inference. Under the sophisticated logistic-regression interpretation of the CA-model family the cross-fitting method comprises a comparison between empirical regression coefficients (i.e., empirical CA parameters) and regression coefficient based on simulations of Bayesian models (Bayesian CA parameters).”

      (3) The Credibility-CA model seems to fit the same as the free-credibility Bayesian model in the first experiment and barely better in the second experiment. Why not use a more standard model comparison metric like the Bayesian Information Criterion (BIC)? Even if there are advantages to the bootstrap method (which should be described if so), the BIC would help for comparability between papers.

      We thank the reviewer for this important comment regarding our model comparison approach. We acknowledge that classical information criteria like AIC and BIC are widely used in RL studies. However, we argue our method for model-comparison is superior.

      We conducted a model recovery analysis demonstrating a significant limitation of using AIC or BIC for model-comparison in our data. Both these methods are strongly biased in favor of the Bayesian models. Our PBCM method, on the other hand, is both unbiased and more accurate. We believe this is because “off the shelf” methods like AIC and BIC rely on strong assumptions (such as asymptotic sample size and trial-independence) that are not necessarily met in our tasks (Data is finite; Trials in RL tasks depend on previous trials). PBCM avoids such assumptions to obtain comparison criteria specifically tailored to the structure and size of our empirical data. We have now mentioned this fact in the results section of the main text:

      “We considered using AIC and BIC, which apply “off-the shelf” penalties for model-complexity. However, these methods do not adapt to features like finite sample size (relying instead on asymptotic assumption) or temporal dependence (as is common in reinforcement learning experiments). In contrast, the parametric bootstrap cross-fitting method replaces these fixed penalties with empirical, data-driven criteria for modelselection. Indeed, model-recovery simulations confirmed that whereas AIC and BIC were heavily biased in favour of the Bayesian models, the bootstrap method provided excellent model-recovery (See Fig. S20).”

      We have also included such model recovery in the SI document:

      (4) As suggested in the discussion, the updating based on random feedback could be due to the interleaving of trials. If one is used to learning from the source on most trials, the occasional random trial may be hard to resist updating from. The exact interleaving structure should also be clarified (I assume different sources were shown for each bandit pair). This would also relate to work on RL and working memory: Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience, 35(7), 10241035.

      We thank the reviewer for this point. The specific interleaved structure of the agents is described in the main text:

      “Each agent provided feedback for 5 trials for each bandit pair (with the agent order interleaved within the bandit pair).”

      As well as in the methods section:

      “Feedback agents were randomly interleaved across trials subject to the constraint that each agent appeared on 5-trials for each bandit pair.”

      We also thank the reviewer for mentioning the relevant work on working memory. We have now added it to our discussion point:

      “In our main study, we show that participants revised their beliefs based on entirely non-credible feedback, whereas an ideal Bayesian strategy dictates such feedback should be ignored. This finding resonates with the “continued-influence effect” whereby misleading information continues to influence an individual's beliefs even after it has been retracted (59,60). One possible explanation is that some participants failed to infer that feedback from the 1-star agent was statistically void of information content, essentially random (e.g., the group-level credibility of this agent was estimated by our free-credibility Bayesian model as higher than 50%). Participants were instructed that this feedback would be “a lie” 50% of the time but were not explicitly told that this meant it was random and should therefore be disregarded. Notably, however, there was no corresponding evidence random feedback affected behaviour in our discovery study. It is possible that an individual’s ability to filter out random information might have been limited due to a high cognitive load induced by our main study task, which required participants to track the values of three bandit pairs and juggle between three interleaved feedback agents (whereas in our discovery study each experimental block featured a single bandit pair). Future studies should explore more systematically how the ability to filter random feedback depends on cognitive load (61).”

      (5) Why does the choice-repetition regression include "only trials for which the last same-pair trial featured the 3-star agent and in which the context trial featured a different bandit pair"? This could be stated more plainly.

      We thank the reviewer for this question. When we previously submitted our manuscript, we thought that finding enhanced credit-assignment for fully credible feedback following potential disinformation from a different context would constitute a striking demonstration of our “contrast effect”. However, upon reexamining this finding we found out we had a coding error (affecting how trials were filtered). We have now rerun and corrected this analysis. We have assessed the contrast effect for both "same-context" trials (where the contextual trial featured the same bandit pair as the learning trial) and "different-context" trials (where the contextual trial featured a different bandit pair). Our re-analysis reveals a selective significant contrast effect in the samecontext condition, but no significant effect in the different-context condition. We have updated the main text to reflect these corrected findings and provide a clearer explanation of the analysis:

      “A comparison of empirical and Bayesian credit-assignment parameters revealed a further deviation from ideal Bayesian learning: participants showed an exaggerated credit-assignment for the 3-star agent compared with Bayesian models [Wilcoxon signed-rank test, instructed-credibility Bayesian model (median difference=0.74, z=11.14); free-credibility Bayesian model (median difference=0.62, z=10.71), all p’s<0.001] (Fig. 3a). One explanation for enhanced learning for the 3-star agents is a contrast effect, whereby credible information looms larger against a backdrop of non-credible information. To test this hypothesis, we examined whether the impact of feedback from the 3-star agent is modulated by the credibility of the agent in the trial immediately preceding it. More specifically, we reasoned that the impact of a 3-star agent would be amplified by a “low credibility context” (i.e., when it is preceded by a low credibility trial). In a binomial mixed effects model, we regressed choice-repetition on feedback valence from the last trial featuring the same bandit pair (i.e., the learning trial) and the feedback agent on the trial immediately preceding that last trial (i.e., the contextual credibility; see Methods for model-specification). This analysis included only learning trials featuring the 3-star agent, and context trials featuring the same bandit pair as the learning trial (Fig. 4a). We found that feedback valence interacted with contextual credibility (F(2,2086)=11.47, p<0.001) such that the feedback-effect (from the 3-star agent) decreased as a function of the preceding context-credibility (3-star context vs. 2-star context: b= -0.29, F(1,2086)=4.06, p=0.044; 2star context vs. 1-star context: b=-0.41, t(2086)=-2.94, p=0.003; and 3-star context vs. 1-star context: b=0.69, t(2086)=-4.74, p<0.001) (Fig. 4b). This contrast effect was not predicted by simulations of our main models of interest (Fig. 4c). No effect was found when focussing on contextual trials featuring a bandit pair different than the one in the learning trial (see SI 3.5). Thus, these results support an interpretation that credible feedback exerts a greater impact on participants’ learning when it follows non-credible feedback, in the same learning context.”

      We have modified the discussion accordingly as well:

      “A striking finding in our study was that for a fully credible feedback agent, credit assignment was exaggerated (i.e., higher than predicted by our Bayesian models). Furthermore, the effect of fully credible feedback on choice was further boosted when it was preceded by a low-credibility context related to current learning. We interpret this in terms of a “contrast effect”, whereby veridical information looms larger against a backdrop of disinformation (21). One upshot is that exaggerated learning might entail a risk of jumping to premature conclusions based on limited credible evidence (e.g., a strong conclusion that a vaccine is produces significant side-effect risks based on weak credible information, following non-credible information about the same vaccine). An intriguing possibility, that could be tested in future studies, is that participants strategically amplify the extent of learning from credible feedback to dilute the impact of learning from noncredible feedback. For example, a person scrolling through a social media feed, encountering copious amounts of disinformation, might amplify the weight they assign to credible feedback in order to dilute effects of ‘fake news’. Ironically, these results also suggest that public campaigns might be more effective when embedding their messages in low-credibility contexts , which may boost their impact.”

      And we have included some additional analyses in the SI document:

      “3.5 Contrast effects for contexts featuring a different bandit

      Given that we observed a contrast effect when both the learning and the immediately preceding "context trial” involved the same pair of bandits, we next investigated whether this effect persisted when the context trial featured a different bandit pair – a situation where the context would be irrelevant to the current learning. Again, we used in a binomial mixed effects model, regressing choice-repetition on feedback valence in the learning trial and the feedback agent in the context trial. This analysis included only learning trials featuring the 3-star agent, and context trials featuring a different bandit pair than the learning trial (Fig. S22a). We found no significant evidence of an interaction between feedback valence and contextual credibility (F(2,2364)=0.21, p=0.81) (Fig. S22b). This null result was consistent with the range of outcomes predicted by our main computational models (Fig. S22c).

      We aimed to formally compare the influence of two types of contextual trials: those featuring the same bandit pair as the learning trial versus those featuring a different pair. To achieve this, we extended our mixedeffects model by incorporating a new predictor variable, "CONTEXT_TYPE" which coded whether the contextual trial involved the same bandit pair (coded as -0.5) or a different bandit pair (+0.5) compared to the learning trial. The Wilkinson notation for this expanded mixed-effects model is:

      𝑅𝐸𝑃𝐸𝐴𝑇 ~ 𝐶𝑂𝑁𝑇𝐸𝑋𝑇_𝑇𝑌𝑃𝐸 ∗ 𝐹𝐸𝐸𝐷𝐵𝐴𝐶𝐾 ∗ (𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>2-star</sub> + 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>3-star</sub>) + 𝐵𝐸𝑇𝑇𝐸𝑅 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)

      This expanded model revealed a significant three-way interaction between feedback valence, contextual credibility, and context type (F(2,4451) = 7.71, p<0.001). Interpreting this interaction, we found a 2-way interaction between context-source and feedback valence when the context was the same (F(2,4451) = 12.03, p<0.001), but not when context was different (F(2,4451) = 0.23, p = 0.79). Further interpreting the double feedback-valence * context-source interaction (for the same context) we obtained the same conclusions as reported in the main text.”

      (6) Why apply the "Truth-CA" model and not the Bayesian variant that it was motivated by?

      Thanks for this very useful suggestion. We are unsure if we fully understand the question. The Truth-CA model was not motivated by a new Bayesian model. Our Bayesian models were simply used to make the point that participants may partially discriminate between truthful and untruthful feedback (for a given source). This led to the idea that perhaps more credit is assigned for truth (than lie) trials, which is what we found using our Truth-CA model. Note we show that our Bayesian models cannot account for this modulation.

      We have now improved our "Truth-CA" model. Previously, our Truth-CA model considered whether feedback on each trial was true or not based on realized latent true outcomes. However, it is possible that the very same feedback would have had an opposite truth-status if the latent true outcome was different (recall true outcomes are stochastic). This injects noise into the trial classification in our previous model. To avoid this, in our new model feedback is modulated by the probability the reported feedback is true (marginalized over stochasticity of true outcome).

      We have described this new model in the methods section:

      “Additionally, we formulated a “Truth-CA” model, which worked as our Credibility-CA model, but incorporated a free truth-bonus parameter (TB). This parameter modulates the extent of credit assignment for each agent based on the posterior probability of feedback being true (given the credibility of the feedback agent, and the true reward probability of the chosen bandit). The chosen bandit was updated as follows:

      𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹

      where P(truth) is the posterior probability of the feedback being true in the current trial (for exact calculation of P(truth) see “Methods: Bayesian estimation of posterior belief that feedback is true”).”

      All relevant results have been updated accordingly in the main text:

      “To formally address whether feedback truthfulness modulates credit assignment, we fitted a new variant of the CA model (the “Truth-CA” model) to the data. This variant works as our Credibility-CA model but incorporated a truth-bonus parameter (TB) which increases the degree of credit assignment for feedback as a function of the experimenter-determined likelihood the feedback is true (which is read from the curves in Fig 6a when x is taken to be the true probability the bandit is rewarding). Specifically, after receiving feedback, the Q-value of the chosen option is updated according to the following rule: 𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹 where 𝑇𝐵 is the free parameter representing the truth bonus, and 𝑃(𝑡𝑟𝑢𝑡ℎ) is the probability the received feedback being true (from the experimenter’s perspective). We acknowledge that this model falls short of providing a mechanistically plausible description of the credit assignment process, because participants have no access to the experimenter’s truthfulness likelihoods (as the true bandit reward probabilities are unknown to them). Nonetheless, we use this ‘oracle model’ as a measurement tool to glean rough estimates for the extent to which credit assignment Is boosted as a function of its truthfulness likelihood. Fitting this Truth-CA model to participants' behaviour revealed a significant positive truth-bonus (mean=0.21, t(203)=3.12, p=0.002), suggesting that participants indeed assign greater weight to feedback that is likely to be true (Fig. 6c; see SI 3.3.1 for detailed ML parameter results). Notably, simulations using our other models (Methods) consistently predicted smaller truth biases (compared to the empirical bias) (Fig. 6d). Moreover, truth bias was still detected even in a more flexible model that allowed for both a positivity bias and truth-bias (see SI 3.7). The upshot is that participants are biased to assign higher credit based on feedback that is more likely to be true in a manner that is inconsistent with out Bayesian models and above and beyond the previously identified positivity biases.“

      Finally, the Supplementary Information for the discovery study has also been revised to feature this analysis:

      “We next assessed whether participants infer whether the feedback they received on each trial was true or false and adjust their credit assignment based on this inference. We again used the “Truth-CA” model to obtain estimates for the truth bonus (TB), the increase in credit assignment as a function of the posterior probability of feedback being true. As in our main study, the fitted truth bias parameter was significantly positive, indicating that participants assign greater weight to feedback they believe is likely to be true (Fig, S4a; see SI 3.3.1 for detailed ML parameter results). Strikingly, model-simulations (Methods) predicted a lower truth bonus than the one observed in participants (Fig. S4b).”

      (7) "Overall, the results from this study support the exact same conclusions (See SI section 1.2) but with one difference. In the discovery study, we found no evidence for learning based on 50%-credibility feedback when examining either the feedback effect on choice repetition or CA in the credibility-CA model (SI 1.2.3)" - this seems like a very salient difference, when the paper reports the feedback effect as a primary finding of interest, though I understand there remains a valence-based difference.

      We agree with the reviewer and thank them for this suggestion. We now state explicitly throughout the manuscript that this finding was obtained only in one of our two studies. In the section “Discovery study” of the results we state explicitly this finding was not found in the discovery study:

      “However, we found no evidence for learning based on 50%-credibility feedback when examining either the feedback effect on choice repetition or CA in the credibility-CA model (SI 1.2.3).”

      We also note that related to another concern from R3 (that perseveration may masquerade as positivity bias) we conducted additional analyses (detailed in SI 3.6.2). These analyses revealed that the observed positivity bias for the 1-star agent in the discovery study falls within the range predicted by simple choice-perseveration. Consequently, we have removed the suggestion that participants still learn from the random agent in the discovery study. Furthermore, we have modified the discussion section to include a possible explanation for this discrepancy between the two studies:

      “Notably, however, there was no corresponding evidence random feedback affected behaviour in our discovery study. It is possible that an individual’s ability to filter out random information might have been limited due to a high cognitive load induced by our main study task, which required participants to track the values of three bandit pairs and juggle between three interleaved feedback agents (whereas in our discovery study each experimental block featured a single bandit pair). Future studies should explore more systematically how the ability to filter random feedback depends on cognitive load (61).”

      (8) "Participants were instructed that this feedback would be "a lie 50% of the time but were not explicitly told that this meant it was random and should therefore be disregarded." - I agree that this is a possible explanation for updating from the random source. It is a meaningful caveat.

      Thank you for this thought. While this can be seen as a caveat—since we don’t know what would have happened with explicit instructions—we also believe it is interesting from another perspective. In many real-life situations, individuals may have all the necessary information to infer that the feedback they receive is uninformative, yet still fail to do so, especially when they are not explicitly told to ignore it.

      In future work, we plan to examine how behaviour changes when participants are given more explicit instructions—for example, that the 50%-credibility agent provides purely random feedback.

      (9) "Future studies should investigate conditions that enhance an ability to discard disinformation, such as providing explicit instructions to ignore misleading feedback, manipulations that increase the time available for evaluating information, or interventions that strengthen source memory." - there is work on some of this in the misinformation literature that should be cited, such as the "continued influence effect". For example: Johnson, H. M., & Seifert, C. M. (1994). Sources of the continued influence effect: When misinformation in memory affects later inferences. Journal of experimental psychology: Learning, memory, and cognition, 20(6), 1420.

      We thank the reviewer for pointing us towards the relevant literature. We have now included citations about the “continued influence effect” of misinformation in the discussion:

      “In our main study, we show that participants revised their beliefs based on entirely non-credible feedback, whereas an ideal Bayesian strategy dictates such feedback should be ignored. This finding resonates with the “continued-influence effect” whereby misleading information continues to influence an individual's beliefs even after it has been retracted (59,60).”

      (10) Are the authors arguing that choice-confirmation bias may be at play? Work on choice-confirmation bias generally includes counterfactual feedback, which is not present here.

      We agree with the reviewer that a definitive test for choice-confirmation bias typically requires counterfactual feedback, which is not present in our current task. In our discussion, we indeed suggest that the positivity bias we observe may stem from a form of choice-confirmation, drawing on the extensive literature on this bias in reinforcement learning (Lefebvre et al., 2017; Palminteri et al., 2017; Palminteri & Lebreton, 2022). However, we fully acknowledge that this link is a hypothesis and that explicitly testing for choice-confirmation bias would necessitate a future study specifically incorporating counterfactual feedback. We have included a clarification of this point in the discussion:

      “Previous reinforcement learning studies, report greater credit-assignment based on positive compared to negative feedback, albeit only in the context of veridical feedback (43,44,62). Here, supporting our a-priori hypothesis we show that this positivity bias is amplified for information of low and intermediate credibility (in absolute terms in the discovery study, and relative to the overall extent of CA in both studies) . Of note, previous literature has interpreted enhanced learning for positive outcomes in reinforcement learning as indicative of a confirmation bias (42,44). For example, positive feedback may confirm, to a greater extent than negative feedback one’s choice as superior (e.g., “I chose the better of the two options”). Leveraging the framework of motivated cognition (35), we posited that feedback of uncertain veracity (e.g., low credibility) amplifies this bias by incentivising individuals to self-servingly accept positive feedback as true (because it confers positive, desirable outcomes), and explain away undesirable, choice-disconfirming, negative feedback as false. This could imply an amplified confirmation bias on social media, where content from sources of uncertain credibility, such as unknown or unverified users, is more easily interpreted in a self-serving manner, disproportionately reinforcing existing beliefs (63). In turn, this could contribute to an exacerbation of the negative social outcomes previously linked to confirmation bias such as polarization (64,65), the formation of ‘echo chambers’ (19), and the persistence of misbelief regarding contemporary issues of importance such as vaccination (66,67) and climate change (68–71). We note however, that further studies are required to determine whether positivity bias in our task is indeed a form of confirmation bias.”

      Reviewer #3 (Public review):

      Summary

      This paper investigates how disinformation affects reward learning processes in the context of a two-armed bandit task, where feedback is provided by agents with varying reliability (with lying probability explicitly instructed). They find that people learn more from credible sources, but also deviate systematically from optimal Bayesian learning: They learned from uninformative random feedback, learned more from positive feedback, and updated too quickly from fully credible feedback (especially following low-credibility feedback). Overall, this study highlights how misinformation could distort basic reward learning processes, without appeal to higher-order social constructs like identity.

      Strengths

      (1) The experimental design is simple and well-controlled; in particular, it isolates basic learning processes by abstracting away from social context.

      (2) Modeling and statistics meet or exceed the standards of rigor.

      (3) Limitations are acknowledged where appropriate, especially those regarding external validity.

      (4) The comparison model, Bayes with biased credibility estimates, is strong; deviations are much more compelling than e.g., a purely optimal model.

      (5) The conclusions are interesting, in particular the finding that positivity bias is stronger when learning from less reliable feedback (although I am somewhat uncertain about the validity of this conclusion)

      We deeply thank the reviewer for highlighting the strengths of this work.

      Weaknesses

      (1) Absolute or relative positivity bias?

      In my view, the biggest weakness in the paper is that the conclusion of greater positivity bias for lower credible feedback (Figure 5) hinges on the specific way in which positivity bias is defined. Specifically, we only see the effect when normalizing the difference in sensitivity to positive vs. negative feedback by the sum. I appreciate that the authors present both and add the caveat whenever they mention the conclusion (with the crucial exception of the abstract). However, what we really need here is an argument that the relative definition is the right way to define asymmetry....

      Unfortunately, my intuition is that the absolute difference is a better measure. I understand that the relative version is common in the RL literature; however previous studies have used standard TD models, whereas the current model updates based on the raw reward. The role of the CA parameter is thus importantly different from a traditional learning rate - in particular, it's more like a logistic regression coefficient (as described below) because it scales the feedback but not the decay. Under this interpretation, a difference in positivity bias across credibility conditions corresponds to a three-way interaction between the exponentially weighted sum of previous feedback of a given type (e.g., positive from the 75% credible agent), feedback positivity, and condition (dummy coded). This interaction corresponds to the nonnormalized, absolute difference.

      Importantly, I'm not terribly confident in this argument, but it does suggest that we need a compelling argument for the relative definition.

      We thank the reviewer for raising this important point about the definition of positivity bias, and for their thoughtful discussion on the absolute versus relative measures. We believe that the relative valence bias offers a distinct and valuable perspective on positivity bias. Conceptually, this measure describes positivity bias in a manner akin to a “percentage difference” relative to the overall level of learning which allows us to control for the overall decreases in the overall amount of credit assignment as feedback becomes less credible. We are unsure if one measure is better or more correct than the other and we believe that reporting both measures enriches the understanding of positivity bias and allows for a more comprehensive characterization of this phenomenon (as long as these measures are interpreted carefully). We have stated the significance of the relative measure in the results section:

      “Following previous research, we quantified positivity bias in 2 ways: 1) as the absolute difference between credit-assignment based on positive or negative feedback, and 2) as the same difference but relative to the overall extent of learning. We note that the second, relative, definition, is more akin to “percentage change” measurements providing a control for the overall lower levels of credit-assignment for less credible agent.”

      We also wish to point out that in our discovery study we had some evidence for amplification of positivity bias in absolute sense.

      (2) Positivity bias or perseveration?

      A key challenge in interpreting many of the results is dissociating perseveration from other learning biases. In particular, a positivity bias (Figure 5) and perseveration will both predict a stronger correlation between positive feedback and future choice. Crucially, the authors do include a perseveration term, so one would hope that perseveration effects have been controlled for and that the CA parameters reflect true positivity biases. However, with finite data, we cannot be sure that the variance will be correctly allocated to each parameter (c.f. collinearity in regressions). The fact that CA- is fit to be negative for many participants (a pattern shown more strongly in the discovery study) is suggestive that this might be happening. A priori, the idea that you would ever increase your value estimate after negative feedback is highly implausible, which suggests that the parameter might be capturing variance besides that it is intended to capture.

      The best way to resolve this uncertainty would involve running a new study in which feedback was sometimes provided in the absence of a choice - this would isolate positivity bias. Short of that, perhaps one could fit a version of the Bayesian model that also includes perseveration. If the authors can show that this model cannot capture the pattern in Figure 5, that would be fairly convincing.

      We thank the reviewer for this very insightful and crucial point regarding the potential confound between positivity bias and perseveration. We entirely agree that distinguishing these effects can be challenging. To rigorously address this concern and ascertain that our observed positivity bias, particularly its inflation for low-credibility feedback, is not merely an artifact of perseveration, we conducted additional analyses as suggested.

      First, following the reviewer’s suggestion we simulated our Bayesian models, including a perseveration term, for both our main and discovery studies. Crucially, none of these simulations predicted the specific pattern of inflated positivity bias for low-credibility feedback that we identified in participants.

      Additionally, taking a “devil’s advocate” approach, we tested whether our credibility-CA model (which includes perseveration but not a feedback valence bias) can predict our positivity bias findings. Thus, we simulated 100 datasets using our Credibility-CA model (based on empirical best-fitting parameters). We then fitted each of these simulated datasets using our CredibilityValence CA model. By examining the distribution of results across these synthetic datasets fits and comparing them to the actual results from participants, we found that while perseveration could indeed lead (as the reviewer suspected) to an artifactual positivity bias, it could not predict the magnitude of the observed inflation of positivity bias for low-credibility feedback (whether measured in absolute or relative terms).

      Based on these comprehensive analyses, we are confident that our main results concerning the modulation of a valence bias as a function of source-credibility cannot be accounted by simple choice-perseveration. We have briefly explained these analyses in the main results section:

      “Previous research has suggested that positivity bias may spuriously arise from pure choice-perseveration (i.e., a tendency to repeat previous choices regardless of outcome) (49,50). While our models included a perseveration-component, this control may not be preferent. Therefore, in additional control analyses, we generated synthetic datasets using models including choice-perseveration but devoid of feedback-valence bias, and fitted them with our credibility-valence model (see SI 3.6.1). These analyses confirmed that perseveration can masquerade as an apparent positivity bias. Critically, however, these analyses also confirmed that perseveration cannot account for our main finding of increased positivity bias, relative to the overall extent of CA, for low-credibility feedback.”

      Additionally, we have added a detailed description of these additional analyses and their findings to the Supplementary Information document:

      “3.6 Positivity bias results cannot be explained by a pure perseveration

      3.6.1 Main study

      Previous research has suggested it may be challenging to dissociate between a feedback-valence positivity bias and perseveration (i.e., a tendency to repeat previous choices regardless of outcome). While our Credit Assignment (CA) models already include a perseveration mechanism to account for this, this control may not be perfect. We thus conducted several tests to examine if our positivity-bias related results could be accounted for by perseveration.

      First we examined whether our Bayesian-models, augmented by a perseveration mechanism (as in our CA model) can generate predictions similar to our empirical results. We repeated our cross-fitting procedure to these extended Bayesian models. To briefly recap, this involved fitting participant behavior with them, generating synthetic datasets based on the resulting maximum likelihood (ML) parameters, and then fitting these simulated datasets with our Credibility-Valence CA model (which is designed to detect positivity bias). This test revealed that adding perseveration to our Bayesian models did not predict a positivity bias in learning. In absolute terms there was a small negativity bias (instructed-credibility Bayesian: b=−0.19, F(1,1218)=17.78, p<0.001, Fig. S23a-b; free-credibility Bayesian: b=−0.17, F(1,1218)=13.74, p<0.001, Fig. S23d-e). In relative terms we detected no valence related bias (instructed-credibility Bayesian: b=−0.034, F(1,609)=0.45, p=0.50, Fig. S22c; free-credibility Bayesian: b=−0.04, F(1,609)=0.51, p=0.47, Fig. S23f). More critically, these simulations also did not predict a change in the level of positivity bias as a function of feedback credibility, neither at an absolute level (instructed-credibility Bayesian: F(2,1218)=0.024, p=0.98, Fig. S23b; free-credibility Bayesian: F(2,1218)=0.008, p=0.99, Fig. S23e), nor at a relative level (instructedcredibility Bayesian: F(2,609)=1.57, p=0.21, Fig. S23c; free-credibility Bayesian: F(2,609)=0.13, p=0.88, Fig. S23f). The upshot is that our positivity-bias findings cannot be accounted for by our Bayesian models even when these are augmented with perseveration.

      However, it is still possible that empirical CA parameters from our credibility-valence model (reported in main text Fig. 5) were distorted, absorbing variance from a perseveration. To address this, we took a “devil's advocate” approach testing the assumption that CA parameters are not truly affected by feedback valance and that there is only perseveration in our data. Towards that goal, we simulated data using our CredibilityCA model (which includes perseveration but does not contain a valence bias in its learning mechanism) and then fitted these synthetic datasets using our Credibility-Valence CA model to see if the observed positivity bias could be explained by perseveration alone. Specifically, we generated 101 “group-level” synthetic datasets (each including one simulation for each participant, based on their empirical ML parameters), and fitted each dataset with our Credibility-Valence CA model. We then analysed the resulting ML parameters in each dataset using the same mixed-effects models as described in the main text, examining the distribution of effects of interest across these simulated datasets. Comparing these simulation results to the data from participants revealed a nuanced picture. While the positivity bias observed in participants is within the range predicted by a pure perseveration account when measured in absolute terms (Fig. S24a), it is much higher than predicted by pure perseveration when measured relative to the overall level of learning (Fig. S24c). More importantly, the inflation in positivity bias for lower credibility feedback is substantially higher in participants than what would be predicted by a pure perseveration account, a finding that holds true for both absolute (Fig. S24b) and relative (Fig. S24d) measures.”

      “3.6.2 Discovery study

      We then replicated these analyses in our discovery study to confirm our findings. We again checked whether extended versions of the Bayesian models (including perseveration) predicted the positivity bias results observed. Our cross-fitting procedure showed that the instructed-credibility Bayesian model with perseveration did predict a positivity bias for all credibility levels in this discovery study, both when measured in absolute terms [50% credibility (b=1.74,t(824)=6.15), 70% credibility (b=2.00,F(1,824)=49.98), 85% credibility (b=1.81,F(1,824)=40.78), 100% credibility (b=2.42,F(1,824)=72.50), all p's<0.001], and in relative terms [50% credibility (b=0.25,t(412)=3.44), 70% credibility (b=0.31,F(1,412)=17.72), 85% credibility (b=0.34,F(1,412)=21.06), 100% credibility (b=0.42,F(1,412)=31.24), all p's<0.001]. However, importantly, these simulations did not predict a change in the level of positivity bias as a function of feedback credibility, neither at an absolute level (F(3,412)=1.43,p=0.24), nor at a relative level (F(3,412)=2.06,p=0.13) (Fig. S25a-c). In contrast, simulations of the free-credibility Bayesian model (with perseveration) predicted a slight negativity bias when measured in absolute terms (b=−0.35,F(1,824)=5.14,p=0.024), and no valence bias when measured relative to the overall degree of learning (b=0.05,F(1,412)=0.55,p=0.46). Crucially, this model also did not predict a change in the level of positivity bias as a function of feedback credibility, neither at an absolute level (F(3,824)=0.27,p=0.77), nor at a relative level (F(3,412)=0.76,p=0.47) (Fig. S25d-f).

      As in our main study, we next assessed whether our Credibility-CA model (which includes perseveration but no valence bias) predicted the positivity bias results observed in participants in the discovery study. This analysis revealed that the average positivity bias in participants is higher than predicted by a pure perseveration account, both when measured in absolute terms (Fig. S26a) and in relative terms (Fig. S26c). Specifically, only the aVBI for the 70% credibility agent was above what a perseveration account would predict, while the rVBI for all agents except the completely credible one exceeded that threshold. Furthermore, the inflation in positivity bias for lower credibility feedback (compared to the 100% credibility agent) is significantly higher in participants than would be predicted by a pure perseveration account, in both absolute (Fig. S26b) and relative (Fig. S26d) terms.

      Together, these results show that the general positivity bias observed in participants could be predicted by an instructed-credibility Bayesian model with perseveration, or by a CA model with perseveration. Moreover, we find that these two models can predict a positivity bias for the 50% credibility agent, raising a concern that our positivity bias findings for this source may be an artefact of not-fully controlled for perseveration. However, the credibility modulation of this positivity bias, where the bias is amplified for lower credibility feedback, is consistently not predicted by perseveration alone, regardless of whether perseveration is incorporated into a Bayesian or a CA model. This finding suggests that participants are genuinely modulating their learning based on feedback credibility, and that this modulation is not merely an artifact of choice perseveration.”

      (3) Veracity detection or positivity bias?

      The "True feedback elicits greater learning" effect (Figure 6) may be simply a re-description of the positivity bias shown in Figure 5. This figure shows that people have higher CA for trials where the feedback was in fact accurate. But assuming that people tend to choose more rewarding options, true-feedback cases will tend to also be positive-feedback cases. Accordingly, a positivity bias would yield this effect, even if people are not at all sensitive to trial-level feedback veracity. Of course, the reverse logic also applies, such that the "positivity bias" could actually reflect discounting of feedback that is less likely to be true. This idea has been proposed before as an explanation for confirmation bias (see Pilgrim et al, 2024 https://doi.org/10.1016/j.cognition.2023.105693and much previous work cited therein). The authors should discuss the ambiguity between the "positivity bias" and "true feedback" effects within the context of this literature....

      Before addressing these excellent comments, we first note that we have now improved our "TruthCA" model. Previously, our Truth-CA model considered whether feedback on each trial was true or not based on realized latent true outcomes. However, it is possible that the very same feedback would have had an opposite truth-status if the latent true outcome was different (recall true outcomes are stochastic). This injects noise into the trial classification in our former model. To avoid this, in our new model feedback is modulated by the probability the reported feedback is true (marginalized over stochasticity of true outcome). Please note in our responses below that we conducted extensive analysis to confirm that positivity bias doesn’t in fact predict the truthbias we detect using our truth biased model

      We have described this new model in the methods section:

      “Additionally, we formulated a “Truth-CA” model, which worked as our Credibility-CA model, but incorporated a free truth-bonus parameter (TB). This parameter modulates the extent of credit assignment for each agent based on the posterior probability of feedback being true (given the credibility of the feedback agent, and the true reward probability of the chosen bandit). The chosen bandit was updated as follows:

      𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹

      where P(truth) is the posterior probability of the feedback being true in the current trial (for exact calculation of P(truth) see “Methods: Bayesian estimation of posterior belief that feedback is true”).”

      All relevant results have been updated accordingly in the main text:

      To formally address whether feedback truthfulness modulates credit assignment, we fitted a new variant of the CA model (the “Truth-CA” model) to the data. This variant works as our Credibility-CA model, but incorporated a truth-bonus parameter (TB) which increases the degree of credit assignment for feedback as a function of the experimenter-determined likelihood the feedback is true (which is read from the curves in Fig 6a when x is taken to be the true probability the bandit is rewarding). Specifically, after receiving feedback, the Q-value of the chosen option is updated according to the following rule:

      𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹

      where 𝑇𝐵 is the free parameter representing the truth bonus, and 𝑃(𝑡𝑟𝑢𝑡ℎ) is the probability the received feedback being true (from the experimenter’s perspective). We acknowledge that this model falls short of providing a mechanistically plausible description of the credit assignment process, because participants have no access to the experimenter’s truthfulness likelihoods (as the true bandit reward probabilities are unknown to them). Nonetheless, we use this ‘oracle model’ as a measurement tool to glean rough estimates for the extent to which credit assignment Is boosted as a function of its truthfulness likelihood.

      Fitting this Truth-CA model to participants' behaviour revealed a significant positive truth-bonus (mean=0.21, t(203)=3.12, p=0.002), suggesting that participants indeed assign greater weight to feedback that is likely to be true (Fig. 6c; see SI 3.3.1 for detailed ML parameter results). Notably, simulations using our other models (Methods) consistently predicted smaller truth biases (compared to the empirical bias) (Fig. 6d). Moreover, truth bias was still detected even in a more flexible model that allowed for both a positivity bias and truth-bias (see SI 3.7). The upshot is that participants are biased to assign higher credit based on feedback that is more likely to be true in a manner that is inconsistent with out Bayesian models and above and beyond the previously identified positivity biases.”

      Finally, the Supplementary Information for the discovery study has also been revised to feature this analysis:

      “We next assessed whether participants infer whether the feedback they received on each trial was true or false and adjust their credit assignment based on this inference. We again used the “Truth-CA” model to obtain estimates for the truth bonus (TB), the increase in credit assignment as a function of the posterior probability of feedback being true. As in our main study, the fitted truth bias parameter was significantly positive, indicating that participants assign greater weight to feedback they believe is likely to be true (Fig, S4a; see SI 3.3.1 for detailed ML parameter results). Strikingly, model-simulations (Methods) predicted a lower truth bonus than the one observed in participants (Fig. S4b).”

      Additionally, we thank the reviewer for pointing us to the relevant work by Pilgrim et al. (2024). We agree that the relationship between "true feedback" and "positivity bias" effects is nuanced, and their potential overlap warrants careful consideration. Note our analyses suggest that this is not solely the case. Firstly, simulations of our Credibility-Valence CA model predict only a small "truth bonus" effect, which is notably smaller than what we observed in participants. Secondly, we formulated an extension of our "Truth-CA" model that includes a valence bias in credit assignment. If our truth bonus results were merely an artifact of positivity bias, this extended model should absorb that variance, producing a null truth bonus parameter. However, fitting this model to participant data still revealed a significant positive truth bonus, which again exceeds the range predicted by simulations of our Credibility CA model:

      “3.7 Truth inference is still detected when controlling for valence bias

      Given that participants frequently select bandits that are, on average, mostly rewarding, it is reasonable to assume that positive feedback is more likely to be objectively true than negative feedback. This raises a question if the "truth inference" effect we observed in participants might simply be an alternative description of a positivity bias in learning. To directly test this idea, we extended our Truth-CA model to explicitly account for a valence bias in credit assignment. This extended model features separate CA parameters for positive and negative feedback for each agent. When we fitted this new model to participant behavior, it still revealed a significant truth bonus in both the main study (Wilkoxon’s signrank test: median = 0.09, z(202)=2.12, p=0.034; Fig. S27a) and the discovery study (median = 3.52, z(102)=7.86, p<0.001; Fig. S27c). Moreover, in the main study, this truth bonus remained significantly higher than what was predicted by all the alternative models, with the exception of the instructed-credibility bayesian model (Fig. S27b). In the discovery study, the truth bonus was significantly higher than what was predicted by all the alternative models (Fig. S27d).”

      Together, these findings suggest that our truth inference results are not simply a re-description of a positivity bias.

      Conversely, we acknowledge the reviewer's point that our positivity bias results could potentially stem from a more general truth inference mechanism. We believe that this possibility should be addressed in a future study where participants rate their belief that received feedback is true (rather than a lie).We have extended our discussion to clarify this possibility and to include the suggested citation:

      “Our findings show that individuals increase their credit assignment for feedback in proportion to the perceived probability that the feedback is true, even after controlling for source credibility and feedback valence. Strikingly, this learning bias was not predicted by any of our Bayesian or credit-assignment (CA) models. Notably, our evidence for this bias is based on a “oracle model” that incorporates the probability of feedback truthfulness from the experimenter's perspective, rather than the participant’s. This raises an important open question: how do individuals form beliefs about feedback truthfulness, and how do these beliefs influence credit assignment? Future research should address this by eliciting trial-by-trial beliefs about feedback truthfulness. Doing so would also allow for testing the intriguing possibility that an exaggerated positivity bias for non-credible sources reflects, to some extent, a truth-based discounting of negative feedback—i.e., participants may judge such feedback as less likely to be true. However, it is important to note that the positivity bias observed for fully credible sources (here and in other literature) cannot be attributed to a truth bias—unless participants were, against instructions, distrustful of that source.”

      The authors get close to this in the discussion, but they characterize their results as differing from the predictions of rational models, the opposite of my intuition. They write:

      “Alternative "informational" (motivation-independent) accounts of positivity and confirmation bias predict a contrasting trend (i.e., reduced bias in low- and medium credibility conditions) because in these contexts it is more ambiguous whether feedback confirms one's choice or outcome expectations, as compared to a full-credibility condition.”

      I don't follow the reasoning here at all. It seems to me that the possibility for bias will increase with ambiguity (or perhaps will be maximal at intermediate levels). In the extreme case, when feedback is fully reliable, it is impossible to rationally discount it (illustrated in Figure 6A). The authors should clarify their argument or revise their conclusion here.

      We apologize for the lack of clarity in our previous explanation. We removed the sentence you cited (it was intended to make a different point which we now consider non-essential). Our current narration is consistent with the point you are making.

      (4) Disinformation or less information?

      Zooming out, from a computational/functional perspective, the reliability of feedback is very similar to reward stochasticity (the difference is that reward stochasticity decreases the importance/value of learning in addition to its difficulty). I imagine that many of the effects reported here would be reproduced in that setting. To my surprise, I couldn't quickly find a study asking that precise question, but if the authors know of such work, it would be very useful to draw comparisons. To put a finer point on it, this study does not isolate which (if any) of these effects are specific to disinformation, rather than simply less information. I don't think the authors need to rigorously address this in the current study, but it would be a helpful discussion point.

      We thank the reviewer for highlighting the parallel (and difference) between feedback reliability and reward stochasticity. However, we have not found any comparable results in the literature. We also note that our discussion includes a paragraph addressing the locus of our effects making the point that more studies are necessary to determine whether our findings are due to disinformation per se or sources being less informative. While this paragraph was included in the previous version it led us to infer our Discussion was too long and we therefore shortened it considerably:

      “An important question arises as to the psychological locus of the biases we uncovered. Because we were interested in how individuals process disinformation—deliberately false or misleading information intended to deceive or manipulate—we framed the feedback agents in our study as deceptive, who would occasionally “lie” about the true choice outcome. However, statistically (though not necessarily psychologically), these agents are equivalent to agents who mix truth-telling with random “guessing” or “noise” where inaccuracies may arise from factors such as occasionally lacking access to true outcomes, simple laziness, or mistakes, rather than an intent to deceive. This raises the question of whether the biases we observed are driven by the perception of potential disinformation as deceitful per se or simply as deviating from the truth. Future studies could address this question by directly comparing learning from statistically equivalent sources framed as either lying or noisy. Unlike previous studies wherein participants had to infer source credibility from experience (30,37,72), we took an explicit-instruction approach, allowing us to precisely assess source-credibility impact on learning, without confounding it with errors in learning about the sources themselves. More broadly, our work connects with prior research on observational learning, which examined how individuals learn from the actions or advice of social partners (72–75). This body of work has demonstrated that individuals integrate learning from their private experiences with learning based on others’ actions or advice—whether by inferring the value others attribute to different options or by mimicking their behavior (57,76). However, our task differs significantly from traditional observational learning. Firstly, our feedback agents interpret outcomes rather than demonstrating or recommending actions (30,37,72). Secondly, participants in our study lack private experiences unmediated by feedback sources. Finally, unlike most observational learning paradigms, we systematically address scenarios with deliberately misleading social partners. Future studies could bridge this by incorporating deceptive social partners into observational learning, offering a chance to develop unified models of how individuals integrate social information when credibility is paramount for decision-making.”

      (5) Over-reliance on analyzing model parameters

      Most of the results rely on interpreting model parameters, specifically, the "credit assignment" (CA) parameter. Exacerbating this, many key conclusions rest on a comparison of the CA parameters fit to human data vs. those fit to simulations from a Bayesian model. I've never seen anything like this, and the authors don't justify or even motivate this analysis choice. As a general rule, analyses of model parameters are less convincing than behavioral results because they inevitably depend on arbitrary modeling assumptions that cannot be fully supported. I imagine that most or even all of the results presented here would have behavioral analogues. The paper would benefit greatly from the inclusion of such results. It would also be helpful to provide a description of the model in the main text that makes it very clear what exactly the CA parameter is capturing (see next point).

      We thank the reviewer for this important suggestion which we address together with the following point.

      (6) RL or regression?

      I was initially very confused by the "RL" model because it doesn't update based on the TD error. Consequently, the "Q values" can go beyond the range of possible reward (SI Figure 5). These values are therefore not Q values, which are defined as expectations of future reward ("action values"). Instead, they reflect choice propensities, which are sometimes notated $h$ in the RL literature. This misuse of notation is unfortunately quite common in psychology, so I won't ask the authors to change the variable. However, they should clarify when introducing the model that the Q values are not action values in the technical sense. If there is precedent for this update rule, it should be cited.

      Although the change is subtle, it suggests a very different interpretation of the model.

      Specifically, I think the "RL model" is better understood as a sophisticated logistic regression, rather than a model of value learning. Ignoring the decay term, the CA term is simply the change in log odds of repeating the just-taken action in future trials (the change is negated for negative feedback). The PERS term is the same, but ignoring feedback. The decay captures that the effect of each trial on future choices diminishes with time. Importantly, however, we can re-parameterize the model such that the choice at each trial is a logistic regression where the independent variables are an exponentially decaying sum of feedback of each type (e.g., positive-cred50, positive-cred75, ... negative-cred100). The CA parameters are simply coefficients in this logistic regression.

      Critically, this is not meant to "deflate" the model. Instead, it clarifies that the CA parameter is actually not such an assumption-laden model estimate. It is really quite similar to a regression coefficient, something that is usually considered "model agnostic". It also recasts the non-standard "cross-fitting" approach as a very standard comparison of regression coefficients for model simulations vs. human data. Finally, using different CA parameters for true vs false feedback is no longer a strange and implausible model assumption; it's just another (perfectly valid) regression. This may be a personal thing, but after adopting this view, I found all the results much easier to understand.

      We thank the reviewer for their insightful and illuminating comments, particularly concerning the interpretation of our model parameters and the nature of our Credit assignment model. We believe your interpretation of the model is accurate and we now narrate it to readers in the hope that our modelling will become clearer and more intuitively. We also present to readers how these recasts our “cross-fitting” approach in the way you suggested (we return to this point below).

      Broadly, while we agree that modelling results depend on underlying assumptions, we believe that “model-agnostic” approaches also have important limitations—especially in reinforcement learning (RL), where choices are shaped by histories of past events, which such approaches often fail to fully account for. As students of RL, we are frequently struck by how careful modelling demonstrates that seemingly meaningful “model-agnostic” patterns can emerge as artefacts of unaccounted-for variables. We also note that the term “model-agnostic” is difficult to define—after all, even regression models rely on assumptions, and some computational models make richer or more transparent assumptions than others. Ideally, we aim to support our findings using converging methods wherever possible.

      We want to clarify that many of our reported findings indeed stem from straightforward behavioral analyses (e.g., simple regressions of choice-repetition), which do not rely on complex modeling assumptions. The two key results that primarily depend on the analysis of model parameters are our findings related to positivity bias and truth inference.

      Regarding the positivity bias, identifying truly model-agnostic behavioral signatures, distinct from effects like choice-perseveration, has historically been a significant challenge in the literature. Classical research on this bias rests on the interpretation of model parameters (Lefebvre et al., 2017; Palminteri et al., 2017), or at least on the use of models to assess what an “unbiased learner” baseline should look like (Palminteri & Lebreton, 2022). Some researchers have suggested possible regressions incorporating history effects to detect positivity bias from choicerepetition behavior, but these regressions (as our model) rely on subtle assumptions about forgetting and history effects (Toyama et al., 2019). Specifically, in our case, this issue is also demonstrated by analysis we conducted related to the previous point the reviewer made (about perseveration masquerading as positivity bias). We believe that dissociating clearly positivity bias from perseveration is an important challenge for the field going forward.

      For our truth inference results, obtaining purely behavioral signatures is similarly challenging due to the intricate interdependencies (the reviewer has identified in previous points) between agent credibility, feedback valence, feedback truthfulness, and choice accuracy within our task design.

      Finally, we agree with the reviewer that regression coefficients are often interpreted as a “modelagnostic” pattern. From this perspective even our findings regarding positivity and truth bias are not a case of over-reliance on complex model assumptions but are rather a way to expose deviations between empirical “sophisticated” regression coefficients and coefficients predicted from Bayesian models.

      We have now described the main learning rule of our model in the main text to ensure that the meaning of the CA parameters is clearer for readers:

      “Next, we formulated a family of non-Bayesian computational RL models. Importantly, these models can flexibly express non-Bayesian learning patterns and, as we show in following sections, can serve to identify learning biases deviating from an idealized Bayesian strategy. Here, an assumption is that during feedback, the choice propensity for the chosen bandit (which here is represented by a point estimate, “Q value“, rather than a distribution) either increases or decreases (for positive or negative feedback, respectively) according to a magnitude quantified by the free “Credit-Assignment (CA)” model parameters (47):

      𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) + 𝐶𝐴(𝑎𝑔𝑒𝑛𝑡, 𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 𝐹

      where F is the feedback received from the agents (coded as 1 for reward feedback and -1 for non-reward feedback), while fQ (∈[0,1]) is the free parameter representing the forgetting rate of the Q-value (Fig. 2a, bottom panel; Fig. S5b; Methods). The probability to choose a bandit (say A over B) in this family of models is a logistic function of the contrast choice-propensities between these two bandits. One interpretation of this model is as a “sophisticated” logistic regression, where the CA parameters take the role of “regression coefficients” corresponding to the change in log odds of repeating the just-taken action in future trials based on the feedback (+/- CA for positive or negative feedback, respectively; the model also includes gradual perseveration which allows for constant log-odd changes that are not affected by choice feedback; see “Methods: RL models”) . The forgetting rate captures the extent to which the effect of each trial on future choices diminishes with time. The Q-values are thus exponentially decaying sums of logistic choice propensities based on the types of feedback a bandit received.”

      We also explain the implications of this perspective for our cross-fitting procedure:

      “To further characterise deviations between behaviour and our Bayesian learning models, we used a “crossfitting” method. Treating CA parameters as data-features of interest (i.e., feedback dependent changes in choice propensity), our goal was to examine if and how empirical features differ from features extracted from simulations of our Bayesian learning models. Towards that goal, we simulated synthetic data based on Bayesian agents (using participants’ best fitting parameters), but fitted these data using the CA-models, obtaining what we term “Bayesian-CA parameters” (Fig. 2d; Methods). A comparison of these BayesianCA parameters, with empirical-CA parameters obtained by fitting CA models to empirical data, allowed us to uncover patterns consistent with, or deviating from, ideal-Bayesian value-based inference. Under the sophisticated logistic-regression interpretation of the CA-model family the cross-fitting method comprises a comparison between empirical regression coefficients (i.e., empirical CA parameters) and regression coefficient based on simulations of Bayesian models (Bayesian CA parameters). Using this approach, we found that both the instructed-credibility and free-credibility Bayesian models predicted increased BayesianCA parameters as a function of agent credibility (Fig. 3c; see SI 3.1.1.2 Tables S8 and S9). However, an in-depth comparison between Bayesian and empirical CA parameters revealed discrepancies from ideal Bayesian learning, which we describe in the following sections.”

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      (1) Keep terms consistent, e.g., follow-up vs. main; hallmark vs. traditional.

      We have now changed the text to keep terms consistent.

      (2) CA model is like a learning rate; but it's based on the raw reward, not the TD error - this seems strange.

      We thank the reviewer for this comment. We understand that the use of a CA model instead of a TD error model may seem unusual at first glance. However, the CA model offers an important advantage: it more easily accommodates what we term "negative learning rates". This means that some participants may treat certain agents (especially the random one) as consistently deceitful, leading them to effectively increase/reduce choice tendencies following negative/positive feedback. A CA model handles this naturally by allowing negative CA parameters as a simple extension of positive ones. In contrast, adapting a TD error model to account for this is more complex. For instance, attempting to introduce a "negative learning rate" makes the RW model behave in a non-stable manner (e.g., Q values become <0 or >1). At the initial stages of our project, we explored different approaches to dealing with this issue and we found the CA model provides the best approach. For these reasons, we decided to proceed with our CA model.

      Additionally, we used the CA model in previous studies (e.g., Moran, Dayan & Dolan (2021)) where we included (in SI) a detailed discussion of the similarities and difference between creditassignment and Rescorla-Wagner models

      (3) Why was the follow-up study not pre-registered?

      We appreciate the reviewer's comment regarding preregistration, which we should have done. Unfortunately, this is now “water under the bridge” but going forward we hope to pre-register increasing parts of our work.

      (4) Other work looking at reward stochasticity?

      As noted in point 4 of the main weaknesses, previous work on reward stochasticity primarily focused on explaining the increase/decrease in learning and its mechanistic bases under varying stochasticity levels. In our study, we uniquely characterize several specific learning biases that are modulated by source credibility, a topic not extensively explored within the existing reward stochasticity framework, as far as we know.

      (5) Equation 1 is different from the one in the figure?

      The reviewer is completely correct. The figure provides a simplified visual representation, primarily focusing on the feedback-based update of the Q-value, and for simplicity, it omits the forgetting term present in the full Equation 1. To ensure complete clarity and prevent any misunderstanding, we have now incorporated a more detailed explanation of the model, including the complete Equation 1 and its components, directly within the main text. This comprehensive description will ensure that readers are fully aware of how the model operates.

      “Next, we formulated a family of non-Bayesian computational RL models. Importantly, these models can flexibly express non-Bayesian learning patterns and, as we show in following sections, can serve to identify learning biases deviating from an idealized Bayesian strategy. Here, an assumption is that during feedback, the choice propensity for the chosen bandit (which here is represented by a point estimate, “Q value“, rather than a distribution) either increases or decreases (for positive or negative feedback, respectively) according to a magnitude quantified by the free “Credit-Assignment (CA)” model parameters (47):

      𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) + 𝐶𝐴(𝑎𝑔𝑒𝑛𝑡, 𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 𝐹

      where F is the feedback received from the agents (coded as 1 for reward feedback and -1 for non-reward feedback), while fQ (∈[0,1]) is the free parameter representing the forgetting rate of the Q-value (Fig. 2a, bottom panel; Fig. S5b; Methods).”

      (6) Please describe/plot the distribution of all fitted parameters in the supplement. I would include the mean and SD in the main text (methods) as well.

      Following the reviewer’s suggestions, we have included in the Supplementary Document tables displaying the mean and SD of fitted parameters from participants for our main models of interest. We have also plotted the distributions of such parameters. Both for the main study:

      (7) "A novel approach within the disinformation literature by exploiting a Reinforcement Learning (RL) experimental framework".

      The idea of applying RL to disinformation is not new. Please tone down novelty claims. It would be nice to cite/discuss some of this work as well.

      https://arxiv.org/abs/2106.05402?utm_source=chatgpt.com https://www.scirp.org/pdf/jbbs_2022110415273931.pdf https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4173312

      We thank the reviewer for pointing us towards relevant literature. We have now toned down the sentence in the introduction and cited the references provided:

      “To address these questions, we adopt a novel approach within the disinformation literature by exploiting a Reinforcement Learning (RL) experimental framework (36). While RL has guided disinformation research in recent years (37–40), our approach is novel in using one of its most popular tasks: the “bandit task”.”

      (8) Figure 3a - The figures should be in the order that they're referenced (3 is referenced before 2).

      We generally try to stick to this important rule but, in this case, we believe that our ordering serves better the narrative and hope the reviewer will excuse this small violation.

      (9) "Additionally, we found a positive feedback-effect for the 3-star agent"

      What is the analysis here? To avoid confusion with the "positive feedback" effect, consider using "positive effect of feedback". The dash wasn't sufficient to avoid confusion in my case.

      We have now updated the terms in the text to avoid confusion.

      (10) The discovery study revealed even stronger results supporting a conclusion that the credibility-CA model was superior to both Bayesian models for most subjects

      This is very subjective, but I'll just mention that my "cherry-picking" flag was raised by this sentence. Are you only mentioning cases where the discovery study was consistent with the main study? Upon a closer read, I think the answer is most likely "no", but you might consider adopting a more systematic (perhaps even explicit) policy on when and how you reference the discovery study to avoid creating this impression in a more casual reader.

      We thank the reviewer for this valuable suggestion. To prevent any impression of "cherry-picking", we have removed specific references to the discovery study from the main body of the text. Instead, all discussions regarding the convergence and divergence of results between the two studies are now in the dedicated section focusing on the discovery study:

      “The discovery study (n=104) used a disinformation task structurally similar to that used in our main study, but with three notable differences: 1) it included 4 feedback agents, with credibilities of 50%, 70%, 85% and 100%, represented by 1, 2, 3, and 4 stars, respectively; 2) each experimental block consisted of a single bandit pair, presented over 16 trials (with 4 trials for each feedback agent); and 3) in certain blocks, unbeknownst to participants, the two bandits within a pair were equally rewarding (see SI section 1.1). Overall, this study's results supported similar conclusions as our main study (see SI section 1.2) with a few differences. We found convergent support for increased learning from more credible sources (SI 1.2.1), superior fit for the CA model over Bayesian models (SI 1.2.2) and increased learning from feedback inferred to be true (SI 1.2.6). Additionally, we found an inflation of positivity bias for low-credibility both when measured relative to the overall level of credit assignment (as in our main study), or in absolute terms (unlike in our main study) (Fig. S3; SI 1.2.5). Moreover, choice-perseveration could not predict an amplification of positivity bias for low-credibility sources (see SI 3.6.2). However, we found no evidence for learning based on 50%-credibility feedback when examining either the feedback effect on choice repetition or CA in the credibility-CA model (SI 1.2.3).”

      (11) An in-depth comparison between Bayesian and empirical CA parameters revealed discrepancies from normative Bayesian learning.

      Consider saying where this in-depth comparison can be found (based on my reading, I think you're referring to the next section?

      We have now modified the sentence for better clarity:

      “However, an in-depth comparison between Bayesian and empirical CA parameters revealed discrepancies from ideal Bayesian learning, which we describe in the following sections.”

      (12) "which essentially provides feedback" Perhaps you meant "random feedback"?

      We have modified the text as suggested by the reviewer.

      <(13) Essentially random

      Why "essentially"? Isn't it just literally random?

      We have modified the text as suggested by the reviewer.

      (14) Both Bayesian models predicted an attenuated credit-assignment for the 3-star agent

      Attenuated relative to what? I wouldn't use this word if you mean weaker than what we see in the human data. Instead, I would say people show an exaggerated credit-assignment, since Bayes is the normative baseline.

      We changed the text according to the reviewer’s suggestion:

      “A comparison of empirical and Bayesian credit-assignment parameters revealed a further deviation from ideal Bayesian learning: participants showed an exaggerated credit-assignment for the 3-star agent compared with Bayesian models.”

      (15) "there was no difference between 2-star and 3-star agent contexts (b=0.051, F(1,2419)=0.39, p=0.53)"

      You cannot confirm the null hypothesis! Instead, you can write "The difference between 2-star and 3-star agent contexts was not significant". Although even with this language, you should be careful that your conclusions don't rest on the lack of a difference (the next sentence is somewhat ambiguous on this point).

      Additionally, the reported b coefs do not match the figure, which if anything, suggests a larger drop from 0.75 (2-star) to 1 (3-star). Is this a mixed vs fixed effects thing? It would be helpful to provide an explanation here.

      We thank the reviewer for this question. When we previously submitted our manuscript, we thought that finding enhanced credit-assignment for fully credible feedback following potential disinformation from a DIFFERENT context would constitute a striking demonstration of our “contrast effect”. However, upon reexamining this finding we found out we had a coding error (affecting how trials were filtered). We have now rerun and corrected this analysis. We have assessed the contrast effect for both "same-context" trials (where the contextual trial featured the same bandit pair as the learning trial) and "different-context" trials (where the contextual trial featured a different bandit pair). Our re-analysis reveals a selective significant contrast effect in the same-context condition, but no significant effect in the different-context condition. We have updated the main text to reflect these corrected findings and provide a clearer explanation of the analysis:

      “A comparison of empirical and Bayesian credit-assignment parameters revealed a further deviation from ideal Bayesian learning: participants showed an exaggerated credit-assignment for the 3-star agent compared with Bayesian models [Wilcoxon signed-rank test, instructed-credibility Bayesian model (median difference=0.74, z=11.14); free-credibility Bayesian model (median difference=0.62, z=10.71), all p’s<0.001] (Fig. 3a). One explanation for enhanced learning for the 3-star agents is a contrast effect, whereby credible information looms larger against a backdrop of non-credible information. To test this hypothesis, we examined whether the impact of feedback from the 3-star agent is modulated by the credibility of the agent in the trial immediately preceding it. More specifically, we reasoned that the impact of a 3-star agent would be amplified by a “low credibility context” (i.e., when it is preceded by a low credibility trial). In a binomial mixed effects model, we regressed choice-repetition on feedback valence from the last trial featuring the same bandit pair (i.e., the learning trial) and the feedback agent on the trial immediately preceding that last trial (i.e., the contextual credibility; see Methods for model-specification). This analysis included only learning trials featuring the 3-star agent, and context trials featuring the same bandit pair as the learning trial (Fig. 4a). We found that feedback valence interacted with contextual credibility (F(2,2086)=11.47, p<0.001) such that the feedback-effect (from the 3-star agent) decreased as a function of the preceding context-credibility (3-star context vs. 2-star context: b= -0.29, F(1,2086)=4.06, p=0.044; 2star context vs. 1-star context: b=-0.41, t(2086)=-2.94, p=0.003; and 3-star context vs. 1-star context: b=0.69, t(2086)=-4.74, p<0.001) (Fig. 4b). This contrast effect was not predicted by simulations of our main models of interest (Fig. 4c). No effect was found when focussing on contextual trials featuring a bandit pair different than the one in the learning trial (see SI 3.5). Thus, these results support an interpretation that credible feedback exerts a greater impact on participants’ learning when it follows non-credible feedback, in the same learning context.”

      We have modified the discussion accordingly as well:

      “A striking finding in our study was that for a fully credible feedback agent, credit assignment was exaggerated (i.e., higher than predicted by our Bayesian models). Furthermore, the effect of fully credible feedback on choice was further boosted when it was preceded by a low-credibility context related to current learning. We interpret this in terms of a “contrast effect”, whereby veridical information looms larger against a backdrop of disinformation (21). One upshot is that exaggerated learning might entail a risk of jumping to premature conclusions based on limited credible evidence (e.g., a strong conclusion that a vaccine produces significant side-effect risks based on weak credible information, following non-credible information about the same vaccine). An intriguing possibility, that could be tested in future studies, is that participants strategically amplify the extent of learning from credible feedback to dilute the impact of learning from noncredible feedback. For example, a person scrolling through a social media feed, encountering copious amounts of disinformation, might amplify the weight they assign to credible feedback in order to dilute effects of ‘fake news’. Ironically, these results also suggest that public campaigns might be more effective when embedding their messages in low-credibility contexts, which may boost their impact.”

      And we have included some additional analyses in the SI document:

      “3.5 Contrast effects for contexts featuring a different bandit Given that we observed a contrast effect when both the learning and the immediately preceding "context trial” involved the same pair of bandits, we next investigated whether this effect persisted when the context trial featured a different bandit pair – a situation where the context would be irrelevant to the current learning. Again, we used in a binomial mixed effects model, regressing choice-repetition on feedback valence in the learning trial and the feedback agent in the context trial. This analysis included only learning trials featuring the 3-star agent, and context trials featuring a different bandit pair than the learning trial (Fig. S22a). We found no significant evidence of an interaction between feedback valence and contextual credibility (F(2,2364)=0.21, p=0.81) (Fig. S22b). This null result was consistent with the range of outcomes predicted by our main computational models (Fig. S22c).”

      We aimed to formally compare the influence of two types of contextual trials: those featuring the same bandit pair as the learning trial versus those featuring a different pair. To achieve this, we extended our mixedeffects model by incorporating a new predictor variable, "CONTEXT_TYPE" which coded whether the contextual trial involved the same bandit pair (coded as -0.5) or a different bandit pair (+0.5) compared to the learning trial. The Wilkinson notation for this expanded mixed-effects model is:

      𝑅𝐸𝑃𝐸𝐴𝑇 ~ 𝐶𝑂𝑁𝑇𝐸𝑋𝑇_𝑇𝑌𝑃𝐸 ∗ 𝐹𝐸𝐸𝐷𝐵𝐴𝐶𝐾 ∗ (𝐶 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>2-star</sub> + 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>3-star</sub>) + 𝐵𝐸𝑇𝑇𝐸𝑅 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)

      This expanded model revealed a significant three-way interaction between feedback valence, contextual credibility, and context type (F(2,4451) = 7.71, p<0.001). Interpreting this interaction, we found a 2-way interaction between context-source and feedback valence when the context was the same (F(2,4451) = 12.03, p<0.001), but not when context was different (F(2,4451) = 0.23, p = 0.79). Further interpreting the double feedback-valence * context-source interaction (for the same context) we obtained the same conclusions as reported in the main text.”

      (16) "Strikingly, model-simulations (Methods) showed this pattern is not predicted by any of our other models"

      Why doesn't the Bayesian model predict this?

      Thanks for the comment. Overall, Bayesian models do predict a slight truth inference effect (see Figure 6d). However, these effects are not as strong as the ones observed in participants, suggesting that our results go beyond what would be predicted by a Bayesian model.

      Conceptually, it's important to note that the Bayesian model can infer (after controlling for source credibility and feedback valence) whether feedback is truthful based solely on prior beliefs about the chosen bandit. Using this inferred truth to amplify the weight of truthful feedback would effectively amount to “bootstrapping on one’s own beliefs.” This is most clearly illustrated with the 50% agent: if one believes that a chosen bandit yields rewards 70% of the time, then positive feedback is more likely to be truthful than negative feedback. However, a Bayesian observer would also recognize that, given the agent’s overall unreliability, such feedback should be ignored regardless.

      (17) "A striking finding in our study was that for a fully credible feedback agent, credit assignment was exaggerated (i.e., higher than predicted by a Bayesian strategy)".

      "Since we did not find any significant interactions between BETTER and the other regressors, we decided to omit it from the model formulation".

      Was this decision made after seeing the data? If so, please report the original analysis as well.

      We have included the BETTER regressor again, and we have re-run the analyses. We now report the results of such regression. We have also changed the methods section accordingly:

      “We used a different mixed-effects binomial regression model to test whether value learning from the 3-star agent was modulated by contextual credibility. We focused this analysis on instances where the previous trial with the same bandit pair featured the 3-star agent. We regressed the variable REPEAT, which indicated whether the current trial repeated the choice from the previous trial featuring the same bandit-pair (repeated choice=1, non-repeated choice=0). We included the following regressors: FEEDBACK coding the valence of feedback in the previous trial with the same bandit pair (positive=0.5, negative=-0.5), CONTEXT2-star indicating whether the trial immediately preceding the previous trial with the same bandit pair (context trial) featured the 2-star agent (feedback from 2-star agent=1, otherwise=0), and CONTEXT3star indicating whether the trial immediately preceding the previous trial with the same bandit pair featured the 3-star agent. We also included a regressor (BETTER) coding whether the bandit chosen in the learning trial was the better -mostly rewarding- or the worse -mostly unrewarding- bandit within the pair. We included in this analysis only current trials where the context trial featured a different bandit pair. The model in Wilkinson’s notation was:

      𝑅𝐸𝑃𝐸𝐴𝑇~ 𝐹𝐸𝐸𝐷𝐵𝐴𝐶𝐾 ∗ (𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>2-star</sub> + 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>3-star</sub>) + 𝐵𝐸𝑇𝑇𝐸𝑅 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) ( 13 )

      In figure 4c, we independently calculate the repeat probability difference for the better (mostly rewarding) and worse (mostly non-rewarding) bandits and averaged across them. This calculation was done at the participants level, and finally averaged across participants.”

    1. Shellfish reefs, particularly mussels, can form large areas of habitat that are vital to their infaunal communities (Cole and McQuaid, 2010), but past research has shown that as calcifying organisms, they are the most vulnerable to warming and acidification (Kroeker et al., 2013a; Parker et al., 2013). On temperate Australian rocky shores, habitats created by the native mussel Trichomya hirsuta, and to a lesser extent, the invasive mussel Mytilus galloprovincialis support a local diversity of annelids, crustaceans, molluscs, and echinoderms (People, 2006; Cole, 2010). Eastern Australia is a climate change “hot-spot” with sea surface temperatures in this region increasing three times faster than the global average (Wernberg et al., 2011; Hobday and Pecl, 2014), and oceans are acidifying worldwide (Collins et al., 2013). The invasive M. galloprovincialis is relatively tolerant to environmental change (Hiebenthal et al., 2013); whereas little is known about the tolerance of T. hirsuta. As the oceans warm and acidify, M. galloprovincialis may have the capacity to replace T. hirsuta as the dominant biogenic habitat on the Australian rocky shores. Any changes in the biogenic mussel habitat could alter the infaunal communities, with downstream consequences for dependent organisms. Such consequences will have an impact on the natural communities and the success of current and future shellfish reef restoration projects (Pereira et al., 2019).

      If natives are replaced by hardier shellfish, do we think organisms will adapt to consume the new shellfish? Perhaps softer shelled mussels move in to the territory, will these areas be more susceptible to storm surges and wave energy? The new species may temporarily sound good but could be quickly destroyed by storm systems. This may enable the new species to spread out further and possibly benefit, or lead to the softer shelled mussels demise. Could the stronger storm systems associated with climate change put more stress on these oyster beds?

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.

      In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs and demonstrates the versatility of these tools in different ex vivo and in vivo experimental systems. The mutagenesis experiments also revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channel.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      While the novel ChRs identified in this work are spectrally blue-shifted, there still seems to be some spectral overlap with other optogenetic tools. The authors should provide more evidence to support the claim that they can be used for multiplex optogenetics and help potential end-users assess if they can be used together with other commonly applied ChRs. Additionally, further engineering or combination with other tools may be required to achieve truly orthogonal control in multiplexed experiments.

      To demonstrate the usefulness of ancyromonad ChRs for multiplex optogenetics as a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting ChR Chrimson and measured net photocurrent generated by this combination as a function of the wavelength. We found that it is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      In the C. elegans experiments, partial recovery of pharyngeal pumping was observed after prolonged illumination, indicating potential adaptation. This suggests that the effectiveness of these ChRs may be limited by cellular adaptation mechanisms, which could be a drawback in long-term experiments. A thorough discussion of this challenge in the application of optogenetics tools would prove very valuable to the readership.

      We added the following paragraph to the revised Discussion:

      “One possible explanation of the partial recovery of pharyngeal pumping that we observed after 15-s illumination, even at the highest tested irradiance, is continued attenuation of photocurrent during prolonged illumination (desensitization). However, the rate of AnsACR desensitization (Figure 1 – figure supplement 4A and Figure 1 – figure supplement 5A) is much faster than the rate of the pumping recovery, reducing the likelihood that desensitization is driving this phenomenon. Another possible reason for the observed adaptation is an increase in the cytoplasmic Cl<sup>-</sup> concentration owing to AnsACR activity and hence a breakdown of the Cl<sup>-</sup> gradient on the neuronal membrane. The C. elegans pharynx is innervated by 20 neurons, 10 of which are cholinergic (Pereira, Kratsios et al. 2015). A pair of MC neurons is the most important for regulation of pharyngeal pumping, but other pharyngeal cholinergic neurons, including I1, M2, and M4, also play a role (Trojanowski, Padovan-Merhar et al. 2014). Moreover, the pharyngeal muscles generate autonomous contractions in the presence of acetylcholine tonically released from the pharyngeal neurons (Trojanowski, Raizen et al. 2016). Given this complexity, further elucidation of pharyngeal pumping adaptation mechanisms is beyond the scope of this study.”

      Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsins identified are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable, having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show that AnsACR is usable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource, both presenting new opsins that may be important for future experiments, and providing characterizations to expand our understanding of opsin biophysics in general.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      First, while the authors frequently reference GtACR1, a well-used anion opsin, there is no side-by-side data comparing these new opsins to the existing state-of-the-art. Such comparisons are very useful to adopt new opsins.

      GtACR1 exhibits the peak sensitivity at 515 nm and therefore is poorly suited for combination with red-shifted CCRs or fluorescent sensors, unlike blue-light-absorbing ancyromonad ACRs. Nevertheless, we conducted side-by-side comparison of ancyromonad ChRs, GtACR1 and GtACR2, the latter of which has the spectral maximum at 470 nm. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Next, multiphoton optogenetics is a promising emerging field in neuroscience, and I appreciate that the authors began to evaluate this approach with these opsins. However, a few additional comparisons are needed to establish the user viability of this approach, principally the photocurrent evoked using the 2p process, for given power densities. Comparison across the presented opsins and GtACR1 would allow readers to asses if these opsins are meaningfully activated by 2P.

      We carried out additional 2P experiments in ancyromonad ChRs, GtACR1 and GtACR2 and added their results to a new main-text Figure 6 and Figure 6 – figure supplement 1. We added the new section describing these results, “Two-photon excitation”, to the main text in the revision:

      “To determine the 2P activation range of AnsACR, FtACR, and NlCCR, we conducted raster scanning using a conventional 2P laser, varying the excitation wavelength between 800 and 1,080 nm (Figure 6 – figure supplement 1). All three ChRs generated detectable photocurrents with action spectra showing maximal responses at ~925 nm for AnsACR, 945 nm for FtACR, and 890 nm for NlCCR (Figure 6A). These wavelengths fall within the excitation range of common Ti:Sapphire lasers, which are widely used in neuroscience laboratories and can be tuned between ~700 nm and 1,020-1,300 nm. To assess desensitization, cells expressing AnsACR, FtACR, or NlCCR were illuminated at the respective peak wavelength of each ChR at 15 mW for 5 seconds. GtACR1 and GtACR2, previously used in 2P experiments (Forli, Vecchia et al. 2018, Mardinly, Oldenburg et al. 2018), were included for comparison. The normalized photocurrent traces recorded under these conditions are shown in Figure 6B-F. The absolute amplitudes of 2P photocurrents at the peak time and at the end of illumination are shown in Figure 6G and H, respectively. All five tested variants exhibited comparable levels of desensitization at the end of illumination (Figure 6I).”

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      This study does not exhibit major methodological weaknesses. The primary limitation of the study is that it includes only a limited number of comparisons to known ChRs, which makes it difficult to assess whether these newly discovered tools offer significant advantages over currently available options.

      We conducted side-by-side comparison of ancyromonad ChRs and GtACRs, wildly used for optical inhibition of neuronal activity. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Additionally, although the study aims to present ChRs suitable for multiplex optogenetics, the new ChRs were not tested in combination with other tools. A key requirement for multiplexed applications is not just spectral separation of the blue-shifted ChR from the red-shifted tool of interest but also sufficient sensitivity and potency under low blue-light conditions to avoid cross-activation of the respective red-shifted tool. Future work directly comparing these new ChRs with existing tools in optogenetic applications and further evaluating their multiplexing potential would help clarify their impact.

      As a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting CCR Chrimson and demonstrated that the net photocurrent generated by this combination is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      Reviewing Editor Comments:

      The reviewers suggest that direct comparison to GtACR1 is the most important step to make this work more useful to the community.

      We followed the Reviewers’ recommendations and carried out side-by-side comparison of ancyromonad ChRs and GtACR1 as well as GtACR2 (Figure 1E and F, Figure 1 – figure supplement 4, Figure 1 – figure supplement 5, and Figure 6). Note, however, that GtACR1’s spectral maximum is at 515 nm, which makes it poorly suitable for blue light excitation. Also, ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      Reviewer #1 (Recommendations for the authors):

      (1) The figure legend for Figure 2D-I appears to be incomplete. Please provide a detailed explanation of the panels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      (2) The meaning of the Vr shift (Y-axis in Figure 2H-I) should be clarified in the main text to aid reader understanding.

      In the revision, we added the phrase “which indicated higher relative permeability to NO<sub>3</sub> than to Cl<sup>-“</sup> to explain the meaning of the Vr shift upon replacement of Cl<sup>-</sup> with NO<sub>3</sub>-.

      (3) Adding statistical analysis for the peak and end photocurrent values in Figure 2D-F would strengthen the claim that there is minimal change in relative permeability during illumination.

      In the revision, we added the V<sub>r</sub> values for the peak photocurrent to Figure 2H-I, which already contained the V<sub>r</sub> values for the end photocurrent, and carried out a statistical analysis of their comparison. The following sentence was added to the text in the revision:

      “The V<sub>r</sub> values of the peak current and that at the end of illumination were not significantly different by the two-tailed Wilcoxon signed-rank test (Fig. 2G), indicating no change in the relative permeability during illumination.”

      (4) Figure 4H and I seem out of place in Figure 4, as the title suggests a focus on wild-proteins and AnsACR mutants. The authors could consider moving these panels to Figure 3 for better alignment with the content.

      As noted below, we changed the panel order in Figure 4 upon the Reviewer’s request. In particular, former Figure 4I is Figure 4C in the revision, and former Figure 4H is now panel C in Figure 3 – figure supplement 1 in the revision. We rearranged the corresponding section of the text (highlighted yellow in the manuscript).

      (5) The characterization section could be strengthened by including data on the pH sensitivity of FtACR, which is currently missing from the main figures.

      Upon the Reviewer’s request, we carried out pH titration of FtACR absorbance and added the results as Figure 4B in the revision.

      (6) The logic in Figure 4A-G appears somewhat disjointed. For example, Figure 4A shows pH sensitivity for WT AnsACR and the G86E mutant, while Figure 4 B-D shifts to WT AnsACR and the D226N mutant, and Figure 4E returns to the G86E mutant. Reorganizing or clarifying the flow would improve readability.

      We followed the Reviewer’s advice and changed the panel order in Figure 4. In the revised version, the upper row (panels A-C) shows the pH titration data of the three WTs, the middle row (panels D-F) shows analysis of the AnsACR_D226N mutant, and the lower row (panels G-I) shows analysis of the AnsACR_G88E mutant. We also rearranged accordingly the description of these panels in the text.

      (7) In Figure 5A, "NIACR" should likely be corrected to "NlCCR".

      We corrected the typo in the revision.

      (8) The statistical significance in Figure 6C and D is somewhat confusing. Clarifying which groups are being compared and using consistent symbols would improve interoperability.

      In the revision, we improved the figure panels and legend to clarify that the comparisons are between the dark and light stimulation groups within the same current injection.

      (9) The authors pointed out that at rest or when a small negative current was injected, the neurons expressing Cl- permeable ChRs could generate a single action potential at the beginning of photostimulation, as has been reported before. The authors could help by further discussing if and how this phenomenon would affect the applicability of such tools.

      We mentioned in the revised Discussion section that activation of ACRs in the axons could depolarize the axons and trigger synaptic transmission at the onset of light stimulation, and this undesired excitatory effect need to be taken into consideration when using ACRs.

      Reviewer #2 (Recommendations for the authors):

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. In general, I feel positively about this manuscript. It presents new potentially useful opsins and provides characterization that would enable its use. I have a few recommendations below, mostly centered around side-by-side comparisons to existing opsins.

      (1) My primary concern is that while there is a reference to GtACR1, a highly used opsin first described by this team, they do not present any of this data side by side.

      When evaluating opsins to use, it is important to compare them to the existing state of the art. As a potential user, I need to know where these opsins differ. Citing other papers does not solve this as, even within the same lab, subtle methodological differences or data plotting decisions can obscure important differences.

      As we explained in the response to the public comments, we carried out side-by-side comparison of ancyromonad ChRs and GtACRs as requested by the Reviewer. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5, added in the revision. However, we would like to emphasize a limited usefulness of such comparative analysis, as ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      (2) Multiphoton optogenetics is an emerging field of optogenetics, and it is admirable that the authors address it here. The authors should present more 2p characterization, so that it can be established if these new opsins are viable for use with 2P methods, the way GtACR1 is. The following would be very useful for 2P characterization:

      Photocurrents for a given power density, compared to GtACR1 and GtACR2.

      The new Figure 6 (B-F) added in the revision shows photocurrent traces recorded from the three ancyromonad ChRs and  two GtACRs upon 2P excitation of a given power density.

      Comparing NICCR and FtACR's wavelength specificity and photocurrent. If these opsins are too weak to create reasonable 2P spectra, this difference should be discussed.

      The new Figure 6A shows the 2P action spectra of all three ancyromonad ChRs.

      A Trace and calculated photocurrent kinetics to compare 1P and 2P. This need not be the flash-based absorption characterization of Figure 3, but a side-by-side photocurrent as in Figure 2.

      As mentioned above, photocurrent traces recorded from ancyromonad ChRs and GtACRs upon 2P excitation are shown in the new Figure 6 (B-F). However, direct comparison of the 2P data with the 1P data is not possible, as we used laser scanning illumination for the former and wild-field illumination for the latter.

      Characterization of desensitization. As the authors mention, many opsins undergo desensitization, presenting the ratio of peak photocurrent vs that at multiple time points (probably up to a few seconds) would provide evidence for how effectively these constructs could be used in different scenarios.

      We conducted a detailed analysis of desensitization under both 1P and 2P excitation. The new Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 show the data obtained under 1P excitation, and the new Figure 6 shows the data for 2P conditions.

      I have to admit, that by the end of the paper, I was getting confused as to which of the three original constructs had which property, and how that was changing with each mutation. I would suggest that a table summarizing each opsin and mutation with its onset and offset kinetics, peak wavelength, photocurrent, and ion selectivity would greatly increase the ability to select and use opsins in the future.

      In the revision, we added a table of the spectroscopic properties of all tested mutants as Supplementary File 2. This study did not aim to analyze other parameters listed by the Reviewer. We added the following sentence referring to this table to the main text:

      “Supplementary File 2 contains the λ values of the half-maximal amplitude of the long-wavelength slope of the spectrum, which can be estimated more accurately from the action spectra than the λ of the maximum.”

      It may be out of the scope of this manuscript, but if a soma localization sequence can be shown to remove the 'axonal spiking' (as described in line 441), this would be a significant addition to the paper.

      Our previous study (Messier et al., 2018, doi: 10.7554/eLife.38506) showed that a soma localization sequence can reduce, but not eliminate, the axonal spiking. We plan to test these new ACRs with the trafficking motifs in the future.

      NICCR appears to have the best photocurrents of all tested opsins in this paper. It seems odd that it was omitted from the mouse cortical neurons experiments.

      We have not included analysis of NlCCR behavior in neurons because we are preparing a separate manuscript on this ChR.

      Figure 6 would benefit from more gradation in the light powers used to silence and would benefit from comparison to GtACR. I suggest using a fixed current with a series of illumination intensities to see which of the three opsins (or GtACR) is most effective at silencing. At present, it looks binary, and a user cannot evaluate if any of these opsins would be better than what is already available.

      In the revision, we added the data comparing the light sensitivity of AnsACR and FtACR with previously identified GtACR1 and GtACR2 (new Figure 1E and F) to help users compare these ACRs. Although they are less sensitive to light comparing to GtACR1 and GtACR2, they could still be activated by commercially available light sources if the expression levels are similar. Less sensitive ACRs may have less unwanted activation when using with other optogenetic tools.

      Reviewer #3 (Recommendations for the authors):

      Suggested Improvements to Experiments, Data, or Analyses:

      (1) Line 25: "significantly exceeding those by previously known tools" and Line 408: "NlCCR is the most blue-shifted among ancyromonad ChRs and generates larger photocurrents than the earlier known CCRs with a similar absorption maximum." As noted in the public review, this statement applies only to a very specific subgroup of ChRs with spectral maxima below 450 nm. If the goal was to claim that NlCCR is a superior tool among a broader range of blue-light-activated ChRs, direct comparisons with state-of-the-art ChRs such as ChR2 T159C (Berndt et al., 2011), CatCh (Kleinlogel et al., 2014), CoChR (Klapoetke et al., 2014), CoChR-3M (Ganjawala et al., 2019), or XXM 2.0 (Ding et al., 2022) would be beneficial. If the goal was to demonstrate superiority among tools with spectra below 450 nm, I suggest explicitly stating this in the paper.

      The Reviewer correctly inferred that we emphasized the superiority of NlCCR among tools with similar spectral maxima, not all blue-light-activated ChRs available for neuronal photoexcitation, most of which exhibit absorption maxima at longer wavelengths. To clarify this, we added “with similar spectral maxima” to the sentence in the original Line 25. The sentence in Line 408 already contains this clarification: “with a similar absorption maximum”.

      (2) Lines 111-113: "The absorption spectra of the purified proteins were slightly blue-shifted from the respective photocurrent action spectra (Figure 1D), likely due to the presence of non-electrogenic cis-retinal-bound forms." I would be skeptical of this statement. The spectral shifts in NlCCR and AnsACR are small and may fall within the range of experimental error. The shift in FtACR is more apparent; however, if two forms coexist in purified protein, this should be reflected as two Gaussian peaks in the absorption spectrum (or at least as a broader total peak reflecting two states with close maxima and similar populations). On the contrary, the action spectrum appears to have two peaks, one potentially below 465 nm. Generally, neither spectrum appears significantly broader than a typical microbial rhodopsin spectrum. This question could be clarified by quantifying the widths of the absorption and action spectra or by overlaying them on the same axis. In my opinion, the two spectra seem very similar, and just appearance of the "bump" in the action spectum shifts the apparent maximum of the action spectrum to the red. If there were two states, then they should both be electrogenic, and the slight difference in spectra might be explained by something else (e.g. by a slight difference in the quantum yields of the two states).

      As the Reviewer suggested, in the revision we added a new figure (Figure 1 – figure supplement 2), showing the overlay of the absorption and action spectra of each ancyromonad ChR. This figure shows that the absorption spectra are wider than the action spectra (especially in AnsACR and FtACR), which confirms our interpretation (contribution of the non-electrogenic blue-shifted cis-retinal-bound forms to the absorption spectrum). Note that the presence of such forms explaining a blue shift of the absorption spectrum has been experimentally verified in HcKCR1 (doi: 10.1016/j.cell.2023.08.009; 10.1038/s41467-025-56491-9). Therefore, we revised the text as follows:

      “The absorption spectra of the purified proteins (Figure 1C) were slightly blue-shifted from the respective photocurrent action spectra (Figure 1 – figure supplement 3), likely due to the presence of non-electrogenic cis-retinal-bound forms. The presence of such forms, explaining the discrepancy between the absorption and the action spectra, was verified by HPLC in KCRs (Tajima et al. 2023, Morizumi et al., 2025).”

      (3) Lines 135-136: "The SyncroPatch enables unbiased estimation of the photocurrent amplitude because the cells are drawn into the wells without considering their tag fluorescence." While SyncroPatch does allow unbiased selection of patched cells, it does not account for the fraction of transfected cells. Without a method to exclude non-transfected cells, which are always present in transient transfections, the comparison of photocurrents may be affected by the proportion of untransfected cells, which could vary between constructs. To clarify whether the statistically significant difference in the Kolmogorov-Smirnov test could indicate that the fraction of transfected cells after 48-72h differs between constructs, I suggest analyzing only transfected cells or reporting fractions of transfected cells by each construct.

      The Reviewer correctly states that non-transfected cells are always present in transiently transfected cell populations. However, his/her suggestion to “exclude non-transfected cells” is not feasible in the absence of a criterion for such exclusion. As it is evident from our data, transient transfection results in a continuum of the amplitude values, and it is not possible to distinguish a small photocurrent from no photocurrent, considering the noise level. We would like, however, to emphasize that not excluding any cells provides an estimate of the overall potency of each ChR variant, which depends on both the fraction of transfected cells and their photocurrents. This approach mimics the conditions of in vivo experiments, when non-expressing cells also cannot be excluded.

      (4) Line 176: "AnsACR and FtACR photocurrents exhibited biphasic rise." The fastest characteristic time is very close to the typical resolution of a patch-clamp experiment (RC = 50 μs for a 10 pF cell with a 5 MΩ series resistance). Thus, I am skeptical that the faster time constant of the biphasic opening represents a protein-specific characteristic time. It may not be fully resolved by patch-clamp and could simply result from low-pass filtering of a specific cell. I suggest clarifying this for the reader.

      The Reviewer is right that the patch clamp setup acts as a lowpass filter. Earlier, we directly measured its time resolution (~15 μs) by recording the ultrafast (occurring on the ps time scale) charge movements related to the trans-cis isomerization (doi: 10.1111/php.12558). However, the lowpass filter of the setup can only slow the entire signal, but cannot lead to the appearance of a separate kinetic component (i.e. a monophasic process cannot become biphasic). Therefore, we believe that the biphasic photocurrent rise reflects biphasic channel opening rather than a measurement artifact. Two phases in the channel opening have also been detected in GtACR1 (doi: 10.1073/pnas.1513602112) and CrChR2 (10.1073/pnas.1818707116).

      (5) Line 516: "The forward LED current was 900 mA." It would be more informative to report the light intensity rather than the forward current, as many readers may not be familiar with the specific light output of the used LED modules at this forward current.

      We have added the light intensity value in the revision:

      “The forward LED current was 900 mA (which corresponded to the irradiance of ~2 mW mm<sup>-2</sup>)…”

      (6) Lines 402-403: "The NlCCR ... contains a neutral residue in the counterion position (Asp85 in BR), which is typical of all ACRs. Yet, NlCCR does not conduct anions, instead showing permeability to Na+." This is not atypical for CCRs and has been demonstrated in previous works of the authors (CtCCR in Govorunova et al. 2021, ChvCCR1 in Govorunova et al. 2022). What is unique is the absence of negatively charged residues in TM2, as noted later in the current study. However, the absence of negatively charged residues in TM2 appears to be rare for ACRs as well. Not as a strong point of criticism, but to enhance clarity, I suggest analyzing the frequency of carboxylate residues in TM2 of ACRs to determine whether the unique finding is relevant to ion selectivity or to another property.

      The Reviewer is correct that some CCRs lack a carboxylate residue in the D85 position, so this feature alone cannot be considered as a differentiating criterion. However, the complete absence of glutamates in TM2 is not rare in ACRs and is found, for example, in HfACR1 and CarACR2. We have discussed this issue in our earlier review (doi: 10.3389/fncel.2021.800313) and do not think that repeating this discussion in this manuscript is appropriate.

      Recommendations for Writing and Presentation:

      (1) Some figures contain incomplete or missing labels:

      Figure 2: Panels D to I lack labels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      Figure 3 - Figure Supplement 1: Missing explanations for each panel.

      In the revision, we changed the order of panes and explained all individual panels in the legend.

      Figure 5 - Figure Supplement 1: Missing explanations for each panel.

      No further explanation for individual panels in this Figure is needed because all panels show the action spectra of various mutants, the names of which are provided in the panels themselves. Repeating this information in the figure legend would be redundant.

      (2) In Figure 2, "sem" is written in lowercase, whereas "SEM" is capitalized in other figures. Standardizing the format would improve consistency.

      In the revision, we changed the font of the SEM abbreviation to the uppercase in all instances.

      (3) Line 20: "spectrally separated molecules must be found in nature." There is no proof that they cannot be developed synthetically; rather, it is just difficult. I suggest softening this statement, as the findings of this study, together with others, will probably allow designing molecules with specified spectral properties in the future.

      In the revision, we changed the cited sentence to the following:

      “Multiplex optogenetic applications require spectrally separated molecules, which are difficult to engineer without disrupting channel function”.

      (4) Line 216-219: "Acidification increased the amplitude of the fast current ~10-fold (Figure 4F) and shifted its Vr ~100 mV (Figure 3 - figure supplement 1D), as expected of passive proton transport. The number of charges transferred during the fast peak current was >2,000 times smaller than during the channel opening, from which we concluded that the fast current reflects the movement of the RSB proton." The claim about passive transport of the RSB proton should be clarified, as typically, passive transport is not limited to exactly one proton per photocycle, and the authors observe the increase in the fast photocurrents upon acidification.

      We thank the Reviewer for pointing out the confusing character of our description. To clarify the matter, we added a new photocurrent trace to Figure 4I in the revision recorded from AnsACR_G86E at 0 mV and pH 7.4. We have rewritten the corresponding section of Results as follows:

      “Its rise and decay τ corresponded to the rise and decay τ of the fast positive current recorded from AnsACR_G86E at 0 mV and neutral pH, superimposed on the fast negative current reflecting the chromophore isomerization (Figure 4I, upper black trace). We interpret this positive current as an intramolecular proton transfer to the mutagenetically introduced primary acceptor (Glu86), which was suppressed by negative voltage (Figure 4I, lower black trace). Acidification increased the amplitude of the fast negative current ~10-fold (Figure 4I, black arrow) and shifted its V<sub>r</sub> ~100 mV to more depolarized values (Figure 4 – figure supplement 2A). This can be explained by passive inward movement of the RSB proton along the large electrochemical gradient.”

      Minor Corrections:

      (1) Line 204: Missing bracket in "phases in the WT (Figure 4D."

      The quoted sentence was deleted during the revision.

      (2) Line 288: Typo-"This Ala is conserved" should probably be "This Met is conserved."

      We mean here the Ala four residues downstream from the first Ala. To avoid confusion, we changed the cited sentence to the following:

      “The Ala corresponding to BR’s Gly122 is also found in AnsACR and NlCCR (Figure 5A)…”

      (3) Lines 702-704: Missing Addgene plasmid IDs in "(plasmids #XXX and #YYY, respectively)."

      In the revision, we added the missing plasmid IDs.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      Comments on revised version:

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers

      Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths

      -The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      -The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      -The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

      Weaknesses

      -The main concern is the lack of clear connection between sulfation and the phenotypes observed at the cellular level, and, importantly, the lack of connection between sulfation and the Pio-Dpy matrix. Indeed, the mechanism/s by which sulfation affects lumen expansion are not elucidated and no targets of this modification are identified or investigated. A direct (or instructive) role for sulfation in aECM organization is not clearly supported by the results, and the connection between sulfation and Pio/Dpy roles seems correlative rather than causative. As it is presented, the mechanisms by which sulfation regulates SG lumen expansion remains elusive in this study.

      -In my opinion the authors overestimate their findings with several conclusions, as exemplified in the abstract:

      "In the absence of Papss, Pio is gradually lost in the aECM, while the Dpy-positive aECM structure is condensed and dissociates from the apical membrane, leading to a thin lumen. Mutations in dpy or pio, or in Notopleural, which encodes a matriptase that cleaves Pio to form the luminal Pio pool, result in a SG lumen with alternating bulges and constrictions, with the loss of pio leading to the loss of Dpy in the lumen. Our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining luminal diameter."

      The findings leading to conclude that sulfation organizes the aECM and that the absence of Papss leads to a thin lumen due to defects in Dpy/Pio are not strong. The authors certainly show that Papss is required for proper Pio and Dpy accumulation. They also show that Pio is required for Dpy accumulation, and that Pio and Dpy form an aECM required for lumen expansion. However, the absence of Pio and Dpy do not fully recapitulate Papss mutant defects (thin lumen). I wonder whether other hypothesis and models could account for the observed results. For instance, a role for Papss affecting secretion, in which case sulfation would have an indirect role in aECM organization. This study does not address the mechanical properties of Dpy in normal and mutant salivary glands.

      -Minor issues relate to the genotype/phenotype analysis. It is surprising that the authors detect only mild effects on sulfation in Papss mutants using an anti-sulfoTyr antibody, as Papss is the only Papss synthathase. Generating germ line clones (which is a feasible experiment) would have helped to prove that this minor effect is due to the contribution of maternal product. The loss of function allele used in this study seems problematic, as it produces effects in heterozygous conditions difficult to interpret. Cleaning the chromosome or using an alternative loss of function condition (another allele, RNAi, etc...) would have helped to present a more reliable explanation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers. The addition of the sulfation(-) mutant to Fig. 1 is particularly nice. I have just a few additional suggestions for text changes to improve clarity/precision.

      (1) The current title of this manuscript is quite broad, making it sound like a review article. I recommend adding sulfation and salivary gland to the title to convey the main points more clearly. e.g. Sulfation affects apical extracellular matrix organization during development of the Drosophila salivary gland tube.

      Thank you for the suggestion. We agree and have changed the title of the paper as suggested.

      (2) Figure 1B shows very striking enrichment of papss expression in the salivary gland compared to other tubes like the trachea that also contain Pio and Dpy. To me, this implies that the key substrate(s) of Papss are likely to be unique, or at least more highly enriched, in the salivary gland aECM compared to the tracheal aECM (e.g. probably not Pio or Dpy themselves). I suggest that the authors address the implications of this apparent SG specificity in the discussion (paragraph beginning on p. 21, line 559).

      Yes, we agree that there may be other key substrates of Papss in the SG, such as mucins, which play an important role in organizing the aECM and expanding the lumen. We have included a discussion.

      (3) p. 15, lines 374-376 "The Pio protein is known to be cleaved, at one cleavage site after the ZP domain by the furin protease and at another cleavage site within the ZP domain by the matriptase Notopleural (Np) (Drees et al., 2019; Drees et al., 2023; Figure 5B)." As far as I can see, the Drees papers show that Pio is cleaved somewhere in the vicinity of a consensus furin cleavage site, but do not actually establish that the cleavage happens at this exact site or is done by a furin protease (this is just an assumption). Please word more carefully, e.g. "at one cleavage site after the ZP domain, possibly by a furin protease".

      Thank you for pointing this out. We have edited the text.

      Reviewer #2 (Recommendations for the authors):

      Throughout the paper, I find a bit confusing the description of the lumen phenotype and their interpretations.

      Papss mutants produce SG that are either "thin" or show "irregular lumen with bulges". Do the authors think that these are two different manifestations of the same effect? or do they think that there are different causes behind?

      The thin lumen phenotype appears to occur when the Pio-Dpy matrix is significantly condensed. When this matrix is less condensed in one region of the lumen than in other regions, the lumen appears irregular with bulges.

      Are the defects in Grasp65 mutants categorized as "irregular lumen with bulges" similar to those in Papss mutants? Why do these mutants don't show a "thin lumen" defect?

      Grasp65 mutant phenotypes are milder than those of Papss mutants. Multiple mutations in several Golgi components that more significantly disrupt Golgi structures and function may cause more severe defects in lumen expansion and shape.

      How the defects described for Pio ("multiple constrictions with a slight expansion between constrictions") and Dpy mutants ("lumen with multiple bulges and constrictions") relate to the "irregular lumen with bulges" in Papss mutants?

      pio and dpy mutants show more stereotypical phenotypes, while Papss mutants exhibit more irregular and random phenotypes. The irregular lumen phenotypes in Papss mutants are associated with a condensed Pio-Dpy matrix.

  5. Aug 2025
    1. L ‘„»I2'8

      If we can assume by the sign-off that he began his book in 1938, and then published in 1944, that would place us in Switzerland during Nazi Germany and the beginning of WWII. I wonder if any of his writings in this book were influenced by current events and if he considered war strategy as a form of play. It is easy for us to think of war as play, but for those who lived through it, it may have seemed like an outrageous statement.

    1. It's not: Can schools save more of our students? Because I think we have the answer to that -- and it's yes they can, if we save our schools first. We can start by caring about the education of other people's children ...

      Tying the amount of money we have lost as a nation to the lack of attention paid to the education system was an interesting point. The financial loss could sway people who previously did not care about other people's children (and their education). Due to the current state of the country it may be difficult to get people to "start caring about other people's children." in tems of improving the condition of our current educational system but the financial implications and losing earning potential could sway stakeholders to invest in educational reform.

    1. This is because our expectations are often based on previous experience and patterns we have observed and internalized, which allows our brains to go on “autopilot” sometimes and fill in things that are missing or overlook extra things.

      This sentence is very relatable. It highlights how our brains rely on past experiences and familiar patterns to make sense of what’s around us, sometimes without us even realizing it. The idea of going on “autopilot,” as stated in the text, is something I experience often. For example, there are times when I’m sitting in my living room and I think I see someone walking past my big front window. But when I actually look outside, there’s nobody there. This has happened multiple times, and I’ve always wondered why. Now, I think it’s because the walkway to the front door is right outside that window, so my brain may be expecting someone to come up to the door.

    1. We anticipate that layers that account for this depth order, e.g. through convolutions or possibly self-attention (as used in spatio-temporal graphs (e.g. Guo et al. 2019, Su et al. 2020)), will often be complementary to other layers acting on the topology (encoded in the phylogenetic graph), e.g. through graph convolutions.

      Related to the pooling operator, I think large gains may come from the use of 1) edge weights in your GCN layers so that not all neighbors are treated equally by the message passing mechanism, and 2) alternative MPNN layer types, including use of the graph attention mechanism (i.e. GAT) or graph transformers, which use the attention mechanism to learn which neighbors are more "important." I suspect that even with simple mean-pooling, these alternative layer types will be much more performant and generalizable (e.g. from CRBD to BiSSE). In effect the GCN layers (particularly without using edge weights) is more akin to the CRBD in that it assumes uniform, homogeneous contribution by all neighbors to feature updates.

    1. And some have suggested we may have been thinking about agriculture wrong. It now seems likely that agriculture began in a very gradual process that goes back much farther than we had imagined.

      I find it interesting how our understanding of the agricultural revolution has changed over the years. We as humans tend to think about history, and really a lot of things, in a chronological order. We’ve learned over the years that it isn’t always the cause, especially in our understanding of pre-written eras.

    1. Author response:

      Reviewer 1:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      We did not present this data – the effect of inactivation on the leg’s rest position in unweighted leg - because it was already reported in the case of stick insects. However, we understand the reviewer’s point that it is important to present the data showing this replication. We will do the same in the revised version.

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      This reviewer critique is related to the use of vglut-gal4 –a broad driver– to inactivate motor neurons (MNs). The reviewer argues that the use of a broad driver might result in some effects that are not due to MN inactivation. Conversely, it is possible that not all MNs are inactivated. These critiques raise important points that we will address in the revision by 1) performing experiments with other MN drivers as suggested by the reviewer, 2) performing experiments in flies that are inactivated by freezing. These measurements will provide other estimates of passive forces allowing us to better triangulate the range of values for the passive forces. Moreover, it appears that one of the reviewer’s main concern is that the passive forces are overestimated because of the residual active forces. We will discuss this possibility in detail. It is important to note that in the end what we hope to accomplish is to provide a useful estimate of the passive forces. It is unlikely that the passive force will be a precise number like a physical constant as the passive forces likely depend on recent history.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      Our OpenSim model predates the newer mechanical model. In the revised manuscript, we will revisit the model in light of recent developments.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (4a) Although we agree that measuring different points on the body would allow us to estimate the moments, we disagree that the height of the fly cannot be evaluated from the measurement of a single point. The measurements have been performed using the same techniques that we used to assess the fly’s height in a different study where we estimated the resolution of our imaging system to be ~20 mm(Chun et. al. 2021). We will include these details in the revised manuscript. The video showing the falling experiments are not available or referenced in the manuscript. These will be made available.

      b) We will repeat the “falling” experiment with a more restrictive driver.

      c) We disagree with the reviewer on this point. The system has a resolution of ~20 mm and is sufficient to make conclusion about the difference in the height of the fly. We will clarify this point in the revised manuscript.

      d) We do not follow the reviewer’s rationale here. The passive forces in the model (along with any residual forces) are the same in the model as well as in the experiment. Moreover, there will be a delay between light onset, neuronal inactivation and muscle inactivation. These processes are not instantaneous. In Figure 6, we estimate these delays and have concluded that they will cause substantial delay. In the revised manuscript, we will discuss other reasons for the delay suggested by the reviewer.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

      (5 a) However, we can address the reviewer critique by recording from the Vglut line while using a MN line to target the recordings to MNs.

      b) Once we use the Vglut driver to perform these recordings, it will help assess how much of the MN inactivation is due to the GtACR expressed in the MN versus other neurons.

      Reviewer 2:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration.

      We agree with these comments but believe that these studies represent avenues for future work.

      Reviewer 3:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      To us, measuring passive forces was the first step to understanding neural/biomechanical control of limb. In general, we agree with these comments and would like to understand the role of passive forces in overall control of limb. A complete discussion of the role of the significance of passive forces in the control of limb is beyond the scope of this study. We would like to note that it is unlikely that the active forces are two orders of magnitude larger during unloaded movement of the limb. However, these issues will have to be settled in future work.

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

      We interpret this comment as making two separate points. The first one is that the reviewer says that our statement that active forces depend on the third power of the limb or L<sup>3</sup> is incorrect. We agree and apologize for this oversight. Specifically, on L6-7 we say, “both inertial forces and active forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. Instead, this statement should read “inertial forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. However, this oversight does not affect the scaling argument as the scaling arguments in the rest of the manuscript only involves inertial forces and not active forces.

      The second point is about the scaling law that governs passive forces. In the current manuscript, we have assumed that the passive forces scale as L<sup>2</sup> based on previous work. The reviewer has pointed out that this assumption might be incorrect or at the very least needs a rationale. We agree with this assessment: passive forces that arise in the muscle are likely to scale as L<sup>2</sup> but passive forces that arise in the joint might not. In the revised manuscript, we will discuss this concern.

      Response to the public comment:

      There was a comment from a reader: “None of our work cited in various places in this preprint (i.e., Zakotnik et al. 2006, Guschlbauer et al. 2007, Page et al. 2008, Hooper et al. 2009, Hooper 2012, Ache and Matheson 2012, Blümel et al. 2012, Ache and Matheson 2013, von Twickel et al. 2019, and Guschlbauer et al. 2022) claims or implies that passive forces could be sufficient to support the weight of an insect or any animal. To claim or suggest otherwise (as done in lines 33-35) is incorrect and sets up a misleading straw man that misrepresents our work. All statements in the preprint regarding our work related to this specific matter need to be removed or edited accordingly. For instance, the investigations, calculations, and interpretations in Hooper et al. 2009 are solely about limbs that are not being used in stance or other loaded tasks (indeed, the article's title specifically refers to "unloaded" leg posture and movements). Trying to use this work to predict whether passive muscle forces alone can support a stick insect against gravity requires considering much more than the oversimplified calculation given in lines 290-292. Other “back of the envelope calculations” (lines 299-300) are likely also insufficient and erroneous. The discussion in lines 289-304 needs to be edited accordingly”

      We thank the reader for their comment. However, we interpret these studies differently. The studies above rightly focused on unloaded legs because it would be difficult to study passive forces in an intact insect without genetic tools. The commenter correctly points out that these studies do not comment on whether passive forces are strong enough to support the weight of the fly. However, we disagree that our arguments based on their results are unreasonable or strawman. We think that our interpretation of their measurements is correct. Moreover, we were motivated by Yox et. el. 1982 who states in so many words: “Stiffness of the muscles in the joints of all the legs might be sufficient to support a resting arthropod. A more rigorous analysis of all supporting limbs and joint angles would be required to prove this hypothesis”. We were inspired by this comment. In the revised manuscript, we will make it clear that the statement made in Line 33 is based on Yox. et. al. and our interpretation of measurements made by others.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      GENERAL COMMENTS

      We thank the three reviewers for their comments on the paper.

      We are pleased to see that they consider it be a comprehensive and well-executed study, which clearly establishes a previously overlooked connection between MRTF-SRF signalling and proliferation, and that its conclusions require no further experimentation.

      As review 3 points out, this work has implications for cancer biology, and suggests new research routes to understand the relation between cell adhesion, proliferation, and transformation.

      However, two referees raise significant concerns about its impact

      Review 1 suggests that the paper lacks impact without exploration the wider biological significance of our observations, although it considers it to be a good basic cell biology study. It suggests further work extending the findings to tissue- or tumor-based systems. While we consider such studies worthwhile – indeed we are currently pursuing these directions – we consider them beyond the scope of the present paper.

      Review 2 questions the novelty of our findings. We strongly disagree. This is is the first study to show that MRTF-SRF signalling is required for the proliferation of both primary and immortalised fibroblasts, and epithelial cells. We show that MRTF inactivation leads cells to enter a quiescence-like state under conditions that would permit efficient cell cycle progression in wildtype cells. The study will alter the field's perspective on the role of MRTF-SRF signalling, previously viewed as concerned with cell adhesion, morphology, and motility.

      Responses to individual reviews (italic) follow in regular text.

      RESPONSE TO INDIVIDUAL REVIEWS (comments in italic, response in regular, changes made)

      __Reviewer #1 __

      *(Evidence, reproducibility and clarity (Required)): *

      *The manuscript by Neilsen et al. presents a thorough and well-structured study showing that Myocardin-related transcription factors (MRTF-A/B), via MRTF-SRF, are essential for the proliferation of both primary and immortalized fibroblasts and epithelial cells. Using a combination of knockouts/rescue experiments, cytoskeletal analysis, and transcriptomics, the authors demonstrate that MRTF-SRF signalling controls actin dynamics and contractility-key drivers of cell cycle progression. Notably, they show that the proliferative arrest caused by MRTF loss is reversible, distinguishing it from classical senescence. **

      Major points*

      • The link between MRTF-SRF activity, cytoskeletal organisation, and cell proliferation is clearly established. The fact that disrupting contractility phenocopies MRTF loss strengthens the case that the pathway acts through mechanical control.*
      • The authors support their conclusions using multiple cell types (MEFs, primary fibroblasts, epithelial cells), a range of complementary assays (RNA-seq, traction force microscopy, adhesion/spreading), and genetic tools (CRISPR, inducible rescue).*
      • The ability to restore proliferation by re-expressing MRTF-A argues against true senescence and instead suggests a quiescence-like state driven by cytoskeletal disruption.*
      • This work particularly highlights how mechanical inputs feed into transcriptional programs to regulate proliferation, with implications for understanding anchorage-dependent growth.**

      Suggestions While the authors argue convincingly against classical senescence, elevated SA-βGal and SASP expression suggest a more nuanced arrest state. It not really clear what this state is or is not, therefore a deeper discussion of possible hybrid or intermediate states would be helpful - maybe potential additional experiments to include or exclude potential explanations - e.g. how does it differ from G0 exit?* Our findings show that MRTF inactivation inhibits cell proliferation under conditions that would permit efficient cell cycle progression in wildtype cells, inducing a state with some features associated with classical senescence, and others conventionally associated with reversible cell cycle arrest/quiescence. The reviewer correctly points out that this raises problems with accurately defining the nature of the MRTF-null proliferation defect.

      To our knowledge there are no rigorously defined unambiguous markers for senescence, quiescence, or G0. Indeed, recent studies have shown that senescence and quiescence / G0 states are not as distinct as previously assumed (Anwar et al, 2018; Ashraf et al 2023) as we reviewed in detail in Discussion p27, §2; p28 §3. We therefore do not consider it a productive endeavour to define markers for the MRTF-null state as opposed to defining its mechanistic basis. However, we agree that we should have been clearer about how the phenotypes we observe relate to classical cell arrest states.

      We have therefore revised the presentation of the Results to make it clear which features of the non-proliferative state associated with MRTF inactivation are seen in classical senescence, and which are found in reversible cell cycle exit or quiescence.

      Things done:

      • __Results pp16-17 and Fig 1. Figure panels and presentation are reordered to present “senescence” features together before marker expression (panel G is now panel I). Text now explicitly points out that the spectrum of cell cycle markers, specifically p27 upregulation, is not that associated with classical senescence (p16, p21,etc) but previously linked to reversible arrest or quiescence. Lines 371-380 have been moved up from the succeeding paragraph; statement added re p27 and reversible cell cycle exit on lines 387-389; summary sentence added in lines 398-401). __
      • Statement added that reversibility distinguishes the MRTF defect from classical senescence p20§1 line 454-455.
      • Note that p27 is associated with reversible arrest included on p20§2 line 460. We also explicitly summarised the features of the phenotype at the start of the Discussion.

      • Sentences added p27§1 lines 626-631.

      • Emphasis that p27 protein upregulation is associated with reversible cell cycle inhibition and quiescence is added on p28 line 668-669.

      • The transcriptomic data are strong, but the paper would benefit from zooming in on specific MRTF-SRF targets (e.g., actin isoforms, adhesion molecules) that directly link cytoskeletal regulation to cell cycle control.*

      We have now clarified presentation of the RNAseq data in Figure 5 and the data summary tables. Figure 5B now identifies which of those genes showing deficits in MRTF-null MEFs were previously identified as direct genomic targets for MRTF-SRF, and that the majority are cytoskeletal.

      • __Additional columns added in Table 1 to indicate whether genes are candidate genomic MRTF-SRF targets; Table 2 now show gene symbol lists as well as ENSMBL IDs for GO categories and NCBI Entrez IDs for GSEA categories, respectively. __
      • __Figure 5B revised to point out cytoskeletal genes that are genomic MRTF-SRF targets in bold, legend clarified p40 lines 920-922. __
      • Now noted____ p23 lines 527-529 that cytoskeletal genes affected include many direct MRTF-SRF targets. Our data confirms that in MEFs, MRTF inactivation affects fibroblast cell morphology, adhesion, spreading, motility and contractility (Figures 5, 6), as seen in many other settings.

      A critical question remains as to whether these effects a reflect limitation in one MRTF target gene or several, and how this defect relates to proliferation.

      Concerning specific MRTF-SRF gene targets:

      Cells lacking cytoplasmic actins are reported to exhibit defective proliferation, (__now noted in Results p23 lines 529-532). __We are currently evaluating whether this defect has similarities with the MRTF-null proliferation phenotype (see Discussion p31, §2).

      Previous findings suggest that defective cytoplasmic actin expression may underlie most MRTF knockout phenotypes (Salvany et al, 2014; Maurice et al., 2024) previously noted in the Discussion (see p31, §2).

      The myoferlin gene promotes growth of liver cancer cells by inhibiting ERK activation and oncogene induced senescence. We showed that myoferlin expression does not promote proliferation of MRTF-null MEFs in the original submission (see Figure S5E). Additionally, we now point out that the RNAseq data show that myoferlin expression is not significantly affected in MRTF-null MEFs __(new text p23, lines 532-534). __

      • It depends on where what target journal would be, but this is is a very well executes mechanistic study that doesn't really have an impact. Extending the discussion to human systems-or tissues where contractility is critical-could broaden the impact and applicability of the findings.*

      We interpret this comment as indicating that our paper does not address the wider biological implications of our findings by extension to studies in tissue or tumour systems.

      As outlined in our response to review 3, our study provides strong evidence that MRTF-SRF will be required for cell proliferation in settings where physical progression through cell cycle transitions requires high contractility, either owing to intrinsic factors or external physical constraints such as tissue stiffness, fibrosis, or tumour microenvironment.

      Discussion now explicitly addresses potential roles for tissue stiffness (pp30§2 lines 717-718, and p32§1 725-727). However, we feel that resolution of this question is beyond the scope of the present paper.

      • As above, the paper briefly mentions transformation, but it would be valuable to elaborate on whether MRTF-SRF acts as a barrier or enabler in tumorigenesis under different conditions. This I feel is the main weakness remaining - e.g. it would be fine with enabling different effects driven by other transcription events in emerging tumour cells (oncogenic in context of RAS, suppressive in context of p53) but I think the manuscript fails to be definitive on this points. Addressing this would make a much stronger and impactful study. I believe they have an impact peice of science that outlines how mechanical events impact cell fate decisions, but this is unlikely to be the driver - ie it facilitates cell fate decisions in context of tissue stiffness.*

      We find it difficult to understand the precise points being made here.

      However, transformation has long been known to bypass physical constraints on proliferation such as the requirement for adhesion. Moreover, MRTF-SRF activity is not necessarily required for proliferation of all transformed cells (Hampl et al, 2013; Medjkane et al, 2009; our unpublished data). The relation of our findings to transformation is thus an open question, which we are actively pursuing. Now noted in revised Discussion p32, lines 752-755.

      MRTF-independent proliferation of tumor cells could reflect oncogenic signals substituting for MRTF-dependent ones (eg from focal adhesions), or from relief of cytoskeletal contraints on proliferation (adhesion independent proliferation). In contrast, in proliferation of DLC1-deleted cancer cells is dependent on suppression of oncogene-induced senescence by MRTF-SRF signalling (Hampl et al, 2013). These points were already made in Discussion p28, pp30-31.

      Although our current work is focussed on cell transformation, we would respectfully suggest the in-depth resolution of this complex question is beyond the scope of the present paper.

      See also response to (3) above.

      *Reviewer #1 (Significance (Required)): *

      *Overall *

      This is a well-executed and insightful study that deepens our understanding of how cytoskeletal signals drive proliferation through MRTF-SRF. It broadens the role of this pathway beyond motility and offers new perspectives on mechanotransduction and cellular plasticity. If is weak in its demonstration of biological significance, but if the aim to to present a pure basic cell biology story it is good.

      The vast majority of work with the SRF system has led to the common perception that its role is exclusively with cell motility and adhesive processes, not proliferation. The results presented in the paper, even if limited to cell culture models, are therefore novel.

      Reviewer #2

      (Evidence, reproducibility and clarity (Required)):

      *In this manuscript, Nielsen and colleagues examine the impact of MRTF-A/B and SRF gene inactivation on cell proliferation. They performed an extensive body of work (using multiple cell types and multiple clones) to show that MRTF inactivation causes cell cycle arrest and senescence (mimicking the phenotype of SRF knockout cells) although the changes in the expression of various CDK inhibitors were cell-type specific. *

      *Very interestingly, simultaneous inactivation of all three major CDK inhibitors failed to rescue MRTF knockout cells from their proliferation defect. Expectedly, MRTF knockout cells exhibited defects in actin cytoskeleton, adhesion, and contractility. Interestingly, hyperactivating Rho also failed to rescue MRTF knockout cells from proliferation defect. The main conclusion of the paper was derived from experiments which showed that inhibition of either ROCK or myosin caused wild-type cells to behave like MRTF knockout cells rather than demonstration of any molecular perturbation that could reverse the proliferation defect of MRTF knockout cells. *

      While the experimental studies are thorough and rigorous, a vast majority of the core findings related to the loss-of-function of MRTF that are reported herein (i.e. defects in cell proliferation, elevation of CDK inhibitors, migration, actin cytoskeleton, contractility) are not conceptually new and have been previously reported in other cell systems by several investigators including this research group.

      This is the first study showing that MRTF-SRF signalling is required for the proliferation of both primary and immortalised fibroblasts, and epithelial cells. We show that the MRTF-SRF non-proliferative state combines features of both classical senescence and reversible cell cycle exit / quiescence.

      The vast majority of previous work with the SRF system has led to the common perception that its role is exclusively related to cell motility and adhesive processes and not proliferation (see Olson and Nordheim 2010). Where proliferation has been examined directly, both others and our own previous studies of the MRTFs in immune cells and cancer cells lines have revealed no direct role in proliferation (Schratt et al, 2001;Medjkane et al 2009; Maurice et al, 2024).

      The results presented here are therefore novel.

      In the reviewer's opinion, since the authors have not been able to identify a molecular strategy to reverse the proliferation phenotype of MRTF knockout cells, the underlying mechanisms of MRTF-dependent regulation of cell proliferation remain largely unanswered.

      Indeed, our attempts to rescue the phenotype (knockouts of the CKIs, and overexpression of different downregulated factors) did not restore proliferation. We therefore now aim to attack the problem (i) through overexpression screens, and (ii) by identifying differences between MRTF-SRF dependent and -independent (eg transformed) cells. However, these are new projects that are beyond the scope of a revised paper.

      • *

      Other comments: Majority of the immunoblot data have not been quantified.

      P16 data in Fig 1G vs Fig S1A are not similar (although the authors mention that the findings are similar)

      We have addressed these issues by reorganisation and quantification the immunoblotting data as follows:

      • Figure S1A has been moved to new Figure 1I, replacing the limited analysis shown in old Figure 1G. This more comprehensive, and displays data from all three WT and Mrtfab-/-
      • Figure 1I data is quantified. Marker expression in each Mrtfab-/- pool is evaluated relative its mean expression in the three WT pools treated in parallel.
      • A new Figure S1A shows mean marker expression across the three Mrtfab-/- pools, drawn from 5 independent analyses (not all markers included in each analysis). Different analyses of marker expression may exhibit variation, resulting from differences in handling, culture medium, plating density, relative confluence, etc. However, Mrtfab-/- cells exhibit markedly increased p27 and TLR2 expression, while expression of the other markers tested, including p16, consistently decreases.
      • Spearman comparisons among the WT and Mrtfab-/- pools show that relative marker expression is indeed well correlated between the pools of each genotype. Note on quantitation added in Methods p10 lines 209-213.

      Figure 1I moved from former Figure S1A, to replace former Figure 1G. New legend now includes quantitation, and reference to Spearman correlations, p44 lines 834-841.

      New Figure S1A displays data from multiple independent experiments with all 3 Mrtfab-/- pools. New legend, p44 lines 997-1002.

      Figure S1B legend notes correlation between relative marker expression in untreated WT and Mrtfab-/- cells, p44, lines 1005-1008.

      Results text rewritten p17 lines 383-391; no reference to “similar”.

      *Reviewer #2 (Significance (Required)): *

      *This study aims to investigate a fundamental biological question of how an actin-regulated transcription machinery regulates cell proliferation and is therefore of broad significance. Strengths and limitations of this study are described above. *

      Reviewer #3

      *(Evidence, reproducibility and clarity (Required)): *

      Summary

      *The manuscript by Nielsen et al. (Treisman lab) entitled "MRTF-dependent cytoskeletal dynamics drive efficient cell cycle progression" investigates the effects on cell proliferation elicited upon cellular depletion of the transcription factors MRTF-A and MRTF-B. The MRTFs are actin-dependent co-factors of SRF, which direct the transcription of SRF target genes. The MRTF-SRF regulatory circuit defines both the functioning and the control of actin-driven cytoskeletal dynamics. *

      *The work presented identifies essential molecular links that interconnect cytoskeleton-dependent cellular activities (cell-cell adhesion, cell-substrate contact, cell spreading) and cell proliferation. *

      *General assessment on used methodology. *

      *The presented comprehensive body of work is performed competently; it includes all relevant and necessary state-of-the-art technologies. *

      • *

      Reviewer #3 (Significance (Required)):

      Advance

      Previously published evidence by others (including the Treisman group) had indicated that SRF does not seem essential for the proliferation of some cell types (i. e., embryonic (stem) cells, activation-dependent immune cells, etc.). In regard to this, the authors discuss in the current manuscript: "Although further work is needed to elucidate the basis for these context-dependent dfferences, our data show that MRTF-SRF signalling is likely to play a more general role in proliferation than previously thought." The current manuscript already delineates this "general role": MRTF-SRF signalling impinges on cell proliferation whenever proliferative activities are dependent upon cytoskeletal dynamics.

      We of course support the view that it is MRTF-SRF's role in cytoskeletal dynamics, especially contractility, that is a limiting factor for cell cycle progression in our cells; however, this may not be the cases or other cell types or settings, such adhesion-independent or transformed cells, and/or stiff tissue environments.

      We have stated this view more strongly, modifying the abstract and discussion, and rewording the sentence quoted above.

      The major point is that MRTF-SRF-dependent proliferation may be more common than previously thought, the field having focussed on its role in cytoskeletal dynamics rather than proliferation.

      Abstract lines 48-49; Discussion p28, line 668-669; pp30-31, lines 713-714, 725-727. See also last para pp31/32, __added lines 752-755. __

      *The work has implications for cancer biology. It offers new directions to investigate the regulation of proliferative activities of anchorage-independent tumor cells. **

      Audience *

      *The insights generated serve the wide interests of a large and diverse group of cell and tumor biologists. *

      *Reviewers field of expertise (keywords). *

      Cytoskeletal dynamics, transcriptional con*

    1. Author response:

      The following is the authors’ response to the current reviews

      Reviewer #2 (Public review): 

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. The main findings remain the same. The authors show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of transitionary and late genes. The authors also knocked down the expression of the dacA-ybbR operon and reported a modest reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. 

      Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary. The data support the observation that dramatically increased c-di-AMP has an impact on transitionary gene expression and late gene expression suggesting dysregulation of the developmental cycle. This effect goes away with modest changes in c-di-AMP (detaTM-DacA vs detaTM-DacA (D164N)). However, the model predicts that low levels of c-di-AMP delays EB production is not not well supported by the data. If this prediction were true then the growth rate would increase with c-di-AMP reduction and the data does not show this. The levels of of c-di-AMP at the lower levels need to be better validated as it seems like only very high levels make a difference for dysregulated late gene expression. However, on the low end it's not clear what levels are needed to have an effect as only DacAopMut and DacAopKD show any effects on the cycle and the c-di-AMP levels are only different at 24 hours. 

      These appear to be the same comments the reviewer presented last time, so we will reiterate our prior points here and elsewhere. We do not think and nor do we predict that low c-di-AMP levels should increase growth rate (as measured by gDNA levels), and this conclusion cannot be drawn from our data. Rather, we predict that the inability to accumulate c-di-AMP should delay production of EBs, and this is what the data show. The reviewer has applied their own subjective (and erroneous) interpretation to the model. The asynchronicity of the normal developmental cycle means RBs continue to replicate as EBs are forming, so gDNA levels cannot be used as the sole metric for determining RB levels. We show that reduced c-di-AMP levels reduce EB levels as well as transcripts associated with late stages of development. The parsimonious interpretation of these data support that low c-di-AMP levels delay progression through the developmental cycle consistent with our model.

      The data still do not support the overall model.

      We disagree.  We have presented quantified data that include appropriate controls and statistical tests, and the reviewer has not disputed that or pointed to additional experiments that need to be performed.  The reviewer has imposed a subjective interpretation of our model based on their own biases.  A reader is free, of course, to disagree with our model, but a reviewer should not block a manuscript based on such a disagreement if no experimental flaws have been identified. 

      In Figure 1 the authors show at 24 hpi. 

      We also showed data from 16hpi, which is a more relevant timepoint for assessing premature transition to EBs.  In contrast, the 24hpi is more important for assessing developmental effects of reduced c-di-AMP levels.

      DacA overexpression increases cdiAMP to ~4000 pg/ml 

      DacAmut overexpression reduces cdiAMP dramatically to ~256 pg/ml) 

      DacATM overexpression increases cdiAMP to ~4000 pg/ml. 

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml . 

      dacAKD decreases cdiAMP to ~300 pg/ml . 

      dacAKDcom increased cdiAMP to ~8000 pg/ml. 

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml. 

      DacA-ybbRopmut ~300 pg/ml. 

      However in Figure 2 the data show that overexpression of DacA (cdiAMP ~4000 pg/ml) did not have a different phenotype than over expression of the mutant (cdiAMP ~256 pg/ml). HctA expression down, omcB expression down, euo not much change, replication down, and IFUs down. Additionally, Figure 3 shows no differences in anything measured although cdiAMP levels were again dramatically different. DacATM overexpression (~4000 pg/ml) and DacAmutTM (~1500). This makes it unclear what cdiAMP is doing to the developmental cycle. 

      As we have explained in the text and in response to reviewer comments on previous rounds of review, overexpressing the full-length WT or mutant DacA is detrimental to developmental cycle progression for reasons that have nothing to do with c-di-AMP levels (likely disrupting membrane function), since, as the reviewer notes, the WT DacA deltaTM strain had similar c-di-AMP levels but no negative effects on growth/development. If we had not presented the effects of overexpressing the individual isoforms, then a reviewer would surely have requested such, which is why we present these data even though they don’t seem to support our model.  This is an honest representation of our findings.  The reviewer seems intent on nitpicking a minor datapoint that seems to contradict the rest of the manuscript while ignoring or not carefully reading the rest of the manuscript.

      In Figure 4 the authors knockdown dacA (dacA-KD) and complement the knockdown (dacA-KDcom) 

      dacAKD decreases cdiAMP (~300) while DacA-KDcom increases cdiAMP much above wt (~8000). 

      KD decreased hctA and omcB at 24hpi. Complementation resulted in a moderate increase in hctA at a single time point but not at 24 hpi and had no effect on euo or omcB expression.

      By 24hpi, late gene transcripts are being maximally produced during a normal developmental cycle. It is unclear why the reviewer thinks that these transcripts should be elevated above this level in any of our strains that prematurely transition to EBs. There is no basis in the literature to support such an assumption. As we noted in the text, the dacA-KDcom strain phenocopied the dacAop OE strain, and we showed RNAseq data and EB production curves for the latter that support our conclusions of the effect of increased c-di-AMP levels on developmental progression.

      Importantly, complementation decreased the growth rate.

      Yes, since the c-di-AMP levels breached the “EB threshold” at 16hpi, it causes premature transition to EBs, which do not replicate their gDNA, at an earlier stage of the cycle when fewer organisms are present. Therefore, the gDNA levels are decreased at 24hpi, which is consistent with our model.

      Based on the proposed model, growth rate should increase as the chlamydia should all be RBs and replicating and not exiting the cell cycle to become EBs (not replicating).

      This is a spurious conclusion from the reviewer. As we clearly showed, the dacA-KDcom did not restore a wild-type phenotype and instead mimicked the dacAop OE strain. This was commented on in the text.

      Interestingly reducing cdiAMP levels by over expressing DacAmut (~256 pg/ml) did not have an effect on the cycle but the reduction in cdiAMP by knockdown of dacA (~300 pg/ml) did have a moderate effect on the cycle. 

      This is again a spurious conclusion from the reviewer. The dacAMut and dacA-KD strains are distinct. As noted in the text and above for DacA WT OE, overexpressing the DacAMut similarly disrupts organism morphology, which is different from dacA-KD. These strains should not be directly compared because of this. This point has been previously highlighted in the text (in Results and Discussion).

      For Figure 5 DacA-ybbRop was overexpressed and this increased cdiAMP dramatically ~500,000 pg/ml as compared to wt ~1500. This increased hctA only at an early timepoint and not at 24hpi and again had no effect on omcB or euo.

      As we explained in prior reviews, our RNAseq data more comprehensively assessed transcripts for the dacAop OE strain. These data show convincingly that late gene transcripts (not just hctA and omcB) are elevated earlier in the developmental cycle. Again, it is not clear why the reviewer should expect that late gene transcripts should be higher in these strains than they are during a normal developmental cycle. This is not part of our model and appears to be a bias that the reviewer has imposed that is not supported by the literature.

      Overexpression of the operon with the mutation DacA-ybbRopmut reduced cdiAMP to ~300 pg/ml and this showed a reduction in growth rate similar to dacAmut but a more dramatic decrease in IFUs. 

      As we described in the text, in earlier revisions, and above, the dacAMut OE strain has distinct effects unrelated to c-di-AMP levels and, therefore, should not be compared to other strains in terms of linking its c-di-AMP levels to its phenotype.

      Overall: 

      DacA overexpression increases cdiAMP to ~4000 pg/ml (decreased everything except euo) 

      DacAmut overexpression reduces cdiAMP dramatically (~256 pg/ml). (decreased everything except euo) 

      DacATM overexpression increases cdiAMP to ~4000 pg/ml (no changes noted) 

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml (no changes noted) 

      dacAKD decrease cdiAMP to ~300 pg/ml (decreased everything except euo) 

      dacAKDcom increased cdiAMP to ~8000 pg/ml (decreases growth rate, increase hctA a little but not omcB) 

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml (decreases growth rate, increase hctA a little but not omcB) <br /> DacA-ybbRopmut ~300 pg/ml (decreased everything except euo) 

      Overall, the data show that increasing cdiAMP only has a phenotype if it is dramatically increased, no effect at 4000 pg/ml.

      Yes, this clearly shows there is a threshold - as we hypothesize!  However, these thresholds are more important at the 16hpi timepoint not 24hpi (which the reviewer is referencing) when assessing premature transition to EBs.  We specifically highlighted in our prior revision in Figure 1E this EB threshold to make this point clearer for the reader.  Once the threshold is breached, then the overall c-di-AMP levels become irrelevant as the RBs have begun their transition to EBs.

      Decreasing cdiAMP has a consistent effect, decreased growth rate, IFU, hctA expression and omcB expression. However, if their proposed model was correct and low levels of cdiAMP blocked EB conversion then more chlamydial cells would be RBs (dividing cells) and the growth rate should increase.

      The only effect should be normal gDNA levels, which is what we see in the dacA-KD.  Given the asynchronicity of a normal developmental cycle in which RBs continue to replicate as EBs are still forming, there is no basis to assume gDNA levels should increase under these conditions for the dacA-KD strain at 24hpi.

      Conversely, if cdiAMP levels were dramatically raised then all RBs would all convert and the growth rate would be very low.

      We agree. This is what is reflected by the dacAop OE and dacA-KDcom strains, with reduced gDNA levels at 24hpi since organisms have transitioned to EBs at an earlier time post-infection.

      When cdiAMP was raised to ~4000 pg/ml there was no effect on the growth rate.

      Yes, because it had not breached the EB threshold at 16hpi – consistent with our model!  The reviewer is confusing effects of elevated c-di-AMP at 24hpi when they should be assessed at the 16hpi timepoint for strains overproducing this molecule.

      However, an increase to ~8000 pg/ml resulted in a significant decrease but growth continued.

      If the reviewer is referring to the dacA-KDcom strain, then this is not accurate. gDNA levels were decreased in this strain at 24hpi when the c-di-AMP levels were increased compared to the WT (mCherry OE) control at 16hpi, indicating this strain had breached the “EB threshold” and initiated conversion to EBs at an earlier timepoint post-infection when fewer organisms were present.

      Increasing cdAMP to ~500,000 pg/ml had less of an impact on the growth rate.

      It is not clear what this conclusion is based on and what the reviewer is comparing to.  This is a subjective assessment not based on our data.

      Overall, the data does not cleanly support the proposed model.

      It is an unfortunate aspect of biology, particularly for obligate intracellular bacteria – a challenging experimental system on which to work, that the data are not always “clean”.  The overall effects of increased c-di-AMP levels on chlamydial developmental cycle progression we have documented support our model, and we think the reader, as always, should make their own assessment.


      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public review): 

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. The main findings remain the same. The authors show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of transitionary and late genes. The authors also knocked down the expression of the dacA-ybbR operon and reported a modest reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. 

      Overall, this is a very intriguing study with important implications however, the data is very preliminary, and the model is very rudimentary. The data support the observation that dramatically increased c-di-AMP has an impact on transitionary gene expression and late gene expression suggesting dysregulation of the developmental cycle. This effect goes away with modest changes in c-di-AMP (detaTM-DacA vs detaTM-DacA (D164N)). However, the model predicts that low levels of c-di-AMP delays EB production is not not well supported by the data. If this prediction were true then the growth rate would increase with c-di-AMP reduction and the data does not show this.

      Thank you for the comments. We have apparently not adequately communicated our predictions and the model. We do not think and nor do we predict that low c-di-AMP levels should increase growth rate, and there is no basis in any of our data to support that. Rather, we predict that the inability to accumulate c-di-AMP should delay production of EBs, and this is what the data show. We have clarified this in the text (line 89 paragraph).

      The levels of c-di-AMP at the lower levels need to be better validated as it seems like only very high levels make a difference for dysregulated late gene expression. However, on the low end it's not clear what levels are needed to have an effect as only DacAopMut and DacAopKD show any effects on the cycle and the c-di-AMP levels are only different at 24 hours.

      Our hypothesis is that increasing concentrations of c-di-AMP within a given RB is a signal for it to undergo secondary differentiation to the EB, and the data support this as noted by the reviewers. Again, we stress that low levels of c-di-AMP are irrelevant to the model. We have revised Figure 1E to indicate the level of c-di-AMP in the control strain at the 24hpi timepoint that coincides with increased EB levels. We hope this will further clarify the goals of our study. That a given strain might be below the EB control is not relevant to the model beyond indicating that it has not reached the necessary threshold for triggering secondary differentiation.

      The authors responded to reviewers' critiques by adding the overexpression of DacA without the transmembrane region. This addition does not really help their case. They show that detaTM-DacA and detaTM-DacA (D164N) had the same effects on c-di-AMP levels but the figure shows no effects on the developmental cycle.

      As it relates directly to the reviewer’s point, the delta-TM strains did not show the same level of c-di-AMP. It may be that the reviewer misread the graph. The purpose of testing these strains was to show that the negative effects of overexpressing full-length WT DacA were due to its membrane localization. Both the FL and deltaTM-DacA (WT) overexpression had equivalent c-di-AMP levels even though the delta-TM overexpression looked like the mCherry-expressing strain based on the measured parameters. This shows that the c-di-AMP levels were irrelevant to the phenotypes observed when overexpressing these WT isoforms. For the mutant isoforms, the delta-TM looked like the mCherry-expressing control while the FL isoform was negatively impacted for reasons we described in the Discussion (e.g., dominant negative effect). In addition, at 16hpi, neither delta-TM strain had c-di-AMP levels that approached the 24h control as denoted in Figure 1E (dashed line) and in the text, which explains why these strains did not show increased late gene transcripts at an earlier timepoint like the dacAop and dacA-KDcom strains.

      Describing the significance of the findings: 

      The findings are important and point to very exciting new avenues to explore the important questions in chlamydial cell form development. The authors present a model that is not quantified and does not match the data well. 

      We respectfully disagree with this assessment as noted above in response to the reviewer’s critique. All of our data are quantified and support the hypothesis as stated.

      Describing the strength of evidence: 

      The evidence presented is incomplete. The authors do a nice job of showing that overexpression of the dacA-ybbR operon increases c-di-AMP and that knockdown or overexpression of the catalytically dead DacA protein decreases the c-di-AMP levels. However, the effects on the developmental cycle and how they fit the proposed model are less well supported. 

      Overall this is a very intriguing finding that will require more gene expression data, phenotypic characterization of cell forms, and better quantitative models to fully interpret these findings. 

      It is not clear what quantitative models the reviewer would prefer, but, ultimately, it is up to the reader to decide whether they agree or not with the model we present. The data are the data, and we have tried to present them as clearly as possible. We would emphasize that, with the number of strains we have analyzed, we have presented a huge amount of data for a study with an obligate intracellular bacterium. As a comparison, most publications on Chlamydia might use a handful of transformant strains, if any. Given the cost and time associated with performing such studies, it is prohibitive to attempt all the time points that one might like to do, and it is not clear to us that further studies will add to or alter the conclusions of the current manuscript.

      Reviewer #2 (Recommendations for the authors): 

      Minor critiques 

      The graphs have red and blue lines but the figure legends are red and black. It would be better if these matched. 

      Changed.

      For Figure 1C. The labels are not very helpful. It's not clear what is HeLa vs mCherry. I believe it is uninfected vs Chlamydia infected.

      Changed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study uses mesoscale simulations to investigate how membrane geometry regulates the multiphase organization of postsynaptic condensates. It reveals that dimensionality shifts the balance between specific and non-specific interactions, thereby reversing domain morphology observed in vitro versus in vivo.

      Strengths:

      The model is grounded in experimental binding affinities, reproduces key experimental observations in 3D and 2D contexts, and offers mechanistic insight into how geometry and molecular features drive phase behavior.

      Weaknesses:

      The model omits other synaptic components that may influence domain organization and does not extensively explore parameter sensitivity or broader physiological variability.

      We thank the reviewer for his/her time and effort to our manuscript. We agree with the point that the contribution of other synaptic components should be addressed. We have included a discussion of the effects of environmental factors such as protein and ion concentrations, as well as other omitted postsynaptic components (SAPAP, Shank, and Homer) on phase morphology. In the middle of the 2<sup>nd</sup> paragraph of Discussion, we added: 

      “While these in vivo results contain additional scaffold and cytoskeletal elements omitted in our model, such as SAPAP, Shank and Homer, nearly all proteins in the middle and lower layers of the PSD associate directly or indirectly with PSD-95 in the upper PSD layer. Consequently, it is probable that other scaffold proteins contribute to the mobility of AMPAR-containing and NMDAR-containing nanodomains indistinguishably. They may increase the stability of the AMPAR and NMDAR clusters but are unlikely to have a distinct effect to reverse the phase-separation phenomenon.”

      Also, as the reviewer pointed out, we agree with that physiological factors such as ion concentration may influence the phase. However, conditions such as ion concentration are implicitly implemented as the specific and nonspecific interactions in this model, which makes it difficult to estimate the effect of each physiological condition individually. We added the variability potential of physiological conditions to the discussion section as a limitation of this model. To investigate parameter sensitivity in more detail, we performed additional MD simulations with weakened membrane constraints to account for the behavior between 3D and 2D. We added:

      “First, our results did not provide direct insights to physiological conditions, such as ion concentrations. Since such factors are implicitly implemented in our model, it is difficult to estimate these effects individually. This suggests the need for future implementation of environmental factors and validation under a broader range of in vivo-like settings.”

      Reviewer #2 (Public review):

      This is a timely and insightful study aiming to explore the general physical principles for the sub-compartmentalization--or lack thereof--in the phase separation processes underlying the assembly of postsynaptic densities (PSDs), especially the markedly different organizations in three-dimensional (3D) droplets on one hand and the twodimensional (2D) condensates associated with a cellular membrane on the other. Simulation of a highly simplified model (one bead per protein domain) is carefully executed. Based on a thorough consideration of various control cases, the main conclusion regarding the trade-off between repulsive excluded volume interactions and attractive interactions among protein domains in determining the structures of 3D vs 2D model PSD condensates is quite convincing. The results in this manuscript are novel; however, as it stands, there is substantial room for improvement in the presentation of the background and the findings of this work. In particular,

      (i) conceptual connections with prior works should be better discussed 

      (ii) essential details of the model should be clarified, and

      (iii) the generality and limitations of the authors' approach should be better delineated.

      We appreciate the reviewer for his/her time and effort on our manuscript and for encouraging comments and helpful suggestions. We answered every technical comment the reviewer mentioned below.

      Specifically, the following items should be addressed (with the additional references mentioned below cited and discussed):

      (1) Excluded volume effects are referred to throughout the text by various terms and descriptions such as "repulsive force according to the volume" (e.g., in the Introduction), "nonspecific volume interaction", and "volume effects" in this manuscript. This is somewhat curious and not conducive to clarity, because these terms have alternate or connotations of alternate meanings (e.g., in biomolecular modeling, repulsive interactions usually refer to those with longer spatial ranges, such as that between like charges). It will be much clearer if the authors simply refer to excluded volume interactions as excluded volume interactions (or effects).  

      Thank you for this comment. We have substituted the words “excluded volume interactions” for words of similar meaning. However, we have left the expression of “non-specific interactions” as they are referring to explicit interactions that are given as force fields in the model, rather than in the general meaning of excluded volume effect.

      (2) In as much as the impact of excluded volume effects on subcompartmentalization of condensates ("multiple phases" in the authors' terminology), it has been demonstrated by both coarse-grained molecular dynamics and field-theoretic simulations that excluded volume is conducive to demixing of molecular species in condensates [Pal et al., Phys Rev E 103:042406 (2021); see especially Figures 4-5 of this reference]. This prior work bears directly on the authors' observation. Its relationship with the present work should be discussed.  

      We appreciate the reviewer’s insightful comment. We have now included a more detailed discussion on excluded volume effect in the revised manuscript, which provides important context for our findings. Furthermore, we have cited the references to support and enrich the discussion, as recommended.

      (3)  In the present model setup, activation of the CaMKII kinase affects only its binding to GluN2Bc. This approach is reasonable and leads to model predictions that are essentially consistent with the experiment. More broadly, however, do the authors expect activation of the CaMKII kinase to lead to phosphorylation of some of the molecular species involved with PSDs? This may be of interest since biomolecular condensates are known to be modulated by phosphorylation [Kim et al., Science 365:825-829 (2019); Lin et al, eLife 13:RP100284 (2025)].  

      We agree that phosphorylation effect on phase separation is an important and interesting aspect to consider. Some experimental results have shown that activation of CaMKII can lead to phosphorylation of various proteins and make PSD condensate more stable by altering their interactions. We included the sentence below in limitations:

      “In this context, we also do not explicitly account for downstream phosphorylation events. Although such proteins are not included in the current components, they will regulate PSD-95, affecting its binding valency, or diffusion coefficient. This is a subject worthy of future research.”

      (4) The forcefield for confinement of AMPAR/TARP and NMDAR/GluN2Bc to 2D should be specified in the main text. Have the authors explored the sensitivity of their 2D findings on the strength of this confinement?

      We thank the reviewer for the helpful recommendation. We have revised the manuscript to include membrane-mimicking potential on main text. Furthermore, we also think that exploring the shape of the 3D/2D condensate phase due to the sensitivity of confinement is a very interesting point. We have additionally performed MD simulations with smaller/larger membrane constraints and included the results in supporting information as Figure S5. The following parts are added:

      “We further attempted to mimic intermediate conditions between 3D and 2D systems in two different manners. First, we applied a weaker membrane constraint in 2D system. Even when the strength of membrane constraints is reduced by a factor of 1000, NMDARs are located on the inner side when the CaMKII was active, as well as the result in 2D system (Fig.S5ABC). Second, to weaken further the effect of membrane constraints, we artificially altered the membrane thickness from 5 nm to 50 nm, in addition to reducing the membrane constraints by 1000. As a result, NMDAR clusters move to the bottom and surround AMPAR (Fig.S5DEF). In this artificial intermediate condition, both states in which the NMDARs are outside (corresponding to 3D) and in which the NMDARs are inside (corresponding to 2D) are observed, depending on the strength of the membrane constraint.”

      (5)  Some of the labels in Figure 1 are confusing. In Figure 1A, the structure labeled as AMPAR has the same shape as the structure labeled as TARP in Figure 1B, but TARP is labeled as one of the smaller structures (like small legs) in the lower part of AMPAR in Figure 1A. Does the TARP in Figure 1B correspond to the small structures in the lower part of AMPAR? If so, this should be specified (and better indicated graphically), and in that case, it would be better not to use the same structural drawing for the overall structure and a substructure. The same issue is seen for NMDAR in Figure 1A and GluN2Bc in Figure 1B. 

      (6) In addition to clarifying Figure 1, the authors should clarify the usage of AMPAR vs TARP and NMDAR vs GluN2Bc in other parts of the text as well.

      (7) The physics of the authors' model will be much clearer if they provide an easily accessible graphical description of the relative interaction strengths between different domain-representing spheres (beads) in their model. For this purpose, a representation similar to that given by Feric et al., Cell 165:1686-1697 (2016) (especially Figure 6B in this reference) of the pairwise interactions among the beads in the authors' model should be provided as an additional main-text figure. Different interaction schemes corresponding to inactive and activated CAMKII should be given. In this way, the general principles (beyond the PSD system) governing 3D vs 2D multiple-component condensate organization can be made much more apparent.  \

      We sincerely appreciate the reviewer’s comments. According to the recommendation, we have changed the diagram in Figure 1B into interaction matrix with each mesoscale molecular representation and the expression in main text to be clearer about AMPAR and TARP, and about the relationship between NMDAR and GluN2Bc. Former diagram of the pairs of specific interaction is moved to supplementary figure. 

      (8) Can the authors' rationalization of the observed difference between 3D and 2D model PSD condensates be captured by an intuitive appreciation of the restriction on favorable interactions by steric hindrance and the reduction in interaction cooperativity in 2D vs 3D?  

      We thank the reviewer for the comment. As pointed out, the multiphase morphology change observed in this study can be attributed to a decrease in coordination number in 2D compared to 3D. We have included the physicochemical rationalization in the discussion.  

      (9) In the authors' model, the propensity to form 2D condensates is quite weak. Is this prediction consistent with the experiment? Real PSDs do form 2D condensates around synapses.  

      We are grateful to the reviewer for highlighting this important point. We agree with that the real PSD forms 3D condensates beneath the 2D membrane. Some lower PSD components under the membrane (i.e. SAPAP, Shank, and Homer) are omitted in our system, which may cause a weak condensation. To emphasize this, we have added the following sentence:

      “While these in vivo results contain additional scaffold and cytoskeletal elements omitted in our model, such as SAPAP, Shank and Homer, nearly all proteins in the middle and lower layers of the PSD associate directly or indirectly with PSD-95 in the upper PSD layer. Consequently, it is probable that other scaffold proteins contribute to the mobility of AMPAR-containing and NMDAR-containing nanodomains indistinguishably. They may increase the stability of the AMPAR and NMDAR clusters but are unlikely to have a distinct effect to reverse the phase-separation phenomenon.”

      However, we believe that the clusters formed on the 2D membrane are not a robust “phase” because they do not follow scaling law. In fact, in our previous study of PSD system with AMPAR(TARP)<sub>4</sub> and PSD-95, we have already reported that phase separation is less likely to occur in 2D than in 3D. The previous result suggests that phase separation on membrane may be difficult to achieve, which is consistent with the results of this study.

      (10) More theoretical context should be provided in the Introduction and/or Discussion by drawing connections to pertinent prior works on physical determinants of co-mixing and de-mixing in multiple-component condensates (e.g., amino acid sequence), such as Lin et al., New J Phys 19:115003 (2017) and Lin et al., Biochemistry 57:2499-2508 (2018). 

      (11) In the discussion of the physiological/neurological significance of PSD in the Introduction and/or Discussion, for general interest it is useful to point to a recently studied possible connection between the hydrostatic pressure-induced dissolution of model PSD and high-pressure neurological syndrome [Lin et al., Chem Eur J 26:11024-11031 (2020)].

      We thank the reviewer for the helpful recommendation. We have added the recommended references in each relevant part in introduction, respectively.

      (12) It is more accurate to use "perpendicular to the membrane" rather than "vertical" in the caption for Figure 3E and other such descriptions of the orientation of the CaMKII hexagonal plane in the text.

      We thank you for your comment. We replaced the word “vertical” with “perpendicular" in the main text and caption.

      Reviewer #3 (Public review):

      Summary:

      In this work, Yamada, Brandani, and Takada have developed a mesoscopic model of the interacting proteins in the postsynaptic density. They have performed simulations, based on this model and using the software ReaDDy, to study the phase separation in this system in 2D (on the membrane) and 3D (in the bulk). They have carefully investigated the reasons behind different morphologies observed in each case, and have looked at differences in valency, specific/non-specific interactions, and interfacial tension.

      Strengths:

      The simulation model is developed very carefully, with strong reliance on binding valency and geometry, experimentally measured affinities, and physical considerations like the hydrodynamic radii. The presented analyses are also thorough, and great effort has been put into investigating different scenarios that might explain the observed effects.

      Weaknesses:

      The biggest weakness of the study, in my opinion, has to do with a lack of more in-depth physical insight about phase separation. For example, the authors express surprise about similar interactions between components resulting in different phase separation in 2D and 3D. This is not surprising at all, as in 3D, higher coordination numbers and more available volume translate to lower free energy, which easily explains phase separation. The role of entropy is also significantly missing from the analyses. When interaction strengths are small, entropic effects play major roles. In the introduction, the authors present an oversimplified view of associative and segregative phase transitions based on the attractive and repulsive interactions, and I'm afraid that this view, in which all the observed morphologies should have clear pairwise enthalpic explanations, diffuses throughout the analysis. Meanwhile, I believe the authors correctly identify some relevant effects, where they consider specific/nonspecific interactions, or when they investigate the reduced valency of CaMKII in the 2D system.

      We thank the reviewer for the insightful and constructive comments. Regarding the difference in phase behavior between 2D and 3D systems, we appreciate the reviewer’s clarification that differences in coordination number and entropy in higher dimensions can account for the observed morphology of the phases. While it may be clear that entropy decreases due to the decrease of coordination number, our objective was to uncover how such an isotropic entropy reduction regulates the behavior of each phase driven by different interactions, which remains largely unknown. To emphasize this, we modified the introduction and have now included a discussion of the entropic contributions to phase behavior in both 2D and 3D systems, and we have made this clearer in the revised manuscript by referencing relevant theoretical frameworks. In the Discussion, we added the sentence below:

      “Generally, phase separation can be explained by the Flory-Huggins theory and its extensions: phase separation can be favored by the difference in the effective pairwise interactions in the same phase compared to those across different phases, and is disfavored by mixing entropy. The effective interactions contain various molecular interactions, including direct van der Waals and electrostatic interactions, hydrophobic interactions, and purely entropic macromolecular excluded volume interactions. For the latter, Asakura-Oosawa depletion force can drive the phase separation. Furthermore, the demixing effect was explicitly demonstrated in previous simulations and field theory (61). Importantly, we note that the effective pairwise interactions scale with the coordination number z. The coordination number is a clear and major difference between 3D and 2D systems. In 3D systems, large z allows both relatively strong few specific interactions and many weak non-specific interactions. While a single specific interaction is, by definition, stronger than a single non-specific interaction, contribution of the latter can have strong impact due to its large number. On the other hand, a smaller z in the membrane-bound 2D system limits the number of interactions. In case of limited competitive binding, specific interactions tend to be prioritized compared to non-specific ones. In fact, Fig. 3A clearly shows that number of specific interactions in 2D is similar to that in 3D, while that of non-specific interactions is dramatically reduced in 2D. In the current PSD system, CaMKII is characterized by large valency and large volume. In the 3D solution system, non-specific excluded volume interactions drive CaMKII to the outer phase, while this effect is largely reduced in 2D, resulting in the reversed multiphase.   

      Also, I sense some haste in comparing the findings with experimental observations. For example, the authors mention that "For the current four component PSD system, the product of concentrations of each molecule in the dilute phase is in good agreement with that of the experimental concentrations (Table S2)." But the data used here is the dilute phase, which is the remnant of a system prepared at very high concentrations and allowed to phase separate. The errors reported in Table S2 already cast doubt on this comparison. 

      We thank the reviewer for the insightful comment. In the validation process, we adjusted the parameters so that the number of molecules in dilute phase is consistent with the experimental lower limit of phase separation, based on the assumption that phase-separated dilute phase is the same concentration as the critical concentration. That is why we focus on comparing dilute phase concentration in Table S2. However, in our simulations, the number of protein molecules is relatively small since it is based on the average number per synapse spine. For example, there are only about 60 CaMKII molecules at most, and its presence in the dilute phase is highly sensitive to concentration, as the reviewer pointed out. This is one of the limitations, so we have added a description to the Limitations section. We added:

      “Second, parameter calibration contains some uncertainty. Previous in vitro study results used for parameter validation are at relatively high concentrations for phase separation, which may shift critical thresholds compared to that in in vivo environments. Also, since the number of molecules included in the model is small, the difference of a single molecule could result in a large error during this validation process.”

      Or while the 2D system is prepared via confining the particles to the vicinity of the membrane, the different diffusive behavior in the membrane, in contrast to the bulk (i.e., the Saffman-Delbrück model), is not considered. This would thus make it difficult to interpret the results of a coupled 2D/3D system and compare them to the actual system.

      We appreciate the reviewer’s helpful comment. We agree with that there is a concern that the Einstein-Stokes equation does not adequately reproduce the diffusion of membrane-embedded particles. We recalculated the diffusion coefficients for every membrane particle used in this model using the Saffman-Delbrück model and found that diffusion coefficients for receptor cores (AMPAR and NMDAR) were approximately three times larger. These values are still about ~10 times smaller than that of molecules diffusing under the cytoplasm. Additionally, since this study focuses on the morphology of the phase/cluster at the thermodynamic equilibrium, we think that the magnitude of the diffusion coefficient has little influence on the final structure of the cluster. However, we will incorporate the membrane-embedded diffusion as a future improvement item for better modelling and implementation. We added:

      “Third, we estimated all the diffusion coefficients from the Einstein-Stokes equation, which may oversimplify membrane-associated dynamics. Applying the Saffmann-Delbrück model to membrane-embedded particles would be desired although the resulting diffusion coefficients remain of the same order of magnitude. These limitations highlight the need for further research, yet they do not undermine the core significance of the present findings in advancing our understanding of multiphase morphologies.”