- Last 7 days
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public review):
Summary:
Chen and Phillips describe the dynamic appearance of cytoplasmic granules during embryogenesis analogous to SIMR germ granules, and distinct from CSR-1-containing granules, in the C. elegans germline. They show that the nuclear Argonaute NRDE-3, when mutated to abrogate small RNA binding, or in specific genetic mutants, partially colocalizes to these granules along with other RNAi factors, such as SIMR-1, ENRI-2, RDE-3, and RRF-1. Furthermore, NRDE-3 RIP-seq analysis in early vs. late embryos is used to conclude that NRDE-3 binds CSR-1-dependent 22G RNAs in early embryos and ERGO-1dependent 22G RNAs in late embryos. These data lead to their model that NRDE-3 undergoes small RNA substrate "switching" that occurs in these embryonic SIMR granules and functions to silence two distinct sets of target transcripts - maternal, CSR-1 targeted mRNAs in early embryos and duplicated genes and repeat elements in late embryos.
Strengths:
The identification and function of small RNA-related granules during embryogenesis is a poorly understood area and this study will provide the impetus for future studies on the identification and potential functional compartmentalization of small RNA pathways and machinery during embryogenesis.
Weaknesses:
(1) While the authors acknowledge the following issue, their finding that loss of SIMR granules has no apparent impact on NRDE-3 small RNA loading puts the functional relevance of these structures into question. As they note in their Discussion, it is entirely possible that these embryonic granules may be "incidental condensates." It would be very welcomed if the authors could include some evidence that these SIMR granules have some function; for example, does the loss of these SIMR granules have an effect on CSR-1 targets in early embryos and ERGO-1-dependent targets in late embryos?
We appreciate reviewer 1’s concern that we do not provide enough evidence for the function of the SIMR granules. As suggested, we examined the NRDE-3 bound small RNAs more deeply, and we do observe a slight but significant increased CSR-class 22G-RNAs binding to NRDE-3 in late embryos of simr-1 and enri-2 mutants (see below, right). We hypothesize that this result could be due to a slower switch from CSR to ERGO 22G-RNAs in the absence of SIMR granules. We added these data to Figure 6G.
(2) The analysis of small RNA class "switching" requires some clarification. The authors re-define ERGO1-dependent targets in this study to arrive at a very limited set of genes and their justification for doing this is not convincing. What happens if the published set of ERGO-1 targets is used?
As we mentioned in the manuscript, we initially attempted to use the previously defined ERGO targets. However, the major concern is fewer than half the genes classified as ERGO targets by Manage et al. and Fischer et al. overlap with one another (Figure 6—figure supplement 1D and below). We reason this might because the gene sets were defined as genes that lose small RNAs in various ERGO pathway mutants and because different criteria were used to define the lists as discussed in the manuscript (lines 471-476). As a result, some of the previously defined ERGO target genes may actually be indirect targets of the pathway. Here we focus on genes targeted by small RNAs enriched in an ERGO pathway Argonaute IP, which should be more specific.
In this manuscript, we are interested specifically in the ERGO targets bound by NRDE-3, thus we utilized the IP-small RNA sequencing data from young adult animals (Seroussi et al, 2023), to define a new ERGO list. We are confident about this list because 1) Most of our new ERGO genes overlap with the overlap between ERGO-Manage and ERGO-Fischer list (see Figure 6—figure supplement 1D in our manuscript and below). 2) We observed the most significant decrease of small RNA levels and increase of mRNA levels in the nrde-3 mutants using our newly defined list (see Figure 6—figure supplement 1E-F in our manuscript).
To further address reviewer 1’s concern about whether the data would look significantly different when using the ERGO-Manage and ERGO-Fischer lists, we made new scatter plots shown in Author response image 1 panels A-C below (ERGO-Manage – purple, ERGO-Fischer- yellow, and the overlap - yellow with purple ring). We found that the small switching pattern of NRDE-3 is consistent with our newly defined list, particularly if we look at the overlap of ERGO-Manage and ERGO-Fischer list (Author response image 1 panels D-F below, red).
Author response image 1.
Further, the NRDE-3 RIP-seq data is used to conclude that NRDE-3 predominantly binds CSR-1 class 22G RNAs in early embryos, while ERGO-1-dependent 22G RNAs are enriched in late embryos. a) The relative ratios of each class of small RNAs are given in terms of unique targets. What is the total abundance of sequenced reads of each class in the NRDE-3 IPs?
To address the reviewer’s question about the total abundance of sequenced reads of each class in the NRDE-3 IPs: Author response image 2 panel A-B below show the total RPM of CSR and ERGO class sRNAs in inputs and IPs at different stages. Focusing on late embryos, the total abundance of ERGO-dependent sRNAs is similar to CSR-class sRNAs in input, while much higher in IP, indicating an enrichment of ERGO-dependent 22G-RNAs in NRDE-3 consistent with our log2FC (IP vs input) in Figure 6B. This data supports our conclusion that NRDE-3 preferentially binds to ERGO targets in late embryos.
Author response image 2.
b) The "switching" model is problematic given that even in late embryos, the majority of 22G RNAs bound by NRDE-3 is the CSR-1 class (Figure 5D).
It is important to keep in mind the difference in the total number of CSR target genes (3834) and ERGO target genes (119). The pie charts shown in Figure 6D are looking at the total proportion of the genes enriched in the NRDE-3 IP that are CSR or ERGO targets. For the NRDE-3 IP in late embryos, that would be 70/119 (58.8%) of ERGO targets are enriched, while 172/3834 (4.5%) of CSR targets are enriched. These data are also supported by the RPM graphs shown in Author response image 2 panels A-B above, which show that the majority of the small RNA bound by NRDE-3 in late embryos are ERGO targets. Nonetheless, NRDE-3 still binds to some CSR targets shown as Figure 6D and panel B, which may be because the amount of CSR-class 22G-RNAs is reduced gradually across embryonic development as the maternally-deposited NRDE-3 loaded with CSR-class 22G-RNAs is diluted by newly transcribed NRDE-3 loaded with ERGOdependent 22G-RNAs (lines 857-862).
c) A major difference between NRDE-3 small RNA binding in eri-1 and simr-1 mutants appears to be that NRDE-3 robustly binds CSR-1 22G RNAs in eri-1 but not in simr-1 in late embryos. This result should be better discussed.
In the eri-1 mutant, we hypothesize that NRDE-3 robustly binds CSR-class 22G-RNAs because ERGOclass 22G-RNAs are not synthesized during mid-embryogenesis, so either NRDE-3 is unloaded (in granule at 100-cell stage in Figure 2A) or mis-loaded with CSR-class 22G-RNAs (in the nucleus at 100cell stage in Figure 2A). We don’t have a robust method to address the proportion of loaded vs. unloaded NRDE-3 so it is difficult to address the degree to which NRDE-3 is misloaded in the eri-1 mutant. In the simr-1 mutant, both classes of small RNAs are present and NRDE-3 is still preferentially loaded with ERGO-dependent 22G-RNAs, though we do see a subtle increase in association with CSR-class 22GRNAs. These data could suggest a less efficient loading of NRDE-3 with ERGO-dependent 22G-RNAs, but we would need more precise methods to address the loading dynamics in the simr-1 mutant.
(3) Ultimately, if the switching is functionally important, then its impact should be observed in the expression of their targets. RNA-seq or RT-qPCR of select CSR-1 and ERGO-1 targets should be assessed in nrde-3 mutants during early vs late embryogenesis.
The function of NRDE-3 at ERGO targets has been well studied (Guang et al, 2008) and is also assessed in our H3K9me3 ChIP-seq analysis in Figure 7E where, in mixed staged embryos, H3K9me3 level on ERGO targets (labeled as ‘NRDE-3 targets in young adults’) is reduced significantly in the nrde-3 mutant.
To understand the function of NRDE-3 binding on CSR targets in early embryos, we attempted to do RTqPCR, smFISH, and anti-H3K9me3 CUT&Tag-seq on early embryos, and we either failed to obtain enough signal or failed to detect any significant difference (data not shown). We additionally tested the possibility that NRDE-3 functions with CSR-class 22G-RNAs in oocytes. We present new data showing that NRDE-3 represses RNA Pol II in oocytes to promote global transcriptional repression at the oocyteto-embryo transition, we now included these data in Figure 8.
Reviewer #2 (Public review):
Summary:
NRDE-3 is a nuclear WAGO-clade Argonaute that, in somatic cells, binds small RNAs amplified in response to the ERGO-class 26G RNAs that target repetitive sequences. This manuscript reports that, in the germline and early embryos, NRDE-3 interacts with a different set of small RNAs that target mRNAs. This class of small RNAs was previously shown to bind to a different WAGO-clade Argonaute called CSR1, which is cytoplasmic, unlike nuclear NRDE-3. The switch in NRDE-3 specificity parallels recent findings in Ascaris where the Ascaris NRDE homolog was shown to switch from sRNAs that target repetitive sequences to CSR-class sRNAs that target mRNAs.
The manuscript also correlates the change in NRDE-3 specificity with the appearance in embryos of cytoplasmic condensates that accumulate SIMR-1, a scaffolding protein that the authors previously implicated in sRNA loading for a different nuclear Argonaute HRDE-1. By analogy, and through a set of corelative evidence, the authors argue that SIMR foci arise in embryogenesis to facilitate the change in NRDE-3 small RNA repertoire. The paper presents lots of data that beautifully documents the appearance and composition of the embryonic SIMR-1 foci, including evidence that a mutated NRDE-3 that cannot bind sRNAs accumulates in SIMR-1 foci in a SIMR-1-dependent fashion.
Weaknesses:
The genetic evidence, however, does not support a requirement for SIMR-1 foci: the authors detected no defect in NRDE-3 sRNA loading in simr-1 mutants. Although the authors acknowledge this negative result in the discussion, they still argue for a model (Figure 7) that is not supported by genetic data. My main suggestion is that the authors give equal consideration to other models - see below for specifics.
We appreciate reviewer 2’s comments on the genetic evidence for the function of SIMR foci. A similar concern was also brought up by reviewer 1. By re-examining our sequencing data, we found that there is a modest but significant increase in NRDE-3 association with CSR-class sRNAs in simr-1 and enri-2 mutants in late embryos. We believe that this data supports our model that SIMR-1 and ENRI-2 are required for an efficient switch of NRDE-3 bound small RNAs. Please refer our response to the reviewer 1 - point (1), and Figure 6G in the updated manuscript.
Reviewer #3 (Public review):
Summary:
Chen and Phillips present intriguing work that extends our view on the C. elegans small RNA network significantly. While the precise findings are rather C. elegans specific there are also messages for the broader field, most notably the switching of small RNA populations bound to an argonaute, and RNA granules behavior depending on developmental stage. The work also starts to shed more light on the still poorly understood role of the CSR-1 argonaute protein and supports its role in the decay of maternal transcripts. Overall, the work is of excellent quality, and the messages have a significant impact.
Strengths:
Compelling evidence for major shift in activities of an argonaute protein during development, and implications for how small RNAs affect early development. Very balanced and thoughtful discussion.
Weaknesses:
Claims on col-localization of specific 'granules' are not well supported by quantitative data
We have now included zoomed images of individual granules to better show the colocalization in Figure 4 and Figure 4—figure supplement 1, and performed Pearson’s colocalization analysis between different sets of proteins in Figure 4B.
Reviewer #2 (Recommendations for the authors):
- The manuscript is very dense and the gene names are not helpful. For example, the authors mention ERGO-1 without clarifying the type of protein, etc. I suggest the authors include a figure to go with the introduction that describes the different classes of primary and secondary sRNAs, associated Argonautes, and other accessory proteins. Also include a table listing relevant gene names, protein classes, main localizations, and proposed functions for easy reference by the readers.
We agree that the genes names in different small RNA pathways are easily confused. We added a diagram and table in Figure 1—figure supplement 1 depicting the ERGO/NRDE and CSR pathways and added clarification about the ERGO/NRDE-3 pathway in the text from line 126-128.
- Line 424 - the wording here and elsewhere seems to imply that SIMR-1 and ENRI-2, although not essential, contribute to NRDE-3 sRNA loading. The sequencing data, however, do not support this - the authors should be clearer on this. If the authors believe there are subtle but significant differences, they should show them perhaps by adding a panel in Figure 5 that directly compares the NRDE-3 IPs in wildtype versus simr-1 mutants. Figure 5H however does not support such a requirement.
As brought up by reviewer 1, we do not see difference in binding of ERGO-dependent sRNA in simr-1 mutant in late embryos. We do, however, see a modest, but significant, increase of CSR-sRNAs bound by NRDE-3 in simr-1 and enri-2 mutants, which we hypothesize could be due to a less efficient loading of ERGO-dependent 22G-RNAs by NRDE-3. The updated data are now in Figure 6G. We have also edited the text and model figure to soften these conclusions.
- Condensates of PGL proteins appear at a similar time and place (somatic cells of early embryos) as the embryonic SIMR-1 foci. The PGL foci correspond to autophagy bodies that degrade PGL proteins. Is it possible that SIMR-1 foci also correspond to degradative structures? The possibility that SIMR-1 foci are targeted for autophagy and not functional would fit with the finding that simr-1 mutants do not affect NRDE-3 loading in embryos.
We appreciate reviewer 2’s comments on possibility of SIMR granules acting as sites for degradation of SIMR-1 and NRDE-3. We think this is not the case for the following reasons: 1) if SIMR granules are sites of autophagic degradation, then we would expect that embryonic SIMR granules in somatic cells, like PGL granules, should only be observed in autophagy mutants; however we see them in wild-type embryos 2) we would not expect a functional Tudor domain to be required for granule localization; however in Figure 1—figure supplement 2B, we show that a point mutation in the Tudor domain of SIMR-1 abrogates SIMR granule formation, and 3) if NRDE-3(HK-AA) is recruited to SIMR granules for degradation while wild-type NRDE-3 is cytoplasmic, then NRDE-3(HK-AA) should shows a significantly reduced protein level comparing to wild-type NRDE-3. In the western blot in Figure 2—figure supplement 1B, NRDE-3 and NRDE-3(HK-AA) protein levels are similar, indicating that NRDE-3(HK-AA) is not degraded despite being unloaded. This is in contrast to what we have observed previously for HRDE-1, which is degraded in its unloaded state. If SIMR-1 played a role directly in promoting degradation of NRDE-3(HK-AA), we would similarly expect to see a change in NRDE-3 or NRDE-3(HK-AA) expression in a simr-1 mutant. We performed western blot and did not observe a significant change in protein expression for NRDE-3 (Figure 3—figure supplement 1A).
Although under wild-type conditions, SIMR granules do not appear to be sites of autophagic degradation, upon treatment with lgg-1 (an autophagy protein) RNAi, we found that SIMR-1, as well as many other germ granule and embryonic granule-localized proteins, increase in abundance in late embryos. This data demonstrates that ZNFX-1, CSR-1, SIMR-1, MUT-2/RDE-3, RRF-1, and unloaded NRDE-3 are removed by autophagic degradation similar to what have been shown previously for PGL-1 proteins (Zhang et al, 2009, Cell). We added these data to Figure 5. It is important to emphasize, however, that the timing of degradation differs for each granule assayed (Lines 447-450), indicating that there must be multiple waves of autophagy to selectively degrade subsets of proteins when they are no longer needed by the embryo.
- The observation that an NRDE-3 mutant that cannot load sRNAs localizes to SIMR-1 foci does not necessarily imply that wild-type unloaded NRDE-3 would also localize there. Unless the authors have additional data to support this idea, the authors should acknowledge that this hypothesis is speculative. In fact, why does cytoplasmic NRDE-3 not localize to granules in the rde-3;ego-1degron strain shown in Figure 6B?? Is it possible that the NRDE-3 mutant accumulates in SIMR-1 foci because it is unfolded and needs to be degraded?
We believe that wild-type NRDE-3 also localize to SIMR foci when unloaded. This is supported by the localization of wild-type NRDE-3 in eri-1 and rde-3 mutants, where a subset of small RNAs are depleted. Wild-type NRDE-3 localizes to both somatic SIMR-1 granules and the nucleus, depending on embryo stage (Figure 2A, Figure 2—figure supplement 1C). The granule numbers in eri-1 and rde-3 mutants are less than the nrde-3(HK-AA) mutant, consistent with the imaging data that NRDE-3 only partially localize to somatic granule (Figure 2A – 100-cell stage).
In the rde-3; ego-1 double mutant, the embryos have severe developmental defect: they cannot divide properly after 4-8 cell stage and exhibit morphology defects after that stage. In wild-type, SIMR foci does not appear until around 8-28-cell stage (shown in Figure 1C), so we believe that cytoplasmic NRDE-3 does not localize to foci in the double mutant is because of the timing.
- The authors propose that NRDE-3 functions in nuclei to target mRNAs also targeted in the cytoplasm by CSR-1. If so, how do they propose that NRDE-3 might do this since little transcription occurs in oocytes/early embryos?? Are the authors suggesting that NRDE-3 targets germline genes for silencing specifically at the times that zygotic transcription comes back on, or already in maturing oocytes? Is the transcription of most CSR-1 targets silenced in early embryos??
We appreciate the suggestions to check the function of NRDE-3 in oocytes. We tested this possibility and found it to be correct. NRDE-3 functions in oocytes for transcriptional repression by inhibiting RNA Pol II elongation. We added these data to Figure 8. We also attempted to do RT-qPCR, smFISH, and antiH3K9me3 Cut&Tag-seq on early embryos to further test the hypothesis that NRDE-3 acts with CSR-class 22G-RNAs in early embryos, but we either failed to obtain enough signal or failed to detect any significant difference (data not shown). Therefore, we think that the primary role for NRDE-3 bound to CSR-class 22G-RNAs may be for global transcriptional repression of oocytes prior to fertilization.
- Line 684-686: "In summary, this work investigating the role of SIMR granules in embryos, together with our previous study of SIMR foci in the germline (Chen and Phillips 2024), has identified a new mechanism for small RNA loading of nuclear Argonaute proteins in C. elegans". This statement appears overstated/incorrect since there is no evidence that SIMR-1 foci are required for sRNA loading of NRDE3. The authors should emphasize other models, as suggested above.
We have revised the text on line 869-871 to emphasize that SIMR granule regulate the localization of nuclear Argonaute proteins, rather than suggesting a direct role on controlling small RNA loading. We also edit the title, text, and legend for our model in Figure 9.
Reviewer #3 (Recommendations for the authors):
Issues to be addressed:
- The authors show a switch in 22G RNA binding by NRDE-3 during embryogenesis. While the data is convincing, it would be great if it could be tested if the preferred NRDE-3 replacement model is indeed correct. This could be done relatively easily by giving NRDE-3 a Dendra tag, allowing one to colour-switch the maternal WAGO-3 pool before the zygotic pool comes up. Such data would significantly enhance the manuscript, as this would allow the authors to follow the fate of maternal NRDE-3 more precisely, perhaps identifying a period of sharp decline of maternal NRDE-3.
We think the NRDE-3 Dendra tag experiment suggested by the reviewer is a clever approach and we will consider generating this strain in the future. However, we feel that optimization of the color-switching tag between the maternal germline and the developing embryos is beyond the scope of this manuscript. To partially address the question about NRDE-3 fate during embryogenesis, we examined the single-cell sequencing data of C. elegans embryos from 1-cell to 16-cell stage (Tintori et al, 2016, Dev Cell; Visualization tool from John I Murray lab), as shown in Author response image 3 Panel A below, NRDE-3 transcript level increases as embryo develops, indicating that zygotic NRDE-3 is being actively expressed starting very early in development. We hypothesize that maternal NRDE-3 will either be diluted as the embryo develops or actively degraded during early embryogenesis.
Author response image 3.
- Figure 3A: * should mark PGCs, but this seems incorrect. At the 8-cell stage there still is only one PGC (P4), not two, and at 100 cells there are only two, not three germ cells. Also, the identification of PGCs with a maker (PGL for instance) would be much more convincing.
We apologize for the confusion in Figure 3A. We changed the figure legend to clarify that the * indicate nuclear NRDE-3 localization in somatic cells for 8- and 100-cell stage embryos rather than the germ cells.
- Overall, the authors should address colocalization more robustly. In the current manuscript, just one image is provided, and often rather zoomed-out. How robust are the claims on colocalization, or lack thereof? With the current data, this cannot be assessed. Pearson correlation, combined with line-scans through a multitude of granules in different embryos will be required to make strong claims on colocalization. This applies to all figures (main and supplement) where claims on different granules are derived from.
We thank reviewer 3 for this important suggestion. To better address the colocalization, we included insets of individual granules in Figure 2D and Figure 4. We also performed colocalization analysis by calculating the Pearson’s R value between different groups of proteins in Figure 4B, to highlight that SIMR-1 colocalizes with ENRI-2, NRDE-3(HK-AA), RDE-3, and RRF-1, while CSR-1 colocalizes with EGO-1.
For the proteins that lack colocalization in Figure 4—figure supplement 1, we also added insets of individual granules. Additionally, we included a new set of panels showing SIMR-1 localization compared to tubulin::GFP (Figure 4—figure supplement 1I) in response to a recent preprint (Jin et al, 2024, BioRxiv), which finds NRDE-3 (expressed under a mex-5 promoter) associating with pericentrosomal foci and the spindle in early embryos. We do not see SIMR-1 (or NRDE-3, data not shown) at centrosomes or spindles in wild-type conditions but made a similar observation for SIMR-1 in a mut-16 mutant (Figure 4E). All of the localization patterns were examined on at least 5 individual 100-cell staged embryos with same localization pattern.
- Figure 7: Its title is: Function of cytoplasmic granules. This is a much stronger statement than provided in the nicely balanced discussion. The role of the granules remains unclear, and they may well be just a reflection of activity, not a driver. While this is nicely discussed in the text, figure 7 misses this nuance. For instance, the title suggests function, and also the legend uses phrases like 'recruited to granule X'. If granules are the results of activity, 'recruitment' is really not the right way to express the findings. The nuance that is so nicely worded in the discussion should come out fully in this figure and its legend as well.
We have changed the title of Figure 7 (now Figure 9) to “Model for temporally- and developmentallyregulated NRDE-3 function” to deemphasize the role of the granules and to highlight the different functions of NRDE-3. Similarly, we have rephrased the text in the figure and legend and add a some details about our new results.
Minor:
Typo: line 663 Acaris
We corrected the typo.
-
-
srsergiorodriguez.github.io srsergiorodriguez.github.io
-
Tabla 6. Diagnósticos de algunos teóricos de la Ciencia, Tecnología y Sociedad con respecto a América Latina entre los años 70 y 90
Otro interactivo que muestra sesgos de género, como he referido en otras anotaciones
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.
They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.
Strengths:
Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.
Main weaknesses of the experimental setup:
(1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.
(2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)
Other experimental weaknesses that make the evidence less convincing:
(1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?
(2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.
(3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.
(4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.
(5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.
(6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.
(7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.
Weaknesses of the presentation:
Overall, the manuscript is not easy to read. This can cause confusion.
-
Reviewer #2 (Public review):
Summary:
This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.
The key findings of the study are:<br /> (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.<br /> (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.<br /> (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.<br /> (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.<br /> (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.<br /> (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.<br /> (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.
In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.
Strengths:
(1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.
(2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.
(3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.
(4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.
(5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.
Weaknesses:
(1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.
(2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.
(3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.
-
Author response:
Public Reviews:
Reviewer #1 (Public review):
Summary:
This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.
They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.
Strengths:
Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.
Main weaknesses of the experimental setup:
(1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.<br />
We acknowledge that our in vitro experiments may not ideally replicate the in vivo situation, a common limitation of such experiments, our primary aim was to explore the molecular relationship between PRDM16 and BMP signaling in gene regulation. Such molecular investigations are challenging to conduct using in vivo tissues. In vitro NSCs treated with BMP4 has been used a model to investigate NSC proliferation and quiescence, drawing on previous studies (e.g., Helena Mira, 2010; Marlen Knobloch, 2017). Crucially, to ensure the relevance of our in vitro findings to the in vivo context, we confirmed that cultured cells could indeed be induced into quiescence by BMP4, and this induction necessitated the presence of PRDM16. Furthermore, upon identifying target genes co-regulated by PRDM16 and SMADs, we validated PRDM16's regulatory role on a subset of these genes in the developing Choroid Plexus (ChP) (Fig. 7 and Suppl.Fig7-8). Only by combining evidence from both in vitro and in vivo experiments could we confidently conclude that PRDM16 serves as an essential co-factor for BMP signaling in restricting NSC proliferation.
(2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)
We agree that Prdm16 KO cells carrying the Prdm16-expressing vector would be a good comparison with those with KO_vector. However, despite more than 10 attempts with various optimization conditions, we were unable to establish a viable cell line after infecting Prdm16 KO cells with the Prdm16-expressing vector. The overall survival rate for primary NSCs after viral infection is low, and we observed that KO cells were particularly sensitive to infection treatment when the viral vector was large (the Prdm16 ORF is more than 3kb).
As an alternative oo assess vector effects, we instead included two other control cell lines, wt and KO cells infected with the 3xNLS_Flag-tag viral vector, and presented the results in supplementary Fig 2. When we compared the responses of the four lines — wt, KO, wt infected with the Flag vector, KO infected with the Flag vector — to the addition and removal of BMP4, we confirmed that the viral infection itself has no significant impacts on the responses of these cells to these treatments regarding changes in cell proliferation and Ttr induction.
Given that wt cells and the KO cells, with or without viral backbone infection behave quite similarly in terms of cell proliferation, we speculate that even if we were successful in obtaining a cell line with Prdm16-expressing vector in the KO cells, it may not exhibit substantial differences compared to wt cells infected with Prdm16-expressing vector.
Other experimental weaknesses that make the evidence less convincing:
(1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?<br />
The reviwer’s point is that there was no significant increase in Ttr expression in Prdm16_KO cells after BMP4 treatment (Fig. 2E), but there remained residule Ttr mRNA signals in the Prdm16 mutant ChP (Fig. 1C). We think the difference lies in the measuable level of Ttr expression between that induced by BMP4 in NSC culture and that in the ChP. This is based on our immunostaining expreriment in which we tried to detect Ttr using a Ttr antibody. This antibody could not detect the Ttr protein in BMP4-treated Prdm16_expressing NSCs but clearly showed Ttr signal in the wt ChP. This means that although Ttr expression can be significantly increased by BMP4 in vitro to a level measurable by RT-qPCR, its absolute quantity even in the Prdm16_expressing condition is much lower compared to that in vivo. Our results in Fig 1C and Fig 2E, as well as Fig 7B, all consistently showed that Prdm16 depletion significantly reduced Ttr expression in in vitro and in vivo.
(2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.
H3K4me3 has widely been used as an indicator of active transcription and is a mark for cell identity genes. And it has been demonstrated that H3K4me3 has a direct function in regulating transciption at the step of RNApolII pausing release. As stated in the text, there are advantages and disadvantages of using H3K4me3 compared to using RNA-seq. RNA-seq profiles all gene products, which are affected by transcription and RNA stability and turnover. In contrast, H3K4me3 levels at gene promoter reflects transcriptional activity. In our case, we aimed to identify differential gene expression between proliferation and quiescence states. The transition between these two states is fast and dynamic. RNA-seq may not be able to identify functionally relevant genes but more likely produces false positive and negative results. Therefore, we chose H3K4me3 profiling.
We agree that transcription may change without histone methylation changes. This may cause an under-estimation of the number of changed genes between the conditions.
We validated 7 out of 31 genes (Wnt7b, Id3, Mybl2, Spc24, Spc25, Ndc80 and Nuf2). We chose these genes based on two critira: 1) their function is implicated in cell proliferation and cell-cycle regulation based on gene ontology analysis; 2) their gene products are detectable in the developing ChP based on the scRNA-seq data. Three of these genes (Wnt7b, Id3, Mybl2) are not related to the kinetochore. We now clarify this description in the revised text.
(3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.
This indicates that in addition to co-repressing cell-cycle genes, BMP and PRDM16 have independent fucntions. For example, it was reported that BMP regulates neuronal and astrocyte differentiation (Katada, S. 2021), while our previous work demonstrated that Prdm16 controls temporal identity of NSCs (He, L. 2021).
(4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.
The track in Fig 3G shows the absolute signal of H3K4me3 after mapping the sequencing reads to the genome and normaliz them to library size. Compare the signal in Prdm16_E with BMP4 and that in Prdm16_E without BMP4, the one with BMP4 has a lower peak. The same trend can be seen for the pair of Prdm16_KO cells with or without BMP4. The heatmap in Fig. 3E shows the relative level of H3K4me3 in three conditions. The Prdm16_E cells with BMP4 has the lowest level, while the other two conditions (Prdm16_KO with BMP4 and Prdm16_E without BMP4) display a higher level. These two graphs show a consistent trend of H3K4me3 changes at the Wnt7b promoter across these conditions.
(5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.
In our text, we indicated the genes containing PRDM16 binding peaks in the figures and described them as “Text in black in Fig. 6A and Supplementary Fig. 5A”. We will add the precise number “25 of these genes” in the main text to clarify it. To define a negative control set of genes, we will use BMP-only repressed 184-31 =153 genes (excluding PRDM16-BMP4 co-repressed), and of these 153 genes, we will determine how many have PRDM16 peaks in the E12.5 ChP data, say X. Then we will use binomial test to calculate p-value binom_test(25, 31, X/153, alternative=“greater).
We are confused with the second part of the comment “And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.” If the reviewer meant why we didn’t sequence the material from sequential-ChIP or validate more taget genes, the reason is the limitation of the material. Sequential ChIP requires a large quantity of the antibodies, and yields little material barely sufficient for a few qPCR after the second round of IP. This yielded amount was far below the minimum required for library construction. The PRDM16 antibody was a gift, and the quantity we have was very limited. We made a lot of efforts to optimize all available commercial antibodies in ChIP and Cut&Tag, but none of them worked.
(6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.
To address these questions, in the revised manuscript we will include an individal channel of Wnt2b and mark the boundaries. We will also provide full-view images and examples of spot segmentation in supplementary figures as space limitation in the main figures.
(7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.
We agree that this result (the correlation between mKi67 and Axin2) alone only suggests that Wnt signaling is related to the proliferation defect in the Prdm16 mutant, and does not necessarily mean that Wnt is downstream of PRDM16 and BMP. Our concolusion is backed up by two additional lines of evidences: the Cut&Tag data in which PRDM16 binds to regulatory regions of Wnt7b and Wnt3a; BMP and PRDM16 co-repress Wnt7b in vitro.
An ideal result is that down-regulating Wnt signaling in Prdm16 mutant can rescue Prdm16 mutant phenotype. Such an experiment is technically challenging. Wnt plays diverse and essential roles in NSC regulation, and one would need to use a celltype-and stage-specific tool to down-regulate Wnt in the background of Prdm16 mutation. Moreover, Wnt genes are not the only targets regulated by PRDM16 in these cells, and downregulating Wnt may not be sufficient to rescue the phenotype.
Weaknesses of the presentation:
Overall, the manuscript is not easy to read. This can cause confusion.
We will revise the text to improve the clarity.
Reviewer #2 (Public review):
Summary:
This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.
The key findings of the study are:
(1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.
(2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.
(3) BMP signaling and PRDM16 cooperatively repress proliferation genes.
(4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.
(5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.
(6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.
(7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.
In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.
Strengths:
(1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.
(2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.
(3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.
(4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.
(5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.
Weaknesses:
(1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.
While mechansims controlling PRDM16 protein stability and nuclear localization in the developing brain are interesting, the scope of this paper is revealing the function of PRDM16 in the choroid plexus and its interaction with BMP signaling. We will be happy to pursuit this direction in our next study.
(2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.
As stated above, we acknowledge that findings from cultured NSCs may not directly apply to ChP cells in vivo. We are cautious with our statements. The cell culture work was aimed to identify potential mechanisms by which PRDM16 and SMADs interact to regulate gene expression and target genes co-regulated by these factors. We expect that not all targets from cell culture are regulated by PRDM16 and SMADs in the ChP, so we validated expression changes of several target genes in the developing ChP and now included the new data in Fig. 7 and Supplementary Fig. 7. Out of the 31 genes identified from cultured cells, four cell cycle regulators including Wnt7b, Id3, Spc24/25/nuf2 and Mybl2, showed de-repression in Prdm16 mutant ChP. These genes can be relevant downstream genes in the ChP, and other target genes may be cortical NSC-specific or less dependent on Prdm16 in vivo.
(3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.
We agree that the finding of the AP1 motif enriched at the PRDM16 and SMAD co-binding regions in Prdm16 KO cells can only indirectly suggest AP1 as a co-factor for SMAD relocation. That’s why we used ChIP-qPCR to examine the presence of C-fos at these sites. Although we only validated two targets, the result confirms that C-fos binds to the sites only in the Prdm16 KO cells but not Prdm16_expressing cells, suggesting AP1 is a co-factor. We results cannot rule out the presence of other co-factors.
Reviewer #3 (Public review):
Summary:
Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.
Strengths:
I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.
Weaknesses:
I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).
We will revise the discussion according the suggestions.
-
-
www.pnp.de www.pnp.de
-
"Wer sind meine Freunde?"<br /> ist halt doch eine illegale Frage...
https://github.com/milahu/alchi
Von den 5 Zeitungsartikeln<br /> zu diesem lächerlichen "Anti-Terror Einsatz"<br /> ist der hier der Beste.
"ein Gewaltpotenzial sei nie von ihm ausgegangen"<br /> richtig.<br /> aber meine schwarze jacke ist jetzt eine waffe?
"dingfest gemacht" klingt so schön.<br /> das letzte mal<br /> wo sich irgendwer von mir "bedroht gefühlt" hat,<br /> bin ich für 6 monate im psychiatrie-knast wasserburg verschwunden (sechs monate!!),<br /> dafür zahlt die krankenversicherung 500 euro pro tag,<br /> und davon soll ich dann auch noch 10% bezahlen.<br /> meinen laptop haben die ärzte mir weggenommen,<br /> weil das ist "schlecht für meine Gesundheit"<br /> genauso wie meine Omega 3 Kapseln,<br /> Multivitamin Tabletten, CBD Öl, ...<br /> nicht dass die arme Pharmaindustrie pleite geht.
wenn ich in 6 monaten wieder frei bin,<br /> dann werde ich genau da weiter machen,<br /> wo ich aufgehört habe:<br /> 300 bücher pro monat drucken,<br /> und überall verschenken,<br /> bis ich endlich weiß,<br /> ob meine hypothese wahr oder falsch ist.
Viel Spaß beim zensieren von meinem Kommentar,<br /> ich hab genug andere Publisher:<br /> darktea.onion<br /> righttoprivacy.onion<br /> hypothes.is<br /> ...<br /> aber es liest eeh keiner,<br /> die leute ersticken im spam.
-
-
web.hypothes.is web.hypothes.is
-
Facet View annotations by user, group, URL, or tag. Export results to HTML, CSV, text, or Markdown. Screencast: https://jonudell.net/h/facet.mp4
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the current reviews.
We thank Reviewers for highlighting the strengths of our work along with suggestions for future directions.
We agree with the Reviewers that RPS26 depletion may impact not only RAN translation initiation and codon selection (as showed in the experiments in Figure 4G), but also other mechanisms, such as speed of PIC scanning, as we stated in the discussion. Although, we did provide the data showing that mRNA of exogenous FMR1-GFP does not change upon RPS26 depletion (Figure 3B&C), hence observed effect most likely stems from translation regulation. In addition, an experiment with ASO-ACG treatment (Figure 4G) suggests that near cognate start codon selection or speed of PIC scanning may be a part of the regulation of RAN translation sensitive to RPS26 depletion. In addition, our latest unpublished results (Niewiadomska D. et al., in revision), indicate that FMRpolyG in fusion with GFP is fairly stable, in particular, while derived from long repeats (>90xCGG), suggesting that the protein stability is not at play in RPS26-dependent regulation.
We would like to stress that in order to avoid bias in result interpretation and to mimic the natural situation, the majority of experiments concerning levels of FMRpolyG were performed in cell models with stable expression of ACG-initiated FMRpolyG. Currently, we do not possess a cell model with stable expression of AUG-initiated FMRpolyG, and the experiments based on transient transfection system would not necessarily be comparable to the results obtained in stable expression system. However, we believe that the experiment presented in Figure 2B serves as a good control for overall translation level upon RPS26 depletion indicating that RPS26 insufficiency does not affect global translation and the observed regulation is specific to some mRNAs including the one encoding FMRpolyG frame. We also show that the level of ca. 80% of identified canonical proteins, including FMRP, did not change upon RPS26 silencing (SILAC-MS, Figure 4A). Indeed, we did not explore the ribosome composition upon RPS26 and TSR2 depletion, although, most likely the pool of functional ribosomes in the cell is sufficient enough to support the basal translation level (SUnSET assays, Figure 2B & 5C). However, we cannot exclude possibility that for some mRNAs, including one encoding for FMRpolyG, the observed effect can be partially caused by lowering the number of fully active ribosomes, especially in experiments with transient transfection experiments where transgene expression is hundreds times higher than for average native mRNA.
Finally, we agree with the Reviewer that in vitro translation assay would provide the evidence of direct effect of RPS26 on FMRpolyG level, however, we did not manage to overcome technical difficulties in obtaining cellular lysate devoid of RPS26 from vendor companies.
The following is the authors’ response to the original reviews.
General Comments
We thank Reviewers for the critical comments and experimental suggestions. We considered most of the advices in the revised version of the manuscript, which allowed for a more balanced interpretation of the results presented, and further supported major statement of the manuscript that insufficiency of the RPS26 and RPS25 plays a role in modulating the efficiency of noncanonical RAN translation from FMR1 mRNA, which results in the production of toxic polyglycine protein (FMRpolyG). Firstly, performing new experiments, we showed that silencing of the RPS26 and its chaperone protein TSR2, which regulates loading/exchange of RPS26 in maturing small ribosome subunit, did not elicit global translation inhibition. Secondly, we demonstrated that in contrary to RPS26 and RPS25 depletion, silencing the RPS6 protein, a core component of 40S subunit, did not affect FMRpolyG production, further supporting the specific effect of RPS26 and RPS25 on RAN translation regulation of mutant FMR1 mRNA. We also observed that depletion of RPS26, RPS25 and RPS6 had significant negative effect on cells proliferation which is in line with previously published results indicating that insufficiencies of ribosomal proteins negatively affect cell growth. Moreover, we showed that FMRpolyG production is significantly affected by RPS26 depletion while initiated at ACG, but not other near cognate start codons. Importantly, translation of FMRP initiated at canonical AUG codon of the same mRNA upstream the CGGexp was not affected by RPS26 silencing, similarly to vast majority of the human proteome. This implies that RAN translation of FMR1 mRNA mediated by RPS26 insufficiency is likely to be dependent on start codon selection/fidelity. In essence, we provide a series of evidences indicating that cellular amount of 40S ribosomal proteins RPS26 and RPS25 is important factor of CGGrelated RAN translation regulation. Finally, we also decided to tone down our claims. Now, we state that the RPS26/25/TSR2 insufficiency or depletion, affects RAN translation, rather than composition of 40S ribosomal subunit per se influences RAN translation. We have addressed all specific concerns below and made changes to the new version of manuscript.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
In this manuscript, Tutak et al use a combination of pulldowns, analyzed by mass spectrometry, reporter assays, and fluorescence experiments to decipher the mechanism of protein translation in fragile X-related diseases. The topic is interesting and important.
Although a role for Rps26-deficient ribosomes in toxic protein translation is plausible based on already available data, the authors' data are not carefully controlled and thus do not support the conclusions of the paper.
We sincerely appreciate your rigorous, insightful, and constructive feedback throughout the revision process. We believe your guidance has been instrumental in significantly enhancing the quality of our research. Below, we have addressed your comments pointby-point.
Strengths:
The topic is interesting and important.
Weaknesses:
In particular, there is very little data to support the notion that Rps26-deficient ribosomes are even produced under the circumstances. And no data that indicate that they are involved in the RAN translation. Essential controls (for ribosome numbers) are lacking, no information is presented on the viability of the cells (Rps26 is an essential protein), and the differences in protein levels could well arise from block in protein synthesis, and cell division coupled to differential stability of the proteins.
We agree that data presented in the first version of the manuscript did not directly address the following processes: ribosome content, global translation rate and cell viability upon RPS26 depletion. Therefore we addressed some of the issues in the revised version of the manuscript. In particular, we showed that RPS26 and TSR2 knock down did not inhibit global translation (new Figure 2B & 4C), hence we concluded that the changes of FMRpolyG level did not arise from general translational shut down. On the other hand, RPS26, RPS25 and RPS6 depletion negatively affected cells proliferation (new Figure 2A,5D,6C), which is in line with a number of previously published researches (e.g. Cheng et al, 2019; Havkin-Solomon et al, 2023). However, the rate of proliferation abnormalities is limited. We agree that observed effects on RAN translation from mutant FMR1 mRNA may stem from the combination of altered protein synthesis, conditions of the cells but also cis-acting factors of mRNA sequence/structure. In new experiments we showed that single nucleotide substitution of ACG by other near cognate start codons change sensitivity of RAN translation to insufficiency of RPS26 (new Figure 4F). Also the inhibitory effect of antisense oligonucleotide binding to the region of 5’UTR containing ACG initiation codon (ASO_ACG) is different in cells differing in amount of RPS26 (new Figure 4G).
We also agree that our data only partially supports the role of RPS26-defficient ribosomes in RAN translation. Therefore, we have toned down our claims. Now, we state that the RPS26/25/TSR2 insufficiency or depletion affects RAN translation. We also changed the title of the manuscript to: “Insufficiency of 40S ribosomal proteins, RPS26 and RPS25, negatively affects biosynthesis of polyglycine-containing proteins in fragile-X associated conditions” (Previously it was: “Ribosomal composition affects the noncanonical translation and toxicity of polyglycine-containing proteins in fragile X-associated conditions”.
Specific points:
(1) Analysis of the mass spec data in Supplemental Table S3 indicates that for many of the proteins that are differentially enriched in one sample, a single peptide is identified. So the difference is between 1 peptide and 0. I don't understand how one can do a statistical analysis on that, or how it would give out anything of significance. I certainly do not think it is significant. This is exacerbated by the fact that the contaminants in the assay (keratins) are many, many-fold more abundant, and so are proteins that are known to be mitochondrial or nuclear, and therefore likely not actual targets (e.g. MCCC1, PC, NPM1; this includes many proteins "of significance" in Table S1, including Rrp1B, NAF1, Top1, TCEPB, DHX16, etc...).
The data in Table S6/Figure 3A suffer from the same problem.
I am not convinced that the mass spec data is reliable.
We thank Reviewer for the comment concerning MS data; however, we believe that it may stem from misunderstanding of the data presented in Table S3 and S6. Both tables represent the output from MaxQuant analysis (so-called ProteinGroup) of MS .raw files, without any filtering. As stated in the Material&Methods, we applied default parameters suggested by MaxQuant developers to analyze MS data, these include identification of proteins based on at least 1 unique peptide, and thus some of the proteins with only 1 unique peptide are shown in Tables S1 and S3. Reviewer is also right that in this output table common contaminants, such as keratins are included. However, these identifications are denoted as “CON_”, and are further filtered out during statistical analysis in Perseus software. During the statistical analysis we first filtered out irrelevant protein groups identifications, such as contaminants, or only identified by site modifications.
We have changed the names of Supplementary Table files, giving more detailed description. We hope this will help to avoid misunderstanding for broader public. Secondly, when comparing the data presented in Table S3 and volcano plot presented in Figure 1B, one can notice that indeed the majority of identified proteins are not statistically significant (grey points), thus not selected for further stratification. Lack of significance of these proteins may be partially due to poor MS identification, however, they are not included in the following parts of the manuscript. Further, we selected only eight proteins (out of over 150) for stratification by orthogonal techniques, thus we argue that this step validates the biological relevance of chosen candidate RAN-translation modifiers. One should also keep in mind that pull down samples analyzed by MS often yield lower intensity and identification rates, when comparing to whole cell analysis, as a result of lower protein input or stringent washes used during sample preparation.
Regarding the data presented in Table S6 (SILAC data), we argue that these data are of very good quality. More than 2,000 proteins were identified in a 125min gradient, with over 80% of proteins that were identified with at least 2 unique peptides. Each of three biological replicates was analyzed three times (technical replicates), giving total of 9 high resolution MS runs. Together, we strongly believe that this data is of high confidence.
(2) The mass-spec data however claims to identify Rps26 as a factor binding the toxic RNA specifically. The rest of the paper seeks to develop a story of how Rps26-deficient ribosomes play a role in the translation of this RNA. I do not consider that this makes sense.
Indeed, we identified RPS26 as a protein that co-precipitated with FMR1 containing expanded CGG repeats (Supplementary Figure 1G) and found that depletion of RPS26 hindered RAN translation of FMRpolyG, suggesting that RPS26 positively affects RAN translation. However, we did not state that RPS26 directly interacts with toxic RNA. In order to confirm the specificity of RAN translation regulation by RPS26 insufficiency, we tested whether depletion of other 40S ribosomal protein, RPS6, affects FMRpolyG synthesis. Our experiments showed that there was no any significant effect on RAN translation efficiency post RPS6 silencing (new Figure 5C). Importantly, we showed that RPS26 depletion did not inhibit global translation (new Figure 2B). In addition, mutagenesis of near-cognate start codon (new Figure 4F) and ASO_ACG treatment (new Figure 4G) provided the evidences that modulation of FMRpolyG biosynthesis by RPS26 level may depend on start codon selection. In essence, our data suggest that RPS26 depletion specifically affects synthesis of FMRpolyG, but not FMRP derived from the same FMR1 mRNA with CGGexp. However, we do not claim that the observed effect is the consequence of a direct interaction between RPS26 and 5’UTR of FMR1 mRNA. Downregulation of FMRpolyG biosynthesis could be an outcome of the alteration of ribosomal assembly, decrease of efficiency and fidelity of PIC scanning/initiation or impeded elongation or a combination of all these processes. In the manuscript we presented the results of experiments which tested many of these possibilities.
(3) Rps26 is an essential gene, I am sure the same is true for DHX15. What happens to cell viability? Protein synthesis? The yeast experiments were carefully carried out under experiments where Rps26 was reduced, not fully depleted to give small growth defects.
We agree with the Reviewer that RPS26 and DHX15 are essential proteins, similarly to all RNA binding proteins, and caution should be taken during experimental design. To address this, we titrated different concentrations of siRPS26, and found that administration of 5 nM siRPS26, which just partially silenced RPS26, decreased FMRpolyG by around 50% (new Figure 1D). This impact was even greater with 15 nM siRPS26, as we observed around 80% decrease of FMRpolyG.
Havkin-Solomon et al. (2023), showed that proliferation rate is decreased in cells with mutated C-terminus of RPS26, which is required for contacting mRNA. In accordance with this study, we showed that cells with knocked down RPS26 proliferate less efficiently (new Figure 2A), but depletion of RPS26 did not impact the global translation (new Figure 2B). In addition, our SILAC-MS data indicates that ~80% of proteins with determined expression level were not affected by RPS26 insufficiency, and ~20% of the proteins turned out to be sensitive to RPS26 decrease. Although, these data do not take into account the protein stability.
(4) Knockdown efficiency for all tested genes must be shown to evaluate knockdown efficiency.
The current version of the manuscript contains representative western blots with validation of knock-down efficiency (for example in Figure 3B, C, E, Figure 6A) and we included knock-down validations where applicable (Figures 1D, 2B, 4G and 5C).
(5) The data in Figure 1E have just one mock control, but two cell types (control si and Rps26 depletion).
Mock control corresponds to the cells treated with lipofectamine reagent and was included in the study to determine the “background” signal from cells treated with delivery agent and reagents used to measure the apoptosis process. These cells were neither expressing FMRpolyG, nor siRNAs. Luminescence signals were normalized to the values obtained from mock control. We added more details describing this assay in the Figure 1 legend.
(6) The authors' data indicate that the effects are not specific to Rps26 but indeed also observed upon Rps25 knockdown. This suggests strongly that the effects are from reduced ribosome content or blocked protein synthesis. Additional controls should deplete a core RP to ascertain this conclusion.
We agree that observed effects may stem from reduced ribosome content, however, we argue that this is the only possibility and explanation. Previously, it was shown that RPS25 regulates G4C2-related RAN translation, but knock out of RPS25 does not affect global translation (Yamada S, 2019, Nat. Neuroscience). Similarly, we showed that KD of RPS26 or TSR2 did not reduce significantly global translation rate (SUnSET assay; new Figure 2B and 5C, respectively).
Moreover, in a new version of manuscript we included a control experiment, where we silenced core ribosomal protein (RPS6) and found that RPS6 depletion did not affect RAN translation from mutant FMR1 mRNA (new Figure 5C), thus strengthening our conclusion about specific RAN translation regulation by the level of RPS26 and RPS25.
Finally, our observation aligns well with current knowledge about how deficiency of different ribosomal proteins alters translation of some classes of mRNAs (Luan Y, 2022, Nucleic Acids Res; Cheng Z, 2019, Mol Cell). It was shown that depletion of RPS26 affects translation rate of different mRNAs compared to depletion of other proteins of small ribosomal subunit.
(7) Supplemental Figure S3 demonstrates that the depletion of S26 does not affect the selection of the start codon context. Any other claim must be deleted. All the 5'-UTR logos are essentially identical, indicating that "picking" happens by abundance (background).
Supplementary Figure 3D represents results indicating that the mutation in -4 position (from G to A) did not affect the RAN translation regardless of RPS26 presence or depletion. However, this result does not imply that RPS26 does not affect the selection of start codon of sequence- or RNA structure-context. We verified this particular -4 position, as it was suggested previously as important RPS26-sensitive site in yeasts (Ferretti M, 2017, Nat Struct Mol Biol). We agree with Reviewer that all 5’UTR logos presented in our paper did not show statistical significance for neither tested position for human mRNAs. On the contrary, we observed that regulation sensitive to RPS26 level depends on the selection of start codon of RAN translation, in particular ACG initiation (new Figure 4F&G). RPS26 depletion affected ACG-initiated but not GTG- or CTG-initiated RAN translation.
In the previous version of the manuscript, we wrote that we did not identify any specific motifs or enrichment within analyzed transcripts in comparison to the background. On the other hand, we found that the GC-content among analyzed transcripts is higher within 5’UTRs and in close proximity to ATG in coding sequences (Figure 4D), what suggests the importance of RNA stable structures in this region. In addition, we showed that mRNAs encoding proteins responding to RPS26 depletion have shorter than average 5’UTRs (new Figure 4E).
(8) Mechanism is lacking entirely. There are many ways in which ribosomes could have mRNA-specific effects. The authors tried to find an effect from the Kozak sequence, unsuccessfully (however, they also did not do the experiment correctly, as they failed to recognize that the Kozak sequence differs between yeast, where it is A-rich, and mammalian cells, where it is GGCGCC). Collisions could be another mechanism.
Indeed, collisions as well as other mechanisms such as skewed start codon fidelity may have an effect on efficiency of FMRpolyG biosynthesis. In the current version of the manuscript, we show that RPS26 amount-sensitive regulation seems to be start codonselection dependent (new Figure 4F&G).
Reviewer #2 (Public Review):
Summary:
Translation of CGG repeats leads to the accumulation of poly G, which is associated with neurological disorders. This is a valuable paper in which the authors sought out proteins that modulate RAN translation. They determined which proteins in Hela cells bound to CGG repeats and affected levels of polyG encoded in the 5'UTR of the FMR1 mRNA. They then showed that siRNA depletion of ribosomal protein RPS26 results in less production of FMR1polyG than in control. There are data supporting the claim that RPS26 depletion modulates RAN translation in this RNA, although for some results, the Western results are not strong. The data to support increased aggregation by polyG expression upon S26 KD are incomplete.
We thank the Reviewer for critical comments and suggestions. We sincerely appreciate your rigorous, insightful, and constructive feedback throughout the revision process.
Below each specific point, we addressed the mentioned issues.
Strengths:
The authors have proteomics data that show the enrichment of a set of proteins on FMR1 RNA but not a related RNA.
We thank Reviewer for appreciation of provided MS-screening results, which identified proteins enriched on FMR1 RNA with expanded CGG repeats.
Weaknesses:
- It is insinuated that RPS26 binds the RNA to enhance CGG-containing protein expression. However, RPS26 reduction was also shown previously to affect ribosome levels, and reduced ribosome levels can result in ribosomes translating very different RNA pools.
In previous version of the manuscript we did not state that RPS26 binds directly to RNA with expanded CGG repeats and we did not show the experiment indicating direct interaction between studied RNA and RPS26. What we showed is that RPS26 was enriched on FMR1 RNA MS samples, however, we did not verify whether it is direct or indirect interaction. We also tried to test hypothesis that lack of RPS26 in PIC complex may affect efficiency of RAN translation initiation via specific, previously described in yeast Kozak context (Ferretti M, 2017, Nat Struct Mol Biol). As we described this hypothesis was negatively validated. However, we showed that other features of 5’UTR sequences (e.g. higher GC-content or shorter leader sequence) are potentially important for translation efficiency in cells with depleted RPS26.
Indeed, RPS26 is involved in 40S maturation steps (Plassart L, 2021, eLife) and its insufficiency or mutations or blocking its inclusion to 40S ribosome may result in incomplete 40S maturation, which subsequently might negatively affect translation per se. However, we did not observe global translation inhibition after RPS26 depletion or depletion of TSR2, the chaperon involved in incorporation/exchange RPS26 to small ribosomal subunit (new Figure 2B and 5C). In addition, our SILAC-MS data indicates that majority of studied proteins (including FMRP, the main product of FMR1 gene) were not affected by RPS26 depletion which can be carefully extrapolated to global translation. In revised manuscript we also showed that relatively low silencing of RPS26 also decreased FMRpolyG production in model cells (new Figure 1D).
We agree that reduced ribosome levels can result in different efficiency of translation of different RNA pools. We enhance this statement in revised manuscript. However, we also showed that the same mRNA containing different near cognate start codons (single/two nucleotide substitution) specific to RAN translation, or targeting this codon with antisense oligonucleotides resulted in altered sensitivity of FMR1 mRNA translation to RPS26 depletion (new Figure 4F).
- A significant claim is that RPS26 KD alleviates the effects of FMRpolyG expression, but those data aren't presented well.
We thank the Reviewer for this comment. In the new version of the manuscript, we have added new microscopic images and improved the explanation of Figure 1E. We have also completed the interpretation of Figure 1F in the main text, figure image as well as figure legend, and we hope that these changes will ameliorate understanding of our data.
Recommendations For The Authors:
- A significant claim is that RPS26 KD alleviates the effects of FMR polyG expression, but those data aren't presented well:
Figure 1D (supporting data in S2) and 2D - the authors need to show representative images of a control that has aggregation and indicate aggregates being counted on an image. The legend states that there are no aggregates, but the quantification of aggregates/nucleus is ~1, suggesting there are at least 1 per cell. It is preferred to show at least a representative of what is quantified in the main figure instead of a bar graph.
The representative images of control and siRPS26-treated cells are now shown in revised version of Figure 1E. Additionally, we completed the Figure legend concerning this part, as well as extended description of the experiment in Materials&Methods section.
Figure 1E - it is unclear what luminescence signal is being measured. Is this a dye for an apoptotic marker? More information is needed in the legend.
This information was added to the legend of modified Figure 1F (previously 1E) as suggested.
- Some of the Western blots are not very convincing. Better evidence for the changes in bar graphs would improve how convincing the data are:
Fig 2B. The western for FMR95G in the first model is not very convincing. The difference by eye for the second siRNA seems to give a larger effect than the first for 95G construct but they appear almost the same on the graph. More supporting information for the quantification is needed.
We provided better explanation for WB quantification in M&M section in the manuscript. Alos, we provided additional blot demonstrating independent biological replicate of the mentioned experiment in supplementary materials (Supplementary Figure S2E).
Figure 4A, the blots for RPS26 and FMR95G are not convincing. They are quite smeary compared to all of the others shown for these proteins in other figures. Could a different replicate be shown?
We provided additional blot demonstrating the effect on transiently expressed FMRpolyG affected by depletion of TSR2 in COS7 cell line (Supplementary Figure S4A).
Figure 5A and 5B blots are not ideal. Could a different replicate be shown? Or show multiple replicates in the supplemental figure?
We provided additional blots from the same experiment, although data is not statistically significant, most likely due to low quality of normalization factor, which is Vinculin (Supplementary Figure S5A). Nevertheless, the level of FMRpolyG is decreased by ~70% after RPS25 silencing in SH-SY5Y cells.
Figure 2C. Please use the same y axes for all four Westerns in B and C. One would like to compare 95 and 15 repeats, but it is difficult when the y axes are different.
Thank you for this comment. The y axis was adjusted as suggested by the Reviewer.
Figure 3D-The text suggests a significant difference between positive and negative responders that is not clear in the figure.
In the main body of the manuscript we state that: “We did not observe any significant differences in the frequency of individual nucleotide positions in the 20-nucleotide vicinity of the start codon relative to the expected distribution in the BG”, which is in line with the graph showed in Figure 4D (previously 3D).
Reviewer #3 (Public Review):
Tutak et al provide interesting data showing that RPS26 and relevant proteins such as TSR2 and RPS25 affect RAN translation from CGG repeat RNA in fragile X-associated conditions. They identified RPS26 as a potential regulator of RAN translation by RNAtagging system and mass spectrometry-based screening for proteins binding to CGG repeat RNA and confirmed its regulatory effects on RAN translation by siRNA-based knockdown experiments in multiple cellular disease models and patient-derived fibroblasts. Quantitative mass spectrometry analysis found that the expressions of some ribosomal proteins are sensitive to RPS26 depletion while approximately 80% of proteins including FMRP were not influenced. Since the roles of ribosomal proteins in RAN translation regulation have not been fully examined, this study provides novel insights into this research field. However, some data presented in this manuscript are limited and preliminary, and their conclusions are not fully supported.
(1) While the authors emphasized the importance of ribosomal composition for RAN translation regulation in the title and the article body, the association between RAN translation and ribosomal composition is apparently not evaluated in this work. They found that specific ribosomal proteins (RPS26 and RPS25) can have regulatory effects on RAN translation (Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B), and that the expression levels of some ribosomal proteins can be changed by RPS26 knockdown (Figure 3B, however, the change of the ribosome compositions involved in the actual translation has not been elucidated). Therefore, their conclusive statement, that is, "ribosome composition affects RAN translation" is not fully supported by the presented data and is misleading.
We thank the Reviewer for critical comments and suggestions. We agree that the initial title and some statements in the text were misleading and the presented data did not fully support the aforementioned statement regarding ribosomal composition affecting FMRpolyG synthesis. Therefore, in the revised version of the manuscript we included a control experiment indicating that depletion of another core 40S ribosomal protein (RPS6) did not impact the FMRpolyG synthesis (new Figure 5C), which supports our hypothesis that RPS26 and RPS25 are specific CGG-related RAN translation modifiers. To precisely deliver a main message of our work, we changed the title that will indicate the specific effect of RPS26 and RPS25 insufficiency on RAN translation of FMRpolyG. Proposed title: “Insufficiency of 40S ribosomal proteins, RPS26 and RPS25 negatively affects biosynthesis of polyglycine-containing proteins in fragile-X associated conditions”. We also changed all statements regarding “ribosomal composition” in main text of the new version of manuscript.
(2) The study provides insufficient data on the mechanisms of how RPS26 regulates RAN translation. Although authors speculate that RPS26 may affect initiation codon fidelity and regulate RAN translation in a CGG repeat sequence-independent manner (Page 9 and Page 11), what they really have shown is just identification of this protein by the screening for proteins binding to CGG repeat RNA (Figure 1A, 1B), and effects of this protein on CGG repeat-RAN translation. It is essential to clarify whether the regulatory effect of RPS26 on RAN translation is dependent on CGG repeat sequence or near-cognate initiation codons like ACG and GUG in the 5' upstream sequence of the repeat. It would be better to validate the effects of RPS26 on translation from control constructs, such as one composed of the 5' upstream sequence of FMR1 with no CGG repeat, and one with an ATG substitution in the 5' upstream sequence of FMR1 instead of near-cognate initiation codons.
We agree that the data presented in the manuscript implies that insufficiency of RPS26 plays a pivotal role in the regulation of CGG-related RAN translation and in the revised version of the manuscript we included a series of experiments indicating that ACG codon selection seems to be an important part of RPS26 level-dependent regulation of polyglycine production (new Figure 4F&G; see point 3 below for more details). Importantly, in the luciferase assay showed on Figure 4F we used the AUG-initiated firefly luciferase reporter as normalization control.
Moreover, to verify if FMRpolyG response to RPS26 deficiency depends on the type of reporter used, we repeated many experiments using FMRpolyG fused with different tags. The luciferase-based assays were in line with experiments conducted on constructs with GFP tag (new Figure 1D), thus strengthening our previous data. Moreover, in the series of experiments, we show that FMRP synthesis which is initiated from ATG codon located in FMR1 exon 1, was not affected by RPS26 depletion (Figure 3E & 4C), even though its translation occurs on the same mRNA as FMRpolyG. This indicates a specific RPS26 regulation of polyglycine frame initiated from ACG near cognate codon.
(3) The regulatory effects of RPS26 and other molecules on RAN translation have all been investigated as effects on the expression levels of FMRpolyG-GFP proteins in cellular models expressing CGG repeat sequences Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B). In these cellular experiments, there are multiple confounding factors affecting the expression levels of FMRpolyG-GFP proteins other than RAN translation, including template RNA expression, template RNA distribution, and FMRpolyG-GFP protein degradation. Although authors evaluated the effect on the expression levels of template CGG repeat RNA, it would be better to confirm the effect of these regulators on RAN translation by other experiments such as in vitro translation assay that can directly evaluate RAN translation.
We agree that there are multiple factors affecting final levels of FMRpolyG-GFP proteins including aforementioned processes. We evaluated the level of FMR1 mRNA, which turned out not to be decreased upon RPS26 depletion (Figure 3B&C), therefore, we assumed that what we observed, was the regulation on translation level, especially that RPS26 is a ribosomal protein contacting mRNA in E-site. We believe that direct assays such as in vitro translation may be beneficial, however, depletion of RPS26 from cellular lysate provided by the vendor seems technically challenging, if not completely impossible. Instead, we focused on sequence/structure specific regulation of RAN translation with the emphasis on start-codon initiation selection. It resulted in generating the valuable results pointing out the RPS26 role in start codon fidelity (Figure 4F&G). These new results showed that translation from mRNAs differing just in single or two nucleotide substitution in near cognate start codon (ACG to GUG or ACG to CUG), although results in exactly the same protein, is differently sensitive to RPS26 silencing (new Figure 4F). Similar differences were observed for translation efficiency from the same mRNA targeted or not with antisense oligonucleotide complementary to the region of RAN translation initiation codon (new Figure 4G). These results also suggest that stability of FMRpolyG is not affected in cells with decreased level of RPS26.
(4) While the authors state that RPS26 modulated the FMRpolyG-mediated toxicity, they presented limited data on apoptotic markers, not cellular viability (Figure 1E), not fully supporting this conclusion. Since previous work showed that FMRpolyG protein reduces cellular viability (Hoem G, 2019,Front Genet), additional evaluations for cellular viability would strengthen this conclusion.
We thank the Reviewer for this suggestion. We addressed the apoptotic process in order to determine the effect of RPS26 depletion on RAN translation related toxicity (Figure 1F). In revised version of the manuscript, we also added the evaluation on how cells proliferation was affected by RPS26, RPS25, RPS6 and TSR2 depletion. Our data indicate that TSR2 silencing slightly impacted the cellular fitness (new Figure 5D), whereas insufficiencies of RPS26, RPS25 and RPS6 had a much stronger negative effect on proliferation (new Figure 2A, 5D, 6C), which is in line with previous data (Cheng Z 2019, Mol Cell; Luan Y, 2022, Nucleic Acids Res). The difference in proliferation rate after treatment with siRPS26 makes proper interpretation of cellular viability assessment very difficult.
Recommendations For The Authors:
(1) It would be nice to validate the effects of overexpression of RPS26 and other regulators on RAN translation, not limited to knockdown experiments, to support the conclusion.
We did not performed such experiments because we believed that RPS26 overexpression may have no or marginal effect on translation or RAN translation. It is likely impossible to efficiently incorporate overexpressed RPS26 into 40S subunits, because the concentration of all ribosomal proteins in the cells is very high.
(2) It would be better to explain how authors selected 8 proteins for siRNA-based validation (Figure 1C, 1D, S1D) from 32 proteins enriched in CGG repeat RNA in the first screening.
We selected those candidates based on their functions connected to translation, structured RNA unwinding or mRNA processing. For example, we tested few RNA helicases because of their known function in RAN translation regulation described by other researchers. This explanation was added to the revised version of the manuscript.
(3) Original image data showing nuclear FMRpolyG-GFP aggregates should be presented in Figure 1D.
The representative images of control and siRPS26-treated cells are now shown in modified version of Figure 1E and described with more details in the legend.
(4) Image data in Figure 2A and 2D have poor signal/noise ratio and the resolution should be improved. In addition, aggregates should be clearly indicated in Figure 2D in an appropriate manner.
The stable S-FMR95xG cellular model is characterized by very low expression of RANtranslated FMR95xG, therefore, it is challenging to obtain microscopic images of better quality with higher GFP signal. In the L-99xCGG model expression of transgene is higher. Therefore, we provided new image in the new version of Figure 3D (former 2D). Moreover, we showed aggregates on the image obtained using confocal microscopy (new Supplementary Figure 2D).
(5) The detailed information on patient-derived fibroblast (age and sex of the patient, the number of CGG repeats, etc.) in Figure 2F needed to be presented.
This information was added to the figure legend (Figure 3F; previously 2F) and in the Material and Methods section as suggested.
(6) It would be better to normalize RNA expression levels of FMR1 and FMR1-GFP by the housekeeping gene in Figure S2C, like other RT-qPCR experimental data such as Figure 2B.
Normalization of FMR1-GFP to GAPDH is now shown in modified version of Figure S2C (right graph) as requested by the Reviewer.
(7) It would be better to add information on molecular weight on all Western blotting data.
(8) Marks corresponding to molecular weight ladder were added to all images.
Full blots, including protein ladders were deposited in Zenodo repository, under doi: 10.5281/zenodo.13860370
References
Cheng Z, Mugler CF, Keskin A, Hodapp S, Chan LYL, Weis K, Mertins P, Regev A, Jovanovic M & Brar GA (2019) Small and Large Ribosomal Subunit Deficiencies Lead to Distinct Gene Expression Signatures that Reflect Cellular Growth Rate. Mol Cell 73: 36-47.e10
Havkin-Solomon T, Fraticelli D, Bahat A, Hayat D, Reuven N, Shaul Y & Dikstein R (2023) Translation regulation of specific mRNAs by RPS26 C-terminal RNA-binding tail integrates energy metabolism and AMPK-mTOR signaling. Nucleic Acids Res 51: 4415–4428
Hoem,G., Larsen,K.B., Øvervatn,A., Brech,A., Lamark,T., Sjøttem,E. and Johansen,T. (2019) The FMRpolyGlycine protein mediates aggregate formation and toxicity independent of the CGG mRNA hairpin in a cellular model for FXTAS. Front. Genet., 10, 1–18.
Luan Y, Tang N, Yang J, Liu S, Cheng C, Wang Y, Chen C, Guo YN, Wang H, Zhao W, et al (2022) Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells. Nucleic Acids Res 50: 6601–6617
Plassart L, Shayan R, Montellese C, Rinaldi D, Larburu N, Pichereaux C, Froment C, Lebaron S, O’donohue MF, Kutay U, et al (2021) The final step of 40s ribosomal subunit maturation is controlled by a dual key lock. Elife 10
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
Summary:
his study shows a new mechanism of GS regulation in the archaean Methanosarcina mazei and clarifies the direct activation of GS activity by 2-oxoglutarate, thus featuring another way in which 2-oxoglutarate acts as a central status reporter of C/N sensing.
Mass photometry and single particle cryoEM structure analysis convincingly show the direct regulation of GS activity by 2-OG promoted formation of the dodecameric structure of GS. The previously recognized small proteins GlnK1 and Sp26 seem to play a subordinate role in GS regulation, which is in good agreement with previous data. Although these data are quite clear now, there remains one major open question: how does 2-OG further increase GS activity once the full dodecameric state is achieved (at 5 mM)? This point needs to be reconsidered.
Weaknesses:
It is not entirely clear, how very high 2-OG concentrations activate GS beyond dodecamer formation.
The data presented in this work are in stark contrast to the previously reported structure of M. mazei GS by the Schumacher lab. This is very confusing for the scientific community and requires clarification. The discussion should consider possible reasons for the contradictory results.
Importantly, it is puzzling how Schumacher could achieve an apo-structire of dodecameric GS? If 2-OG is necessary for dodecameric formation, this should be discussed. If GlnK1 doesn't form a complex with the dodecameric GS, how could such a complex be resolved there?
In addition, the text is in principle clear but could be improved by professional editing. Most obviously there is insufficient comma placement.
We thank Reviewer #1 for the professional evaluation and raising important points. We will address those comments in the updated manuscript and especially improve the discussion in respect to the two points of concern.
(1) How can GlnA1 activity further be stimulated with further increasing 2-OG after the dodecamer is already fully assembled at 5 mM 2-OG.
We assume a two-step requirement for 2-OG, the dodecameric assembly and the priming of the active sites. The assembly step is based on cooperative effects of 2-OG and does not require the presence of 2-OG in all 2-OG-binding pockets: 2-OG-binding to one binding pocket also causes a domino effect of conformational changes in the adjacent 2-OG-unbound subunit, as also described for Methanothermococcus thermolithotrophicus GS in Müller et al. 2023. Due to the introduction of these conformational changes, the dodecameric form becomes more favourable even without all 2-OG binding sites being occupied. With higher 2-OG concentrations present (> 5mM), the activity increased further until finally all 2-OG-binding pockets were occupied, resulting in the priming of all active sites (all subunits) and thereby reaching the maximal activity.
(2) The contradictory results with previously published data on the structure of M. mazei by Schumacher et al. 2023.
We certainly agree that it is confusing that Schumacher et al. 2023 obtained a dodecameric structure without the addition of 2-OG, which we claim to be essential for the dodecameric form. 2-OG is a cellular metabolite that is naturally present in E. coli, the heterologous expression host both groups used. Since our main question focused on analysing the 2-OG effect on GS, we have performed thorough dialysis of the purified protein to remove all 2-OG before performing MP experiments. In the absence of 2-OG we never observed significant enzyme activity and always detected a fast disassembly after incubation on ice. We thus assume that a dodecamer without 2-OG in Schumacher et al. 2023 is an inactive oligomer of a once 2-OG-bound form, stabilized e.g. by the presence of 5 mM MgCl2.
The GlnA1-GlnK1-structure (crystallography) by Schumacher et al. 2023 is in stark contrast to our findings that GlnK1 and GlnA1 do not interact as shown by mass photometry with purified proteins. A possible reason for this discrepancy might be that at the high protein concentrations used in the crystallization assay, complexes are formed based on hydrophobic or ionic protein interactions, which would not form under physiological concentrations.
Reviewer #2 (Public Review):
Summary:
Herdering et al. introduced research on an archaeal glutamine synthetase (GS) from Methanosarcina mazei, which exhibits sensitivity to the environmental presence of 2-oxoglutarate (2-OG). While previous studies have indicated 2-OG's ability to enhance GS activity, the precise underlying mechanism remains unclear. Initially, the authors utilized biophysical characterization, primarily employing a nanomolar-scale detection method called mass photometry, to explore the molecular assembly of Methanosarcina mazei GS (M. mazei GS) in the absence or presence of 2-OG. Similar to other GS enzymes, the target M. mazei GS forms a stable dodecamer, with two hexameric rings stacked in tail-to-tail interactions. Despite approximately 40% of M. mazei GS existing as monomeric or dimeric entities in the detectable solution, the majority spontaneously assemble into a dodecameric state. Upon mixing 2-OG with M. mazei GS, the population of the dodecameric form increases proportionally with the concentration of 2-OG, indicating that 2-OG either promotes or stabilizes the assembly process. The cryo-electron microscopy (cryo-EM) structure reveals that 2-OG is positioned near the interface of two hexameric rings. At a resolution of 2.39 Å, the cryo-EM map vividly illustrates 2-OG forming hydrogen bonds with two individual GS subunits as well as with solvent water molecules. Moreover, local side-chain reorientation and conformational changes of loops in response to 2-OG further delineate the 2-OG-stabilized assembly of M. mazei GS.
Strengths & Weaknesses:
The investigation studies the impact of 2-oxoglutarate (2-OG) on the assembly of Methanosarcina mazei glutamine synthetase (M mazei GS). Utilizing cutting-edge mass photometry, the authors scrutinized the population dynamics of GS assembly in response to varying concentrations of 2-OG. Notably, the findings demonstrate a promising and straightforward correlation, revealing that dodecamer formation can be stimulated by 2-OG concentrations of up to 10 mM, although GS assembly never reaches 100% dodecamerization in this study. Furthermore, catalytic activities showed a remarkable enhancement, escalating from 0.0 U/mg to 7.8 U/mg with increasing concentrations of 2-OG, peaking at 12.5 mM. However, an intriguing gap arises between the incomplete dodecameric formation observed at 10 mM 2-OG, as revealed by mass photometry, and the continued increase in activity from 5 mM to 10 mM 2-OG for M mazei GS. This prompts questions regarding the inability of M mazei GS to achieve complete dodecamer formation and the underlying factors that further enhance GS activity within this concentration range of 2-OG.
Moreover, the cryo-electron microscopy (cryo-EM) analysis provides additional support for the biophysical and biochemical characterization, elucidating the precise localization of 2-OG at the interface of two GS subunits within two hexameric rings. The observed correlation between GS assembly facilitated by 2-OG and its catalytic activity is substantiated by structural reorientations at the GS-GS interface, confirming the previously reported phenomenon of "funnel activation" in GS. However, the authors did not present the cryo-EM structure of M. mazei GS in complex with ATP and glutamate in the presence of 2-OG, which could have shed light on the differences in glutamine biosynthesis between previously reported GS enzymes and the 2-OG-bound M. mazei GS.
Furthermore, besides revealing the cryo-EM structure of 2-OG-bound GS, the study also observed the filamentous form of GS, suggesting that filament formation may be a universal stacking mechanism across archaeal and bacterial species. However, efforts to enhance resolution to investigate whether the stacked polymer is induced by 2-OG or other factors such as ions or metabolites were not undertaken by the authors, leaving room for further exploration into the mechanisms underlying filament formation in GS.
We thank Reviewer #2 for the detailed assessment and valuable input. We will address those comments in the updated manuscript and clarify the message.
(1) The discrepancy of the dodecamer formation (max. at 5 mM 2-OG) and the enzyme activity (max. at 12.5 mM 2-OG). We assume that there are two effects caused by 2-OG: 1. cooperativity of binding (less 2-OG needed to facilitate dodecamer formation) and 2. priming of each active site. See also Reviewer #1 R.1). We assume this is the reason why the activity of dodecameric GlnA1 can be further enhanced by increased 2-OG concentration until all catalytic sites are primed.
(2) The lack of the structure of a 2-OG and ATP-bound GlnA1. Although we strongly agree that this would be a highly interesting structure, it seems out of the scope of a typical revision to request new cryo-EM structures. We evaluate the findings of our present study concerning the 2-OG effects as important insights into the strongly discussed field of glutamine synthetase regulation, even without the requested additional structures.
(3) The observed GlnA1-filaments are an interesting finding. We certainly agree with the referee on that point, that the stacked polymers are potentially induced by 2-OG or ions. However, it is out of the main focus of this manuscript to further explore those filaments. Nevertheless, this observation could serve as an interesting starting point for future experiments.
Reviewer #3 (Public Review):
Summary:
The current manuscript investigates the effect of 2-oxoglutarate and the Glk1 protein as modulators of the enzymatic reactivity of glutamine synthetase. To do this, the authors rely on mass photometry, specific activity measurements, and single-particle cryo-EM data.
From the results obtained, the authors convey that glutamine synthetase from Methanosarcina mazei exists in a non-active monomeric/dimeric form under low concentrations of 2-oxoglutarate, and its oligomerization into a dodecameric complex is triggered by higher concentration of 2-oxoglutarate, also resulting in the enhancement of the enzyme activity.
Strengths:
Glutamine synthetase is a crucial enzyme in all domains of life. The dodecameric fold of GS is recurrent amongst prokaryotic and archaea organisms, while the enzyme activity can be regulated in distinct ways. This is a very interesting work combining protein biochemistry with structural biology.
The role of 2-OG is here highlighted as a crucial effector for enzyme oligomerization and full reactivity.
Weaknesses:
Various opportunities to enhance the current state-of-the-art were missed. In particular, omissions of the ligand-bound state of GnK1 leave unexplained the lack of its interaction with GS (in contradiction with previous results from the authors). A finer dissection of the effect and role of 2-oxoglurate are missing and important questions remain unanswered (e.g. are dimers relevant during early stages of the interaction or why previous GS dodecameric structures do not show 2-oxoglutarate).
We thank Reviewer #3 for the expert evaluation and inspiring criticism.
(1) Encouragement to examine ligand-bound states of GlnK1. We agree and plan to perform the suggested experiments exploring the conditions under which GlnA1 and GlnK1 might interact. We will perform the MP experiments in the presence of ATP. In GlnA1 activity test assays when evaluating the presence/effects of GlnK1 on GlnA1 activity, however, ATP was always present in high concentrations and still we did not observe a significant effect of GlnK1 on the GlnA1 activity.
(2) The exact role of 2-OG could have been dissected much better. We agree on that point and will improve the clarity of the manuscript. See also Reviewer #1 R.1.
(3) The lack of studies on dimers. This is actually an interesting point, which we did not consider during writing the manuscript. Now, re-analysing all our MP data in this respect, GlnA1 is likely a dimer as smallest species. Consequently, we will add more supplementary data which supports this observation and change the text accordingly.
(4) Previous studies and structures did not show the 2-OG. We assume that for other structures, no additional 2-OG was added, and the groups did not specifically analyse for this metabolite either. All methanoarchaea perform methanogenesis and contain the oxidative part of the TCA cycle exclusively for the generation of glutamate (anabolism) but not a closed TCA cycle enabling them to use internal 2-OG concentration as internal signal for nitrogen availability. In the case of bacterial GS from organisms with a closed TCA cycle used for energy metabolism (oxidation of acetyl CoA) like e.g. E. coli, the formation of an active dodecameric GS form underlies another mechanism independent of 2-OG. In case of the recent M. mazei GS structures published by Schumacher et al. 2023, the dodecameric structure is probably a result from the heterologous expression and purification from E. coli. (See also Reviewer #1 R.2). One example of methanoarchaeal glutamine synthetases that do in fact contain the 2-OG in the structure, is Müller et al. 2023.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
Specific issues:
L 141: 2-OG levels increase due to slowing GOGAT reaction (due to Gln limitation as a consequence of N-starvation).... (2-OG also increases in bacteria that lack GDH...)
As the GS-GOGAT cycle is the major route of ammonium assimilation, consumption of 2-OG by GDH is probably only relevant under high ammonium concentrations.
In Methanoarchaea, GS is strictly regulated and expression strongly repressed under nitrogen sufficiency - thus glutamate for anabolism is mainly generated by GDH under N sufficiency consuming 2-OG delivered by the oxidative part of the TCA cycle (Methanogenesis is the energy metabolism in methanoarchaea, a closed TCA cycle is not present) thus 2-OG is increasing under nitrogen limitation, when no NH3 is available for GDH.
L148: it is not clear what is meant by: "and due to the indirect GS activity assay"
We apologize for not being clear here. The GS activity assay used is the classical assay by Sahpiro & Stadtman 1970 and is a coupled optical test assay (coupling the ATP consumption of the GS activity to the oxidation of NADH by lactate dehydrogenase). Based on the coupled test assay the measurements of low activities show a high deviation. We now added this information in the revised MS respectively.
L: 177: arguing about 2-OG affinities: more precisely, the 0.75 mM 2-OG is the EC50 concentration of 2-OG for triggering dodecameric formation; it might not directly reflect the total 2-OG affinity, since the affinity may be modulated by (anti)cooperative effects, or by additional sites... as there may be different 2-OG binding sites involved... (same in line 201)
Thank you for the valuable input. We changed KD to EC50 within the entire manuscript. Concerning possible additional 2-OG binding sites: we did not see any other 2-OG in the cryo-EM structure aside from the described one and we therefore assume that the one described in the manuscript is the main and only one. Considering the high amounts of 2-OG (12.5 mM) used in the structure, it is quite unlikely that additional 2-OG sites exist since they would have unphysiologically low affinities.
In this respect, instead of the rather poor assay shown in Figure 1D, a more detailed determination of catalytic activation by different 2-OG concentrations should be done (similar to 1A)... This would allow a direct comparison between dodecamerization and enzymatic activation.
We agree and performed the respective experiments, which are now presented in revised Fig. 1D
Discussion: the role of 2-OG as a direct activator, comparison with other prokaryotic GS: in other cases, 2-OG affects GS indirectly by being sensed by PII proteins or other 2-OG sensing mechanisms (like 2OG-NtcA-mediated repression of IF factors in cyanobacteria)
We agree and have added that information in the discussion as suggested.
290. Unclear: As a second step of activation, the allosteric binding of 2-OG causes a series of conformational.... where is this site located? According to the catalytic effects (compare 1A and 1D) this site should have a lower affinity …
Thank you very much for pointing this out. Binding of 2-OG only occurs in one specific allosteric binding-site. Binding however, has two effects on the GlnA1: dodecamer assembly and priming of the active site (with two specific EC50, which are now shown in Fig. 1A and D).
See also public comment #1 (1).
Reviewer #2 (Recommendations For The Authors):
The primary concern for me is that mass photometry might lead to incorrect conclusions. The differences in the forms of GS seen in SEC and MP suggest that GS can indeed form a stable dodecamer when the concentration of GS is high enough, as shown in Figure S1B. I strongly suggest using an additional biophysical method to explore the connection between GS and 2-OG in terms of both assembly and activity, to truly understand 2-OG's role in the process of assembly and catalysis.
We apologize if we did not present this clear enough, however the MP analysis of GlnA1 in the absence of 2-OG showed always (monomers/) dimers, dodecamers were only present in the presence of 2-OG. The SEC analysis in Fig. S1B has been performed in the presence of 12.5 mM 2-OG, we realized this information is missing in the figure legend - we now added this in the revised version. The 2-OG is in addition visible in the Cryo EM structure. Thus, we do not agree to perform additional biophysical methods.
As for the other experimental findings, they appear satisfactory to me, and I have no reservations regarding the cryoEM data.
(1) Mass photometry is a fancy technique that uses only a tiny amount of protein to study how they come together. However, the concentration of the protein used in the experiment might be lower than what's needed for them to stick together properly. So, the authors saw a lot of single proteins or pairs instead of bigger groups. They showed in Figure S1B that the M. mazei GS came out earlier than a 440-kDa reference protein, indicating it's actually a dodecamer. But when they looked at the dodecamer fraction using mass photometry, they found smaller bits, suggesting the GS was breaking apart because the concentration used was too low. To fix this, they could try using a technique called analytic ultracentrifuge (AUC) with different amounts of 2-OG to see if they can spot single proteins or pairs when they use a bit more GS. They could also try another technique called SEC-MALS to do similar tests. If they do this, they could replace Figure 1A with new data showing fully formed GS dodecamers when they use the right amount of 2-OG.
Thank you for this input. In MP we looked at dodecamer formation after removing the 2-OG entirely and re-adding it in the respective concentration. We think that GlnA1 is much more unstable in its monomeric/dimeric fraction and that the complete and harsh removal of 2-OG results in some dysfunctional protein which does not recover the dodecameric conformation after dialysis and re-addition of 2-OG. Looking at the dodecamer-peak right after SEC however, we exclusively see dodecamers, which is now included as an additional supplementary figure (suppl. Fig. 1C). Consequently, we did not perform additional experiments.
(2) Building on the last point, the estimated binding strength (Kd) between 2-OG and GS might be lower than it really is, because the GS often breaks apart from its dodecameric form in this experiment, even though 2-OG helps keep the pairs together, as seen with cryoEM. What if they used 5-10 times more GS in the mass photometry experiment? Would the estimated bond strength stay the same? Could they use AUC or other techniques like ITC to find out the real, not just estimated, strength of the bond?
We agree that the term KD is not suitable. We have changed the term KD to EC50 as suggested by reviewer #1, which describes the effective concentration required for 50 % dodecamer assembly. Furthermore, we disagree that the dodecamer breaks apart when the concentrations are as low as in MP experiments. The actual reason for the breaking is rather the harsh dialysis to remove all 2-OG before MP experiments. Right after SEC, the we exclusively see dodecamer in MP (suppl. Fig. S1C). See also #2 (1).
(3) The fact that the GS hardly works without 2-OG is interesting. I tried to understand the experiment setup, but it wasn't clear as the protocol mentioned in the author's 2021 FEBS paper referred to an old paper from 1970. The "coupled optical test assay" they talked about wasn't explained well. I found other papers that used phosphometry assays to see how much ATP was used up. I suggest the authors give a better, more detailed explanation of their experiments in the methods section. Also, it's unclear why the GS activity keeps going up from 5 to 12.5 mM 2-OG, even though they said it's saturated. They suggested there might be another change happening from 5 to 12.5 mM 2-OG. If that's the case, they should try to get a cryo-EM picture of the GS with lots of 2-OG, both with and without ATP/glutamate (or the Met-Sox-P-ADP inhibitor), to see what's happening at a structural level during this change caused by 2-OG.
We agree with the reviewer that the GS assay was not explained in detail (since published and known for several years). However, we now added the more detailed description of the assay in the revised MS, which also measures the ATP used up by GS, but couples the generation of ADP to an optical test assay producing pyruvate from PEP with the generated ADP catalysed by pyruvate kinase present in the assay. This generated pyruvate is finally reduced to lactate by the present lactate dehydrogenase consuming NADH, the reduction of which is monitored at 340 nm.
The still increasing activity of GS after dodecamer formation (max. at 5 mM 2-OG) and the continuously increasing enzyme activity (max. at 12.5 mM 2-OG): See also public reviews, we assume that there are two effects caused by 2-OG: 1. cooperativity of binding (less 2-OG needed to facilitate dodecamer formation) and 2. priming of each active site.
The suggested additional experiments with and without ATP/Glutamate: Although we strongly agree that this would be a highly interesting structure, it seems out of the scope of a typical revision to request new cryo-EM structures. We evaluate the findings of our present study concerning the 2-OG effects as important insights into the strongly discussed field of glutamine synthetase regulation, even without the requested additional structures.
(4) Please remake Figure S2, the panels are too small to read the words. At least I have difficulty doing so.
We assume the reviewer is pointing to Suppl. Fig S3, we now changed this figure accordingly.
Line 153, the reference Schumacher et al. 23, should be 2023?
Yes, thank you. We corrected that.
Line 497. I believe it's UCSF ChimeraX, not Chimera.
We apologize and corrected accordingly.
Reviewer #3 (Recommendations For The Authors):
Recent studies on the Methanothermococcus thermolithotrophicus glutamine synthetase, published by Müller et al., 2024, have identified the binding site for 2-oxoglutarate as well as the conformational changes that were induced in the protein by its presence. In the present study, the authors confirm these observations and additionally establish a link between the presence of 2-oxoglutarate and the dodecameric fold and full activation of GS.
Curiously, here, the authors could not confirm their own findings that the dodecameric GS can directly interact with the PII-like GlnK1 protein and the small peptide sP26. However, the lack of mention of the GlnK-bound state in these studies is very alarming since it certainly is highly relevant here.
We agree with the reviewer that we have not observed the interaction with GlnK1 and sP26 in the recent study. Consequently, we speculate that yet unknown cellular factor(s) might be required for an interaction of GlnA1 with GlnK1 and sP26, which were not present in the in vitro experiments using purified proteins, however they were present in the previous pull-down approaches (Ehlers et al. 2005, Gutt et al. 2021). Another reason might be that post-translational modifications occur in M. mazei, which might be important for the interaction, which are also not present in purified proteins expressed in E. coli.
The manuscript interest could have been substantially increased if the authors had done finer biochemical and enzymatic analyses on the oligomerization process of GS, used GlnK1 bound to known effectors in their assays and would have done some more efforts to extrapolate their findings (even if a small niche) of related glutamine synthetases.
We thank the reviewer for their valuable encouragement to explore ligand-bound-states of GlnK1. However, in this manuscript we mainly focused on 2-OG as activator of GlnA1 and decided to dedicate future experiments to the exploration of conditions that possibly favor GlnK1-binding.
In principle, we have explored the ATP bound GlnK1 effects on GlnA1 activity in the activity assays (Fig. 2E) since ATP (3.6 mM) is present. GlnK1 however showed no effects on GlnA1 activity.
In general, the manuscript is poorly written, with grammatically incorrect sentences that at times, which stands in the way of passing on the message of the manuscript.
Particular points:
(1) It is mentioned that 2-OG induces the active oligomeric (dodecamer, 12-mer) state of GlnA1 without detectable intermediates. However, only 62 % of the starting inactive enzyme yields active 12-mers. Note that this is contradicted in line 212.
Thanks for pointing out this discrepancy. After removing all 2-OG as we did before MP-experiments, GlnA1 doesn’t reach full dodecamers anymore when 2-OG is re-added. This is not because the 2-OG amount is not enough to trigger full assembly, but because the protein is much more unstable in the absence of 2-OG, so we predict that some GlnA1 breaks during dialysis. See also answer reviewer #2 (1) and supplementary figure S1C.
Is there any protein precipitation upon the addition of 2-OG? Is all protein being detected in the assay, meaning, is monomer/dimer + dodecamer yields close to 100% of the total enzyme in the assay?
There is no protein precipitation upon the addition of 2-OG, indeed, GlnA1 is much more stable in the presence of 2-OG. In the mass photometry experiments, all particles are measured, precipitated protein would be visible as big entities in the MP.
Please add to Figure 1 the amount of monomer/dimer during titration. Some debate why there is no full conversion should be tentatively provided.
We agree with the reviewer and included the amount of monomer/dimer in the figure, as well as some discussion on why it is not fully converted again. GlnA1 is unstable without 2-OG and it was dialysed against buffer without 2-OG before MP measurements. This sample mistreatment resulted in no full re-assembly after re-adding 2-OG (although full dodecamers before dialysis (suppl. Fig. S1C).
(2) Figure 1B reflects an exemplary result. Here, the addition of 0.1 mM 2-OG seems to promote monomer to dimer transition. Why was this not studied in further detail? It seems highly relevant to know from which species the dodecamer is assembled.
We thank the reviewer for their comment. However, we would like to point out that, although not shown in the figure, GlnA1 is always mainly present as dimers as the smallest entity. As suggested earlier, we have added the amount of monomers/dimers to Figure 1A, which shows low monomer-counts at all 2-OG concentrations (Fig.1A). Although not depicted in the graph starting at 0.01 mM OG, we also see mainly dimers at 0 mM 2-OG.
How does the y-axis compare to the number and percentage of counts assigned to the peaks? In line 713, it is written that the percentage of dodecamer considers the total number of counts, and this was plotted against the 2-OG concentration.
We thank the reviewer for addressing this unclarity. Line 713 corresponds to Figure 1A, where we indeed plotted the percentage of dodecamer against the 2-OG-concentration. Thereby, the percentage of dodecamer corresponds to the percentage calculated from the Gaussian Fit of the MP-dodecamer-peak. In Figure 1 B, however, the y-axis displays the relative amount of counts per mass, multiple similar masses then add up to the percentage of the respective peak (Gaussian Fit above similar masses).
(3) Lines 714 and 721 (and elsewhere): Why only partial data is used for statistical purposes?
We in general only show one exemplary biological replicate, since the quality of the respective GlnA1 purification sometimes varied (maximum activity ranging from 5 - 10 U/mg). Therefore, we only compared activities within the same protein purification. For the EC50 calculations of all measurements, we refer to the supplement.
(4) Lines 192-193: It is claimed that GlnK1 was previously shown to both regulate the activity of GlnA1 and form a complex with GlnA1. Please mention the ratio between GlnK1 and GlnA1 in this complex.
We now included the requested information (GlnA1:GlnK1 1:1, (Ehlers et al. 2005); His6-GlnA1 (0.95 μM), His6-GlnK1 (0.65 μM); 2:1,4, Gutt et al. 2021).
It is also known that PII proteins such as GlnK1 can bind ADP, ATP, and 2-OG. Interestingly, however, for various described PII proteins, 2-OG can only bind after the binding of ATP.
So, the crucial question here is what is the binding state of GlnK1?
Were these assays performed in the absence of ATP? This is key to fully understand and connect the results to the previous observations. For example, if the GlnK1 used was bound to ADP but not to ATP, then the added 2-OG might indeed only be able to affect GlnA1 (leading to its activation/oligomerization). If this were true and according to the data reported, ADP would prevent GlnK1 from interacting with any oligomeric form of GlnA1. However, if GlnK1 bound to ATP is the form that interacts with GlnA1 (potentially validating previous results?) then, 2-OG would first bind to GlnK1 (assuming a higher affinity of 2-OG to GlnK1), eventually causing its release from GlnA1 followed by binding and activation of GlnA1.
These experiments need to be done as they are essential to further understand the process. Given the ability of the authors to produce the protein and run such assays, it is unclear why they were not done here. As written in line 203, in this case, "under the conditions tested" is not a good enough statement, considering what is known in the field and how many more conclusions could easily be taken from such a setup.
Thanks for the encouragement to investigate the ligand-bound states of GlnK1. We agree and plan to perform the suggested mass photometry experiments exploring the conditions under which GlnA1 and GlnK1 might interact in future work. In GlnA1 activity test assays, when evaluating the presence/effects of GlnK1 on GlnA1 activity, however, ATP was always present in high concentrations and still we did not observe a significant effect of GlnK1 on the GlnA1 activity.
(5) Figure 2D legend claims that the graphic shows the percentage of dodecameric GlnA1 as a function of the concentration of 2-OG. This is not what the figure shows; Figure 2D shows the dodecamer/dimer (although legend claims monomer was used, in line 732) ratio as a function of 2-OG (stated in line 736!). If this is true, a ratio of 1 means 50 % of dodecamers and dimers co-exist. This appears to be the case when GlnK1 was added, while in the absence of GlnK1 higher ratios are shown for higher 2-OG concentration implying that about 3 times more dodecamers were formed than dimers. However, wouldn´t a 50 % ratio be physiologically significant?
We apologize for the partially incorrect and also misleading figure legend and corrected it. Indeed, the ratio of dodecamers and dimers is shown. Furthermore, we did not use monomeric GlnA1 (the smallest entity is mainly a dimer, see Fig 1A), however, the molarity was calculated based on the monomer-mass. Concerning the significance of the difference between the maximum ratio of GlnA1 and GlnK1: The ratio does appear higher, but this is mostly because adding large quantities of GlnK1 broadens all peaks at low molecular weight. This happens because the GlnK1 signal starts overlapping with the signal from GlnA1, leading to inflated GlnA1 dimer counts. We therefore do not think that this is biologically significant, especially as the activities do not differ under these conditions.
(6) Is it possible that the uncleaved GlnA1 tag is preventing interaction with GlnK1? This should be discussed.
This is of course a very important point. We however realized that Schumacher et al. also used an N-terminal His-tag, so we assume that the N-terminal tag is not hampering the interaction.
(7) Line 228: Please detail the reported discrepancies in rmsd between the current protein and the gram-negative enzymes.
The differences in rmsd between our M.mazei GlnA1 structure and the structure of gram-negative enzymes is caused by a) sequence similarity: E.g. M.mazei GlnA1 compared to B.subtilis GlnA have a sequence percent identity of 58.47; b) ligands in the structure: The B.Subtilis structure contains L-Methionine-S-sulfoximine phosphate, a transition state inhibitor, while the M. mazei structure contains 2OG; c) Methodology: The structural determination methods also contribute to these differences. B. subtilis GlnA was determined using X-ray crystallography, while the M. mazei GlnA1 structure was resolved using Cryo-EM, where the protein behaves differently in ice compared to a crystal.
(8) Line 747: The figure title claims "dimeric interface" although the manuscript body only refers to "hexameric interface" or "inter-hexamer interface" (line 224). Moreover, the figure 4 legend uses terms such as vertical and horizontal dimers and this too should be uniformized within the manuscript.
Thank you for your valuable feedback. We have updated both the figure title and the figure legend as well in the main text to ensure consistency in the description.
(9) Line 752: The description of the color scheme used here is somehow unclear.
Thanks for pointing this out. We changed the description to make it more comprehensive.
(10) Please label H14/15 and H14´/H15´in Fig 4C zoom.
We agree that this has not been very clear. We added helix labels.
(11) In Figure 4D legend, make sure to note that the binding sites for the substrate are based on homologies with another enzyme poised with these molecules.
The same should be clear in the text: sites are not known, they are assumed to be, based on homologies (paragraph starting at line 239).
Concerning this comment we want to point out that we studied the exact same enzyme as the Schumacher group, except that we used 2-OG in our experiments, which they did not.
(12) Figure 3 appears redundant in light of Figure 4.
(13) Line 235: When mentioning F24, please refer to Figure 5.
Thank you, we changed that accordingly.
(14) Please provide the distances for the bonds depicted in Figure 4B.
Thanks for pointing this out, we added distance labels to Figure 4B. For reasons of clarity only to three H-bonds.
(15) Line 241: D57 is likely serving to abstract a proton from ammonium, what is residue Glu307 potentially doing? The information seems missing in light of how the sentence is built.
Thanks for pointing this out. According to previous studies both residues are likely involved in proton abstraction - first from ammonium, and then from the formed gamma-ammonium group. Additionally, they contribute in shielding the active site from bulk solvent to prevent hydrolysis of the formed phospho-glutamate.
(16) Why do the authors assume that increased concentrations of 2-OG are a signal for N starvation only in M. mazei and not in all prokaryotic equivalent systems (line 288)?
In line 288, we did not claim that this is a unique signal for M. mazei. It is also the central N-starvation signal in Cyanobacteria but not directly perceived by the cyanobacterial GS through binding directly to GS.
The authors should look into the residues that bind 2-OG and check if they are conserved in other GS. The results of this sequence analysis should be discussed in line with the variable prokaryotic glutamine synthetase types of activity modulation that were exposed in the introduction and Figure 7.
Please refer to supplementary figure S5, where we already aligned the mentioned glutamine synthetase sequences. Since this was also already discussed in Müller et al. 2024, we did not want to repeat their observations and refer to our supplementary figure in too much detail.
(17) Figure 5 title: Replace TS by transition state structures of homology enzymes, or alike.
Thank you for this suggestion. We did not change the title however, since it is not a homologue but the exact same glutamine synthetase from Methanosarcina mazei.
(18) Line 249: D170 is not shown in Figure 5A or elsewhere in Figure 5.
Thank you for pointing this out. We added D170 to figure 5A.
(19) Representative density for the residues binding 2-OG should be provided, maybe in a supplemental figure.
Thank you for the suggestion. We added the densities of 2-OG-binding residues to figure 4B
(20) Line 260: Please add a reference when describing the phosphoryl transfer.
We thank the reviewer for this important point and added that accordingly.
(21) Line 296: The binding of 2-OG indeed appears to be cooperative, such that at concentrations above its binding affinity to the protein, only dodecamers are seen (under experimental conditions). However, claiming that the oligomerization is fast is not correct when the experimental setup includes 10 minutes of incubation before measurements are done. Please correct this within the entire manuscript.
A (fast) continuous kinetic assay could have confirmed this point and revealed the oligomerization steps and the intermediaries in the process (maybe monomer/dimers, then dimers/hexamers, and then hexamers/dodecamers). Such assays would have been highly valuable to this study.
We thank the reviewer for this suggestion, but disagree. It is indeed a rather fast regulation (as activity assays without pre-incubation only takes 1 min longer to reach full activity, see the newly included suppl. Fig S6). Considering other regulation mechanisms like e.g. transcription or translation regulation, an activation that takes only 60 s is actually quite quick.
(22) Line 305 (and elsewhere in the manuscript): the authors state that 2-OG primes the active site for a transition state. This appears incorrect. The transition state is the highest energy state in an enzymatic reaction progressing from substrate to product. Meaning, the transition state is a state that has a more or less modified form of the original substrate bound to the active site. This is not the case.
In line 366 an "active open state" appears much more adequate to use.
We agree and changed accordingly throughout the manuscript.
(23) Line 330: Please delete "found". Eventually replace it with "confirmed": As the authors write, others have described this residue as a ligand to glutamine.
Thanks, we changed that accordingly, although previous descriptions were just based on homologies without the experimental validation.
(24) The discussion in at various points summarizing again the results. It should be trimmed and improved.
(25) Line 381: replace "two fast" with "fast"?
We thank the reviewer for this suggestion, but disagree on this point. We especially wanted to highlight that there are two central nitrogen-metabolites involved in the direct regulation of GlnA1, that means TWO fast direct processes mediated by 2-OG and glutamine.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
In this study, Kavaklıoğlu et al. investigated and presented evidence for a role for domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation dependent manner, due to DNMT1 deletion in HAP1 cell line. The authors then identified L1TD1 associated RNAs using RIP-Seq, which display a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found L1TD1 protein associated with L1-RNPs and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expression, and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish feasibility of this relationship existing in vivo in either development or disease, or both.
Comments on revised version:
Thank you for this revised manuscript and for addressing our concerns and suggestions. These improvements have significantly enhanced the quality and reliability of the results presented and have addressed all our questions.
-
Author response:
The following is the authors’ response to the previous reviews.
Public Reviews:
Reviewer #1 (Public review):
Summary:
In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon.
The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.
To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.
Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells compared to DNMT1 KO alone.
Strengths:
The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.
Weaknesses:
Suggestions for refinement:
The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1.
The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transpositionpositive colonies? Further exploration of this phenomenon would be intriguing.
Reviewer #2 (Public review):
In this study, Kavaklıoğlu et al. investigated and presented evidence for a role for domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation dependent manner, due to DNMT1 deletion in HAP1 cell line. The authors then identified L1TD1 associated RNAs using RIPSeq, which display a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found L1TD1 protein associated with L1-RNPs and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expression, and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish feasibility of this relationship existing in vivo in either development or disease, or both.
Comments on revised version:
In general, the authors did an acceptable job addressing the major concerns throughout the manuscript. This revision is much clearer and has improved in terms of logical progression.
Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):
The authors have addressed all my questions in the revised version of the manuscript.
Reviewer #2 (Recommendations for the authors):
Revised comments:
A few points we'd like to see addressed are our comments about the model (Figure S7C), as this is important for the readership to understand this complex finding. Please try to apply some quantification, if possible (question 8). Please do your best to tone down the direct relationship of these findings to embryology (question 11). Based on both reviewer comments, we believe addressing reviewer #1s "Suggestions for refinement" (2 points), would help us change our view of solid to convincing.
Responses to changes:
Major
(1) The study only used one knockout (KO) cell line generated by CRISPR/Cas9.
Considering the possibility of an off-target effect, I suggest the authors attempt one or both of these suggestions.
A) Generate or acquire a similar DMNT1 deletion that uses distinct sgRNAs, so that the likelihood of off-targets is negligible. A few simple experiments such as qRT-PCR would be sufficient to suggest the same phenotype.
B) Confirm the DNMT1 depletion also by siRNA/ASO KD to phenocopy the KO effect.
(2) In addition to the strategies to demonstrate reproducibility, a rescue experiment restoring DNMT1 to the KO or KD cells would be more convincing. (Partial rescue would suffice in this case, as exact endogenous expression levels may be hard to replicate).
We have undertook several approaches to study the effect of DNMT1 loss or inactivation: As described above, we have generated a conditional KO mouse with ablation of DNMT1 in the epidermis. DNMT1-deficient keratinocytes isolated from these mice show a significant increase in L1TD1 expression. In addition, treatment of primary human keratinocytes and two squamous cell carcinoma cell lines with the DNMT inhibitor aza-deoxycytidine led to upregulation of L1TD1 expression. Thus, the derepression of L1TD1 upon loss of DNMT1 expression or activity is not a clonal effect.
Also, the spectrum of RNAs identified in RIP experiments as L1TD1-associated transcripts in HAP1 DNMT1 KO cells showed a strong overlap with the RNAs isolated by a related yet different method in human embryonic stem cells. When it comes to the effect of L1TD1 on L1-1 retrotranspostion, a recent study has reported a similar effect of L1TD1 upon overexpression in HeLa cells [4].
All of these points together help to convince us that our findings with HAP1 DNMT KO are in agreement with results obtained in various other cell systems and are therefore not due to off-target effects. With that in mind, we would pursue the suggestion of Reviewer 1 to analyze the effects of DNA hypomethylation upon DNMT1 ablation.
Thank you for addressing this concern. The reference to Beck 2021 and the additional cells lines (R2: keratinocytes and R3: squamous cell carcinoma) provides sufficient evidence that this result is unlikely to be a result of clonal expansion or off targets.
Question: Was the human ES Cell RIP Experiment shown here? What is the overlap?
We refer to the recently published study by Jin et al. (PMID: 38165001). As stated in the Discussion, the majority of L1TD1-associated transcripts in HAP1 cells (69%) identified in our study were also reported as L1TD1 targets in hESCs suggesting a conserved binding affinity of this domesticated transposon protein across different cell types.
(3) As stated in the introduction, L1TD1 and ORF1p share "sequence resemblance" (Martin 2006). Is the L1TD1 antibody specific or do we see L1 ORF1p if Fig 1C were uncropped?
(6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).
This is a relevant question. We are convinced that the L1TD1 antibody does not crossreact with L1 ORF1p for the following reasons: Firstly, the antibody does not recognize L1 ORF1p (40 kDa) in the uncropped Western blot for Figure 1C (Figure R4A). Secondly, the L1TD1 antibody gives only background signals in DKO cells in the indirect immunofluorescence experiment shown in Figure 1E of the manuscript.
Thirdly, the immunogene sequence of L1TD1 that determines the specificity of the antibody was checked in the antibody data sheet from Sigma Aldrich. The corresponding epitope is not present in the L1 ORF1p sequence.
Finally, we have shown that the ORF1p antibody does not cross-react with L1TD1 (Figure R4B).
Response: Thank you for sharing these images. These full images relieve concerns about specificity. The increase of ORF1P in R4B and Main figure 3C is interesting and pointed out in the manuscript. Not for the purposes of this review, but the observation of reduced transposition despite increased ORF1P could be an interesting follow up to this study (combined with the similar UPF1 result could indicate a complex of some kind).
(4) In abstract (P2), the authors mentioned that L1TD1 works as an RNA chaperone, but in the result section (P13), they showed that L1TD1 associates with L1 ORF1p in an RNA independent manner. Those conclusions appear contradictory. Clarification or revision is required.
Our findings that both proteins bind L1 RNA, and that L1TD1 interacts with ORF1p are compatible with a scenario where L1TD1/ORF1p heteromultimers bind to L1 RNA. The additional presence of L1TD1 might thereby enhance the RNA chaperone function of ORF1p. This model is visualized now in Suppl. Figure S7C.
Response: Thank you for the model. To further clarify, do you mean that L1TD1 can bind L1 RNA, but this is not needed for the effect, however this "bonus" binding (that is enabled by heteromultimerization) appears to enhance the retrotransposition frequency? Do you think L1TD1 is binding L1 RNA in this context or simply "stabilizing" ORF1P (Trimer) RNP?
Based on our data, L1TD1 associates with L1 RNA and interacts with L1 ORF1p. Both features might contribute to the enhanced retrotransposition frequency. Interestingly, the L1TD1 protein shares with its ancestor L1 ORF1p the non-canonical RNA recognition motif and the coiled-coil motif required for the trimerization but has two copies instead of one of the C-terminal domain (CTD), a structure with RNA binding and chaperone function. We speculate that the presence of an additional CTD within the L1TD1 protein might thereby enhance the RNA binding and chaperone function of L1TD1/ORF1p heteromultimers.
(5) Figure 2C fold enrichment for L1TD1 and ARMC1 is a bit difficult to fully appreciate. A 100 to 200-fold enrichment does not seem physiological. This appears to be a "divide by zero" type of result, as the CT for these genes was likely near 40 or undetectable. Another qRT-PCR based approach (absolute quantification) would be a more revealing experiment. This is the validation of the RIP experiments and the presentation mode is specifically developed for quantification of RIP assays (Sigma Aldrich RIP-qRT-PCR: Data Analysis Calculation Shell). The unspecific binding of the transcript in the absence of L1TD1 in DNMT1/L1TD1 DKO cells is set to 1 and the value in KO cells represents the specific binding relative the unspecific binding. The calculation also corrects for potential differences in the abundance of the respective transcript in the two cell lines. This is not a physiological value but the quantification of specific binding of transcripts to L1TD1. GAPDH as negative control shows no enrichment, whereas specifically associated transcripts show strong enrichement. We have explained the details of RIPqRT-PCR evaluation in Materials and Methods (page 14) and the legend of Figure 2C in the revised manuscript.
Response: Thank you for the clarification and additional information in the manuscript.
(6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).
See response to (3).
Response: Thanks.
(7) Figure S4A and S4B: There appear to be a few unusual aspects of these figures that should be pointed out and addressed. First, there doesn't seem to be any ORF1p in the Input (if there is, the exposure is too low). Second, there might be some L1TD1 in the DKO (lane 2) and lane 3. This could be non-specific, but the size is concerning. Overexposure would help see this.
The ORF1p IP gives rise to strong ORF1p signals in the immunoprecipitated complexes even after short exposure. Under these conditions ORF1p is hardly detectable in the input. Regarding the faint band in DKO HAP1 cells, this might be due to a technical problem during Western blot loading. Therefore, the input samples were loaded again on a Western blot and analyzed for the presence of ORF1p, L1TD1 and beta-actin (as loading control) and shown as separate panel in Suppl. Figure S4A.
The enhanced image is clearer. Thanks.
S4A and S4B now appear to the S6A and S6B, is that correct? (This is due to the addition of new S1 and S2, but please verify image orders were not disturbed).
Yes, the input is shown now as a separate panel in Suppl. Figure S6A.
(8) Figure S4C: This is related to our previous concerns involving antibody cross-reactivity. Figure 3E partially addresses this, where it looks like the L1TD1 "speckles" outnumber the ORF1p puncta, but overlap with all of them. This might be consistent with the antibody crossreacting. The western blot (Figure 3C) suggests an upregulation of ORF1p by at least 23x in the DKO, but the IF image in 3E is hard to tell if this is the case (slightly more signal, but fewer foci). Can you return to the images and confirm the contrast are comparable? Can you massively overexpose the red channel in 3E to see if there is residual overlap? In Figure 3E the L1TD1 antibody gives no signal in DNMT1/L1TD1 DKO cells confirming that it does not recognize ORF1p. In agreement with the Western blot in Figure 3C the L1 ORF1p signal in Figure 3E is stronger in DKO cells. In DNMT1 KO cells the L1 ORF1p antibody does not recognize all L1TD1 speckles. This result is in agreement with the Western blot shown above in Figure R4B and indicates that the L1 ORF1p antibody does not recognize the L1TD1 protein. The contrast is comparable and after overexposure there are still L1TD1 specific speckles. This might be due to differences in abundance of the two proteins.
Response: Suggestion: Would it be possible to use a program like ImageJ to supplement the western blot observation? Qualitatively, In figure 3E, it appears that there is more signal in the DKO, but this could also be due to there being multiple cells clustered together or a particularly nicely stained region. Could you randomly sample 20-30 cells across a few experiments to see if this holds up. I am interested in whether the puncta in the KO image(s) is a very highly concentrated region and in the DKO this is more disperse. Also, the representative DKO seems to be cropped slightly wrong. (Please use puncta as a guide to make the cropping more precise)
As suggested by the reviewer we have quantified the signals of 60 KO cells and 56 DKO cells in three different IF experiments by ImageJ. We measured a 1.4-fold higher expression level of L1 ORF1p in DKO cells. However, the difference is not statistically significant. This is most probably due to the change in cell size and protein content during the cell cycle with increasing protein contents from G1 to G2. Western blot analysis provides signals of comparable protein amounts representing an average expression levels over ten thousands of cells. Nevertheless, the quantification results reflect in principle the IF pictures shown in Figure 3E but IF is probably not the best method to quantify protein amounts. We have also corrected Figure 3E.
Author response image 1.
(9) The choice of ARMC1 and YY2 is unclear. What are the criteria for the selection?
ARMC1 was one of the top hits in a pilot RIP-seq experiment (IP versus input and IP versus IgG IP). In the actual RIP-seq experiment with DKO HAP1 cells instead of IgG IP as a negative control, we found ARMC1 as an enriched hit, although it was not among the top 5 hits. The results from the 2nd RIP-seq further confirmed the validity of ARMC1 as an L1TD1interacting transcript. YY2 was of potential biological relevance as an L1TD1 target due to the fact that it is a processed pseudogene originating from YY1 mRNA as a result of retrotransposition. This is mentioned on page 6 of the revised manuscript.
Response: Appreciated!
(10) (P16) L1 is the only protein-coding transposon that is active in humans. This is perhaps too generalized of a statement as written. Other examples are readily found in the literature.
Please clarify.
We will tone down this statement in the revised manuscript.
Response: Appreciated! To further clarify, the term "active" when it comes to transposable elements, has not been solidified. It can span "retrotransposition competent" to "transcripts can be recovered". There are quite a few reports of GAG transcripts and protein from various ERV/LTR subfamilies in various cells and tissues (in mouse and human at least), however whether they contribute to new insertions is actively researched.
(11) In both the abstract and last sentence in the discussion section (P17), embryogenesis is mentioned, but this is not addressed at all in the manuscript. Please refrain from implying normal biological functions based on the results of this study unless appropriate samples are used to support them.
Much of the published data on L1TD1 function are related to embryonic stem cells [3- 7].
Therefore, it is important to discuss our findings in the context of previous reports.
Response: It is well established that embryonic stem cells are not a perfect or direct proxies for the inner cell mass of embryos, as multiple reports have demonstrated transcriptomic, epigenetic, chromatin accessibility differences. The exact origin of ES cells is also considered controversial. We maintain that the distinction between embryos/embryogenesis and the results presented in the manuscript are not yet interchangeable. An important exception would be complex models of embryogenesis such as embryoids, (or synthetic/artificial embryo models that have been carefully been termed as such so as to not suggest direct implications to embryos). https://www.nature.com/articles/ncb2965
We have deleted the corresponding paragraph in the Discussion.
(12) Figure 3E: The format of Figures 1A and 3E are internally inconsistent. Please present similar data/images in a cohesive way throughout the manuscript. We show now consistent IF Figures in the revised manuscript.
Response: Thanks
Minor:
In general:
Still need checking for typos, mostly in Materials and Methods section; Please keep a consistent writing style throughout the whole manuscript. If you use L1 ORF1p, then please use L1 instead of LINE-1, or if you keep LINE-1 in your manuscript, then you should use LINE-1 ORF1p.
A lab member from the US checked again the Materials and Methods section for typos. We keep the short version L1 ORF1p.
(1) Intro:
- Is L1Td1 in mice and Humans? How "conserved" is it and does this suggest function? Murine and human L1TD1 proteins share 44% identity on the amino acid level and it was suggested that the corresponding genes were under positive selection during evolution with functions in transposon control and maintenance of pluripotency [8].
- Why HAP1? (Haploid?) The importance of this cell line is not clear.
HAP1 is a nearly haploid human cancer cell line derived from the KBM-7 chronic myelogenous leukemia (CML) cell line [9, 10]. Due to its haploidy is perfectly suited and widely used for loss-of-function screens and gene editing. After gene editing cells can be used in the nearly haploid or in the diploid state. We usually perform all experiments with diploid HAP1 cell lines. Importantly, in contrast to other human tumor cell lines, this cell line tolerates ablation of DNMT1. We have included a corresponding explanation in the revised manuscript on page 5, first paragraph.
- Global methylation status in DNMT1 KO? (Methylations near L1 insertions, for example?)
The HAP1 DNMT1 KO cell line with a 20 bp deletion in exon 4 used in our study was validated in the study by Smits et al. [11]. The authors report a significant reduction in overall DNA methylation. However, we are not aware of a DNA methylome study on this cell line. We show now data on the methylation of L1 elements in HAP1 cells and upon DNMT1 deletion in the revised manuscript in Suppl. Figure S1B.
Response: Looks great!
(2) Figure 1:
- Figure 1C. Why is LMNB used instead of Actin (Fig1D)?
We show now beta-actin as loading control in the revised manuscript.
- Figure 1G shows increased Caspase 3 in KO, while the matching sentence in the result section skips over this. It might be more accurate to mention this and suggest that the single KO has perhaps an intermediate phenotype (Figure 1F shows a slight but not significant trend).
We fully agree with the reviewer and have changed the sentence on page 6, 2nd paragraph accordingly.
- Would 96 hrs trend closer to significance? An interpretation is that L1TD1 loss could speed up this negative consequence.
We thank the reviewer for the suggestion. We have performed a time course experiment with 6 biological replicas for each time point up to 96 hours and found significant changes in the viability upon loss of DNMT1 and again significant reduction in viability upon additional loss of L1TD1 (shown in Figure 1F). These data suggest that as expected loss of DNMT1 leads to significant reduction viability and that additional ablation of L1TD1 further enhances this effect.
Response: Looks good!
- What are the "stringent conditions" used to remove non-specific binders and artifacts (negative control subtraction?)
Yes, we considered only hits from both analyses, L1TD1 IP in KO versus input and L1TD1 IP in KO versus L1TD1 IP in DKO. This is now explained in more detail in the revised manuscript on page 6, 3rd paragraph.
(3) Figure 2:
- Figure 2A is a bit too small to read when printed.
We have changed this in the revised manuscript.
- Since WT and DKO lack detectable L1TD1, would you expect any difference in RIP-Seq results between these two?
Due to the lack of DNMT1 and the resulting DNA hypomethylation, DKO cells are more similar to KO cells than WT cells with respect to the expressed transcripts.
- Legend says selected dots are in green (it appears blue to me). We have changed this in the revised manuscript.
- Would you recover L1 ORF1p and its binding partners in the KO? (Is the antibody specific in the absence of L1TD1 or can it recognize L1?) I noticed an increase in ORF1p in the KO in Figure 3C.
Thank you for the suggestion. Yes, L1 ORF1p shows slightly increased expression in the proteome analysis and we have marked the corresponding dot in the Volcano plot (Figure 3A).
- Should the figure panel reference near the (Rosspopoff & Trono) reference instead be Sup S1C as well? Otherwise, I don't think S1C is mentioned at all.
- What are the red vs. green dots in 2D? Can you highlight ERV and ALU with different colors?
We added the reference to Suppl. Figure S1C (now S3C) in the revised manuscript. In Figure 2D L1 elements are highlighted in green, ERV elements in yellow, and other associated transposon transcripts in red.
Response: Much better, thanks!
- Which L1 subfamily from Figure 2D is represented in the qRT-PCR in 2E "LINE-1"? Do the primers match a specific L1 subfamily? If so, which? We used primers specific for the human L1.2 subfamily.
- Pulling down SINE element transcripts makes some sense, as many insertions "borrow" L1 sequences for non-autonomous retro transposition, but can you speculate as to why ERVs are recovered? There should be essentially no overlap in sequence.
In the L1TD1 evolution paper [8], a potential link between L1TD1 and ERV elements was discussed:
"Alternatively, L1TD1 in sigmodonts could play a role in genome defense against another element active in these genomes. Indeed, the sigmodontine rodents have a highly active family of ERVs, the mysTR elements [46]. Expansion of this family preceded the death of L1s, but these elements are very active, with 3500 to 7000 speciesspecific insertions in the L1-extinct species examined [47]. This recent ERV amplification in Sigmodontinae contrasts with the megabats (where L1TD1 has been lost in many species); there are apparently no highly active DNA or RNA elements in megabats [48]. If L1TD1 can suppress retroelements other than L1s, this could explain why the gene is retained in sigmodontine rodents but not in megabats."
Furthermore, Jin et al. report the binding of L1TD1 to repetitive sequences in transcripts [12]. It is possible that some of these sequences are also present in ERV RNAs.
Response: Interesting, thanks for sharing
- Is S2B a screenshot? (the red underline).
No, it is a Powerpoint figure, and we have removed the red underline.
(4) Figure 3:
- Text refers to Figure 3B as a western blot. Figure 3B shows a volcano plot. This is likely 3C but would still be out of order (3A>3C>3B referencing). I think this error is repeated in the last result section.
- Figure and legends fail to mention what gene was used for ddCT method (actin, gapdh, etc.).
- In general, the supplemental legends feel underwritten and could benefit from additional explanations. (Main figures are appropriate but please double-check that all statistical tests have been mentioned correctly).
Thank you for pointing this out. We have corrected these errors in the revised manuscript.
(5) Discussion:
- Aluy connection is interesting. Is there an "Alu retrotransposition reporter assay" to test whether L1TD1 enhances this as well?
Thank you for the suggestion. There is indeed an Alu retrotransposition reporter assay reported be Dewannieux et al. [13]. The assay is based on a Neo selection marker. We have previously tested a Neo selection-based L1 retrotransposition reporter assay, but this system failed to properly work in HAP1 cells, therefore we switched to a blasticidin based L1 retrotransposition reporter assay. A corresponding blasticidin-based Alu retrotransposition reporter assay might be interesting for future studies (mentioned in the Discussion, page 11 paragraph 4 of the revised manuscript.
(6) Material and Methods :
- The number of typos in the materials and methods is too numerous to list. Instead, please refer to the next section that broadly describes the issues seen throughout the manuscript.
Writing style
(1) Keep a consistent style throughout the manuscript: for example, L1 or LINE-1 (also L1 ORF1p or LINE-1 ORF1p); per or "/"; knockout or knock-out; min or minute; 3 times or three times; media or medium. Additionally, as TE naming conventions are not uniform, it is important to maintain internal consistency so as to not accidentally establish an imprecise version.
(2) There's a period between "et al" and the comma, and "et al." should be italic.
(3) The authors should explain what the key jargon is when it is first used in the manuscript, such as "retrotransposon" and "retrotransposition".
(4) The authors should show the full spelling of some acronyms when they use it for the first time, such as RNA Immunoprecipitation (RIP).
(5) Use a space between numbers and alphabets, such as 5 μg. (6) 2.0 × 105 cells, that's not an "x".
(7) Numbers in the reference section are lacking (hard to parse).
(8) In general, there are a significant number of typos in this draft which at times becomes distracting. For example, (P3) Introduction: Yet, co-option of TEs thorough (not thorough, it should be through) evolution has created so-called domesticated genes beneficial to the gene network in a wide range of organisms. Please carefully revise the entire manuscript for these minor issues that collectively erode the quality of this submission. Thank you for pointing out these mistakes. We have corrected them in the revised manuscript. A native speaker from our research group has carefully checked the paper. In summary, we have added Supplementary Figure S7C and have changed Figures 1C, 1E, 1F, 2A, 2D, 3A, 4B, S3A-D, S4B and S6A based on these comments.
Response: Thank you for taking these comments on board!
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors provide strong evidence that the cell surface E3 ubiquitin ligases RNF43 and ZNRF3, which are well known for their role in regulating cell surface levels of WNT receptors encoded by FZD genes, also target EGFR for degradation. This is a newly identified function for these ubiquitin ligases beyond their role in regulating WNT signaling. Loss of RNF43/ZNRF3 expression leads to elevated EGFR levels and signaling, suggesting a potential new axis to drive tumorigenesis, whereas overexpression of RNF43 or ZNRF3 decreases EGFR levels and signaling. Furthermore, RNF43 and ZNRF3 directly interact with EGFR through their extracellular domains.
Strengths:
The data showing that RNF43 and ZNRF3 interact with EGFR and regulate its levels and activity are thorough and convincing, and the conclusions are largely supported.
Weaknesses:
While the data support that EGFR is a target for RNF43/ZNRF3, some of the authors' interpretations of the data on EGFR's role relative to WNT's roles downstream of RNF43/ZNRF3 are overstated. The authors, perhaps not intentionally, promote the effect of RNF43/ZNRF3 on EGFR while minimizing their role in WNT signaling. This is the case in most of the biological assays (cell and organoid growth and mouse tumor models). For example, the conclusion of "no substantial activation of Wnt signaling" (page 14) in the prostate cancer model is currently not supported by the data and requires further examination. In fact, examination of the data presented here indicates effects on WNT/b-catenin signaling, consistent with previous studies.
Cancers in which RNF43 or ZNRF3 are deleted are often considered to be "WNT addicted", and inhibition of WNT signaling generally potently inhibits tumor growth. In particular, treatment of WNT-addicted tumors with Porcupine inhibitors leads to tumor regression. The authors should test to what extent PORCN inhibition affects tumor (and APC-min intestinal organoid) growth. If the biological effects of RNF43/ZNRF3 loss are mediated primarily or predominantly through EGFR, then PORCN inhibition should not affect tumor or organoid growth.
We thank the reviewer’s appreciation of the key strength of our study. We fully agree with the reviewer that RNF43/ZNRF3 play key roles in restraining WNT signaling and their deletions activate WNT signaling that leads to cancer promotion, as discussed and cited in our manuscript (Hao et al, 2012; Koo et al, 2012). We have revised the language in this manuscript to avoid any confusion or appearance of downplaying this known signaling pathway in cancer progression.
What we would like to highlight in this work is that our study uncovered an effect of RNF43/ZNRF3 on EGFR, leading to biological impact in multiple model systems. In particular, we included the APC-mutated human cancer cell line HT29 and Apc min mouse intestinal tumor organoids. In the context of APC mutations, β-catenin stabilization and the activation of WNT target genes are essentially decoupled from upstream WNT ligand binding to WNT receptors, thus we could primarily focus on the effect of RNF43/ZNRF3 on EGFR. Our statement of “no substantial activation of WNT signaling” as cited by the reviewer was made in describing the data in Fig. 7E where we did not observe β-catenin accumulation in the nucleus and reasoned no substantial activation of canonical WNT signaling. We agree that further examination would help strengthen the conclusion and appreciate the reviewer’s suggestion of PORCN inhibition experiments. While PORCN inhibition is a valuable experiment in models with abundance of WNT ligands/receptors and non-mutationally activated regulators of WNT signaling (Yu et al, 2020), in biological scenarios with existing APC mutations, another group has previously demonstrated that PORCN inhibition had no observable effect on WNT signaling in APC-deficient cells (PMID: 29533772). In our initial submission, we confirmed this predicted low response to manipulation of WNT signaling components upstream of a mutated APC. We showed that addition of RSPO1 in Apc min mouse intestinal tumor organoids failed to further activate WNT target expression (Fig. 6G). Furthermore, in this revised manuscript, we added new data on EGFR inhibition and PORCN inhibition in WT and Znrf3 KO MEFs (Fig. 6L). PORCN inhibition had no impact on cell growth in neither WT nor Znrf3 KO MEFs, suggesting that Znrf3 KO promoting MEF growth is WNT independent. In contrast, inhibition of EGFR downstream signaling components (Fig. 6L) significantly blocked MEF growth and abolished the impact of Znrf3 KO in MEF growth. This new evidence further supports our main conclusion that RNF43/ZNRF3 controls EGFR signaling to regulate cell growth.
Reviewer #2 (Public Review):
Using proteogenomic analysis of human cancer datasets, Yu et al, found that EGFR protein levels negatively correlate with ZNFR3/RNF43 expression across multiple cancers. Interestingly, they found that CRC harbouring the frequent RNF43 G659Vfs*41 mutation exhibits higher levels of EGFR when compared to RNF43 wild-type tumors. This is highly interesting since this mutation is generally not thought to influence Frizzled levels and Wnt-bcatenin pathway activity. Using CRISPR knockouts and overexpression experiments, the authors show that EGFR levels are modulated by ZNRF3/RNF43. Supporting these findings, modulation of ZNRF3/RNF43 activity using Rspondin also leads to increased EGFR levels. Mechanistically, the authors, show that ZNRF3/RNF43 ubiquitinate EGFR and leads to degradation. Finally, the authors present functional evidence that loss of ZNRF3/RNF43 unleashes EGFR-mediated cell growth in 2D culture and organoids and promotes tumor growth in vivo.
Overall, the conclusions of the manuscript are well supported by the data presented, but some aspects of the mechanism presented need to be reinforced to fully support the claims made by the authors. Additionally, the title of the paper suggests that ZNRF3 and RNF43 loss leads to the hyperactivity of EGFR and that its signalling activity contributes to cancer initiation/progression. I don't think the authors convincingly showed this in their study.
We thank the reviewer commenting that our “conclusions of the manuscript are well supported by the data presented.” We address the concerns raised by this reviewer in an itemized way as detailed below:
Major points:
(1) EGFR ubiquitination. All of the experiments supporting that ZNFR3/RNF43 mediates EGFR ubiquitination are performed under overexpression conditions. A major caveat is also that none of the ubiquitination experiments are performed under denaturing conditions. Therefore, it is impossible to claim that the ubiquitin immunoreactivity observed on the western blots presented in Figure 4 corresponds to ubiquitinated-EGFR species. Another issue is that in Figure 4A, the experiments suggest that the RNF43-dependent ubiquitination of EGFR is promoted by EGF. However, there is no control showing the ubiquitination of EGFR in the absence of EGF but under RNF43 overexpression. According to the other experiments presented in Figures 4B, 4C, and 4F, there seems to be a constitutive ubiquitination of EGFR upon overexpression. How do the authors reconcile the role of ZNRF3/RNF43 vs c-cbl?
We agree with this reviewer of the limitation of overexpression experiments. In this manuscript, we actually leveraged both overexpression and knockout systems to demonstrate that ZNRF3/RNF43 regulates EGFR ubiquitination: in Fig 4A, we showed that overexpression of RNF43 increased EGFR ubiquitination; in Fig 4B&C and Fig S3A, we showed that RNF43 knockout decreased EGFR ubiquitination; in Fig 4F, we showed that overexpression of ZNRF3 WT increased EGFR ubiquitination but overexpression of ZNRF3 RING domain deletion mutant failed to increase EGFR ubiquitination.
We also appreciate the rigor with which the reviewer has approached our methodology. We acknowledge that denaturing conditions can provide additional validation, but the technical challenges associated with denaturing conditions include the potential disruption of epitope structures recognized by these antibodies. Our methodology was chosen to balance the need for accurate detection with the preservation of protein structure and function, which are crucial for understanding the biological implications of EGFR ubiquitination. Moreover, our immunoprecipitation and subsequent Western blotting were stringent with high SDS and 2-ME, optimized to minimize non-specific binding and enhance the specificity of detection. We believe that the data presented are robust and contribute significantly to the existing body of knowledge on EGFR ubiquitination.
CBL is a well-known E3 ligase of EGFR, and it induces EGFR ubiquitination upon EGF ligand stimulation. Therefore, in order to have a fair comparison of RNF43 and CBL on EGFR ubiquitination, we designed Fig 4A and related experiments in the setting of EGF stimulation. We observed that RNF43 overexpression increased EGFR ubiquitination as potently as CBL did. Following this result, we further demonstrated that knockout of RNF43 decreased endogenous ubiquitinated EGFR level in the unstimulated/basal condition (Fig 4B) as well as in the EGF-stimulated condition (Fig 4C). We acknowledge the importance and interest in fully understanding how ZNRF3/RNF43 interplays with the functions of CBL in regulating EGFR ubiquitination. This line of investigation indeed holds the potential to uncover novel regulatory mechanisms in detail. However, the primary focus of the current study was to establish a foundational understanding of ZNRF3/RNF43 role in regulating EGFR ubiquitination. We look forward to exploring further in future work.
(2) EGFR degradation vs internalization. In Figure 3C, the authors show experiments that demonstrate that RNF43 KO increases steady-state levels of EGFR and prevents its EGF-dependent proteolysis. Using flow cytometry they then present evidence that the reduction in cell surface levels of EGFR mediated by EGF is inhibited in the absence of RNF43. The authors conclude that this is due to inhibition of EGF-induced internalization of surface EGF. However, the experiments are not designed to study internalization and rather merely examine steady-state levels of surface EGFR pre and post-treatment. These changes are an integration of many things (retrograde and anterograde transport mechanisms presumable modulated by EGF). What process(es) is/are specifically affected by ZNFR3/RNF43? Are these processes differently regulated by c-cbl? If the authors are specifically interested in internalization/recycling, the use of cell surface biotinylation experiments and time courses are needed to examine the effect of EGF in the presence or absence of the E3 ligases.
We agree that our study design primarily assesses EGFR levels on the cell surface before and after EGF treatment and does not comprehensively measure the whole internalization process. In response to the reviewer’s comments, we have revised the relevant sections of manuscript to clarify that our current findings are focused on changes in cell surface EGFR and do not extend to the detailed mechanisms of EGF-induced internalization or recycling.
(3) RNF43 G659fs*41. The authors make a point in Figure 1D that this mutant leads to elevated EGFR in cancers but do not present evidence that this mutant is ineffective in mediated ubiquitination and degradation of EGFR. As this mutant maintains its ability to promote Frizzled ubiquitination and degradation, it would be important to show side by side that it does not affect EGFR. This would perhaps imply differential mechanisms for these two substrates.
Fig 1D is based on bioinformatic analysis of colon cancer patient samples, showing that RNF43 G659Vfs*41 mutant tumors exhibited significantly higher levels of EGFR protein compared to RNF43 WT tumors. Following this lead, we investigated whether this RNF43 G659fs*41 hotspot mutation lost its role in downregulating EGFR. To this end, we transfected the same amount of control vector, RNF43 WT, RING deletion mutant, G659fs*41 mutant DNA into 293T cells and measured the level of EGFR (co-transfected). As shown in Author response image 1, overexpression of RNF43 WT decreased EGFR level while overexpression of RING deletion mutant had no impact on EGFR level as compared with the Vector group, which is consistent with our findings in the manuscript. Cells transfected with the RNF43 G659Vfs*41 mutant exhibited nearly normal levels of EGFR; however, we also observed that RNF43 G659Vfs*41 was less expressed than WT, even though the same amounts of DNA were transfected. Therefore, the insubstantial impact on EGFR levels could be attributed to both functional loss or compromised stability of RNF43 G659Vfs*41 mRNA or protein. Further investigation on RNF43 G659Vfs*41 mRNA and protein stability vs. RNF43 G659Vfs*41 protein function is needed to draw a solid conclusion.
Author response image 1.
(4) "Unleashing EGFR activity". The title of the paper implies that ZNRF3/RNF43 loss leads to increased EGFR expression and hence increased activity that underlies cancer. However, I could find only one direct evidence showing that increased proliferation of the HT29 cell line mutant for RNF43 could be inhibited by the EGFR inhibitor Erlotinib. All the other evidence presented that I could find is correlative or indirect (e.g. RPPA showing increased phosphorylation of pathway members upon RNF43 KO, increased proliferation of a cell line upon ZNRF3/ RNF43 KO, decreased proliferation of a cell line upon ZNRF3/RNF43 OE in vitro or in xeno...). Importantly, the authors claim that cancer initiation/ progression in ZNRF3/RNF43 mutants may in some contexts be independent of their regulation of Wnt-bcatenin signaling and relying on EGFR activity upregulation. However, this has not been tested directly. Could the authors leverage their znrf3/RNF43 prostate cancer model to test whether EGFR inhibition could lead to reduced cancer burden whereas a Frizzled or Wnt inhibitor does not?
More broadly, if EGFR signaling were to be unleashed in cancer, then one prediction would be that these cells would be more sensitive to EGFR pathway inhibition. Could the authors provide evidence that this is the case? Perhaps using isogenic cell lines or a panel of patient-derived organoids (with known genotypes).
We appreciate the reviewer’s suggestion to provide more direct evidence demonstrating the importance of the ZNRF3/RNF43-EGFR axis in cancer cell proliferation. In this revised manuscript, we further studied this issue in the WT vs. Znrf3 KO MEF cells. We observed that treatment with the EGFR inhibitor erlotinib did not affect WT MEF but stunted the growth advantage of Znrf3 KO MEF cells (Fig. 6L). On the other hand, treatment with the porcupine inhibitor C59 did not impact either WT or Znrf3 KO MEF cells (Fig. 6L), suggesting a more important role of the ZNRF3/RNF43-EGFR axis in mediating the enhanced cell growth of MEF caused by Znrf3 knockout. Furthermore, considering EGFR is often mutated in human cancer, to increase the clinical relance of our study, we also tested the effect of RNF43 knockout on EGFR L858R (Fig. 2D), a common oncogenic EGFR mutant, and found that RNF43 knockout in HT29 boosted levels of this EGFR mutant detected by its FLAG tag, suggesting that RNF43 degrades both WT and mutated EGFR and its loss can enhance signaling of both WT EGFR and its oncogenic mutant . However, we emphasize again that this manuscript is in no way written to diminish the proven importance of ZNRF3/RNF43-WNT-β-catenin axis in cancer and development.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
The main conclusion that EGFR is targeted for degradation by RNF43 and ZNRF3 is well supported and documented. Figures 1-5 and associated supplemental figures contain largely convincing data. Figures 6 and 7, however, require some modifications, as follows in order of appearance:
Figure 6C: Growth of intestinal tumor organoids from Apcmin mice does not require Rspo, however, the authors show that these organoids grow larger in the presence of Rspo, an effect they attribute to increased EGFR activity, rather than increased WNT activity. While this conclusion may be correct, the authors should address this possibility by treating the organoids with PORCN inhibitor. The prediction would be that Rspo treatment still increases organoid size in the presence of PORCN inhibition. A further prediction would be that blocking EGFR (e.g. with Cetuximab) will abrogate the RSPO1 effect.
Yes, we attributed the impact of Rspo on Apc min organoid growth to enhanced EGFR activity because we observed increased EGFR levels (Fig 6F) but no detectable increase in eight WNT target genes assayed. We agree that further pharmacologic experiments would further boost our conclusion, but our few attempts at treating organoids encountered technical difficulties. Hence, we switched to testing PORCN inhibition vs EGFR inhibition in WT and Znfr33 KO MEFs. As shown in the revised Fig. 6L, EGFR inhibition significantly reversed the growth advantage caused by Znrf3 KO but C59 did not.
Figure 6G: It is unclear why the authors provide "8-day RSPO1 treatment" data. Here, EGFR mRNA appears to be elevated 2-fold (perhaps not statistically significant), and the Wnt targets Lef1 and Axin2 are decreased, as indicated by the statistical significance. What point is being made here?
Our observation of increased size of APC min mouse intestinal tumor organoids and increased the EGFR protein levels were at 8 days of RSPO1 treatment. Therefore, we measured mRNA levels at the same time point with the 2-day time point also included for comparison. The goal of this qPCR experiment was to detect the contribution of WNT signaling, and we did not detect an increased transcriptional readout. We included EGFR mRNA levels for comparison, and we did not detect a statistically significant increase, consistent with our experiments concluding that ZNRF3/RNF43 regulate EGFR at the protein level. As stated in the preceding response, these data led us to attribute the impact of Rspo on Apc min organoid growth to enhanced EGFR activity.
Figure 7A: This requires quantitation. How many mice were used per cell line? The data shown is not particularly convincing, with ZNRF3 overexpressing HT29 cells growing detectably. Showing representative mice is fine, but this should be supplemented with quantitation of all mice.
We had provided this data. The BLI signal quantification was shown below the representative BLI images. Seven mice were used per cell line, as annotated at the top of the graph.
Figure 7B: The authors assert that "canonical WNT signaling, based on levels of active-β-Catenin (non-phosphorylated at Ser33/37/Thr41; Figure 7B), remained unaffected". As shown, 2 of the 3 Myc-Znrf3 tumors have increased active-b-catenin signal over the GFP tumors. This indicates to me that canonical Wnt signaling was affected. The authors either need to present quantitative data that supports this claim or modify their conclusions. As presented, I don't think it is appropriate to decouple the effect of Znrf3 overexpression on EGFR from its effect on WNT.
As requested, we have quantified the level of non-phospho β-Catenin at Ser33/37/Thr41 and found no significant differences (p > 0.05) between the control group vs. ZNRF3 overexpression group. We once again note that our manuscript was not meant to dispute the proven signaling and biological significance of WNT signaling regulation by ZNRF3/RNF43, and we have proof-read the manuscript multiple times to ensure that we did not make any generalized or misleading statements in this aspect.
Author response image 2.
Figure 7E: Here the authors assert that "no substantial activation of canonical Wnt signaling" in the Z&R KO tumors, however, the figure shows a substantial increase in active b-catenin staining. The current resolution is insufficient to claim that there is no increase in nuclear b-catenin. The authors' claim that WNT signaling is not involved here is not supported by the data presented here. One way to demonstrate that this effect is through EGFR activation and not through WNT activation is to treat mice with PORCN inhibitor. WNT-addicted tumors, such as by Rnf43 or Znrf3 deletion, regress upon PORCN inhibition. In this case, if the effect of Z&R KO is mediated through EGFR rather than WNT, then there should be no effect on tumor growth upon PORCN inhibition. This is a critical experiment in order to make this point.
We appreciate the reviewer’s comments and suggestion of experiments. We based our initial statement on insubstantial nuclear β-catenin staining, but we agree that immunohistochemical staining lacks the resolution suitable for quantification. We could not generate the adequate number of KO animals for these in vivo experiments in the window of time planned for this revision. Rather, as shown in the newly added Fig. 6L, we tested EGFR inhibition and PORCN inhibition in Znrf3 KO MEFs and obtained strong data further supporting EGFR in mediating Znrf3 KO promotion of MEF growth. Notwithstanding, we have carefully revised our description of the in vivo data in Fig 7E to avoid any confusion or over-interpretation.
Minor points:
Figure 2A: provide quantitation of this immunoblot.
We have revised manuscript with quantification result shown next to the immunoblot.
Figure 2B: provide more detail in the figure legend and in the Materials and Methods section on how the KO MEFs were generated. Confirmation that Znrf3 (or in cases of Rnf43 KO) expression is lost in KO would be advisable.
We have confirmed Znrf3 KO by genotyping and RNF43 KO by immunofluorescent staining. We have also tested multiple commercial anti-ZNRF3 antibodies and anti-RNF43 antibodies for Western blotting, but they all failed.
Figure 4C is a little misleading. The schematic indicates that ECD-TM and TM-ICD truncations were analyzed for both ZNRF3 and RNF43. However, Figure 4 only shows data for ZNRF3, and the corresponding Figure S4 lacks data for the TM-ICD of Rnf43. A recommendation is to show only those schematics for which data is presented in that figure. On a related topic, the results using the deltaRING constructs (Figure S5) are not mentioned/described in the text.
We think that the reviewer meant Fig 5C. We have revised the Fig 5C by removing the RNF43 label, and we confirm that Results section does include the data in Fig S5.
Figure S4A: Only ZNRF3 is indicated in this figure. Please explain why RNF43 is not represented here. Also, indicate what is plotted along the x-axis.
We only detected the endogenous ZNRF3-EGFR interaction, possibly because the RNF43 protein level is relatively low in the cell line we used for the mass spec experiment. X-axis is the proteins ordered based on Y-axis values as detailed in the figure legend -- each data point was arranged along the x axis based on the fold change of iBAQ of EGFR-associated proteins identified in EGF-stimulated vs. control in the log2 scale, from low to high (from left to right on x axis). We have added the phrase “Proteins detected by Mass-Spec” for X-axis.
Reviewer #2 (Recommendations For The Authors):
Minor Points.
(1) In Figure 2B, the authors claim that Znrf3 KO enhanced both EGFR and p-EGFR levels both in the absence and presence of EGF. Although it is clear in the presence of EGF, the increased in p-EGFR in the absence of EGF is less than clear.
We have revised the manuscript to more clearly state the result in Fig 2B.
(2) Importantly the authors validated their findings using three independent RNF43 gRNA (fig S2D) but they do not show the editing efficiency obtained with the gRNA.
We did not include RNF43 IB in this Figure due to lack of specific antibodies for detecting RNR43 in IB. We have no reasons to doubt adequate efficiency of knockout since EGFR was increased compared to the control group. As a result, we did not perform deep sequencing to validate knockout efficacy.
(3) In S2E, the authors show that KO of either ZNRF3 or RNF43 enhance HER2 levels. This suggests that there is no redundancy between these E3 ligases, at least in this context. How do the authors reconcile that?
The reviewer raised an interesting issue. Due to the lack of WB antibodies for these two proteins, we would not easily assess the feedback impact of knockout of either gene on the protein levels of the other gene. We speculate that there may be a threshold level of the sum of the two proteins that is needed for adequate degradation of HER2, leading to HER2 increase when either gene is knocked out. Detailed studies of this issue is beyond the scope of this current work.
(4) Experiments performed in Fig 3C are performed in only one clone. The authors need to repeat in an additional clone or rescue this phenotype using a RNF43 cDNA.
Our RNF43 KO HT29 line is a pool of KO cells, not a single clone.
(5) In Figure 7E, the authors suggest that the absence of nuclear bcatenin means that canonical Wnt signaling is unaffected. It is widely known that nuclear bcatenin is often not correlating with pathway activity.
As stated above, we have revised the manuscript to avoid confusion and misinterpretation.
(6) What is the nature of the error bars in Fig 3c? Are the differences statistically significant?
As mentioned in the figure legend, the error bars are SEM. The result is statistically significant, and p-value is noted in the graph.
(7) In the Figure legends, it should be stated clearly how many biological replicates were performed for each experiment and single data points should be plotted where applicable (e.g. qPCR data). It would be helpful if the uncropped and unprocessed Western blot membranes and replicates that are not shown would be accessible to allow the reader a more comprehensive view of the acquired data, especially for blots that were quantified (e.g. Figure 2F, Figure 3C, there is clearly some defect on the blot).
For WB representation, it would be helpful to include more size markers on the Western blots (especially on the Ips that show ubiquitin smear) and in general to use a reference protein (GAPDH, Actin, Vinculin) that is closer to the protein being accessed.
More details should be added in the Methods section to explain how protocols were performed in detail. For example, it should be explained how the viruses used for infecting cells were produced (which plasmids were transfected using which transfection reagent, how long was the virus collected for, etc). Then, it should be stated how long the cells were undergoing selection before being harvested. Because the expression of the viral constructs potentially has an effect on cell proliferation through EGFR, this information is quite relevant. This is just an example, there are details missing in nearly every section (Flow: washing protocols, gating protocols (Live/dead stain?), WB: RIPA lysis buffer composition? How much protein was loaded on blots? How was protein quantification done? IP: how were washes performed and how often repeated?)
Missing: antibody dilutions for IF, IHC, and WB, plasmid backbones, sequences and availability, qPCR primer sequences from Origene.
Incucyte experiments are not described.
We have revised the relevant sections to include more details.
(8) Line 141: revise text: 2x mRNA abundance in the same sentence.
Line 162: define intermediate expression better.
Line 197/198: revise text ('the predominant one'?).
Line 218/219: revise text (Internalisation of surface EGFR?).
Line 245: clarify in text that it is endogenous EGFR that is being pulled down.
Line 264: typo: conserved instead of conservative.
Line 324: revise text (What does 'unknown significance' mean).
Line 396/397: revise text: 2x Co-IP in the same sentence.
Figure 3 D/E: more details on the Method in the figure legend.
We have revised them accordingly.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and turnover. The authors find that SYTL5 localizes to mitochondria in a RAB27A-dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of an inner mitochondrial membrane mitophagy reporter but not a matrix-based one. As the authors see no co-localization of GFP/mScarlet tagged versions of SYTL5 or RAB27A with LC3 or p62, they propose that lysosomal turnover is independent of the conventional autophagy machinery. Finally, the authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.
Strengths:
There are clearly interesting and new findings here that will be relevant to those following mitochondrial function, the endocytic pathway, and cancer metabolism.
Weaknesses:
The data feel somewhat preliminary in that the conclusions rely on exogenously expressed proteins and reporters, which do not always align.
As the authors note there are no commercially available antibodies that recognize endogenous SYTL5, hence they have had to stably express GFP-tagged versions. However, it appears that the level of expression dictates co-localization from the examples the authors give (though it is hard to tell as there is a lack of any kind of quantitation for all the fluorescent figures). Therefore, the authors may wish to generate an antibody themselves or tag the endogenous protein using CRISPR.
In relation to quantitation, the authors found that SYTL5 localizes to multiple compartments or potentially a few compartments that are positive for multiple markers. Some quantitation here would be very useful as it might inform on function.
The authors find that upon hypoxia/hypoxia-like conditions that punctate structures of SYTL5 and RAB27A form that are positive for Mitotracker, and that a very specific mitophagy assay based on pSu9-Halo system is impaired by siRNA of SYTL5/RAB27A, but another, distinct mitophagy assay (Matrix EGFP-mCherry) shows no change. I think this work would strongly benefit from some measurements with endogenous mitochondrial proteins, both via immunofluorescence and western blot-based flux assays.
A really interesting aspect is the apparent independence of this mitophagy pathway on the conventional autophagy machinery. However, this is only based on a lack of co-localization between p62 or LC3 with LAMP1 and GFP/mScarlet tagged SYTL5/RAB27A. However, I would not expect them to greatly colocalize in lysosomes as both the p62 and LC3 will become rapidly degraded, while the eGFP and mScarlet tags are relatively resistant to lysosomal hydrolysis. -/+ a lysosome inhibitor might help here and ideally, the functional mitophagy assays should be repeated in autophagy KOs.
The link to tumorigenesis and cancer survival is very interesting but it is not clear if this is due to the mitochondrially-related aspects of SYTL5 and RAB27A. For example, increased ECAR is seen in the SYTL5 KO cells but not in the RAB27A KO cells (Fig.5D), implying that mitochondrial localization of SYTL5 is not required for the ECAR effect. More work to strengthen the link between the two sections in the paper would help with future directions and impact with respect to future cancer treatment avenues to explore.
-
-
digitalcollections.nypl.org digitalcollections.nypl.org
-
Date Issued: 1901
Escher girls of the turn of the century.
-
-
en.wikipedia.org en.wikipedia.org
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Authors has provided a mechanism by which how presence of truncated P53 can inactivate function of full length P53 protein. Authors proposed this happens by sequestration of full length P53 by truncated P53.
In the study, performed experiments are well described.
My area of expertise is molecular biology/gene expression, and I have tried to provide suggestions on my area of expertise. The study has been done mainly with overexpression system and I have included few comments which I can think can be helpful to understand effect of truncated P53 on endogenous wild type full length protein. Performing experiments on these lines will add value to the observation according to this reviewer.
Major comments:
- What happens to endogenous wild type full length P53 in the context of mutant/truncated isoforms, that is not clear. Using a P53 antibody which can detect endogenous wild type P53, can authors check if endogenous full length P53 protein is also aggregated as well? It is hard to differentiate if aggregation of full length P53 happens only in overexpression scenario, where lot more both of such proteins are expressed. In normal physiological condition P53 expression is usually low, tightly controlled and its expression get induced in altered cellular condition such as during DNA damage. So, it is important to understand the physiological relevance of such aggregation, which could be possible if authors could investigate effect on endogenous full length P53 following overexpression of mutant isoforms. Response: Thank you very much for your insightful comments. 1) To address "what happens to endogenous wild-type full-length P53 in the context of mutant/truncated isoforms," we employed a human A549 cell line expressing endogenous wild-type p53 under DNA damage conditions such as an etoposide treatment1. We choose the A549 cell line since similar to H1299, it is a lung cancer cell line (www.atcc.org). For comparison, we also transfected the cells with 2 μg of V5-tagged plasmids encoding FLp53 and its isoforms Δ133p53 and Δ160p53. As shown in Figure R1A, lanes 1 and 2, endogenous p53 expression, remained undetectable in A549 cells despite etoposide treatment, which limits our ability to assess the effects of the isoforms on the endogenous wild-type FLp53. We could, however, detect the V5-tagged FLp53 expressed from the plasmid using anti-V5 (rabbit) as well as with anti-DO-1 (mouse) antibody (Figure R1). The latter detects both endogenous wild-type p53 and the V5-tagged FLp53 since the antibody epitope is within the N-terminus (aa 20-25). This result supports the reviewer's comment regarding the low level of expression of endogenous p53 that is insufficient for detection in our experiments. (Figure R1 is included in the file "RC-2024-02608 Figures of Response to Reviewer.)__
In summary, in line with the reviewer's comment that 'under normal physiological conditions p53 expression is usually low,' we could not detect p53 with an anti-DO-1 antibody. Thus, we proceeded with V5/FLAG-tagged p53 for detection of the effects of the isoforms on p53 stability and function. We also found that protein expression in H1299 cells was more easily detectable than in A549 cells (Compare Figures R1A and B). Thus, we decided to continue with the H1299 cells (p53-null), which would serve as a more suitable model system for this study.
2) We agree with the reviewer that 'It is hard to differentiate if aggregation of full-length p53 happens only in overexpression scenario'. However, it is not impossible to imagine that such aggregation of FLp53 happens under conditions when p53 and its isoforms are over-expressed in the cell. Although the exact physiological context is not known and beyond the scope of the current work, our results indicate that at higher expression, p53 isoforms drive aggregation of FLp53. Given the challenges of detecting endogenous FLp53, we had to rely on the results obtained with plasmid mediated expression of p53 and its isoforms in p53-null cells.
Can presence of mutant P53 isoforms can cause functional impairment of wild type full length endogenous P53? That could be tested as well using similar ChIP assay authors has performed, but instead of antibody against the Tagged protein if the authors could check endogenous P53 enrichment in the gene promoter such as P21 following overexpression of mutant isoforms. May be introducing a condition such as DNA damage in such experiment might help where endogenous P53 is induced and more prone to bind to P53 target such as P21.
Response: Thank you very much for your valuable comments and suggestions. To investigate the potential functional impairment of endogenous wild-type p53 by p53 isoforms, we initially utilized A549 cells (p53 wild-type), aiming to monitor endogenous wild-type p53 expression following DNA damage. However, as mentioned and demonstrated in Figure R1, endogenous p53 expression was too low to be detected under these conditions, making the ChIP assay for analyzing endogenous p53 activity unfeasible. Thus, we decided to utilize plasmid-based expression of FLp53 and focus on the potential functional impairment induced by the isoforms.
3. On similar lines, authors described:
"To test this hypothesis, we escalated the ratio of FLp53 to isoforms to 1:10. As expected, the activity of all four promoters decreased significantly at this ratio (Figure 4A-D). Notably, Δ160p53 showed a more potent inhibitory effect than Δ133p53 at the 1:5 ratio on all promoters except for the p21 promoter, where their impacts were similar (Figure 4E-H). However, at the 1:10 ratio, Δ133p53 and Δ160p53 had similar effects on all transactivation except for the MDM2 promoter (Figure 4E-H)."
Again, in such assay authors used ratio 1:5 to 1:10 full length vs mutant. How authors justify this result in context (which is more relevant context) where one allele is Wild type (functional P53) and another allele is mutated (truncated, can induce aggregation). In this case one would except 1:1 ratio of full-length vs mutant protein, unless other regulation is going which induces expression of mutant isoforms more than wild type full length protein. Probably discussing on these lines might provide more physiological relevance to the observed data.
Response: Thank you for raising this point regarding the physiological relevance of the ratios used in our study. 1) In the revised manuscript (lines 193-195), we added in this direction that "The elevated Δ133p53 protein modulates p53 target genes such as miR‑34a and p21, facilitating cancer development2, 3. To mimic conditions where isoforms are upregulated relative to FLp53, we increased the ratios to 1:5 and 1:10." This approach aims to simulate scenarios where isoforms accumulate at higher levels than FLp53, which may be relevant in specific contexts, as also elaborated above.
2) Regarding the issue of protein expression, where one allele is wild-type and the other is isoform, this assumption is not valid in most contexts. First, human cells have two copies of TPp53 gene (one from each parent). Second, the TP53 gene has two distinct promoters: the proximal promoter (P1) primarily regulates FLp53 and ∆40p53, whereas the second promoter (P2) regulates ∆133p53 and ∆160p534, 5. Additionally, ∆133TP53 is a p53 target gene6, 7 and the expression of Δ133p53 and FLp53 is dynamic in response to various stimuli. Third, the expression of p53 isoforms is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational processing8. Moreover, different degradation mechanisms modify the protein level of p53 isoforms and FLp538. These differential regulation mechanisms are regulated by various stimuli, and therefore, the 1:1 ratio of FLp53 to ∆133p53 or ∆160p53 may be valid only under certain physiological conditions. In line with this, varied expression levels of FLp53 and its isoforms, including ∆133p53 and ∆160p53, have been reported in several studies3, 4, 9, 10.
3) In our study, using the pcDNA 3.1 vector under the human cytomegalovirus (CMV) promoter, we observed moderately higher expression levels of ∆133p53 and ∆160p53 relative to FLp53 (Figure R1B). This overexpression scenario provides a model for studying conditions where isoform accumulation might surpass physiological levels, impacting FLp53 function. By employing elevated ratios of these isoforms to FLp53, we aim to investigate the potential effects of isoform accumulation on FLp53.
4. Finally does this altered function of full length P53 (preferably endogenous one) in presence of truncated P53 has any phenotypic consequence on the cells (if authors choose a cell type which is having wild type functional P53). Doing assay such as apoptosis/cell cycle could help us to get this visualization.
Response: Thank you for your insightful comments. In the experiment with A549 cells (p53 wild-type), endogenous p53 levels were too low to be detected, even after DNA damage induction. The evaluation of the function of endogenous p53 in the presence of isoforms is hindered, as mentioned above. In the revised manuscript, we utilized H1299 cells with overexpressed proteins for apoptosis studies using the Caspase-Glo® 3/7 assay (Figure 7). This has been shown in the Results section (lines 254-269). "The Δ133p53 and Δ160p53 proteins block pro-apoptotic function of FLp53.
One of the physiological read-outs of FLp53 is its ability to induce apoptotic cell death11. To investigate the effects of p53 isoforms Δ133p53 and Δ160p53 on FLp53-induced apoptosis, we measured caspase-3 and -7 activities in H1299 cells expressing different p53 isoforms (Figure 7). Caspase activation is a key biochemical event in apoptosis, with the activation of effector caspases (caspase-3 and -7) ultimately leading to apoptosis12. The caspase-3 and -7 activities induced by FLp53 expression was approximately 2.5 times higher than that of the control vector (Figure 7). Co-expression of FLp53 and the isoforms Δ133p53 or Δ160p53 at a ratio of 1: 5 significantly diminished the apoptotic activity of FLp53 (Figure 7). This result aligns well with our reporter gene assay, which demonstrated that elevated expression of Δ133p53 and Δ160p53 impaired the expression of apoptosis-inducing genes BAX and PUMA (Figure 4G and H). Moreover, a reduction in the apoptotic activity of FLp53 was observed irrespective of whether Δ133p53 or Δ160p53 protein was expressed with or without a FLAG tag (Figure 7). This result, therefore, also suggests that the FLAG tag does not affect the apoptotic activity or other physiological functions of FLp53 and its isoforms. Overall, the overexpression of p53 isoforms Δ133p53 and Δ160p53 significantly attenuates FLp53-induced apoptosis, independent of the protein tagging with the FLAG antibody epitope."
**Referees cross-commenting**
I think the comments from the other reviewers are very much reasonable and logical.
Especially all 3 reviewers have indicated, a better way to visualize the aggregation of full-length wild type P53 by truncated P53 (such as looking at endogenous P53# by reviewer 1, having fluorescent tag #by reviewer 2 and reviewer 3 raised concern on the FLAG tag) would add more value to the observation.
Response: Thank you for these comments. The endogenous p53 protein was undetectable in A549 cells induced by etoposide (Figure R1A). Therefore, we conducted experiments using FLAG/V5-tagged FLp53. To avoid any potential side effects of the FLAG tag on p53 aggregation, we introduced untagged p53 isoforms in the H1299 cells and performed subcellular fractionation. Our revised results, consistent with previous FLAG-tagged p53 isoforms findings, demonstrate that co-expression of untagged isoforms with FLAG-tagged FLp53 significantly induced the aggregation of FLAG-FLp53, while no aggregation was observed when FLAG-tagged FLp53 was expressed alone (Supplementary Figure 6). These results clearly indicate that the FLAG tag itself does not contribute to protein aggregation.
Additionally, we utilized the A11 antibody to detect protein aggregation, providing additional validation (Figure R3). Given that the fluorescent proteins (~30 kDa) are substantially bigger than the tags used here (~1 kDa) and may influence oligomerization (especially GFP), stability, localization, and function of p53 and its isoforms, we avoided conducting these vital experiments with such artificial large fusions.
Reviewer #1 (Significance (Required)):
The work in significant, since it points out more mechanistic insight how wild type full length P53 could be inactivated in the presence of truncated isoforms, this might offer new opportunity to recover P53 function as treatment strategies against cancer.
Response: Thank you for your insightful comments. We appreciate your recognition of the significance of our work in providing mechanistic insights into how wild-type FLp53 can be inactivated by truncated isoforms. We agree that these findings have potential for exploring new strategies to restore p53 function as a therapeutic approach against cancer.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The manuscript by Zhao and colleagues presents a novel and compelling study on the p53 isoforms, Δ133p53 and Δ160p53, which are associated with aggressive cancer types. The main objective of the study was to understand how these isoforms exert a dominant negative effect on full-length p53 (FLp53). The authors discovered that the Δ133p53 and Δ160p53 proteins exhibit impaired binding to p53-regulated promoters. The data suggest that the predominant mechanism driving the dominant-negative effect is the co-aggregation of FLp53 with Δ133p53 and Δ160p53.
This study is innovative, well-executed, and supported by thorough data analysis. However, the authors should address the following points:
-
- Introduction on Aggregation and Co-aggregation: Given that the focus of the study is on the aggregation and co-aggregation of the isoforms, the introduction should include a dedicated paragraph discussing this issue. There are several original research articles and reviews that could be cited to provide context.* Response: Thank you very much for the valuable comments. We have added the following paragraph in the revised manuscript (lines 74-82): "Protein aggregation has become a central focus of modern biology research and has documented implications in various diseases, including cancer13, 14, 15. Protein aggregates can be of different types ranging from amorphous aggregates to highly structured amyloid or fibrillar aggregates, each with different physiological implications. In the case of p53, whether protein aggregation, and in particular, co-aggregation with large N-terminal deletion isoforms, plays a mechanistic role in its inactivation is yet underexplored. Interestingly, the Δ133p53β isoform has been shown to aggregate in several human cancer cell lines16. Additionally, the Δ40p53α isoform exhibits a high aggregation tendency in endometrial cancer cells17. Although no direct evidence exists for Δ160p53 yet, these findings imply that p53 isoform aggregation may play a major role in their mechanisms of actions."
2. Antibody Use for Aggregation: To strengthen the evidence for aggregation, the authors should consider using antibodies that specifically bind to aggregates.
Response: Thank you for your insightful suggestion. We addressed protein aggregation using the A11 antibody which specifically recognizes amyloid-like protein aggregates. We analyzed insoluble nuclear pellet samples prepared under identical conditions as described in Figure 6B. To confirm the presence of p53 proteins, we employed the anti-p53 M19 antibody (Santa Cruz, Cat No. sc-1312) to detect bands corresponding to FLp53 and its isoforms Δ133p53 and Δ160p53. The monomer FLp53 was not detected (Figure R3, lower panel), which may be attributed to the lower binding affinity of the anti-p53 M19 antibody to it. These samples were also immunoprecipitated using the A11 antibody (Thermo Fischer Scientific, Cat No. AHB0052) to detect aggregated proteins. Interestingly, FLp53 and its isoforms, Δ133p53 and Δ160p53, were clearly visible with Anti-A11 antibody when co-expressed at a 1:5 ratio suggesting that they underwent co-aggregation__.__ However, no FLp53 aggregates were observed when it was expressed alone (Figure R2). These results support the conclusion in our manuscript that Δ133p53 and Δ160p53 drive FLp53 aggregation.
(Figure R2 is included in the file "RC-2024-02608 Figures of Response to Reviewer.)__
3. Fluorescence Microscopy: Live-cell fluorescence microscopy could be employed to enhance visualization by labeling FLp53 and the isoforms with different fluorescent markers (e.g., EGFP and mCherry tags).
Response: We appreciate the suggestion to use live-cell fluorescence microscopy with EGFP and mCherry tags for the visualization FLp53 and its isoforms. While we understand the advantages of live-cell imaging with EGFP / mCherry tags, we restrained us from doing such fusions as the GFP or corresponding protein tags are very big (~30 kDa) with respect to the p53 isoform variants (~30 kDa). Other studies have shown that EGFP and mCherry fusions can alter protein oligomerization, solubility and aggregation18, 19. Moreover, most fluorescence proteins are prone to dimerization (i.e. EGFP) or form obligate tetramers (DsRed)20, 21, 22, potentially interfering with the oligomerization and aggregation properties of p53 isoforms, particularly Δ133p53 and Δ160p53.
Instead, we utilized FLAG- or V5-tag-based immunofluorescence microscopy, a well-established and widely accepted method for visualizing p53 proteins. This method provided precise localization and reliable quantitative data, which we believe meet the needs of the current study. We believe our chosen method is both appropriate and sufficient for addressing the research question.
Reviewer #2 (Significance (Required)):
The manuscript by Zhao and colleagues presents a novel and compelling study on the p53 isoforms, Δ133p53 and Δ160p53, which are associated with aggressive cancer types. The main objective of the study was to understand how these isoforms exert a dominant negative effect on full-length p53 (FLp53). The authors discovered that the Δ133p53 and Δ160p53 proteins exhibit impaired binding to p53-regulated promoters. The data suggest that the predominant mechanism driving the dominant-negative effect is the co-aggregation of FLp53 with Δ133p53 and Δ160p53.
Response: We sincerely thank the reviewer for the thoughtful and positive comments on our manuscript and for highlighting the significance of our findings on the p53 isoforms, Δ133p53 and Δ160p53.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this manuscript entitled "Δ133p53 and Δ160p53 isoforms of the tumor suppressor protein p53 exert dominant-negative effect primarily by co-aggregation", the authors suggest that the Δ133p53 and Δ160p53 isoforms have high aggregation propensity and that by co-aggregating with canonical p53 (FLp53), they sequestrate it away from DNA thus exerting a dominant-negative effect over it.
First, the authors should make it clear throughout the manuscript, including the title, that they are investigating Δ133p53α and Δ160p53α since there are 3 Δ133p53 isoforms (α, β, γ), and 3 Δ160p53 isoforms (α, β, γ).
Response: Thank you for your suggestion. We understand the importance of clearly specifying the isoforms under study. Following your suggestion, we have added α in the title, abstract, and introduction and added the following statement in the Introduction (lines 57-59): "For convenience and simplicity, we have written Δ133p53 and Δ160p53 to represent the α isoforms (Δ133p53α and Δ160p53α) throughout this manuscript."
One concern is that the authors only consider and explore Δ133p53α and Δ160p53α isoforms as exclusively oncogenic and FLp53 dominant-negative while not discussing evidences of different activities. Indeed, other manuscripts have also shown that Δ133p53α is non-oncogenic and non-mutagenic, do not antagonize every single FLp53 functions and are sometimes associated with good prognosis. To cite a few examples:
- Hofstetter G. et al. D133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer. Br. J. Cancer 2011, 105, 1593-1599.
- Bischof, K. et al. Influence of p53 Isoform Expression on Survival in High-Grade Serous Ovarian Cancers. Sci. Rep. 2019, 9,5244.
- Knezovi´c F. et al. The role of p53 isoforms' expression and p53 mutation status in renal cell cancer prognosis. Urol. Oncol. 2019, 37, 578.e1-578.e10.
- Gong, L. et al. p53 isoform D113p53/D133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 2015, 25, 351-369.
- Gong, L. et al. p53 isoform D133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci. Rep. 2016, 6, 37281.
- Horikawa, I. et al. D133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ. 2017, 24, 1017-1028.
- Gong, L. p53 coordinates with D133p53 isoform to promote cell survival under low-level oxidative stress. J. Mol. Cell Biol. 2016, 8, 88-90. Response: Thank you very much for your comment and for highlighting these important studies.
We agree that Δ133p53 isoforms exhibit complex biological functions, with both oncogenic and non-oncogenic potentials. However, our mission here was primarily to reveal the molecular mechanism for the dominant-negative effects exerted by the Δ133p53α and Δ160p53α isoforms on FLp53 for which the Δ133p53α and Δ160p53α isoforms are suitable model systems. Exploring the oncogenic potential of the isoforms is beyond the scope of the current study and we have not claimed anywhere that we are reporting that. We have carefully revised the manuscript and replaced the respective terms e.g. 'pro-oncogenic activity' with 'dominant-negative effect' in relevant places (e.g. line 90). We have now also added a paragraph with suitable references that introduces the oncogenic and non-oncogenic roles of the p53 isoforms.
After reviewing the papers you cited, we are not sure that they reflect on oncogenic /non-oncogenic role of the Δ133p53α isoform in different cancer cases. Although our study is not about the oncogenic potential of the isoforms, we have summarized the key findings below:
- Hofstetter et al., 2011: Demonstrated that Δ133p53α expression improved recurrence-free and overall survival (in a p53 mutant induced advanced serous ovarian cancer, suggesting a potential protective role in this context.
- Bischof et al., 2019: Found that Δ133p53 mRNA can improve overall survival in high-grade serous ovarian cancers. However, out of 31 patients, only 5 belong to the TP53 wild-type group, while the others carry TP53 mutations.
- Knezović et al., 2019: Reported downregulation of Δ133p53 in renal cell carcinoma tissues with wild-type p53 compared to normal adjacent tissue, indicating a potential non-oncogenic role, but not conclusively demonstrating it.
- Gong et al., 2015: Showed that Δ133p53 antagonizes p53-mediated apoptosis and promotes DNA double-strand break repair by upregulating RAD51, LIG4, and RAD52 independently of FLp53.
- Gong et al., 2016: Demonstrated that overexpression of Δ133p53 promotes efficiency of cell reprogramming by its anti-apoptotic function and promoting DNA DSB repair. The authors hypotheses that this mechanism is involved in increasing RAD51 foci formation and decrease γH2AX foci formation and chromosome aberrations in induced pluripotent stem (iPS) cells, independent of FL p53.
- Horikawa et al., 2017: Indicated that induced pluripotent stem cells derived from fibroblasts that overexpress Δ133p53 formed non-cancerous tumors in mice compared to induced pluripotent stem cells derived from fibroblasts with complete p53 inhibition. Thus, Δ133p53 overexpression is "non- or less oncogenic and mutagenic" compared to complete p53 inhibition, but it still compromises certain p53-mediated tumor-suppressing pathways. "Overexpressed Δ133p53 prevented FL-p53 from binding to the regulatory regions of p21WAF1 and miR-34a promoters, providing a mechanistic basis for its dominant-negative inhibition of a subset of p53 target genes."
- Gong, 2016: Suggested that Δ133p53 promotes cell survival under low-level oxidative stress, but its role under different stress conditions remains uncertain. We have revised the Introduction to provide a more balanced discussion of Δ133p53's dule role (lines 62-73):
"The Δ133p53 isoform exhibit complex biological functions, with both oncogenic and non-oncogenic potentials. Recent studies demonstrate the non-oncogenic yet context-dependent role of the Δ133p53 isoform in cancer development. Δ133p53 expression has been reported to correlate with improved survival in patients with TP53 mutations23, 24, where it promotes cell survival in a non-oncogenic manner25, 26, especially under low oxidative stress27. Alternatively, other recent evidences emphasize the notable oncogenic functions of Δ133p53 as it can inhibit p53-dependent apoptosis by directly interacting with the FLp53 4, 6. The oncogenic function of the newly identified Δ160p53 isoform is less known, although it is associated with p53 mutation-driven tumorigenesis28 and in melanoma cells' aggressiveness10. Whether or not the Δ160p53 isoform also impedes FLp53 function in a similar way as Δ133p53 is an open question. However, these p53 isoforms can certainly compromise p53-mediated tumor suppression by interfering with FLp53 binding to target genes such as p21 and miR-34a2, 29 by dominant-negative effect, the exact mechanism is not known."
On the figures presented in this manuscript, I have three major concerns:
*1- Most results in the manuscript rely on the overexpression of the FLAG-tagged or V5-tagged isoforms. The validation of these construct entirely depends on Supplementary figure 3 which the authors claim "rules out the possibility that the FLAG epitope might contribute to this aggregation. However, I am not entirely convinced by that conclusion. Indeed, the ratio between the "regular" isoform and the aggregates is much higher in the FLAG-tagged constructs than in the V5-tagged constructs. We can visualize the aggregates easily in the FLAG-tagged experiment, but the imaging clearly had to be overexposed (given the white coloring demonstrating saturation of the main bands) to visualize them in the V5-tagged experiments. Therefore, I am not convinced that an effect of the FLAG-tag can be ruled out and more convincing data should be added. *
Response: Thank you for raising this important concern. We have carefully considered your comments and have made several revisions to clarify and strengthen our conclusions.
First, to address the potential influence of the FLAG and V5 tags on p53 isoform aggregation, we have revised Figure 2 and removed the previous Supplementary Figure 3, where non-specific antibody bindings and higher molecular weight aggregates were not clearly interpretable. In the revised Figure 2, we have removed these potential aggregates, improving the clarity and accuracy of the data.
To further rule out any tag-related artifacts, we conducted a co-immunoprecipitation assay with FLAG-tagged FLp53 and untagged Δ133p53 and Δ160p53 isoforms. The results (now shown in the new Supplementary Figure 3) completely agree with our previous result with FLAG-tagged and V5-tagged Δ133p53 and Δ160p53 isoforms and show interaction between the partners. This indicates that the FLAG / V5-tags do not influence / interfere with the interaction between FLp53 and the isoforms. We have still used FLAG-tagged FLp53 as the endogenous p53 was undetectable and the FLAG-tagged FLp53 did not aggregate alone.
In the revised paper, we added the following sentences (Lines 146-152): "To rule out the possibility that the observed interactions between FLp53 and its isoforms Δ133p53 and Δ160p53 were artifacts caused by the FLAG and V5 antibody epitope tags, we co-expressed FLAG-tagged FLp53 with untagged Δ133p53 and Δ160p53. Immunoprecipitation assays demonstrated that FLAG-tagged FLp53 could indeed interact with the untagged Δ133p53 and Δ160p53 isoforms (Supplementary Figure 3, lanes 3 and 4), confirming formation of hetero-oligomers between FLp53 and its isoforms. These findings demonstrate that Δ133p53 and Δ160p53 can oligomerize with FLp53 and with each other."
Additionally, we performed subcellular fractionation experiments to compare the aggregation and localization of FLAG-tagged FLp53 when co-expressed either with V5-tagged or untagged Δ133p53/Δ160p53. In these experiments, the untagged isoforms also induced FLp53 aggregation, mirroring our previous results with the tagged isoforms (Supplementary Figure 5). We've added this result in the revised manuscript (lines 236-245): "To exclude the possibility that FLAG or V5 tags contribute to protein aggregation, we also conducted subcellular fractionation of H1299 cells expressing FLAG-tagged FLp53 along with untagged Δ133p53 or Δ160p53 at a 1:5 ratio. The results showed (Supplementary Figure 6) a similar distribution of FLp53 across cytoplasmic, nuclear, and insoluble nuclear fractions as in the case of tagged Δ133p53 or Δ160p53 (Figure 6A to D). Notably, the aggregation of untagged Δ133p53 or Δ160p53 markedly promoted the aggregation of FLAG-tagged FLp53 (Supplementary Figure 6B and D), demonstrating that the antibody epitope tags themselves do not contribute to protein aggregation."
We've also discussed this in the Discussion section (lines 349-356): "In our study, we primarily utilized an overexpression strategy involving FLAG/V5-tagged proteins to investigate the effects of p53 isoforms Δ133p53 and Δ160p53 on the function of FLp53. To address concerns regarding potential overexpression artifacts, we performed the co-immunoprecipitation (Supplementary Figure 6) and caspase-3 and -7 activity (Figure 7) experiments with untagged Δ133p53 and Δ160p53. In both experimental systems, the untagged proteins behaved very similarly to the FLAG/V5 antibody epitope-containing proteins (Figures 6 and 7 and Supplementary Figure 6). Hence, the C-terminal tagging of FLp53 or its isoforms does not alter the biochemical and physiological functions of these proteins."
In summary, the revised data set and newly added experiments provide strong evidence that neither the FLAG nor the V5 tag contributes to the observed p53 isoform aggregation.
2- The authors demonstrate that to visualize the dominant-negative effect, Δ133p53α and Δ160p53α must be "present in a higher proportion than FLp53 in the tetramer" and the need at least a transfection ratio 1:5 since the 1:1 ration shows no effect. However, in almost every single cell type, FLp53 is far more expressed than the isoforms which make it very unlikely to reach such stoichiometry in physiological conditions and make me wonder if this mechanism naturally occurs at endogenous level. This limitation should be at least discussed.
Response: Thank you for your insightful comment. However, evidence suggests that the expression levels of these isoforms such as Δ133p53, can be significantly elevated relative to FLp53 in certain physiological conditions3, 4, 9. For example, in some breast tumors, with Δ133p53 mRNA is expressed at a much levels than FLp53, suggesting a distinct expression profile of p53 isoforms compared to normal breast tissue4. Similarly, in non-small cell lung cancer and the A549 lung cancer cell line, the expression level of Δ133p53 transcript is significantly elevated compared to non-cancerous cells3. Moreover, in specific cholangiocarcinoma cell lines, the Δ133p53 /TAp53 expression ratio has been reported to increase to as high as 3:19. These observations indicate that the dominant-negative effect of isoform Δ133p53 on FLp53 can occur under certain pathological conditions where the relative amounts of the FLp53 and the isoforms would largely vary. Since data on the Δ160p53 isoform are scarce, we infer that the long N-terminal truncated isoforms may share a similar mechanism.
Figure 5C: I am concerned by the subcellular location of the Δ133p53α and Δ160p53α as they are commonly considered nuclear and not cytoplasmic as shown here, particularly since they retain the 3 nuclear localization sequences like the FLp53 (Bourdon JC et al. 2005; Mondal A et al. 2018; Horikawa I et al, 2017; Joruiz S. et al, 2024). However, Δ133p53α can form cytoplasmic speckles (Horikawa I et al, 2017) when it colocalizes with autophagy markers for its degradation.
3-The authors should discuss this issue. Could this discrepancy be due to the high overexpression level of these isoforms? A co-staining with autophagy markers (p62, LC3B) would rule out (or confirm) activation of autophagy due to the overwhelming expression of the isoform.
Response: Thank you for your thoughtful comments. We have thoroughly reviewed all the papers you recommended (Bourdon JC et al., 2005; Mondal A et al., 2018; Horikawa I et al., 2017; Joruiz S. et al., 2024)4, 29, 30, 31. Among these, only the study by Bourdon JC et al. (2005) provided data regarding the localization of Δ133p534. Interestingly, their findings align with our observations, indicating that the protein does not exhibit predominantly nuclear localization in the Figure below. The discrepancy may be caused by a potentially confusing statement in that paper4
(The Figure from Bourdon JC et al. (2005) is included in the file "RC-2024-02608 Figures of Response to Reviewer.)__
The localization of p53 is governed by multiple factors, including its nuclear import and export32. The isoforms Δ133p53 and Δ160p53 contain three nuclear localization sequences (NLS)4 . However, the isoforms Δ133p53 and Δ160p53 were potentially trapped in the cytoplasm by aggregation and masking the NLS. This mechanism would prevent nuclear import.
Further, we acknowledge that Δ133p53 co-aggregates with autophagy substrate p62/SQSTM1 and autophagosome component LC3B in cytoplasm by autophagic degradation during replicative senescence33. We agree that high overexpression of these aggregation-prone proteins may induce endoplasmic reticulum (ER) stress and activates autophagy34. This could explain the cytoplasmic localization in our experiments. However, it is also critical to consider that we observed aggregates in both the cytoplasm and the nucleus (Figures 6B and E and Supplementary Figure 6B). While cytoplasmic localization may involve autophagy-related mechanisms, the nuclear aggregates likely arise from intrinsic isoform properties, such as altered protein folding, independent of autophagy. These dual localizations reflect the complex behavior of Δ133p53 and Δ160p53 isoforms under our experimental conditions.
In the revised manuscript, we discussed this in Discussion (lines 328-335): "Moreover, the observed cytoplasmic isoform aggregates may reflect autophagy-related degradation, as suggested by the co-localization of Δ133p53 with autophagy substrate p62/SQSTM1 and autophagosome component LC3B33. High overexpression of these aggregation-prone proteins could induce endoplasmic reticulum stress and activate autophagy34. Interestingly, we also observed nuclear aggregation of these isoforms (Figure 6B and E and Supplementary Figure 6B), suggesting that distinct mechanisms, such as intrinsic properties of the isoforms, may govern their localization and behavior within the nucleus. This dual localization underscores the complexity of Δ133p53 and Δ160p53 behavior in cellular systems."
Minor concerns:
- Figure 1A: the initiation of the "Δ140p53" is shown instead of "Δ40p53"
Response: Thank you! The revised Figure 1A has been created in the revised paper.
- Figure 2A: I would like to see the images cropped a bit higher, so the cut does not happen just above the aggregate bands
Response: Thank you for this suggestion. We've changed the image and the new Figure 2 has been shown in the revised paper.
- Figure 3C: what ratio of FLp53/Delta isoform was used?
Response: We have added the ratio in the figure legend of Figure 3C (lines 845-846) "Relative DNA-binding of the FLp53-FLAG protein to the p53-target gene promoters in the presence of the V5-tagged protein Δ133p53 or Δ160p53 at a 1: 1 ratio."
- Figure 3C suggests that the "dominant-negative" effect is mostly senescence-specific as it does not affect apoptosis target genes, which is consistent with Horikawa et al, 2017 and Gong et al, 2016 cited above. Furthermore, since these two references and the others from Gong et al. show that Δ133p53α increases DNA repair genes, it would be interesting to look at RAD51, RAD52 or Lig4, and maybe also induce stress.
Response: Thank you for your thoughtful comments and suggestions. In Figure 3C, the presence of Δ133p53 or Δ160p53 only significantly reduced the binding of FLp53 to the p21 promoter. However, isoforms Δ133p53 and Δ160p53 demonstrated a significant loss of DNA-binding activity at all four promoters: p21, MDM2, and apoptosis target genes BAX and PUMA (Figure 3B). This result suggests that Δ133p53 and Δ160p53 have the potential to influence FLp53 function due to their ability to form hetero-oligomers with FLp53 or their intrinsic tendency to aggregate. To further investigate this, we increased the isoform to FLp53 ratio in Figure 4, which demonstrate that the isoforms Δ133p53 and Δ160p53 exert dominant-negative effects on the function of FLp53.
These results demonstrate that the isoforms can compromise p53-mediated pathways, consistent with Horikawa et al. (2017), which showed that Δ133p53α overexpression is "non- or less oncogenic and mutagenic" compared to complete p53 inhibition, but still affects specific tumor-suppressing pathways. Furthermore, as noted by Gong et al. (2016), Δ133p53's anti-apoptotic function under certain conditions is independent of FLp53 and unrelated to its dominant-negative effects.
We appreciate your suggestion to investigate DNA repair genes such as RAD51, RAD52, or Lig4, especially under stress conditions. While these targets are intriguing and relevant, we believe that our current investigation of p53 targets in this manuscript sufficiently supports our conclusions regarding the dominant-negative effect. Further exploration of additional p53 target genes, including those involved in DNA repair, will be an important focus of our future studies.
- Figure 5A and B: directly comparing the level of FLp53 expressed in cytoplasm or nucleus to the level of Δ133p53α and Δ160p53α expressed in cytoplasm or nucleus does not mean much since these are overexpressed proteins and therefore depend on the level of expression. The authors should rather compare the ratio of cytoplasmic/nuclear FLp53 to the ratio of cytoplasmic/nuclear Δ133p53α and Δ160p53α.
Response: Thank you very much for this valuable suggestion. In the revised paper, Figure 5B has been recreated. Changes have been made in lines 214-215: "The cytoplasm-to-nucleus ratio of Δ133p53 and Δ160p53 was approximately 1.5-fold higher than that of FLp53 (Figure 5B)."
**Referees cross-commenting**
I agree that the system needs to be improved to be more physiological.
Just to precise, the D133 and D160 isoforms are not truncated mutants, they are naturally occurring isoforms expressed in almost every normal human cell type from an internal promoter within the TP53 gene.
Using overexpression always raises concerns, but in this case, I am even more careful because the isoforms are almost always less expressed than the FLp53, and here they have to push it 5 to 10 times more expressed than the FLp53 to see the effect which make me fear an artifact effect due to the overwhelming overexpression (which even seems to change the normal localization of the protein).
To visualize the endogenous proteins, they will have to change cell line as the H1299 they used are p53 null.
Response: Thank you for these comments. We've addressed the motivation of overexpression in the above responses. We needed to use the plasmid constructs in the p53-null cells to detect the proteins but the expression level was certainly not 'overwhelmingly high'.
First, we tried the A549 cells (p53 wild-type) under DNA damage conditions, but the endogenous p53 protein was undetectable. Second, several studies reported increased Δ133p53 level compared to wild-type p53 and that it has implications in tumor development2, 3, 4, 9. Third, the apoptosis activity of H1299 cells overexpressing p53 proteins was analyzed in the revised manuscript (Figure 7). The apoptotic activity induced by FLp53 expression was approximately 2.5 times higher than that of the control vector under identical plasmid DNA transfection conditions (Figure 7). These results rule out the possibility that the plasmid-based expression of p53 and its isoforms introduced artifacts in the results. We've discussed this in the Results section (lines 254-269).
Reviewer #3 (Significance (Required)):
Overall, the paper is interesting particularly considering the range of techniques used which is the main strength.
The main limitation to me is the lack of contradictory discussion as all argumentation presents Δ133p53α and Δ160p53α exclusively as oncogenic and strictly FLp53 dominant-negative when, particularly for Δ133p53α, a quite extensive literature suggests a not so clear-cut activity.
The aggregation mechanism is reported for the first time for Δ133p53α and Δ160p53α, although it was already published for Δ40p53α, Δ133p53β or in mutant p53.
This manuscript would be a good basic research addition to the p53 field to provide insight in the mechanism for some activities of some p53 isoforms.
My field of expertise is the p53 isoforms which I have been working on for 11 years in cancer and neuro-degenerative diseases
Response: Thank you very much for your positive and critical comments. We've included a fair discussion on the oncogenic and non-oncogenic function of Δ133p53 in the Introduction following your suggestion (lines 62-73).
References
- Pitolli C, Wang Y, Candi E, Shi Y, Melino G, Amelio I. p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers 11, (2019).
Fujita K, et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nature cell biology 11, 1135-1142 (2009).
Fragou A, et al. Increased Δ133p53 mRNA in lung carcinoma corresponds with reduction of p21 expression. Molecular medicine reports 15, 1455-1460 (2017).
Bourdon JC, et al. p53 isoforms can regulate p53 transcriptional activity. Genes & development 19, 2122-2137 (2005).
Ghosh A, Stewart D, Matlashewski G. Regulation of human p53 activity and cell localization by alternative splicing. Molecular and cellular biology 24, 7987-7997 (2004).
Aoubala M, et al. p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell death and differentiation 18, 248-258 (2011).
Marcel V, et al. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29, 2691-2700 (2010).
Zhao L, Sanyal S. p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers 14, (2022).
Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S, Jearanaikoon P. Ratio disruption of the ∆133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. International journal of oncology 42, 1181-1188 (2013).
Tadijan A, et al. Altered Expression of Shorter p53 Family Isoforms Can Impact Melanoma Aggressiveness. Cancers 13, (2021).
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell death and differentiation 25, 104-113 (2018).
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Molecular and cellular biochemistry 479, 1599-1613 (2024).
Petronilho EC, et al. Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets. Communications chemistry 7, 207 (2024).
Forget KJ, Tremblay G, Roucou X. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53. PloS one 8, e69242 (2013).
Farmer KM, Ghag G, Puangmalai N, Montalbano M, Bhatt N, Kayed R. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer's disease. Acta neuropathologica communications 8, 132 (2020).
Arsic N, et al. Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nature communications 12, 5463 (2021).
Melo Dos Santos N, et al. Loss of the p53 transactivation domain results in high amyloid aggregation of the Δ40p53 isoform in endometrial carcinoma cells. The Journal of biological chemistry 294, 9430-9439 (2019).
Mestrom L, et al. Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability. Applied and environmental microbiology 85, (2019).
Kaba SA, Nene V, Musoke AJ, Vlak JM, van Oers MM. Fusion to green fluorescent protein improves expression levels of Theileria parva sporozoite surface antigen p67 in insect cells. Parasitology 125, 497-505 (2002).
Snapp EL, et al. Formation of stacked ER cisternae by low affinity protein interactions. The Journal of cell biology 163, 257-269 (2003).
Jain RK, Joyce PB, Molinete M, Halban PA, Gorr SU. Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. The Biochemical journal 360, 645-649 (2001).
Campbell RE, et al. A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 99, 7877-7882 (2002).
Hofstetter G, et al. Δ133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer. British journal of cancer 105, 1593-1599 (2011).
Bischof K, et al. Influence of p53 Isoform Expression on Survival in High-Grade Serous Ovarian Cancers. Scientific reports 9, 5244 (2019).
Gong L, et al. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell research 25, 351-369 (2015).
Gong L, et al. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Scientific reports 6, 37281 (2016).
Gong L, Pan X, Yuan ZM, Peng J, Chen J. p53 coordinates with Δ133p53 isoform to promote cell survival under low-level oxidative stress. Journal of molecular cell biology 8, 88-90 (2016).
Candeias MM, Hagiwara M, Matsuda M. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO reports 17, 1542-1551 (2016).
Horikawa I, et al. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell death and differentiation 24, 1017-1028 (2017).
Mondal AM, et al. Δ133p53α, a natural p53 isoform, contributes to conditional reprogramming and long-term proliferation of primary epithelial cells. Cell death & disease 9, 750 (2018).
Joruiz SM, Von Muhlinen N, Horikawa I, Gilbert MR, Harris CC. Distinct functions of wild-type and R273H mutant Δ133p53α differentially regulate glioblastoma aggressiveness and therapy-induced senescence. Cell death & disease 15, 454 (2024).
O'Brate A, Giannakakou P. The importance of p53 location: nuclear or cytoplasmic zip code? Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 6, 313-322 (2003).
Horikawa I, et al. Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence. Nature communications 5, 4706 (2014).
Lee H, et al. IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Human molecular genetics 21, 101-114 (2012).
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
In this manuscript entitled "Δ133p53 and Δ160p53 isoforms of the tumor suppressor protein p53 exert dominant-negative effect primarily by co-aggregation", the authors suggest that the Δ133p53 and Δ160p53 isoforms have high aggregation propensity and that by co-aggregating with canonical p53 (FLp53), they sequestrate it away from DNA thus exerting a dominant-negative effect over it.
First, the authors should make it clear throughout the manuscript, including the title, that they are investigating Δ133p53α and Δ160p53α since there are 3 Δ133p53 isoforms (α, β, γ), and 3 Δ160p53 isoforms (α, β, γ).
One concern is that the authors only consider and explore Δ133p53α and Δ160p53α isoforms as exclusively oncogenic and FLp53 dominant-negative while not discussing evidences of different activities. Indeed, other manuscripts have also shown that Δ133p53α is non-oncogenic and non-mutagenic, do not antagonize every single FLp53 functions and are sometimes associated with good prognosis. To cite a few examples: Hofstetter G. et al. D133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer. Br. J. Cancer 2011, 105, 1593-1599. Bischof, K. et al. Influence of p53 Isoform Expression on Survival in High-Grade Serous Ovarian Cancers. Sci. Rep. 2019, 9,5244. Knezovi´c F. et al. The role of p53 isoforms' expression and p53 mutation status in renal cell cancer prognosis. Urol. Oncol. 2019, 37, 578.e1-578.e10. Gong, L. et al. p53 isoform D113p53/D133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 2015, 25, 351-369. Gong, L. et al. p53 isoform D133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci. Rep. 2016, 6, 37281. Horikawa, I. et al. D133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ. 2017, 24, 1017-1028. Gong, L. p53 coordinates with D133p53 isoform to promote cell survival under low-level oxidative stress. J. Mol. Cell Biol. 2016, 8, 88-90.
On the figures presented in this manuscript, I have three major concerns:
- Most results in the manuscript rely on the overexpression of the FLAG-tagged or V5-tagged isoforms. The validation of these construct entirely depends on Supplementary figure 3 which the authors claim "rule[s] out the possibility that the FLAG epitope might contribute to this aggregation. However, I am not entirely convinced by that conclusion. Indeed, the ratio between the "regular" isoform and the aggregates is much higher in the FLAG-tagged constructs than in the V5-tagged constructs. We can visualize the aggregates easily in the FLAG-tagged experiment, but the imaging clearly had to be overexposed (given the white coloring demonstrating saturation of the main bands) to visualize them in the V5-tagged experiments. Therefore, I am not convinced that an effect of the FLAG-tag can be ruled out and more convincing data should be added.
- The authors demonstrate that to visualize the dominant-negative effect, Δ133p53α and Δ160p53α must be "present in a higher proportion than FLp53 in the tetramer" and the need at least a transfection ratio 1:5 since the 1:1 ration shows no effect. However, in almost every single cell type, FLp53 is far more expressed than the isoforms which make it very unlikely to reach such stoichiometry in physiological conditions and make me wonder if this mechanism naturally occurs at endogenous level. This limitation should be at least discussed.
- Figure 5C: I am concerned by the subcellular location of the Δ133p53α and Δ160p53α as they are commonly considered nuclear and not cytoplasmic as shown here, particularly since they retain the 3 nuclear localization sequences like the FLp53 (Bourdon JC et al. 2005; Mondal A et al. 2018; Horikawa I et al, 2017; Joruiz S. et al, 2024). However, Δ133p53α can form cytoplasmic speckles (Horikawa I et al, 2017) when it colocalizes with autophagy markers for its degradation. The authors should discuss this issue. Could this discrepancy be due to the high overexpression level of these isoforms? A co-staining with autophagy markers (p62, LC3B) would rule out (or confirm) activation of autophagy due to the overwhelming expression of the isoform.
Minor concerns:
- Figure 1A: the initiation of the "Δ140p53" is shown instead of "Δ40p53"
- Figure 2A: I would like to see the images cropped a bit higher, so the cut does not happen just above the aggregate bands
- Figure 3C: what ratio of FLp53/Delta isoform was used?
- Figure 3C suggests that the "dominant-negative" effect is mostly senescence-specific as it does not affect apoptosis target genes, which is consistent with Horikawa et al, 2017 and Gong et al, 2016 cited above. Furthermore, since these two references and the others from Gong et al. show that Δ133p53α increases DNA repair genes, it would be interesting to look at RAD51, RAD52 or Lig4, and maybe also induce stress.
- Figure 5A and B: directly comparing the level of FLp53 expressed in cytoplasm or nucleus to the level of Δ133p53α and Δ160p53α expressed in cytoplasm or nucleus does not mean much since these are overexpressed proteins and therefore depend on the level of expression. The authors should rather compare the ratio of cytoplasmic/nuclear FLp53 to the ratio of cytoplasmic/nuclear Δ133p53α and Δ160p53α.
Referees cross-commenting
I agree that the system needs to be improved to be more physiological.
Just to precise, the D133 and D160 isoforms are not truncated mutants, they are naturally occurring isoforms expressed in almost every normal human cell type from an internal promoter within the TP53 gene.
Using overexpression always raises concerns, but in this case I am even more careful because the isoforms are almost always less expressed than the FLp53, and here they have to push it 5 to 10 times more expressed than the FLp53 to see the effect which make me fear an artifact effect due to the overwhelming overexpression (which even seems to change the normal localization of the protein).
To visualize the endogenous proteins, they will have to change cell line as the H1299 they used are p53 null.
Significance
Overall, the paper is interesting particularly considering the range of techniques used which is the main strength. The main limitation to me is the lack of contradictory discussion as all argumentation presents Δ133p53α and Δ160p53α exclusively as oncogenic and strictly FLp53 dominant-negative when, particularly for Δ133p53α, a quite extensive literature suggests a not so clear-cut activity.
The aggregation mechanism is reported for the first time for Δ133p53α and Δ160p53α, although it was already published for Δ40p53α, Δ133p53β or in mutant p53.
This manuscript would be a good basic research addition to the p53 field to provide insight in the mechanism for some activities of some p53 isoforms.
My field of expertise is the p53 isoforms which I have been working on for 11 years in cancer and neuro-degenerative diseases
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Authors has provided a mechanism by which how presence of truncated P53 can inactivate function of full length P53 protein. Authors proposed this happens by sequestration of full length P53 by truncated P53.
In the study, performed experiments are well described.
My area of expertise is molecular biology/gene expression, and I have tried to provide suggestions on my area of expertise. The study has been done mainly with overexpression system and I have included few comments which I can think can be helpful to understand effect of truncated P53 on endogenous wild type full length protein. Performing experiments on these lines will add value to the observation according to this reviewer.
Major comments:
- What happens to endogenous wild type full length P53 in the context of mutant/truncated isoforms, that is not clear. Using a P53 antibody which can detect endogenous wild type P53, can authors check if endogenous full length P53 protein is also aggregated as well? It is hard to differentiate if aggregation of full length P53 happens only in overexpression scenario, where lot more both of such proteins are expressed. In normal physiological condition P53 expression is usually low, tightly controlled and its expression get induced in altered cellular condition such as during DNA damage. So, it is important to understand the physiological relevance of such aggregation, which could be possible if authors could investigate effect on endogenous full length P53 following overexpression of mutant isoforms.
- Can presence of mutant P53 isoforms can cause functional impairment of wild type full length endogenous P53? That could be tested as well using similar ChIP assay authors has performed, but instead of antibody against the Tagged protein if the authors could check endogenous P53 enrichment in the gene promoter such as P21 following overexpression of mutant isoforms. May be introducing a condition such as DNA damage in such experiment might help where endogenous P53 is induced and more prone to bind to P53 target such as P21.
- On similar lines, authors described: "To test this hypothesis, we escalated the ratio of FLp53 to isoforms to 1:10. As expected, the activity of all four promoters decreased significantly at this ratio (Figure 4A-D). Notably, Δ160p53 showed a more potent inhibitory effect than Δ133p53 at the 1:5 ratio on all promoters except for the p21 promoter, where their impacts were similar (Figure 4E-H). However, at the 1:10 ratio, Δ133p53 and Δ160p53 had similar effects on all transactivation except for the MDM2 promoter (Figure 4E-H)." Again, in such assay authors used ratio 1:5 to 1:10 full length vs mutant. How authors justify this result in context (which is more relevant context) where one allele is Wild type (functional P53) and another allele is mutated (truncated, can induce aggregation). In this case one would except 1:1 ratio of full-length vs mutant protein, unless other regulation is going which induces expression of mutant isoforms more than wild type full length protein. Probably discussing on these lines might provide more physiological relevance to the observed data.
- Finally does this altered function of full length P53 (preferably endogenous one) in presence of truncated P53 has any phenotypic consequence on the cells (if authors choose a cell type which is having wild type functional P53). Doing assay such as apoptosis/cell cycle could help us to get this visualization.
Referees cross-commenting
I think the comments from the other reviewers are very much reasonable and logical. Especially all 3 reviewers have indicated, a better way to visualize the aggregation of full-length wild type P53 by truncated P53 (such as looking at endogenous P53# by reviewer 1, having fluorescent tag #by reviewer 2 and reviewer 3 raised concern on the FLAG tag) would add more value to the observation.
Significance
The work in significant, since it points out more mechanistic insight how wild type full length P53 could be inactivated in the presence of truncated isoforms, this might offer new opportunity to recover P53 function as treatment strategies against cancer.
-
-
martinfowler.com martinfowler.com
-
In many of these cases a tag is sufficient most of the time, and branch only opened if there's some essential change required to the source.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Wang et al. generate XAP5 and XAP5L knockout mice and find that they are male infertile due to spermatogonial/meiotic arrest and reduced sperm motility, respectively. CUT & Tag data were added in this revision in order to support that XAP5 and XAP5L are antagonistic transcription factors of cilliogenesis.
Strengths:
Knockout mouse models provided strong evidence to indicate that XAP5 and XAP5L are critical for spermatogenesis. RNA-seq and CUT & Tag are valuable sources to further explore their molecular mechanisms.
Weaknesses:
The authors claim that XAP5 and XAP5L transcriptionally regulate sperm flagella development; however, expression, physiological role, and molecular evidence do not well support this concept. This reviewer still thinks the physiological roles of XAP5 and XAP5l are different. (i) XAP5 is expressed at spermatogonia within testes while XAP5l is localized at round/elongating spermatids (their expressions are different). (ii) Spermatogenesis was arrested at spermatogonia/early spermatocyte stage in Xap5-KO mice while sperm abnormalities were observed in Xap5l-KO mice (their roles are different). This reviewer still can't get the authors' viewpoint that XAP5 and XAP5l are 'antagonistic relationship' to regulate sperm flagella development. RNA-seq and CUT & Tag data are valuable source; however, this reviewer suggests exploring how XAP5 regulates spermatogonia differentiation and how XAP5l regulates sperm flagella motility.
-
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
Wang et al. generate XAP5 and XAP5L knockout mice and find that they are male infertile due to meiotic arrest and reduced sperm motility, respectively. RNA-Seq was subsequently performed and the authors concluded that XAP5 and XAP5L are antagonistic transcription factors of cilliogenesis (in XAP5-KO P16 testis: 554 genes were unregulated and 1587 genes were downregulated; in XAP5L-KO sperm: 2093 genes were unregulated and 267 genes were downregulated).
We are grateful for the comprehensive summary.
Strengths:
Knockout mouse models provided strong evidence to indicate that XAP5 and XAP5L are critical for spermatogenesis and male fertility.
Thank you for your positive comment.
Weaknesses:
The key conclusions are not supported by evidence. First, the authors claim that XAP5 and XAP5L transcriptionally regulate sperm flagella development; however, detailed molecular experiments related to transcription regulation are lacking. How do XAP5 and XAP5L regulate their targets? Only RNA-Seq is not enough. Second, the authors declare that XAP5 and XAP5L are antagonistic transcription factors; however, how do XAP5 and XAP5L regulate sperm flagella development antagonistically? Only RNA-Seq is not enough. Third, I am concerned about whether XAP5 really regulates sperm flagella development. XAP5 is specifically expressed in spermatogonia and XAP5-cKO mice are in meiotic arrest, indicating that XAP5 regulates meiosis rather than sperm flagella development.
Thank you for the critical comments. To strengthen our conclusions, we have included XAP5/XAP5L CUT&Tag data in our revised manuscript. This highly sensitive method has allowed us to identify direct target genes of XAP5 and XAP5L (Table S1, Figure S6). Notably, our results demonstrate that both FOXJ1 and RFX2 are occupied by XAP5 (Figure 4G). Additionally, real-time PCR validation confirmed that RFX2 is also associated with XAP5L, even though enriched peaks for the RFX2 gene were not detected in the initial CUT&Tag data (Figure 4G). These findings indicate that XAP5 and XAP5L regulate the expression of FOXJ1 and RFX2 by directly binding to these genes. De novo motif analyses revealed that XAP5 and XAP5L shared a conserved binding sequence (CCCCGCCC/GGGCGGGG) (Figure S6C), and the bound regions of FOXJ1 and RFX2 contain this sequence. Further analysis shows that many XAP5L target genes are also targets of XAP5 (Figure S6G), despite the limited number of identified XAP5L target genes. This differential binding and regulation of shared target genes underscore the antagonistic relationship between XAP5 and XAP5L. Collectively, these findings provide additional support for the idea that XAP5 and XAP5L function as antagonistic transcription factors, acting upstream of transcription factor families, including FOXJ1 and RFX factors, to coordinate ciliogenesis during spermatogenesis.
While we agree that XAP5 primarily regulates meiosis during spermatogenesis, our data also indicate that many cilia-related genes, including key transcription regulators of spermiogenesis such as RFX2 and SOX30, are downregulated in XAP5-cKO mice and are bound by XAP5 (Figure 4, Figures S4 and S6). It is important to note that genes coding for flagella components are expressed sequentially and in a germ cell-specific manner during development. When we refer to "regulating sperm flagella development", we mean the spatiotemporal regulation. We have revised the manuscript to clarify this point.
Reviewer #2 (Public Review):
In this study, Wang et al., report the significance of XAP5L and XAP5 in spermatogenesis, involved in transcriptional regulation of the ciliary gene in testes. In previous studies, the authors demonstrate that XAP5 is a transcription factor required for flagellar assembly in Chlamydomonas. Continuing from their previous study, the authors examine the conserved role of the XAP5 and XAP5L, which are the orthologue pair in mammals.
XAP5 and XAP5L express ubiquitously and testis specifically, respectively, and their absence in the testes causes male infertility with defective spermatogenesis. Interestingly, XAP5 deficiency arrests germ cell development at the pachytene stage, whereas XAP5L absence causes impaired flagellar formation. RNA-seq analyses demonstrated that XAP5 deficiency suppresses ciliary gene expression including Foxj1 and Rfx family genes in early testis. By contrast, XAP5L deficiency abnormally remains Foxj1 and Rfx genes in mature sperm. From the results, the authors conclude that XAP5 and XAP5L are the antagonistic transcription factors that function upstream of Foxj1 and Rfx family genes.
This reviewer thinks the overall experiments are performed well and that the manuscript is clear. However, the current results do not directly support the authors' conclusion. For example, the transcriptional function of XAP5 and XAP5L requires more evidence. In addition, this reviewer wonders about the conserved XAP5 function of ciliary/flagellar gene transcription in mammals - the gene is ubiquitously expressed despite its functional importance in flagellar assembly in Chlamydomonas. Thus, this reviewer thinks authors are required to show more direct evidence to clearly support their conclusion with more descriptions of its role in ciliary/flagellar assembly.
Thank you for your thoughtful review of our work. We appreciate your positive feedback on the overall quality of the experiments and the clarity of the manuscript. In response to your concerns, we have included new experimental data and made revisions to the manuscript (lines 193-217) to better support our conclusions, particularly regarding the transcriptional function of XAP5 and XAP5L. Additionally, we have expanded on the role of XAP5 in ciliary and flagellar assembly to provide more direct evidence for its functional importance. Thank you for your insights.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
The title (Control of ciliary transcriptional programs during spermatogenesis by antagonistic transcription factors) is not specific and does tend to exaggerate.
Thank you for the comment, and we appreciate the opportunity to clarify the appropriateness of the title. Our paper extensively investigates the transcriptional regulation of ciliary genes during spermatogenesis. It demonstrates that XAP5/XAP5L are key transcription factors involved in this process. The title reflects our primary focus on the transcriptional programs that govern ciliary gene expression. Moreover, our paper shows that XAP5 positively regulates the expression of ciliary genes, particularly during the early stages of spermatogenesis, while XAP5L negatively regulates these genes. This antagonistic relationship is a crucial aspect of the study and is effectively conveyed in the title. In addition, our revised paper provides detailed insights into how XAP5/XAP5L control ciliary gene expression during spermatogenesis.
Figure 4C: FOXJ1 and RFX2 are absent in sperm from WT mice. Are you sure? They are highly expressed in WT testes.
Thank you for your careful review. While FOXJ1 and RFX2 are indeed highly expressed in the testes of wild-type (WT) mice, our data show that they are not detectable in mature sperm. This observation is consistent with published single-cell RNA-seq data(Jung et al., 2019), which indicate that FOXJ1 and RFX2 are primarily expressed in spermatocytes but not in spermatids (Figure S7). This expression pattern aligns with that that of IFT-particle proteins, which are essential for the formation but not the maintenance of mammalian sperm flagella(San Agustin, Pazour, & Witman, 2015).
XAP5 is specifically expressed in spermatogonia and XAP5-cKO mice are in meiotic arrest, indicating that XAP5 regulates meiosis rather than sperm flagella development.
We appreciate your insightful comments. As mentioned above, we agree that XAP5 primarily regulates meiosis during spermatogenesis. When we mentioned "regulating sperm flagella development," we were referring to the spatiotemporal regulation of these processes. We have revised the manuscript to clarify this distinction. Thank you for your understanding.
The title of Figure 2 (XAP5L is required for normal sperm formation) is not accurate because the progress of spermatogenesis and sperm count is normal in XAP5L-KO mice (only sperm motility is reduced).
We apologize for any confusion caused by the previous figure. It did not accurately convey the changes in sperm count. In the revised Figure 2B, we clearly demonstrate that the sperm count in XAP5L-KO mice is indeed lower than that in WT mice. This revision aims to provide a more accurate representation of the effects of XAP5L deficiency on spermatogenesis. Thank you for bringing this to our attention.
Reviewer #2 (Recommendations For The Authors):
(1) Although XAP5 and XAP5L deficiency alters the transcription of Foxj1 and Rfx family genes, which are the essential transcription factors for the ciliogenesis, current data do not directly support that XAP5 and XAP5L are the upstream transcription factors. The authors need to show more direct evidence such as CHIP-Seq data.
Thank you for your valuable feedback! In this revised manuscript, we have included data identifying candidate direct targets of XAP5 and XAP5L using the highly sensitive CUT&Tag method (Kaya-Okur et al., 2019). Our results show that XAP5 occupies both FOXJ1 and RFX2 (Figure 4G). Furthermore, real-time PCR validation of the CUT&Tag experiments confirmed that RFX2 is also occupied by XAP5L (Figure 4G), despite the initial CUT&Tag data not revealing enriched peaks for the RFX2 gene (Table S1). Unfortunately, the limited number of enriched peaks identified for XAP5L (Table S1) suggests that the XAP5L antibody used in the CUT&Tag experiment might have suboptimal performance, which prevented us from detecting occupancy on the FOXJ1 promoter. Nevertheless, these additional data provide strong evidence that XAP5 and XAP5L function as upstream transcription factors for FOXJ1 and RFX family genes, supporting their essential roles in ciliogenesis.
(2) Shared transcripts that are altered by the absence of either XAP5 or XAP5L do not clearly support they are antagonistic transcription factors.
Thank you for your insightful comment. In our revised manuscript, we performed CUT&Tag analysis to identify target genes of XAP5 and XAP5L. Motif enrichment analysis revealed conserved binding sequences for both factors (Figures S6C), indicating a subset of shared downstream genes between XAP5 and XAP5L. Among the downregulated genes in XAP5 cKO germ cells, 891 genes were bound by XAP5 (Figure S6D). Although the number of enriched peaks identified for XAP5L was limited, 75 of the upregulated genes in XAP5L KO sperm were bound by XAP5L (Figure S6E). Importantly, of these 75 XAP5L target genes, approximately 30% (22 genes) were also identified as targets of XAP5 (Figure S6G), further support the idea that XAP5 and XAP5L function as antagonistic transcription factors.
(3) XAP5 seems to be an ancient transcription factor for cilia and flagellar assembly. However, XAP5 expresses ubiquitously in mice. How can this discrepancy be explained? Is it also required for primary cilia assembly? Are their expression also directly linked to ciliogenesis in other types of cells?
Thank you for the thoughtful questions. The ubiquitous expression of XAP5 in mice can be understood in light of its role as an ancient transcription factor for cilia and flagellar assembly. Given that cilia are present on nearly every cell type in the mammalian body (O'Connor et al., 2013), this broad expression pattern makes sense. In fact, XAP5 serves not only as a master regulator of ciliogenesis but also as a critical regulator of various developmental processes (Kim et al., 2018; Lee et al., 2020; Xie et al., 2023).
Our current unpublished work demonstrates that XAP5 is essential for primary cilia assembly in different cell lines. The loss of XAP5 protein results in abnormal ciliogenesis, further supporting its vital role in ciliary formation across different cell types.
We believe that the widespread expression of XAP5 reflects its fundamental importance in multiple cellular processes, including ciliogenesis, development, and potentially other cellular functions yet to be discovered.
(4) XAP5L causes impairs flagellar assembly. Have the authors observed any other physiological defects in the absence of XAP5L in mouse models? Such as hydrocephalus and/or tracheal defects?
Thank you for the questions. We have carefully examined XAP5L KO mice for other physiological defects. To date, we have not observed any additional physiological abnormalities. Specifically, we assessed the condition of tracheal cilia in XAP5L KO mice and found no significant differences compared to wild-type (WT) mice, as illustrated in Author response image 1 below.
Author response image 1.
References
Jung, M., Wells, D., Rusch, J., Ahmad, S., Marchini, J., Myers, S. R., & Conrad, D. F. (2019). Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. Elife, 8. doi:10.7554/eLife.43966
Kaya-Okur, H. S., Wu, S. J., Codomo, C. A., Pledger, E. S., Bryson, T. D., Henikoff, J. G., . . . Henikoff, S. (2019). CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun, 10(1), 1930. doi:10.1038/s41467-019-09982-5
Kim, Y., Hur, S. W., Jeong, B. C., Oh, S. H., Hwang, Y. C., Kim, S. H., & Koh, J. T. (2018). The Fam50a positively regulates ameloblast differentiation via interacting with Runx2. J Cell Physiol, 233(2), 1512-1522. doi:10.1002/jcp.26038
Lee, Y.-R., Khan, K., Armfield-Uhas, K., Srikanth, S., Thompson, N. A., Pardo, M., . . . Schwartz, C. E. (2020). Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nature Communications, 11(1). doi:10.1038/s41467-020-17452-6
O'Connor, A. K., Malarkey, E. B., Berbari, N. F., Croyle, M. J., Haycraft, C. J., Bell, P. D., . . . Yoder, B. K. (2013). An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia, 2(1), 8. doi:10.1186/2046-2530-2-8
San Agustin, J. T., Pazour, G. J., & Witman, G. B. (2015). Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell, 26(24), 4358-4372. doi:10.1091/mbc.E15-08-0578
Xie, X., Li, L., Tao, S., Chen, M., Fei, L., Yang, Q., . . . Chen, L. (2023). Proto-Oncogene FAM50A Can Regulate the Immune Microenvironment and Development of Hepatocellular Carcinoma In Vitro and In Vivo. Int J Mol Sci, 24(4). doi:10.3390/ijms24043217
-
- Feb 2025
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary
In the first part of the manuscript the authors present a thorough description of the background and theoretical basis to the identification of a fluorescent pair that permits both FCS and FCCS measurements at the single cell level to enable the determination of Kd values between labelled protein pairs (Figures 1 and 2). The generation of the reagents and subsequent experimental details are thorough and would permit the experiments to be repeated. The first two sections are well argued and appropriately controlled.
They then tag the endogenous S. pombe cdk1 and cdc13 genes at their 3' ends with sequences that encode miRFP670 (a near infrared fluorescent protein) and mNG (mNeonGreen) respectively and from measurements collected on 13 cells derive a mean Kd value calculated for each of the 13 cells of 0.31{plus minus}0.22 μM. They note that this value agrees with that reported by the Pines lab following labelling of cyclin B1 and CDK1 with genome editing in RPE-1/hTERT cells.
The final part of the manuscript then extends the technique to a pair-wise analysis of 9 cyclins and 4 CDKs in a human cell line.
Major Comments
(i) Materials and Methods: Page 10 "The fitting process was constrained by initial estimates and bounded by physically reasonable limits." Please define physically reasonable limits"
(ii) For the characterisation of the cell cycle dependent expression of Cdc13 and its association with Cdc2, the level of Cdc13 expression is used to identify cell cycle stage. It would be appropriate to have an independent measure of cell cycle stage (?cell length). In using Cdc13 to identify cell cycle stage, please define the criteria used ie what level of Cdc13-mNG fluorescence intensity was used to define G1 vs S vs G2?
(iii) Include a control experiment to compare the level of Cdc13 expression in untagged wild-type cells vs the Cdc13-mNG, CDK1- miRFP670 expressing cells to confirm that tagging does not affect Cdc13 expression, cell cycle duration or Cdc13 function.
(iv). Could the authors consider exploiting the tractability of yeast cells to block and release and/or genetic means to establish synchronous populations to improve data acquisition? This approach could also be employed to assess whether CDK1-cyclin B1 affinity changes with cell cycle stage (as was shown by Pines et al in RPE-1 cells) and would demonstrate that their approach is as equally suitable to sensitively distinguish CDK-cyclin pairs in yeast cells.
Minor points
(i) Figure 1. Panels C, F, G and H. Please improve color palette to distinguish the overlapping traces. It might be helpful to remove the edge grey and broaden the color spectrum for visual inclusion (eg straw/blue vs green/red). Could the statement "As expected, mNG exhibited tolerance to the photobleaching when excited at low laser power (< 5%) (Fig. 1C)." be supported by additional labelling on the figure panel.
The manuscript then goes on to describe the measurement of Kds for 36 CDK-cyclin pairs in HeLa cells by overexpression of labelled CDKs and cyclins following transient overexpression by plasmid co-transfection. This last section of the manuscript requires significant revision.
Major points
(i) In analysing the data, the model assumes that the monomeric CDK and cyclin subunits are either bound to form a binary complex or not. Can the authors discuss whether this can be presumed to be the case when they present the results. Either the labelled proteins are overexpressed to such a level that it can be presumed in the data handling that they are behaving as monomeric proteins and the resulting derived Kds reflect binary CDK-cyclin interactions. However, within the cell, the situation is more complex, and both CDKs and cyclins will mostly likely (and dependent on identity) be variably associated with multiple alternative protein partners. Can such effects be discounted in the analysis presented here and what would be the experimental grounds to do so. The authors make note of this fact in the discussion when they note that the results presented in this manuscript differ by circa an order of magnitude for the CDK1-cyclin B1 pairing reported by Pines et al using endogenously labelled proteins. They suggest that the discrepancy might result in part from competition from endogenously unlabelled proteins. This discrepancy has to be addressed.
(ii) Please provide the confidence interval for the data fit for each CDK-cyclin pair. In panel Figure 4I, the results are represented as a heat map to define the Kd for each CDK-cyclin pair. This panel suggests that the technique can sensitively distinguish alternative CDK-cyclin complexes where their Kd values differ in 1 uM increments. The heat map is presented with block colours, but the key to the color coding is a graded color scheme and it is not possible to move between the two. This disconnect has to be addressed. The accompanying text on pages 18 and 19 is a qualitative description of the results, a comparative and quantitative analysis of the data (Kd values with accompanying confidence intervals) has to be included to justify the apparent strength of the technique to discriminate different CDK-cyclin pairs that Figure 4 implies.
(iii) For "low affinity" interactions that are determined to be >10 uM. Please define how this value was calculated. Would it be more appropriate to say a value could not be determined as the data could not be fitted?
(iv) Previous work from the Pines lab using FCS and FCCS to measure the binding of CDK1 to cyclin B1 in RPE-1 cells reported not only a higher affinity for the pair but also that their apparent affinity was dependent on cell cycle stage suggesting that their assembly might be multi-stepped. Both affinity and cell cycle dependency of CDK-cyclin pairings are of great interest to scientists working in the cell cycle field. It could be argued that measurements of the affinities of multiple CDK-cyclin pairs each "averaged out" over the cell cycle will have less impact on the field than a few well-chosen CDK-cyclin pairs characterised in greater depth.
Minor Points
(i) For both Figures 3 and 4 address red/green color pair choice.
Referee cross-commenting
I would like to thank the other reviewer for their comments about requirements and possible control experiments for the use of the fluorescent probes.
We agree that the use of tagged proteins overexpressed in cells to measure Kd values has significant limitations:
(i) Competition between tagged and endogenous proteins
(ii) Limiting factors that affect CDK-cyclin complex stability (PTMs and contributions from binding and assembly factors mentioned).
(iii) Cell cycle dependent protein expression
Points (ii) and (iii) are not applicable to all protein-protein pairs but are significant when trying to determine CDK-cyclin affinities.
Ideally it would be demonstrated that this approach can return the established values for a limited subset of CDK-cyclin pairs in mammalian cells and so extrapolate the results from yeast cells where endogenous labelling was carried out.
We also have shared concerns about the data presentation in Figure 4.
Significance
Technology: The paper describes a technical advance in identifying a fluorescent probe pair suitable for FCCS in living cells.
Cell cycle: The ability of CDKs and cyclins to discriminate each other and pair to form complexes that characterise different cell cycle stages and drive progression has long been appreciated. The formation of non-cognate pairings when the cell cycle is perturbed has also been noted and a greater understanding of the in-cell affinities of all possible CDK-cyclin complexes would be a significant advance in our understanding. However, this manuscript currently does not (i) provide statistically validated measures of apparent differences in affinity between different CDK-cyclin pairs and (ii) address whether the measurements are cell cycle dependent. (iii) Interpretation of the results has to take into consideration that both the CDK and cyclin components are transiently over expressed in cells and therefore the values that are measured are difficult to interpret in terms of CDK and cyclin function. These considerations would dampen interest in the findings by cell cycle biologists.
Expertise: CDKs, cyclin, cell cycle biology.
Non-expert in technical aspects of fluorescence microscopy
-
-
redesign-tstc-multisite.pantheonsite.io redesign-tstc-multisite.pantheonsite.io
-
stories.
Missing tag on the first story.
-
-
www.sciencedirect.com www.sciencedirect.com
-
RRID:AB_915783
DOI: 10.1016/j.xcrm.2025.101943
Resource: (Cell Signaling Technology Cat# 4691, RRID:AB_915783)
Curator: @scibot
SciCrunch record: RRID:AB_915783
-
-
www.reddit.com www.reddit.com
-
This suffers from a sufficient formalisation of the concept of "similarity". Everything is either so similar that characterisation as "identical", similar or different or very different, depending on the frame of reference. By pointing out some resemblense, you cannot make a justified judgement about the similarity or difference of anything. I would suggest that Luhmann didn't write more about his method himself because it would have been generally fruitless for him as everyone around him was doing exactly the same thing. I asked ca. two dozen professors at the very university about their method (btw. at the very university that Luhmann was a professor at). NONE had anything remotely resembling a Luhmann-Zettelkasten. During his lifetime there was quite some interest in his Zettelkasten, hence the visitors, hence the disappointment of the visitors (people made an effort to review his Zettelkasten): (9/8,3) Geist im Kasten? Zuschauer kommen. Sie bekommen alles zu sehen, und nichts als das – wie beim Pornofilm. Und entsprechend ist die Enttäuschung. - From his own Zettelkasten So: The statement that his practice was basically common place (or even a common place book) is not based on sound reasoning (sufficiently precise in the use of the concept "similarity") There is empirical evidence that it was very uncommon. (Which is obvious if you think about the his theoretical reasoning about his Zettelkasten as heavily informed by the very systems theory that he developed. So, a reasoning unique to him)
Reply to u/FastSascha at https://old.reddit.com/r/Zettelkasten/comments/1ilvvnc/you_need_to_first_define_the_zettlekasten_methoda/mc01tsr/
The primary and really only "innovation" for Luhmann's system was his numbering and filing scheme (which he most likely borrowed and adapted from prior sources). His particular scheme only serves to provide specific addresses for finding his notes. Regardless of doing this explicitly, everyone's notes have a physical address and can be cross referenced or linked in any variety of ways. In John Locke's commonplacing method of 1685/1706 he provided an alternate (but equivalent method) of addressing and allowing the finding of notes. Whether you address them specifically or not doesn't change their shape, only the speed by which they may be found. This may shift an affordance of using such a system, but it is invariant from the form of the system. What I'm saying is that the form and shape of Luhmann's notes is identical to the huge swath of prior art within intellectual history. He was not doing something astoundingly new or different. By analogy he was making the same Acheulean hand axe everyone else was making; it's not as if he figured out a way to lash his axe to a stick and then subsequently threw it to invent the spear.
When I say the method was commonplace at the time, I mean that a broad variety of people used it for similar reasons, for similar outputs, and in incredibly similar methods. You can find a large number of treatises on how to do these methods over time and space, see a variety of examples I've collected in Zotero which I've mentioned several times in the past. Perhaps other German professors weren't using the method(s) as they were slowly dying out over the latter half of the 20th century with the rise and ultimate ubiquity of computers which replaced many of these methods. I'll bet that if probed more deeply they were all doing something and the something they were doing (likely less efficiently and involving less physically evident means) could be seen to be equivalent to Luhmann's.
This also doesn't mean that these methods weren't actively used in a variety of equivalent forms by people as diverse as Aristotle, Cicero, Quintilian, Seneca, Boethius, Thomas Aquinas, Desiderius Erasmus, Rodolphus Agricola, Philip Melancthon, Konrad Gessner, John Locke, Carl Linnaeus, Thomas Harrison, Vincentius Placcius, Gottfried Wilhelm Leibniz, S. D. Goitein, Gotthard Deutsch, Beatrice Webb, Sir James Murray, Marcel Mauss, Claude Lévi-Strauss, Mortimer J. Adler, Niklas Luhmann, Roland Barthes, Umberto Eco, Jacques Barzun, Vladimir Nabokov, George Carlin, Twyla Tharp, Gertrud Bauer, and even Eminem to name but a few better known examples. If you need additional examples to look at, try searching my Hypothesis account for tag:"zettelkasten examples". Take a look at their examples and come back to me and tell me that beyond the idiosyncrasies of their individual use that they weren't all doing the same thing in roughly the same ways and for roughly the same purposes. While the modalities (digital or analog) and substrates (notebooks, slips, pen, pencil, electrons on silicon, other) may have differed, the thing they were doing and the forms it took are all equivalent.
Beyond this, the only thing really unique about Luhmann's notes were that he made them on subjects that he had an interest, the same way that your notes are different from mine. But broadly speaking, they all have the same sort of form, function, and general topology.
If these general methods were so uncommon, how is it that all the manuals on note taking are all so incredibly similar in their prescriptions? How is it that Marbach can do an exhibition in 2013 featuring 6 different zettelkasten, all ostensibly different, but all very much the same?
Perhaps the easier way to see it all is to call them indexed databases. Yours touches on your fiction, exercise, and nutrition; Luhmann's focuses on sociology and systems theory; mine looks at intellectual history, information theory, evolution, and mathematics; W. K. Kellogg's 640 drawer system in 1906 focused on manufacturing, distributing and selling Corn Flakes; Jonathan Edwards' focused on Christianity. They all have different contents, but at the end of the day, they're just indexed databases with the same forms and functionalities. Their time periods, modalities, substrates, and efficiencies have differed, but at their core they're all far more similar in structure than they are different.
Perhaps one day, I'll write a deeper treatise with specific definitions and clearer arguments laying out the entire thing, but in the erstwhile, anyone saying that Luhmann's instantiation is somehow more unique than all the others beyond the meaning expressed by Antoine de Saint-Exupéry in The Little Prince is fooling themselves. Instead, I suspect that by realizing you're part of a longer, tried-and-true tradition, your own practice will be far easier and more useful.
The simplicity of the system (or these multiply-named methods) allows for the rise of a tremendous amount of complexity. This resultant complexity can in turn hide the simplicity of the root system.
“To me, you are still nothing more than a little boy who is just like a hundred thousand other little boys. And I have no need of you. And you, on your part, have no need of me. To you, I am nothing more than a fox like a hundred thousand other foxes. But if you tame me, then we shall need each other. To me, you will be unique in all the world. To you, I shall be unique in all the world..."
I can only hope people choose to tame more than Luhmann.
-
Explain your definition of hierarchical reference system. How is one note in his system higher, better, or more important than another? Where do you see hierarchies? Lets say Luhmann were doing something on bread. First off he has 3 notes and these end up sequenced 1,2,3. Then he does the equivelent of a block link on 1 by creating 1a=banana bread, 1b=flour bread. A good discussion (https://yannherklotz.com/zettelkasten/) If there weren't direct mappings, it should be impossible to copy & paste Luhmann's notes into Obsidian, Logseq, OneNote, Evernote, Excel, or even Wikipedia. That's not true at all. One can dump from one structure into another structure you just potentially lose structure in the mapping. Those systems don't have similar capabilities. Obsidian has folders Logseq does not. Logseq has block level linking Obsidian does not. I can't even reliable map between the first two elements of your list. Now we throw in OneNote that directly takes OLE embeds which means information linked can dynamically change after being embedded. That is say I'm tracking "current BLS inflation data" it will remain permanently current in my note. Neither Obsidian nor Logseq support that. Etc.. Excel, OneNote and Logseq allow for computations in the note (i.e. the note can contain information not directly entered) Obsidian and Wikipedia do not. We might argue about efficiencies, affordances, or speed, but at the end of the day they're all still structurally similar. We are totally disagreeing here. The OLE example being the clearest cut example.
reply to u/JeffB1517 at https://old.reddit.com/r/Zettelkasten/comments/1ilvvnc/you_need_to_first_define_the_zettlekasten_methoda/mc1y4oj/
I'm not new here: https://boffosocko.com/research/zettelkasten-commonplace-books-and-note-taking-collection/
You example of a hierarchy was not a definition. In practice Luhmann eschewed hierarchies, though one could easily modify his system to create them. This has been covered ad nauseam here in conversations on top-down and bottom-up thinking.
When "dumping" from one program to another, one can almost always easily get around a variety of affordances supplied by one and not another simply by adding additional data, text, references, links, etc. As an example, my paper system can do Logseq's block level linking by simply writing a card address down and specifying word 7, sentence 3, paragraph 4, etc. One can also do this in Obsidian in a variety of other technical means and syntaxes including embedding notes. Block level linking is a nice affordance when available but can be handled in a variety of different (and structurally similar) ways. Books as a technology have been doing block level linking for centuries; in that context it's called footnotes. In more specialized and frequently referenced settings like scholarship on Plato there is Stephanus pagination or chapter and verse numberings in biblical studies. Roam and Logseq aren't really innovating here.
Similarly your OLE example is a clever and useful affordance, but could be gotten around by providing an equation that is carried out by hand and done each time it's needed---sure it may take more time, but it's doable in every system. This may actually be useful in some contexts as then one would have the time sequences captured and logged in their files for later analysis and display. These affordances are things which may make things easier and simpler in some cases, but they generally don't change the root structure of what is happening. Digital search is an example of a great affordance, except in cases when it returns thousands of hits which then need to be subsequentlly searched. Short indexing methods with pen and paper can be done more quickly in some cases to do the same search because one's notes can provide a lot of other contextual clues (colored cards, wear on cards, physical location of cards, etc.) that a pure digital search does not. I often can do manual searches through 30,000 index cards more quickly and accurately than I can through an equivalent number of digital notes.
There is a structural equivalence between folders and tags/links in many programs. This is more easily seen in digital contexts where a folder can be programatically generated by executing a search on a string or tag which then results in a "folder" of results. These searches are a quick affordance versus actively maintaining explicit folders otherwise, but the same result could be had even in pen and paper contexts with careful indexing and manual searches (which may just take longer, but it doesn't mean that they can't be done.) Edge-notched cards were heavily used in the mid-20th century to great effect for doing these sorts of searches.
When people here are asking or talking about a variety of note taking programs, the answer almost always boils down to which one you like best because, in large part, a zettlkasten can be implemented in all of them. Some may just take more work and effort or provide fewer shortcuts or affordances.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
Summary:
The mechanisms by which short-term isolation influences the brain to promote social behavior remain poorly understood. The authors observed that acute isolation enhanced social behaviors, including increased investigation, mounting, and ultrasonic vocalizations (USVs). These effects were evident in same-sex interactions among females and in male-female interactions. Concurrently, cFos expression in the preoptic area (POA) of the hypothalamus was selectively elevated in single-housed females. To further investigate, the authors used an innovative tagging strategy (TRAP2) to manipulate these neurons. Overall, the study identifies a population of hypothalamic neurons that promote various aspects of social behavior after short-term isolation, with effects that are sex- and context-dependent.
Strengths:
Understanding the neural circuit mechanisms underlying acute social isolation is an important and timely topic. By employing state-of-the-art techniques to tag neurons active during specific behavioral epochs, the authors identified the preoptic area (POA) as a key locus mediating the effects of social isolation. The experimental design is sound, and the data are of high quality. Notably, the control experiments, which show that chemogenetic inactivation of other hypothalamic regions (AH and VMH) does not affect social behavior, strongly support the specificity of the POA's role within the hypothalamus. Through a combination of behavioral assays, activity-dependent neural tagging, and circuit manipulation techniques, the authors provide compelling evidence for the POA's involvement in behaviors following social isolation. These findings represent a valuable contribution to understanding how hypothalamic circuits adapt to the challenges of social isolation.
Weaknesses:
The authors conducted several circuit perturbation experiments, including chemogenetics, ablation, and optogenetics, to investigate the effects of POA-social neurons. They observed that the outcomes of these manipulations varied depending on whether the intervention was chronic (e.g., ablations) or acute (e.g., DREADDs), potentially due to compensatory mechanisms in other brain regions. Furthermore, their additional experiments revealed that the robustness of the manipulations was influenced by the heterozygosity or homozygosity of TRAP2 animals. While these findings suggest that POA neurons contribute to multiple behavioral responses to social isolation, further experiments are needed to clarify their precise roles.
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
The model of phosphotransfer from Y169 IKK to S32 IkBa is compelling and an important new contribution to the field. In fact, this model will not be without controversy, and publishing the work will catalyze follow-up studies for this kinase and others as well. As such, I am supportive of this paper, though I do also suggest some shortening and modification.
We appreciate the reviewers candid response on the difficulty of this study and the requirement of follow-up studies to confirm a direct transfer of the phosphate. We also have edited the manuscript to make it shorter.
Generally, the paper is well written, but several figures should be quantified, and experimental reproducibility is not always clear. The first 4 figures are slow-going and could be condensed to show the key points, so that the reader gets to Figures 6 and 7 which contain the "meat" of the paper.
We have indicated the experimental reproducibility in the methodology section against each assay. We have shortened the manuscript corresponding to sections describing figures 1-4. However, when we talked to some of our colleagues whose expertise do not align with kinases and IKK, we realized that some description were necessary to introduce them to the next figures. Additionally, we added Fig. S6 indicating that the radiolabelled phospho-IKK2 Y169F is unable to transfer its own phosphate group(s) to the substrate IkBa.
Reviewer #2 (Public Review):
Phosphorylation of IκBα is observed after ATP removal, although there are ambiguous requirements for ADP.
We agree with the reviewer that this observation is puzzling. We hypothesize that ADP is simultaneously regulating the transfer process likely through binding to the active site.
It seems that the analysis hinges on the fidelity of pan-specific phosphotyrosine antibodies.
We agree with the reviewer. To bolster our conclusion, we used antibodies from two different sources. These were Monoclonal mouse anti-Phospho-Tyrosine (catalogue number: 610000) was from BD Biosciences or from EMD Millipore (catalogue no. 05-321X).
The analysis often returns to the notion that tyrosine phosphorylation(s) (and critical active site Lys44) dictate IKK2 substrate specificity, but evidence for this seems diffuse and indirect. This is an especially difficult claim to make with in vitro assays, omitting the context of other cellular specificity determinants (e.g., localization, scaffolding, phosphatases).
We agree with the concerns that the specificity could be dependent on other cellular specificity determinants and toned down our claims where necessary. However, we would like to point out that the specificity of IKK2 towards S32 and S36 of IkBa in cells in response to specific stimuli is well-established. It is also well-established that its non-catalytic scaffolding partner NEMO is critical in selectively bringing IkBa to IKK from a large pool of proteins. The exact mechanism of how IKK2 choose the two serines amongst many others in the substrate is not clear.
Multiple phosphorylated tyrosines in IKK2 were apparently identified by mass spectrometric analyses, but the data and methods are not described. It is common to find non-physiological post-translational modifications in over-expressed proteins from recombinant sources. Are these IKK2 phosphotyrosines evident by MS in IKK2 immunoprecipitated from TNFa-stimulated cells? Identifying IKK2 phosphotyrosine sites from cells would be especially helpful in supporting the proposed model.
Mass spectrometric data for identification of phosphotyrosines from purified IKK2 is now incorporated (Figure S3A). Although we have not analyzed IKK2 from TNF-a treated cells in this study, a different study of phospho-status of cellular IKK2 indicated tyrosine phosphorylation (Meyer et al 2013).
Reviewer #3 (Public Review):
The identity and purity of the used proteins is not clear. Since the findings are so unexpected and potentially of wide-reaching interest - this is a weakness. Similar specific detection of phospho-Ser/Thr vs phospho-Tyr relies largely on antibodies which can have varying degrees of specificity.
We followed a stringent purification protocol of several steps (optimized for the successful crystallization of the IKK2) that removed most impurities (PMID: 23776406, PMID: 39227404). The samples analysed with ESI MS did not show any significant contaminating kinase from the Sf9 cells.
Sequence specific phospho-antibodies used in this study are very well characterized and have been used in the field for years (Basak et al 2007, PMID: 17254973). We agree on the reviewer’s concerns on the pan-specific phospho-antibodies. Since phospho-tyrosine detection is the crucial aspect of this study, we minimized such bias by using pan-specific phosphotyrosine antibodies from two independent sources.
Reviewer #1 (Recommendations For The Authors):
I understand that Figure 3 shows that K44M abolishes both S32/26 phosphorylation and tyrosine phosphorylation, but not PEST region phosphorylation. This suggests that autophosphorylation is reflective of its known specific biological role in signal transduction. But I do not understand why "these results strongly suggest that IKK2-autophosphorylation is critical for its substrate specificity". That statement would be supported by a mutant that no longer autophosphorylates, and as a result shows a loss of substrate specificity, i.e. phosphorylates non-specific residues more strongly. Is that the case? Maybe Darwech et al 2010 or Meyer et al 2013 showed this.
Later figures seem to address this point, so maybe this conclusion should be stated later in the paper.
We have now clarified this in the manuscript and moved the comment to the next section. We have consolidated the results in Figure 3 and 4 in the previous version into a single figure in Figure. The text has also been modified accordingly.
Page 10: mentions DFG+1 without a proper introduction. The Chen et al 2014 paper appears to inform the author's interest in Y169 phosphorylation, or is it just an additional interesting finding? Does this publication belong in the Introduction or the Discussion?
The position of Y169 at the DFG+1 was intriguing and the 2014 article Chen et al further bolstered our interest in this residue to be investigated. We think this publication is important in both sections.
To understand the significance of Figure 4D, we need a WT IKK2 control: or is there prior literature to cite? This is relevant to the conclusion that Y169 phosphorylation is particularly important for S32 phosphorylation.
We have now added a new supplementary figure where activities of WT and Y169F IKK2 towards WT and S32/S36 mutants are compared (Figure S3F). At a similar concentration, the activity of WT-IKK2 is many fold higher than that of YtoF mutants (Fig. 4C). The experiments were performed simultaneously, although samples were loaded on different gels but otherwise processed in a similar way. The corresponding data is now included in the manuscript as Figure S3F.
The cold ATP quenching experiment is nice for testing the model that Y169 functions as a phospho sink that allows for a transfer reaction. However, there is only a single timepoint and condition, which does not allow for a quantitative analysis. Furthermore, a positive control would make this experiment more compelling, and Y169F mutant should show that cold ATP quenching reduces the phosphorylation of IkBa.
We thank the reviewer for appreciating our experimental design, and pointing out the concerns. We kept the ATP-time point as the maximum of the non-competition experiment. Also, we took 50mM ATP to compare its competition with highest concentration of ADP used. The idea behind using the maximum time and ATP (comparable to ADP) was to capture the effect of competitive-effect of ATP, if any, that would be maximal in the given assay condition in comparison with the phospho-transfer set up in absence of cold ATP. We agree that finer ranges of ATP concentration and time points would have enabled more quantitative analyses. We have now included data where different time intervals are tested (Figure S5D).
Why is the EE mutant recognized by anti-phospho-serine antibodies? In Figure 2F.
We anticipate Serine residues besides those in the activation loop to be phosphorylated when IKK2 is overexpressed and purified from the Sf9 cells. Since Glu (E) mimics phospho-Ser, the said antibody cross reacts with the IKK2-EE that mimics IKK2 phosphorylated at Ser177 and 181.
Figure 7B is clear, but 7C does not add much.
We have now removed the Fig. 7C in the current version. Figure 7 is now renumbered as Figure 6 that does not contain the said cartoon.
Reviewer #2 (Recommendations For The Authors):
Regarding the specificity arguments (see above in public review), the authors note that NEMO is very important in IKK specificity, and - if I'm understanding correctly - most of these assays were performed without NEMO. Would the IKK2-NEMO complex change these conclusions?
NEMO is a scaffolding protein whose action goes beyond the activation of the IKK-complex. In cells, NEMO brings IkBa from a pool of thousands of proteins to its bonafide kinase when the cells encounter specific signals. In other words, NEMO channels IKK-activity towards its bonafide substrate IkBa at that moment. Though direct proof is lacking, it is likely that NEMO present IkBa in the correct pose to IKK such that the S32/S36 region of IkBa is poised for phosphorylation. The proposed mechanism in the current study further ensures the specificity and fidelity of that phosphorylation event. We believe this mechanism will be preserved in the IKK-NEMO complex unless proven otherwise. As shown below, IKK2 undergoes tyrosine autophosphorylation in presence of NEMO.
Author response image 1.
The work primarily focuses on Y169 as a candidate target for IKK autophosphorylation. This seems reasonable given the proximity to the ATP gamma phosphate. However, Y188F more potently disrupted IκBα phosphorylation. The authors note that this could be due to folding perturbations, but this caveat would also apply to Y169F. A test for global fold perturbations for both Tyr mutants would be helpful.
Y188 is conserved in S/T kinases and that in PKA (Y204) has been studied extensively using structural, biochemical and biophysical tools. It was found in case of PKA that Y204 participates in packing of the hydrophobic core of the large lobe. Disruption of this core structure by mutation allosterically affect the activity of the kinase. We also observed similar engagement of Y188 in IKK2’s large lobe, and speculated folding perturbations in analogy with the experimental evidence observed in PKA. What we meant was mutation of Y188 would allosterically affect the kinase activity. Y169 on the other hand is unique at that position, an no experimental evidence on the effect of phospho-ablative mutation of this residue exist in the literature. Hence, we refrained from speculating its effect on the folding or conformational allostery, however, such a possibility cannot be ruled out.
I struggled to follow the rationalization of the results of Figure 4D, the series of phosphorylation tests of Y169F against IκBα with combinations of phosphoablative or phosphomimetic variants at Ser32 and Ser36. This experiment is hard to interpret without a direct comparison to WT IKK2.
We agree with the reviewer’s concerns. Through this experiment we wanted to inform about the importance of Tyr-phosphorylation of IKK2 in phosphorylating S32 of IκBα which is of vital importance in NF-kB signaling. We have now provided a comparison with WT-IKK2 in the supplementary Figure S3F. We hope this will help bring more clarity to the issue.
MD simulations were performed to compare structures of unphosphorylated vs. Ser-phosphorylated (p-IKK2) vs. Ser+Tyr-phosphorylated (P-IKK2) forms of IKK2. These simulations were performed without ATP bound, and then a representative pose was subject to ADP or ATP docking. The authors note distortions in the simulated P-IKK2 kinase fold and clashes with ATP docking. Given the high cellular concentration of ATP, it seems more logical to approach the MD with the assumption of nucleotide availability. Most kinase domains are highly dynamic in the absence of substrate. Is it possible that the P-IKK2 poses are a result of simulation in a non-physiological absence of bound ATP? Ultimately, this MD observation is linked to the proposed model where ADP-binding is required for efficient phospho-relay to IκBα. Therefore, this observation warrants scrutiny. Perhaps the authors could follow up with binding experiments to directly test whether P-IKK2 binds ADP and fails to bind ATP.
We thank that reviewer for bringing up this issue. This is an important issue and we must agree that we don’t fully understand it yet. We took more rigorous approach this time where we used three docking programs: ATP and ADP were docked to the kinase structures using LeDock and GOLD followed by rescoring with AutoDock Vina. We found that ATP is highly unfavourable to P-IKK2 compared to ADP. To further address these issues, we performed detailed MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) analyses after MD-simulation to estimate binding free energies and affinities of ADP and ATP for each of the three differently phosphorylated states of IKK2. These analyses (Figure S4 E and F) clearly indicate that phosphorylated IKK2 have much higher preference for ADP over ATP. However, it does not negate ATP-binding by P-IKK2 in a different pose that may not support kinase activity.
We could not perform any binding experiment because of the following reason. We incubated FL IKK2 WT with or without cold ATP for 30mins, and then incubated these samples with <sup>32</sup>P-ATP and analysed the samples by autoradiography after resolving them on a 10% SDS-PAGE. We found that even after pre-incubation of the kinase with excess cold ATP it still underwent autophosphorylation when radioactive ATP was added as shown below. This prevented us from doing direct binding experiment with ATP as it would not represent true binding event. We also noticed that after removal of bulk ATP post autophosphorylation, phosphorylated IKK2 is capable of further autophosphorylation when freshly incubated with ATP. We have not been able to come up with a condition that would only account for binding of ATP and not hydrolysis.
Author response image 2.
The authors could comment on whether robust phosphorylation of NEMO was expected (Figure 1D). On a related note, why is NEMO a single band in the 1D left panel and double bands on the right?
No, we did not expect robust phosphorylation of NEMO. However, robust phosphorylation of NEMO is observed only in the absence of IκBα. In presence of IκBα, phosphorylation of NEMO goes down drastically. These were two different preparations of NEMO. When TEV-digestion to remove His-tag is incomplete it gives two bands as the tagged and untagged versions cannot be separated in size exclusion chromatography which is the final step.
Page 14, line 360. "...observed phosphorylation of tyrosine residue(s) only upon fresh ATP-treatment..." I'm not sure I understand the wording here (or the relevance of the citation). Is this a comment on unreported data demonstrating the rapid hydrolysis of the putative phosphotyrosine(s)? If so, that would be helpful to clarify and report in the supporting information.
In our X-ray crystallographic studies with phosphorylated IKK2 we failed to observe any density of phosphate moiety. Furthermore, this IKK2 showed further autophosphorylation when incubated with fresh ATP. These two observations lead us to believe that some of the autophosphorylation are transient in nature. However, quantitative kinetic analyses of this dephosphorylation have not been performed.
Figure S3 middle panel: The PKA substrate overlaid on the IKK2 seems sterically implausible for protein substrate docking. Is that just a consequence of the viewing angle? On a related note, Figure S3 may be mislabeled as S4 in the main text).
It is a consequence of the viewing angle. Also, we apologize for this inadvertent mislabelling. It has been corrected in the current version.
Reviewer #3 (Recommendations For The Authors):
The detection of phosphorylated amino acids relies largely on antibodies which can have a varying degree of specificity. An alternative detection mode of the phospho-amino acids for example by MS would strengthen the evidence.
We agree with the concern of specificity bias of antibodies. We tried to minimize such bias by using two different p-Tyr antibodies as noted previously and also in the methodology section. We were also able to detect phospho-tyrosine residues by MS/MS analyses, representative spectra are now added (Figure S3A).
IKK2 purity - protocol states "desired purity". What was the actual purity and how was it checked? MS would be useful to check for the presence of other kinases.
Purity of the recombinantly purified IKK2s are routinely checked by silver staining. A representative silver stained SDS-PAGE is shown (Figure S1C). It may be noted that, there’s a direct correlation of expression level and solubility, and hence purification yield and quality with the activity of the kinase. Active IKK2s express at much higher level and yields cleaner prep. In our experience, inactive IKKs like K44M give rise to poor yield and purity. We analysed K44M by LC MS/MS to identify other proteins present in the sample. We did not find any significant contaminant kinase the sample (Figure S1D). The MS/MS result is attached.
Figure 1C&D: where are the Mw markers? What is the size of the band? What is the MS evidence for tyrosine phosphorylation?
We have now indicated MW marker positions on these figures.
MS/MS scan data for the two peptides containing pTyr169 and pTyr188 are shown separately (Figure S3A).
Figure 2F: Why is fresh ATP necessary? Why was Tyr not already phosphorylated? The kinetics of this process appear to be unusual when the reaction runs to completion within 5 minutes ?
As stated earlier, we believe some of the autophosphorylation are transient in nature. We think the Tyr-phosphorylation are lost due to the action of cellular phosphatases. We agree with the concern of the reviewer that, the reaction appears to reach completion within 5 minutes in Fig 2F. We believe it is probably due to the fact that the amount of kinase used in this study exceeds the linear portion of the dynamic range of the antibody used. Lower concentration of the kinase do show that reaction does not reach completion until 60mins as shown in Fig. 2A.
Figure 3: Can the authors exclude contamination with a Tyr kinase in the IKK2-K44M prep? The LC/MS/MS data should be included.
We have reanalysed the sample on orbitrap to check if there’s any Tyr-kinase or any other kinase contamination. We used Spodoptera frugiperda proteome available on the Uniprot website for this analysis. These analyses confirmed that there’s no significant kinase contaminant present in the fraction (Figure S1D).
What is the specificity of IKK-2 Inhibitor VII? Could it inhibit a contaminant kinase?
This inhibitor is highly potent against IKK2 and the IKK-complex, and to a lesser extent to IKK1. No literature is available on its activity on other kinases. In an unrelated study, this compound was used alongside MAPK inhibitor SB202190 wherein they observed completely different outcomes of these two inhibitors (Matou-Nasri S, Najdi M, AlSaud NA, Alhaidan Y, Al-Eidi H, Alatar G, et al. (2022) Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS ONE 17(5):e0267855. https://doi.org/10.1371/journal.pone.0267855). This study indirectly proves that IKK inhibitor VII does not fiddle with the MAPK pathways. We have not found any literature on the non-specific activity of this inhibitor.
Figure 6B: the band corresponding to "p-IkBa" appears to be similar in the presence of ADP (lanes 4-7) or in the absence of ADP but the presence of ATP (lane 8).
Radioactive p-IκBα level is more when ADP is added than in absence of ADP. In presence of cold ATP, radioactive p-IκBα level remains unchanged. This result strongly indicate that the addition of phosphate group to IκBα happens directly from the radioactively labelled kinase that is not competed out by the cold ATP.
-
-
wiki.freecad.org wiki.freecad.org
-
Storage options: Configure settings here to help you recover your work in the event of a crash.
This appears in the document itself not its "subtabs". Every tab that has a right triangle to it's left has subtabs and some things that don't show up right away could be hiding in the options of the subtabs if not in the main tag
-
-
social-media-ethics-automation.github.io social-media-ethics-automation.github.io
-
Knowing that there is a recommendation algorithm, users of the platform will try to do things to make the recommendation algorithm amplify their content. This is particularly important for people who make their money from social media content.
I feel sometimes overuse of this property can worsen our experiences, for example, some people add a lot of irrelavent tags to their post and their post is recommended to a lot of people. But this can be really annoying when you see something that doesn't align with the tag you like.
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public review):
The conserved AAA-ATPase PCH-2 has been shown in several organisms including C. elegans to remodel classes of HORMAD proteins that act in meiotic pairing and recombination. In some organisms the impact of PCH-2 mutations is subtle but becomes more apparent when other aspects of recombination are perturbed. Patel et al. performed a set of elegant experiments in C. elegans aimed at identifying conserved functions of PCH-2. Their work provides such an opportunity because in C. elegans meiotically expressed HORMADs localize to meiotic chromosomes independently of PCH-2. Work in C. elegans also allows the authors to focus on nuclear PCH-2 functions as opposed to cytoplasmic functions also seen for PCH-2 in other organisms.
The authors performed the following experiments:
(1) They constructed C. elegans animals with SNPs that enabled them to measure crossing over in intervals that cover most of four of the six chromosomes. They then showed that doublecrossovers, which were common on most of the four chromosomes in wild-type, were absent in pch-2. They also noted shifts in crossover distribution in the four chromosomes.
(2) Based on the crossover analysis and previous studies they hypothesized that PCH-2 plays a role at an early stage in meiotic prophase to regulate how SPO-11 induced double-strand breaks are utilized to form crossovers. They tested their hypothesis by performing ionizing irradiation and depleting SPO-11 at different stages in meiotic prophase in wild-type and pch-2 mutant animals. The authors observed that irradiation of meiotic nuclei in zygotene resulted in pch-2 nuclei having a larger number of nuclei with 6 or greater crossovers (as measured by COSA-1 foci) compared to wildtype. Consistent with this observation, SPO11 depletion, starting roughly in zygotene, also resulted in pch-2 nuclei having an increase in 6 or more COSA-1 foci compared to wild type. The increased number at this time point appeared beneficial because a significant decrease in univalents was observed.
(3) They then asked if the above phenotypes correlated with the localization of MSH-5, a factor that stabilizes crossover-specific DNA recombination intermediates. They observed that pch-2 mutants displayed an increase in MSH-5 foci at early times in meiotic prophase and an unexpectedly higher number at later times. They conclude based on the differences in early MSH-5 localization and the SPO-11 and irradiation studies that PCH-2 prevents early DSBs from becoming crossovers and early loading of MSH-5. By analyzing different HORMAD proteins that are defective in forming the closed conformation acted upon by PCH-2, they present evidence that MSH-5 loading was regulated by the HIM-3 HORMAD.
(4) They performed a crossover homeostasis experiment in which DSB levels were reduced. The goal of this experiment was to test if PCH-2 acts in crossover assurance. Interestingly, in this background PCH-2 negative nuclei displayed higher levels of COSA-1 foci compared to PCH-2 positive nuclei. This observation and a further test of the model suggested that "PCH-2's presence on the SC prevents crossover designation."
(5) Based on their observations indicating that early DSBS are prevented from becoming crossovers by PCH-2, the authors hypothesized that the DNA damage kinase CHK-2 and PCH2 act to control how DSBs enter the crossover pathway. This hypothesis was developed based on their finding that PCH-2 prevents early DSBs from becoming crossovers and previous work showing that CHK-2 activity is modulated during meiotic recombination progression. They tested their hypothesis using a mutant synaptonemal complex component that maintains high CHK-2 activity that cannot be turned off to enable crossover designation. Their finding that the pch-2 mutation suppressed the crossover defect (as measured by COSA-1 foci) supports their hypothesis.
Based on these studies the authors provide convincing evidence that PCH-2 prevents early DSBs from becoming crossovers and controls the number and distribution of crossovers to promote a regulated mechanism that ensures the formation of obligate crossovers and crossover homeostasis. As the authors note, such a mechanism is consistent with earlier studies suggesting that early DSBs could serve as "scouts" to facilitate homolog pairing or to coordinate the DNA damage response with repair events that lead to crossing over. The detailed mechanistic insights provided in this work will certainly be used to better understand functions for PCH-2 in meiosis in other organisms. My comments below are aimed at improving the clarity of the manuscript.
We thank the reviewer for their concise summary of our manuscript and their assessment of our work as “convincing” and providing “detailed mechanistic insight.”
Comments
(1) It appears from reading the Materials and Methods that the SNPs used to measure crossing over were obtained by mating Hawaiian and Bristol strains. It is not clear to this reviewer how the SNPs were introduced into the animals. Was crossing over measured in a single animal line? Were the wild-type and pch-2 mutations made in backgrounds that were isogenic with respect to each other? This is a concern because it is not clear, at least to this reviewer, how much of an impact crossing different ecotypes will have on the frequency and distribution of recombination events (and possibly the recombination intermediates that were studied).
We have clarified these issues in the Materials and Methods of our updated preprint. The control and pch-2 mutants were isogenic in either the Bristol or Hawaiian backgrounds. Control lines were the original Bristol and Hawaiian lines and pch-2 mutants were originally made in the Bristol line and backcrossed at least 3 times before analysis. Hawaiian pch-2 mutants were made by backcrossing pch-2 mutants at least 8 times to the Hawaiian background and verifying the presence of Hawaiian SNPs on all chromosomes tested in the recombination assay. To perform the recombination assays, these lines were crossed to generate the relevant F1s.
(2) The authors state that in pch-2 mutants there was a striking shift of crossovers (line 135) to the PC end for all of the four chromosomes that were tested. I looked at Figure 1 for some time and felt that the results were more ambiguous. Map distances seemed similar at the PC end for wildtype and pch-2 on Chrom. I. While the decrease in crossing over in pch-2 appeared significant for Chrom. I and III, the results for Chrom. IV, and Chrom. X. seemed less clear. Were map distances compared statistically? At least for this reviewer the effects on specific intervals appear less clear and without a bit more detail on how the animals were constructed it's hard for me to follow these conclusions.
We hope that the added details above makes the results of these assays more clear. Map distances were compared and did not satisfy statistical significance, except where indicated. While we agree that the comparisons between control animals and pch-2 mutants may seem less clear with individual chromosomes, we argue that more general, consistent patterns become clear when analyzing multiple chromosomes. Indeed, this is why we expanded our recombination analysis beyond Chromosome III and the X Chromosome, as reported in Deshong, 2014. We have edited this sentence to: “Moreover, there was a striking and consistent shift of crossovers to the PC end of all four chromosomes tested.”
(3) Figure 2. I'm curious why non-irradiated controls were not tested side-by-side for COSA-1 staining. It just seems like a nice control that would strengthen the authors' arguments.
We have added these controls in the updated preprint as Figure 2B.
(4) Figure 3. It took me a while to follow the connection between the COSA-1 staining and DAPI staining panels (12 hrs later). Perhaps an arrow that connects each set of time points between the panels or just a single title on the X-axis that links the two would make things clearer.
To make this figure more clear, we have generated two different cartoons for the assay that scores GFP::COSA-1 foci and the assay that scores bivalents. We have also edited this section of the results to make it more clear.
Reviewer #2 (Public review):
Summary:
This paper has some intriguing data regarding the different potential roles of Pch-2 in ensuring crossing over. In particular, the alterations in crossover distribution and Msh-5 foci are compelling. My main issue is that some of the models are confusingly presented and would benefit from some reframing. The role of Pch-2 across organisms has been difficult to determine, the ability to separate pairing and synapsis roles in worms provides a great advantage for this paper.
Strengths:
Beautiful genetic data, clearly made figures. Great system for studying the role of Pch-2 in crossing over.
We thank the reviewers for their constructive and useful summary of our manuscript and the analysis of its strengths.
Weaknesses:
(1) For a general audience, definitions of crossover assurance, crossover eligible intermediates, and crossover designation would be helpful. This applies to both the proposed molecular model and the cytological manifestation that is being scored specifically in C. elegans.
We have made these changes in an updated preprint.
(2) Line 62: Is there evidence that DSBs are introduced gradually throughout the early prophase? Please provide references.
We have referenced Woglar and Villeneuve 2018 and Joshi et. al. 2015 to support this statement in the updated preprint.
(3) Do double crossovers show strong interference in worms? Given that the PC is at the ends of chromosomes don't you expect double crossovers to be near the chromosome ends and thus the PC?
Despite their rarity, double crossovers do show interference in worms. However, the PC is limited to one end of the chromosome. Therefore, even if interference ensures the spacing of these double crossovers, the preponderance of one of these crossovers toward one end (and not both ends) suggest something functionally unique about the PC end.
(4) Line 155 - if the previous data in Deshong et al is helpful it would be useful to briefly describe it and how the experimental caveats led to misinterpretation (or state that further investigation suggests a different model etc.). Many readers are unlikely to look up the paper to find out what this means.
We have added this to the updated preprint: “We had previously observed that meiotic nuclei in early prophase were more likely to produce crossovers when DSBs were induced by the Mos transposon in pch-2 mutants than in control animals but experimental caveats limited our ability to properly interpret this experiment.”
(5) Line 248: I am confused by the meaning of crossover assurance here - you see no difference in the average number of COSA-1 foci in Pch-2 vs. wt at any time point. Is it the increase in cells with >6 COSA-1 foci that shows a loss of crossover assurance? That is the only thing that shows a significant difference (at the one time point) in COSA-1 foci. The number of dapi bodies shows the loss of Pch-2 increases crossover assurance (fewer cells with unattached homologs). So this part is confusing to me. How does reliably detecting foci vs. DAPI bodies explain this?
We have removed this section to avoid confusion.
(6) Line 384: I am confused. I understand that in the dsb-2/pch2 mutant there are fewer COSA-1 foci. So fewer crossovers are designated when DSBs are reduced in the absence of PCH-2.
How then does this suggest that PCH-2's presence on the SC prevents crossover designation? Its absence is preventing crossover designation at least in the dsb-2 mutant.
We have tried to make this more clear in the updated preprint. In this experiment, we had identified three possible explanations for why PCH-2 persists on some nuclei that do not have GFP::COSA-1 foci: 1) PCH-2 removal is coincident with crossover designation; 2) PCH-2 removal depends on crossover designation; and 3) PCH-2 removal facilitates crossover designation. The decrease in the number of GFP::COSA-1 foci in dsb2::AID;pch-2 mutants argues against the first two possibilities, suggesting that the third might be correct. We have edited the sentence to read: “These data argue against the possibility that PCH-2’s removal from the SC is simply in response to or coincident with crossover designation and instead, suggest that PCH-2’s removal from the SC somehow facilitates crossover designation and assurance.”
(7) Discussion Line 535: How do you know that the crossovers that form near the PCs are Class II and not the other way around? Perhaps early forming Class I crossovers give time for a second Class II crossover to form. In budding yeast, it is thought that synapsis initiation sites are likely sites of crossover designation and class I crossing over. Also, the precursors that form class I and II crossovers may be the same or highly similar to each other, such that Pch-2's actions could equally affect both pathways.
We do not know that the crossovers that form near the PC are Class II but hypothesize that they are based on the close, functional relationship that exists between Class I crossovers and synapsis and the apparent antagonistic relationship that exists between Class II crossovers and synapsis. We agree that Class I and Class II crossover precursors are likely to be the same or highly similar, exhibit extensive crosstalk that may complicate straightforward analysis and PCH-2 is likely to affect both, as strongly suggested by our GFP::MSH-5 analysis. We present this hypothesis based on the apparent relationship between PCH-2 and synapsis in several systems but agree that it needs to be formally tested. We have tried to make this argument more clear in the updated preprint.
Reviewer #3 (Public review):
Summary:
This manuscript describes an in-depth analysis of the effect of the AAA+ ATPase PCH-2 on meiotic crossover formation in C. elegant. The authors reach several conclusions, and attempt to synthesize a 'universal' framework for the role of this factor in eukaryotic meiosis.
Strengths:
The manuscript makes use of the advantages of the 'conveyor' belt system within the c.elegans reproductive tract, to enable a series of elegant genetic experiments.
We thank this reviewer for the useful assessment of our manuscript and the articulation of its strengths.
Weaknesses:
A weakness of this manuscript is that it heavily relies on certain genetic/cell biological assays that can report on distinct crossover outcomes, without clear and directed control over other aspects and variables that might also impact the final repair outcome. Such assays are currently out of reach in this model system.
In general, this manuscript could be more generally accessible to non-C.elegans readers. Currently, the manuscript is hard to digest for non-experts (even if meiosis researchers). In addition, the authors should be careful to consider alternative explanations for certain results. At several steps in the manuscript, results could ostensibly be caused by underlying defects that are currently unknown (for example, can we know for sure that pch-2 mutants do not suffer from altered DSB patterning, and how can we know what the exact functional and genetic interactions between pch-2 and HORMAD mutants tell us?). Alternative explanations are possible and it would serve the reader well to explicitly name and explain these options throughout the manuscript.
We have made the manuscript more accessible to non-C. elegans readers and discuss alternate explanations for specific results in the updated preprint.
Recommendations for the authors:
Reviewing Editor Comments:
(1) Please provide 'n' values for each experiment.
n values are now included in the Figure legends for each experiment.
(2) Line 129: Please represent the DCOs as percent or fraction (1%-9.8%, instead of 1-13).
We have made this change.
(3) Figure 3A legend: the grey bar should read 20hr. COSA-1/ 32 hr DAPI. In Figure 3E, it is not clear why 36hr Auxin and 34hr Auxin show a significant difference in DAPI bodies between control and pch-2, but 32hr Auxin treatment does not. Here again 'n' values will help.
We have made this change. We also are not sure why the 32 hour auxin treatment did not show a significant difference in DAPI stained bodies. We have included the n values, which are not very different between timepoints and therefore are unlikely to explain the difference. The difference may reflect the time that it takes for SPO-11 function to be completely abrogated.
(4) Line 360: Please provide the fraction of PCH-2 positive nuclei in dsb-2.
We have made this change.
Please also address all reviewer comments.
Reviewer #1 (Recommendations for the authors):
(1) Page 3, line 52. While I agree that crossing over is important to generate new haplotypes, work has suggested that the contribution by an independent assortment of homologs to generate new haplotypes is likely to be significantly greater. One reference for this is: Veller et al. PNAS 116:1659.
We deeply appreciate this reviewer pointing us to this paper, especially since it argues that controlling crossover distribution contributes to gene shuffling and now cite it in our introduction! While we agree that this paper concludes that independent assortment likely explains the generation of new haplotypes to a greater degree than crossovers, the authors performed this analysis with human chromosomes and explicitly include the caveat that their modeling assumes uniform gene density across chromosomes. For example, we know this is not true in C. elegans. It would be interesting to perform the same analysis with C. elegans chromosomes in control and pch-2 mutants, taking into account this important difference.
(2) Figure 2. It would really help the reader if an arrow and text were shown below each irradiation sign to indicate the stage in meiosis in which the irradiation was done as well as another arrow in the late pachytene box to show when the COSA-1 foci were analyzed. In general, having text in the figures that help stage the timing in meiosis would help the non C. elegans reader. This is also an issue where staging of C. elegans is shown (Figure 4).
We have made these changes to Figure 2. To help readers interpret Figure 4, we have added TZ and LP to the graphs in Figure 4B and 4D and indicated what these acronyms (transition zone and late pachytene, respectively) are in the Figure legend.
(3) Page 12, line 288. It would be valuable to first outline why the him3-R93Y and htp-3H96Y alleles were chosen. This was eventually done on Page 13, but introducing this earlier would help the reader.
We have introduced these mutations earlier in the manuscript.
(4) Page 13, line 323. A one sentence description of the OLLAS tagging system would be useful.
We have added this sentence: “we generated wildtype animals and pch-2 mutants with both GFP::MSH-5 and a version of COSA-1 that has been endogenously tagged at the Nterminus with the epitope tag, OLLAS, a fusion of the E. coli OmpF protein and the mouse Langerin extracellular domain”
Reviewer #2 (Recommendations for the authors):
(1) The title is a little awkward. Consider: PCH-2 controls the number and distribution of crossovers in C. elegans by antagonizing their formation
We have made this change.
(2) Abstract:
Consider removing "that is observed" from line 20.
We have made this change.
I'm confused by the meaning of "reinforcement of crossover-eligible intermediates" from line 27.
We have removed this phrase from the abstract.
A definition of crossover assurance would be helpful in the abstract.
We have added this to the abstract: “This requirement is known as crossover assurance and is one example of crossover control.”
(3) Line 36: I know a stickler but many meioses only produce one haploid gamete (mammalian oocytes, for example)
Thanks for the reminder! We have removed the “four” from this sentence.
(4) Line 284 - are you defining MSH-5 foci as crossover-eligible intermediates? If so, please state this earlier.
We have added this to the introduction to this section of the results: “In C. elegans, these crossover-eligible intermediates can be visualized by the loading of the pro-crossover factor MSH-5, a component of the meiosis-specific MutSγ complex that stabilizes crossover-specific DNA repair intermediates called joint molecules”
(5) Can the control be included in Figure S1?
We have made this change.
(6) Can you define that crossover designation is the formation of a COSA-1 focus?
We did this in the section introducing GFP::MSH-5: “In the spatiotemporally organized meiotic nuclei of the germline, a functional GFP tagged version of MSH-5, GFP::MSH-5, begins to form a few foci in leptotene/zygotene (the transition zone), becoming more numerous in early pachytene before decreasing in number in mid pachytene to ultimately colocalize with COSA-1 marked sites in late pachytene in a process called designation”
(7) Would it be easier to see the effect of DSB to crossover eligible intermediates in Spo-11, Pch-2 vs. Spo-11 mutant with irradiation using your genetic maps? At least for early vs. late breaks?
Unfortunately, irradiation does not show the same bias towards genomic location that endogenous double strand breaks do so it is unlikely to recapitulate the effects on the genetic map.
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public review):
Weaknesses:
In my estimation, the following would improve this manuscript:
(1) The physiological relevance of these data could be better highlighted. For instance, future work could revolve around incubating oocytes with oviduct fluid (or OVGP1) to reduce polyspermy in porcine IVF, and naturally improve sperm selection in human IVF.
Thank you for the suggestions. We have added these physiological relevance points at the end of the discussion.
(2) Biological and technical replicate values for each experiment are unclear - for semen, oocytes, and oviduct fluid pools. I suggest providing in the Materials and Methods and/or Figure legends.
Biological and technical replicates are now indicated in M&M. Number of oocytes or ZPs used were already indicated in every Supplementary Table.
(3) Although differences presented in the bar charts seem obvious, providing statistical analyses would strengthen the manuscript.
Statistical analyses are now indicated in each bar chart.
(4) Results are presented as {plus minus} SEM (line 677); however, I believe standard deviation is more appropriate.
This was a mistake; all the results are indicated as standard deviation.
(5) Given the many independent experimental variables and combinations, a schematic depiction of the experimental design may benefit readers.
A schematic depiction of the experimental design is now included as Figure 1. This new Figure modifies the number assigned to the rest of Figures.
(6) Attention to detail can be improved in parts, as delineated in the "author recommendation" review section.
Done
Reviewer #2 (Public review):
Weaknesses:
The authors postulate a role for oviductal fluid in species-specific fertilization, but in my opinion, they cannot rule out hormonal effects or differences in the method of oocyte maturation employed.
As we indicate below, the effect of hormones has been analyzed, and we have demonstrated that it is not the cause of zona pellucida specificity.
They also cannot unequivocally prove that OVGP1 is the oviductal protein involved in the effect. Additional experiments are necessary to rule out these alternative explanations.
Our work does not demonstrate that other proteins could be involved, but it does show that OVGP1 is involved in the process.
When performing the EZPT assay on mouse oocytes obtained either from the ovary or from the oviduct, the oocytes obtained from the ovary came from mice primed with eCG, whereas the ones collected from the oviduct were obtained from superovulated mice (eCG plus hCG). This difference in the hormonal environment may make a difference in the properties of the ZP. Additionally, the ones obtained from the ovary were in vitro matured, which is also different from the freshly ovulated eggs and, again, may change the properties of the ZP. I suggest doing this experiment superovulating both groups of mice but collecting the fully matured MII eggs from the ovary before they get ovulated. In that way the hormonal environment will be the same in both groups and in both groups, oocytes will be matured in vivo. Hence, the only difference will be the exposure to oviductal fluids.
In Figure 2, we compare ZPs from murine oocytes obtained from the ovary using only PMSG with ZPs from oviductal oocytes treated with both HCG and PMSG. But in Figure 7, however, we compared ZPs from murine oocytes exposed only to PMSG, with the only difference being whether or not they had been in contact with OVGP1. This shows that it is not the effect of the hormone but rather the contact with OVGP1 that determines their specificity.
Mice with OVGP1 deletion are viable and fertile. It would be quite interesting to investigate the species-specificity of sperm-ZP binding in this model. That would indicate whether OVGP1 is the only glycoprotein involved in determining species-specificity. Alternatively, the authors could immunodeplete OVGP1 from oviductal fluid and then ascertain whether this depleted fluid retains the ability to impede cross-species fertilization.
We agree with the reviewer that it would be interesting to investigate sperm-ZP binding in this model. Unfortunately, we do not have the OVGP1 knockout mouse strain. We also believe that immunodepletion of OVGP1 would not completely remove the protein, so its effect would likely not be entirely eliminated.
What is the concentration of OVGP1 in the oviduct? How did the authors decide what concentration of protein to use in the experiments where they exposed ZPs to purified OVGP1? Why did they use this experimental design to check the structure of the ZP by SEM? Why not do it on oocytes exposed to oviductal fluid, which would be more physiological?
We have included in the manuscript that the concentration of OVGP1 in the oviductal fluid was quantified using ImageJ software by comparing the mean gray value of the band in the oviductal fluid to the band in the recombinant protein lane. By establishing this relationship, along with the known concentration of protein amount in the recombinant one and in the total protein amount of oviductal fluid, the concentration of OVGP1 in the oviductal fluid was determined as the average of three western blots. The concentration of OVGP1 in oviductal fluids was in the range of 100-150 ng/µl in mice and 150-200 ng/µL in cow. We have included also in the manuscript the concentration that we have use for the EZPTs, 30 ng/µL of recombinants OVGP1 (bovine, murine and human) for 30 minutes in 20µL drops. With this concentration, we observed a clear effect on zona specificity with no negative impact on the gametes.
As you can see in supplementary Fig S8B, we already realized SEM of oocytes exposed to oviductal fluid.
None of the figures show any statistical analysis. Please perform analysis for all the data presented, include p values, and indicate which statistical tests were performed. The Statistical analysis section in the Methods indicating that repeated measures ANOVA was used must refer to the tables. Was normality tested? I doubt all the data are normally distributed, in which case using ANOVA is not appropriate.
Statistical results are now included in each Figure and Table. All the statistical analysis are included, all the data pass normality, homogeneity of variance and independence; for this reason the data analysis was conducted by using a one-way ANOVA, followed by Tukey´s post hoc test. Significance level was set at p <0.05.
Why was OVGP1 selected as the probable culprit of the species specificity? In the Results section entitled "Homology of bovine, human and murine OVGP1 proteins..." the authors delve into the possible role of this protein without any rationale for investigating it. What about other oviductal proteins?
A sentence indicating this rationale for investigating OVGP1 has been introduced in this paragraph.
Reviewer #3 (Public review):
Weaknesses:
The manuscript began with a well-written introduction, but problems started to surface in the Results section, in the Discussion, as well as in the Materials and Methods. Major concerns include inconsistencies, misinterpretation of results, lacking up-to-date literature search, numerous errors found in the figure legends, misleading and incorrect information given in the Materials and Methods, missing information regarding statistical analysis, and inadequate discussion. These concerns raise questions regarding the authenticity of the study, reliability of the findings, and interpretation of the results. The manuscript does not provide solid and convincing findings to support the conclusion.
We have modified and clarified all the issues, some of which are misunderstandings, we have also performed the suggested experiment of putting sperm in contact with OVGP1.
Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):
(1) Ensure consistency in (past) tense, for example, "decondensed" (line 102), "induced" (line 103), and elsewhere.
Done
(2) Replace "table" with "Table" throughout.
Done
(3) The authors often refer to "co-incubation". I believe this should read "incubation". My understanding is that oocytes were incubated with oviduct fluid or sperm but never both simultaneously as "co-incubation" implies.
Done
(4) Synonymous terms "OVGP1" and "oviductin" are used interchangeably. Consider using one or the other for consistency.
We believe that by using both terms, reading is more fluid.
(5) Delete "around" on line 256 and "approximately" on line 263 and provide actual percentages.
Done
(6) The point of the sentence on lines 311-313 is unclear to me.
Rewritten
(7) Suggest specifying "wildtype" on line 419.
All the mice used in this work are wildtype
(8) Do the authors have details regarding cattle oocyte donor breeds?
Done
(9) What do the authors mean by "strengthen" on line 500?
The word strengthen has been changed to carefully isolated
(10) Ponceau and vinculin (Figure 3) details are not provided in the manuscript.
Ponceau and vinculin details are now included in the manuscript
(11) Address formatting issues (e.g. citation 26 among others).
Done
(12) Primary and secondary antibody controls for immunofluorescent imaging (to fully exclude autofluorescence) are lacking.
Controls for immunofluorescent imaging are indicated in Supplementary Figure S7.
(13) The corresponding author on the manuscript and in the eLife submission system are different
It was a problem during submission, now it is corrected.
Reviewer #2 (Recommendations for the authors):
(1) For the experiment depicted in Figures 3C and D, the authors need to perform a negative control to demonstrate that this fluorescent signal is specific. What happens if they express a different FLAG-tagged protein instead of bOVGP1 and mOVGP1? FLAG antibodies give quite strong non-specific binding. Or if they expressed untagged bovine and mouse OVGP1?
The negative controls are in the supplementary Figure S7. A rabbit polyclonal antibody to the human OVGP1 was used for murine and bovine IVM ZPs from ovaries and murine superovulated ZPs recovered from mouse oviducts. There is a remarkable difference in the ones that are not incubated with any OVGP1 and the endogenous one, given the specificity of the antibody.
Also, IVM mouse and bovine oocytes incubated or not with OF were immunoblotted with anti-Flag-tag antibody. Since any of them present OVGP1 tagged to Flag, there is not signal in the immunofluorescence.
(2) For the Western blots of recombinant proteins, why are the authors not showing the blots using His and FLAG tag antibodies? Is the 50-kDa band observed for the mouse OVGP1 detected with His-Tag antibody?
We have included a supplementary figure S6 with the western blot with anti-His and anti-Flag. The protein around 50 kDa is not a specific band (there is not signal with anti-Flag). This new figure modifies the number assigned to the rest of supplementary figures (S6-S8).
(3) How was the estrous cycle stage determined in mice? It is not described in the Methods.
Estrous cycle stage was determined in mice by visual examination of the vaginal opening and cytological examination of the vagina smear. This is now included in the M&M
(4) For sperm binding, what does the percentage mean?
It was a mistake, percentages were related to pronuclear formation and cleavage not to sperm binding, this is now corrected.
(5) In Figure 3A, the labels for regions C, D, and E are mixed up. It is regions A and C that are conserved (or orange and blue, if the letters are incorrect). The purple region is only present in the mouse (E?), and the red region (D?) is only in the human form. Also, the legend for this panel is repeated verbatim in the Results section. Please remove one of them.
Errors in Figure 3a have been corrected. Legend repetition is removed.
(6) In the title of Figure 1B and in different places in the text, it should be mouse (not mice) oocytes.
Done
(7) In line 140, I would change the part indicating "We extracted the cytoplasmic contents from the oocytes". It is not only the cytoplasm, but all the oocyte, including the nucleus and membranes, that are being removed.
Done
(8) Please rephrase the sentence in lines 245-247, as it is quite confusing.
Done
(9) In line 236, the authors indicate that "During in vitro maturation (IVM), oocytes displayed a porous ZP structure...". Do they mean after IVM? When were those oocytes collected for SEM?
The sentence has been modified by “after IVF”. Bovine oocytes were collected from slaughterhouse ovaries and were similar to those used in the rest of the experiments in the manuscript.
(10) In the legend of Figure 1, please indicate what the parthenogenic group is.
Done
(11) In the legend to Figure 1G, the text indicates "Note sperm only appear outside the zona". However, I cannot see any sperm in that image.
The phrase has been removed, as when enlarging the image to better see the sperm that are inside the area, the vision of those that are outside has been lost.
(12) In the legend to Figure 2 describing the different zona pictures, the letters of the panels are not correct.
Done
(13) In line 999, please provide the right concentration for NMase (it indicates 10 μ/mL).
Done
(14) Where does the model depicted at the end of the manuscript go? Is it a Figure? A graphical abstract? In that model, please correct some typos: it should be "ZP obtained from ovarian oocytes"; and change specie for species in all three panels.
Done. It is a model (Fig. 10)
(15) The FITC-PNA staining to visualize acrosomes is not described in the Methods section.
Done
Reviewer #3 (Recommendations for the authors):
The present study reports findings from a series of experiments suggesting that bovine oviductal fluid and species-specific oviductal glycoprotein (OVGP1 or oviductin) from bovine, murine, or human sources modulate the species specificity of bovine and murine oocytes. The manuscript began with a well-written introduction, but problems started to surface in the Results section, Discussion as well as in the Materials and Methods. Major concerns include inconsistencies, misinterpretation of results, lacking up-to-date literature search, numerous errors found in the figure legends, misleading and incorrect information given in the Materials and Methods, missing information regarding statistical analysis, and inadequate discussion.
We have modified and clarified all the issues, some of which are misunderstandings, we have also performed the suggested experiment of putting sperm in contact with OVGP1.
Specific comments:
(1) Lines 142 to 143 on page 5: It is stated that "Because this experiment was done on empty ZPs, we called this test "empty zona penetration test" (EZPT)". In fact, the experiment was not actually done on empty ZPs, but on oocytes with the ooplasm extracted. Therefore, the zona pellucidae used in the experiment were not empty but contained an intact zona matrix of glycoproteins. The term "EZPT" used by the authors in the manuscript is a misnomer. A better term should be used to reflect the ZPs which were intact and not empty.
We extracted the cytoplasmic containing all the organelles, nucleus and membranes, and the polar body. This has been clarified in the text.
(2) The authors need to distinguish between sperm penetration and sperm binding in the manuscript. In lines 169 to 177 on page 6, the authors mixed up the terms "penetration" and "binding" in the text. In writing about events leading to fertilization in reproductive biology, the term "sperm binding" refers to the interaction between the sperm plasma membrane and the oocyte zona pellucida (ZP), whereas the term "sperm penetration" refers to the passage of the sperm through the ZP. Therefore, the statements in lines 169 to 177 describing the binding of bovine, murine, and human sperm to bovine oocytes with and without prior treatment with oviductal fluid are misleading and not correct. In fact, Figure 2 and Table 6 show sperm penetration and not sperm binding.
Figure 2A and B (now 3A and 3B), and Tables S6 show both sperm penetration (% penetration rate and average sperm in penetrated ZPs) and sperm binding (average sperm bound to ZPs). Throughout the manuscript, a clear distinction is made between sperm attached to the ZP and sperm that have penetrated it.
(3) Lines 182 to 187 on page 6: What is being described in the text here does not match what is being shown in Figure 3A. As a result, the information provided in lines 182 to 187 is not correct and misleading. For example, it is stated in lines 182 to 183 that "As depicted in Fig. 3A, the sequences of these three OVGP1 have five distinct regions (A, B, C, D and E)." However, Figure 3A shows that hOVGP1 and mOVGP1 both have only 4 regions and bOVGP1 has only 3 regions. None of the three has 5 regions. In lines 183 to 184, the authors continued to state that "Regions A and D are conserved in the different mammals." This statement is also not true because Figure 3A shows that only region A is conserved in all three species but not region D which is found only in the human. What is stated in lines 186 to 187 is also not correct based on the information provided in Figure 3A. It is stated here that "Region C is an insertion present only in the mouse (Mus) and region E is typical of human oviductin." However, based on the color codes provided in Figure 3A, region C is present in all three species while region E is present only in the mouse.
Errors with naming regions in Figure 3A (now 4A) have been corrected.
(4) In lines 195 to 197 on page 6, the authors stated that "Western blots of the three OVGP1 recombinants indicated expected sizes based on those of the proteins: 75 kDa for human and murine OVGP1 and around 60 kDa for bovine OVGP1 (Fig. 3B)." However, the expected size of the recombinant human OVGP1 is not in agreement with what has been published in literature regarding the molecular weight of recombinant human OVGP1. It has been previously reported that a single protein band of approximately 110-150 kDa was detected for recombinant human OVGP1 using an antibody against human OVGP1. The authors provided Western blots of murine oviductal fluid and bovine oviductal fluid in Figure 3B but not a Western blot of native human oviductal fluid. The latter should have been included for a comparison with the recombinant human OVGP1.
We do not have human oviductal fluid, but we have included now a supplementary figure 6S of a western blot with antibody again His and Flag (present in the recombinant OVGP1) which shows that the size of the recombinant protein is as indicated in the Figure 3B (now 4B).
(5) Lines 220 to 229 on page 7: In this experiment, the authors conducted the EZPT using ZPs from bovine oocytes that were either treated with or without bOVGP1 followed by incubation, respectively, with homologous sperm (bovine) and heterologous sperm (human and murine). This is a logical experiment to determine if OVGP1 plays a species-specific role in setting the specificity of the zona pellucida. However, in the in vivo situation, sperm that reach the lumen of the ampulla region of the oviduct where fertilization takes place are also exposed to oviductal fluid of which OVGP1 is a major constituent. Therefore, an additional experiment in which sperm are treated with OVGP1 prior to incubation with ZP should be carried out for a comparison.
The additional experiment in which sperm are treated with OVGP1 prior to incubation with ZP has been done (Table S9). No effects were observed. This is now included in the manuscript.
(6) Regarding the results obtained with the use of neuraminidase (lines 278 to 293 on pages 8 to 9), if neuraminidase treatment of bovine ZP prevented bovine sperm penetration regardless of whether ZPs had been or had not been in contact with OVGP1, that means OVGP1 is not responsible for penetration despite the description of earlier findings in the manuscript. Sialic acid is likely associated with the sugar side chains of ZP glycoproteins and not sugar side chains of OVGP1. To attribute the species-specific property of sialic acid to OVGP1 for sperm binding, an experiment in which OVGP1 will be treated with neuraminidase prior to performing the EZPT is needed.
We conducted the experiment by treating only OVGP1 with neuraminidase and then isolating OVGP1 from the enzyme previously to incubate treated OVGP1 with ZPs. The results agree with our previous findings, indicating the importance of sialic acid on OVGP1 for sperm binding and penetration, and confirming that OVGP1 is responsible for species-specific penetration. Results are shown in Fig. 9 and Table S14.
(7) The Discussion appears superficial and a more in-depth discussion regarding the results obtained in the present study in relation to other reports about OVGP1 published in literature is needed (e.g. a recent paper published by Kenji Yamatoya et al. (2023) Biology of Reproduction https://doi.org/10.1093/biolre/ioad159). Lines 317 to 342 of the Discussion on pages 10 to 11 should belong to the Introduction.
Results of Yamatoya are now included in discussion. Part of the discussion from 317 to 342 are now in the introduction
(8) In is not clear what the authors exactly want to say in lines 343 to 344 of the Discussion on page 11. It is stated here that "The empty zona penetration test (EZPT) enables heterologous sperm to overcome the oocyte's second barrier, the plasma membrane or oolemma." Do the authors mean that the sperm can now enter the empty space encircled by the ZP without having to go through the plasma membrane or oolemma? In Figure S4 which depicts the method used to empty the ooplasm in the bovine oocyte, does the method extract only the ooplasm (or cytoplasmic contents) leaving behind the intact plasma membrane or oolemma? This needs to be clearly shown and clearly explained. High magnifications of the zona pellucida are also needed to show whether the plasma membrane (or oolemma) is still present and intact after extraction of the ooplasm.
This is clearly explained in the text. To obtain empty ZP, everything except ZP (nucleus, organelles, membranes and cytoplasmic contents of the oocytes) was removed using a micromanipulator, following the procedure outlined in Figure S4.
(9) The authors stated in the Discussion in lines 383 to 383 on page 12 that "After ovulation, the changes reported in the carbohydrate composition of the ZP (3, 25) are likely induced by the addition of glycoproteins of oviductal origin, as we have seen here with OVGP1." There is no evidence in the present study to suggest that OVGP1 or glycoproteins of oviductal origin have changed or can change the carbohydrate composition of the ZP. At present, it is not known if OVGP1 or glycoproteins of oviductal origin directly interact with ZP glycoproteins (including ZP1, ZP2, ZP3 and/or ZP4) that make up the zona matrix.
There is scientific evidence suggesting that oviductal glycoproteins, including OVGP1, interact with the zona pellucida (ZP) glycoproteins of the oocyte. Studies have shown that OVGP1 binds to the ZP of the oocyte. Specifically, OVGP1 is thought to interact with ZP glycoproteins, such as ZP2 and ZP3, in a way that may help stabilize the oocyte or modify the ZP structure during its passage through the oviduct. This interaction is believed to influence processes like sperm binding, oocyte maturation, and potentially the prevention of polyspermy during fertilization. For example, in several studies, the absence of OVGP1 in knockout animals (such as in Ovgp1-KO hamsters) has been associated with impaired fertilization and embryonic development, which indicates the importance of this interaction. However, the detailed molecular mechanisms and functional significance of these interactions require further exploration. We have use the work “likely” to soften this statement.
Velásquez, J. G., Canovas, S., Barajas, P., Marcos, J., Jiménez‐Movilla, M., Gallego, R. G., ... & Coy, P. (2007). Role of sialic acid in bovine sperm–zona pellucida binding. Molecular reproduction and development, 74(5), 617-628.
Kunz, P., et al. (2013). "The role of oviductal glycoprotein 1 in sperm–egg interaction and early embryonic development." Reproduction, 145(3), 225-233. DOI: 10.1530/REP-12-0300
Yamatoya, K., Kurosawa, M., Hirose, M., Miura, Y., Taka, H., Nakano, T., ... & Araki, Y. (2024). The fluid factor OVGP1 provides a significant oviductal microenvironment for the reproductive process in golden hamster. Biology of reproduction, 110(3), 465-475.
(10) Lines 390 to 391 page 12: The statement "This determines that OVGP1 modifications are critical to define the barrier among the different species of mammals." needs to be rephrased because there is no evidence in the present study showing that OVGP1 has been modified. There are many concerns with errors, important information that is missing, and inconsistencies as well as wrong and misleading information in the Materials and Methods which are troublesome. These concerns raise questions regarding the authenticity and reliability of the study. Some of the major concerns are listed below:
All concerns have been fixed
(11) It says in line 399 on page 13 that "Human semen samples were obtained from a normozoospermic donor...". Do the authors really mean that the semen samples were obtained from only one donor?
Samples were obtained from 3 normozoospermic donor, this is now indicated in M&M
(12) In lines 409 to 411 on page 13, what do the authors mean by "...the samples were frozen into pellets..."? Was centrifugation of the samples carried out prior to freezing the samples? Secondly, what do the authors mean by "....and stored in liquid nitrogen at -196{degree sign}C or lower.", particularly what do the authors mean by "or lower"? The temperature of liquid nitrogen is -196{degree sign}C. What is the "lower" temperature?
Centrifugation of the samples were no carried out at this time. A more detailed protocol is now included The word lower has been removed.
(13) Line 424 on page 13: Provide the full name of "M2" when it is first used in the text then followed by the abbreviation.
Done
(14) Is there a reason why different counting chambers were used to determine sperm concentrations? In line 432 on page 13, a Thomas cell counting chamber was used to determine the sperm count of epididymal mouse sperm whereas it is mentioned in line 441 on page 14 that a Neubauer cell counting chamber was used to determine epididymal cat sperm. Furthermore, where did the cat's sperm come from?
The cat sperm was obtained and processed at the Faculty of Veterinary Medicine and the rest of the samples were processed in the INIA-CSIC lab, and different chambers were used in both places.
(15) The mention of the use of cat spermatozoa in line 439 on page 14 is a worrisome problem of the manuscript. The present study used bovine, mouse, and human sperm and not cat. Therefore, the sudden mentioning of the use of cat spermatozoa in the Materials and Methods is troublesome and worrisome. It appears that the paragraph from lines 439 to 450 was directly copied and pasted from previously published work. Furthermore, lines 441 to 445 do not flow and do not make sense. In fact, what is described in this paragraph (lines 439 to 450) does not appear to correspond to the method(s) used to obtain the results presented in the Results section of the manuscript.
I don't understand why the reviewer says we don't use cat sperm. This study uses cat sperm. Results of cat sperm are indicated in the Figure 1A (now 2A). We have modified the M&M to clarify frozen description.
(16) Similarly, several problems are also found in the paragraphs (lines 453-478 on page 14) describing the methods and procedures to obtain homologous and heterologous IVF of bovine oocytes. Firstly, it is mentioned here (in line 460) that COCs were co-incubated with selected sperm without removing the cumulus cells. However, the results of the sperm penetration experiment indicated otherwise. Figures 2 and 3 show that the oocytes were denuded of cumulus cells. Secondly, it is very worrisome and troublesome to read what is written in line 468 on page 14 that "...from other species (cat, human, mouse, and rabbit)." One wonders where the cat and rabbit came from. Again, it appears that this paragraph was directly copied and pasted from previously published work.
Cat sperm was used in this manuscript and it is correctly indicated in every section and figures. About IVF and EZPT protocols, in the protocol of IVF for bovine oocytes, COCs were used without removing the cumulus cells. For the EZPT cumulus cells were removed, this is described in the following sections of the material and methods. The word rabbit was a mistake and it has been removed.
(17) In lines 468 to 469 on page 14, it is mentioned that "Sperm-egg interactions were assessed through a sperm-ZP binding assay...". The authors only examined sperm penetration in their study. Therefore, this needs to be specified in the Materials and Methods. Secondly, the authors did not use the conventional sperm-ZP binding assay in their study. Instead, they used the EZPT in their study. There appear to be many inconsistencies throughout the manuscript.
When the IVF experiments using bovine COCs were done (Fig 2A and C, Fig 1S to 3S, and Tables 1S to 4S) conventional sperm-egg interaction was assessed at 2.5 hours after IVF. EZPT was used in the rest of experiments. IVF with COCs and EZPT with ZPs are different experiments.
(18) Lines 480 to 489 on page 15 under the sub-heading of "In vitro culture of presumptive zygotes to first cleavage embryos on Day 2" do not provide the correct methodology used for obtaining the results presented in the manuscript. In line 482, it is not clear where the "synthetic oviductal fluid" came from. In fact, in the Results section, none of the results came from the use of synthetic oviductal fluid. In line 487, humans and rabbits are mentioned here. However, human and rabbit oocytes were not used in the present study. It is very strange indeed to read human and rabbit in the sentence.
SOF reference is now included. Human results are in Fig 1A; the sentence is referred about the cultures of bovine oocytes inseminated with sperm of bull, human, mouse or cat). Rabbit word is a mistake and is now eliminated of the manuscript.
(19) In line 500 on page 15, what do the authors mean by "Each oviduct was strengthen by removing the adjacent tissue..."?
The sentence has been modified.
(20) On page 15 in the Materials and Methods, the authors described the collection of bovine and mouse oviductal fluid. However, there is no mention of human oviductal fluid and how it was collected. This important information is missing.
We have not use human oviductal fluid in this manuscript.
(21) Line 510 on page 15: The sub-heading of "Preparation of empty zonae pellucidae from bovine ovarian oocytes" should be rephrased. As pointed out earlier in my review, the ZPs prepared by the authors were intact and not "empty". It was the oocyte which was empty after extraction of the ooplasm.
Everything except the ZP were removed from the oocyte, this is now clarified in the manuscript.
(22) Line 518 on page 16 and line 553 on page 17: "Figure S5" should be "Figure 4S".
Done
(23) Line 538 and line 547 on page 16: "mice oocytes" should be "mouse oocytes".
Done
(24) On page 17, the procedures for in vitro fertilization, sperm penetration, and binding assessment in mice were described here in lines 560 to 574. Several problems are noted in this paragraph as listed below:<br /> a. As mentioned earlier the authors in the present manuscript mixed up sperm penetration and sperm binding which are two separate events. Based on the results presented in the manuscript, they represent sperm penetration and not sperm binding. Therefore, the authors need to precisely explain in the manuscript whether the results presented refer to sperm penetration or sperm binding.
Both sperm penetration and binding have been analyzed in this work.
b. In line 570 on page 17, the term "insemination" is wrongly used here. Insemination is the introduction of semen into the female reproductive tract either through sexual intercourse or through an instrument. The procedure used in the present study was carried out in vitro in a co-incubation manner and not by transferring sperm into the female reproductive tract.
The word insemination has been changed to incubation
c. Information regarding procedures for treatment with various oviductal fluid and OVGP1s are all missing in the Materials and Methods.
This information is now in M&M
d. The concentrations of various oviductal fluids and OVGP1s used and the number of ZPs used in each incubation are also missing.
Concentrations are now indicated in the manuscript. All the numbers and ZPs used are indicated in supplementary figures.
(25) Lines 577 to 603 on pages 17 to 18: Were recombinant bovine and murine glycoproteins prepared using the same methodology? In line 595 on page 18, it is stated that "Supernatant was saved in subsequent experiments." It is not clear exactly what experiments the supernatant was subsequently used in.
Details about how the bovine and murine glycoproteins were prepared are now included. Sentence about subsequent experiment is delete; supernatant was used for the next steps of protein purification.
(26) What is being described in lines 604 to 609 on page 18 is problematic. The paragraph starts by saying that "Human recombinant oviductin was obtained from Origene Technologies....". Strangely, the paragraph continues by saying that the recombinant proteins were produced by transfection in HEK293T...". If recombinant human OVGP1 had already been obtained from Origene Technologies, why did the authors want to produce it again? It does not make sense.
We briefly described the method that Origene used for the production of the human recombinant OVGP1
(27) In lines 626 to 627 on page 18, it is stated that "Zonae pellucidae previously incubated with OVGP1 proteins from several species and murine oviductal fluid...". Were the zonae pellucidae previously incubated with only murine oviductal fluid or also with others?
It was only incubated with OVGP1 or with oviductal fluid, this is now clarified in the text.
(28) In lines 638 and 639 on page 19, can the authors please explain the difference between "endogenous OVGP1 and bOVGP1" and "exogenous recombinant hOVGP1 and mOVGP1"?
This is now clarified
(29) As stated in lines 676 to 679 on page 20, statistical analysis was performed in the study. Strangely, no "n" numbers and p values were provided in any of the figures that require statistical analysis. This is problematic.
Statistical analysis and significant differences are now included in the figures, all the numbers used are included in the supplementary tables that are related with the figures.
There are also many errors noted in the Figure Legends. These concerns raise questions regarding the reliability of the findings and interpretation of the results. Some major ones that require attention are listed below:
(30) Figure legend 1 on page 27: In line 912, where did the "cat sperm" come from? In line 913, where did the "feline sperm" come from? In line 918, as pointed out earlier, the term "empty zona penetration test (EZPT)" is a misnomer and should be replaced with a better term. In line 924, it is stated that "Note sperm only appear outside the zona." However, no sperm can be seen outside the zona pellucida shown in Figure 1.
Cat sperm is used in this manuscript. Term EZPT is now clarified The sentence about sperm outside of ZP is removed
(31) Figure legend 2 on page 27 (lines 928 to 940) needs to be rewritten. Some of the sentences are not clearly written. Authors, please check all the capital labeling letters some of which appear to be wrong.
Done
(32) As is written, Figure legend 3 on pages 28 and 29 (lines 943 to 959) presents many problems:
a. Contrary to what is stated in the figure legend, not all five regions are present in the hOVGP1, mOVGP1, and bOVGP1.
Done
b. Contrary to what is stated in line 946, region D is not conserved in the mouse and bull as shown in Figure 3A, and region C is not present only in the mouse.
Done
c. Based on what is shown in Figure 3A, region E is present only in the mouse and not in the human.
Done
d. What is stated in line 951 that "Proteins were expressed in mammalian cells..." is not correct. Based on the information provided in the manuscript, recombinant human OVGP1 was obtained from Origene Technologies and was not expressed in mammalian cells as claimed.
All the recombinant proteins were produced in mammalian cells.
(33) Figure legend 6 on page 28: In lines 985 to 986, what do the authors mean by "...and combinations of the three oviductins with sperm of the three species."? As is written, it appears that the bovine ZPs were pretreated with a combination of all three oviductins and then co-incubated with sperm from the bull, mouse and human together.
We have clarified this sentence
(34) What is described in the figure legend for the supplemental figure (Figure S7) does not make sense.
Legend of Fig S7 (now S8) is related to pictures A to E, the legend is now clarified.
(35) In addition to the figures and supplemental figures provided in the manuscript, there is also an additional figure labeled with "Model" showing three diagrams. Strangely, there is no mention of this additional figure in the manuscript. There is no figure legend for or description of this figure. It is not clear what is being shown in this figure, and it is not clear about the purpose of the use of this figure.
We have included a legend to the model that is now Figure 10.
-
-
library.achievingthedream.org library.achievingthedream.org
-
A dialogue tag tells who is speaking.
Sometimes a dialogue tag is unneeded because of clarity through context, meaning that the context of the conversation makes it clear who is speaking. This can appear in back-and-forth conversation between characters.
-
-
groups.csail.mit.edu groups.csail.mit.edu
-
test page note
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
eLife Assessment
This manuscript describes the impact of modulating signaling by a key regulatory enzyme, Dual Leucine Zipper Kinase (DLK), on hippocampal neurons. The results are interesting and will be important for scientists interested in synapse formation, axon specification, and cell death. The methods and interpretation of the data are solid, but the study can be further strengthened with some additional studies and controls.
We greatly appreciate the thorough review and thoughtful suggestions from the reviewers and editors on our original manuscript. We provide point-to-point response below. We added new studies on P10 mice and controls as suggested, and made revision of figures and texts for clarification. The revised manuscript includes three new supplemental figures; major text revision is copied under response.
Reviewer #1 (Public Review):
Summary:
In this work, Ritchie and colleagues explore functional consequences of neuronal over-expression or deletion of the MAP3K DLK that their labs and others have strongly implicated in both axon degeneration, neuronal cell death, and axon regeneration. Their recent work in eLife (Li, 2021) showed that inducible over-expression of DLK (or the related LZK) induces neuronal death in the cerebellum. Here, they extend this work to show that inducible over-expression in Vglut1+ neurons also kills excitatory neurons in hippocampal CA1, but not CA3. They complement this very interesting finding with translatomics to quantify genes whose mRNAs are differentially translated in the context of DLK over-expression or knockout, the latter manipulation having little to no effect on the phenotypes measured. The authors note that several genes and pathways are differentially regulated according to whether DLK is over-expressed or knocked out. They note DLK-dependent changes in genes related to synaptic function and the cytoskeleton and ultimately relate this in cultured neurons to findings that DLK over-expression negatively impacts synapse number and changes microtubules and neurites, though with a less obvious correlation.
Strengths:
This work represents a conceptual advance in defining DLK-dependent changes in translation. Moreover, the finding that DLK may differentially impact neuronal death will become the basis for future studies exploring whether DLK contributes to differential neuronal susceptibility to death, which is a broadly important topic.
We thank the reviewer for the comments on the value of our work.
Weaknesses:
This seems like two works in parallel that the authors have not yet connected. First is that DLK affects the translation of an interesting set of genes, and second, that DLK(OE) kills some neurons, disrupts their synapses, and affects neurite growth in culture.
Specific questions:
(1) Is DLK effectively knocked out? The authors reference the floxxed allele in their 2016 work (PMID: 27511108), however, the methods of this paper say that the mouse will be characterized in a future publication. Has this ever been published? The major concern is that here the authors show that Cre-mediated deletion results in a smaller molecular weight protein and the maintenance of mRNA levels.
We apologize for out-of-date citation of the DLK(cKO)<sup>fl/fl</sup> mice. The DLK(cKO)<sup>fl/fl</sup> mice have been published in (Li et al., 2021; Saikia et al., 2022); excision of the flox-ed exon was verified using several Cre drivers (Pv-Cre, AAV-Cre, and VGlut1-Cre in this study). The flox-ed exon contains the initiation ATG and 148 amino acids. By western blot analysis using antibodies against C-terminal peptides of DLK on cerebellar extracts (in Li et al., 2021) and hippocampal extracts (this study), the full-length DLK protein was significantly reduced (Fig 1A-B); DLK is expressed in other hippocampal cells, in addition to glutamatergic neurons, explaining remaining full-length DLK detected.
Our Ribo-seq of VGlut1-Cre; DLK(cKO)<sup>fl/fl</sup> detected remaining Dlk mRNAs lacking the floxed exon (Fig.S1C), which has several candidate ATG at amino acid 223 and after (Fig.S1C1). We detected a very faint band for smaller molecular weight proteins on western blots, only when the membrane was exposed under 5X longer exposure using Pico PLUS Chemiluminescent Substrate (Thermo Scientific, 34580) and a Licor Odyssey XF Imager (revised Fig. S1B). This smaller molecular weight protein might be produced using any candidate ATGs, but would represent an N-terminal truncated DLK protein lacking the ATP binding site and ~1/4 of the kinase domain, i.e. not a functional kinase.
The revised manuscript has updated citation for DLK(cKO)<sup>fl/fl</sup>. Revised Fig.S1B includes images of a western blot under normal exposure vs longer exposure of western blots using anti-DLK antibodies. New Fig.S1C1 shows effects of floxed exon on DLK.
(2) Why does DLK(OE) not kill CA3 neurons? The phenomenon is clear but there is no link to gene expression changes. In fact, the highlighted transcript in this work, Stmn4, changes in a DLK-dependent manner in CA3.
We agree that this is a very interesting question not answered by our gene expression analysis. While we verified Stmn4 expression levels to correlate to the levels of DLK, we do not think that increased Stmn4 per se in DLK(iOE) is a major factor accounting for CA1 death vs CA3 survival. Several published studies have also reported regulation of Stmn4 mRNAs in other cell types, in the contexts of cell death (Watkins et al., 2013; Le Pichon et al., 2017) and axon regeneration and cytoskeleton disruption (Asghari Adib et al., 2024; DeVault et al., 2024; Hu et al., 2019; Shin et al., 2019). As Stmns have significant expression and function redundancy, conventional knockdown or overexpression of individual Stmn generally does not lead to detectable effects on cellular function. As CA3 neurons are widely known for their dense connections and show resilience to NMDA-mediated neurotoxicity (Sammons et al., 2024; Vornov et al., 1991), we speculate that the differential vulnerability of CA1 and CA3 under DLK(iOE) is a reflection of both the intrinsic property, such as gene expression, and also their circuit connection.
In the revised manuscript, we have included following statement on pg 18:
‘While our data does not pinpoint the molecular changes explaining why CA3 would show less vulnerability to increased DLK, we may speculate that DLK(iOE) induced signal transduction amplification may differ in CA1 vs CA3. CA1 genes appear to be more strongly regulated than CA3 genes, consistent with our observation that increased c-Jun expression in CA1 is greater than that in CA3. Other parallel molecular factors may also contribute to resilience of CA3 neurons to DLK(iOE), such as HSP70 chaperones, different JNK isoforms, and phosphatases, some of which showed differential expression in our RiboTag analysis of DLK(iOE) vs WT (shown in File S2. WT vs DLK(iOE) DEGs). Together with other genes that show dependency on DLK, the DLK and Jun regulatory network contributes to the regional differences in hippocampal neuronal vulnerability under pathological conditions.’
Further we state in ‘Limitation of our study’ on pg 20:
‘Our analysis also does not directly address why CA3 neurons are less vulnerable to increased DLK expression. Future studies using cell-type specific RiboTag profiling and other methods at a refined time window will be required to address how DLK dependent signaling interacts with other networks underlying hippocampal regional neuron vulnerability to pathological insults.’
We hope our data will stimulate continued interests for testable hypothesis in future studies.
(3) Why are whole hippocampi analyzed to IP ribosome-associated mRNAs? The authors nicely show a differential effect of DLK on CA1 vs CA3, but then - at least according to their methods ¬- lyse whole hippocampi to perform IP/sequencing. Their data are therefore a mix of cells where DLK does and does not change cell death. The key issue is whether DLK does/does not have an effect based on the expression changes it drives.
At the time of planning the Ribo-Tag experiment several years ago, we focused on the hippocampal glutamatergic neurons. Due to technical difficulty in micro-dissecting individual hippocampal regions from this early timepoint, we opted to use whole hippocampi to isolate ribosome-associated mRNAs. We agree with the reviewer that it is important to sort out DLK-dependent general gene expression changes vs those specific to a particular cell type where DLK impacts its survival. With emerging CA1, CA3 and other cell-type specific Cre drivers and advanced RNAseq technology, we hope that our work will stimulate broad interest in these questions in future studies.
In the revised manuscript, we have included new analysis comparing our Vglut1-RiboTag profiling (P15) with CamK2-RiboTag (for CA1) and Grik4-RiboTag (for CA3) (P42) published in Traunmüller et al., 2023 (GSE209870). We find that >80% of the top ranked genes in their CamK2-RiboTag (for CA1) and Girk4-RiboTag (for CA3) were detected in our VGlut1-RiboTag (revised methods and Supplemental Excel File S3). CA1-enriched genes tended to be expressed higher in DLK(cKO), compared to control, whereas CA3-enriched genes showed less significant correlation to DLK expression levels. Additionally, many genes known to specify CA1 fate do not show significant downregulation in DLK(iOE). This analysis, along with other data in our manuscript, is consistent with an idea that DLK does not regulate neuronal fate.
In the revised manuscript, we presented this additional analysis in Fig. S6K-L, and expanded text description on page 9:
‘Additionally, we compared our Vglut1-RiboTag datasets with CamK2-RiboTag and Grik4-RiboTag datasets from 6-week-old wild type mice reported by (Traunmüller et al., 2023; GSE209870). We defined a list of genes enriched in CamK2-expressing CA1 neurons relative to Grik4-expressing CA3 neurons (CA1 genes), and those enriched in Grik4-expressing CA3 neurons (CA3 genes) (File S3). When compared with the entire list of Vglut1-RiboTag profiling in our control and DLK(cKO), we found CA1 genes tended to be expressed more in DLK(cKO) mice, compared to control (Fig.S6K), while CA3 genes showed a slight enrichment in control though the trend was less significant, and were less clustered towards one genotype (Fig.S6L). Moreover, many CA1 genes related to cell-type specification, such as FoxP1, Satb2, Wfs1, Gpr161, Adcy8, Ndst3, Chrna5, Ldb2, Ptpru, and Ntm, did not show significant downregulation when DLK was overexpressed. These observations imply that DLK likely specifically down-regulates CA1 genes both under normal conditions and when overexpressed, with a stronger effect on CA1 genes, compared to CA3 genes. Overall, the informatic analysis suggests that decreased expression of CA1 enriched genes may contribute to CA1 neuron vulnerability to elevated DLK, although it is also possible that the observed down-regulation of these genes is a secondary effect associated with CA1 neuron degeneration’.
(4) Is the subtle decrease in synapse number (Basson/Homer co-loc.) in the DLK (OE) simply a function of neurons (and their synapses, presumably) having died? At the P15 time point that the authors choose because cell death is minimal, there is still a ~25% reduction in CA1 thickness (Figure 2B), which is larger than the ~15% change in synapses (Figure 5H) they describe.
We thank reviewer for the question. To address this, we have analyzed synapses in the CA1 region at P10 in DLK(iOE) mice when there was no detectable loss of neurons. At P10, we did not detect significant changes in Bassoon, Homer1, or colocalized puncta in CA1 (Fig.S11A-F). In P15 DLK(iOE) mice, Homer1 puncta were slightly smaller (Fig.5L) and showed a significant decrease in CA1 SR (Fig.5I).
In the revised manuscript we have also redone our statistical analysis of synapses, using mice rather than ROIs (revised Fig. 5), as recommended by R3. We also analyzed synapses in CA3, and found no significant differences in P10 or P15 (Fig.S12). We would interpret the data to mean that the effects of DLK(OE) on synapses in CA1 may represent an early step in neuronal death. We hope that future studies will shed clarity on this question.
Reviewer #2 (Public Review):
This manuscript describes the impact of deleting or enhancing the expression of the neuronal-specific kinase DLK in glutamatergic hippocampal neurons using clever genetic strategies, which demonstrates that DLK deletion had minimal effects while overexpression resulted in neurodegeneration in vivo. To determine the molecular mechanisms underlying this effect, ribotag mice were used to determine changes in active translation which identified Jun and STMN4 as DLK-dependent genes that may contribute to this effect. Finally, experiments in cultured neurons were conducted to better understand the in vivo effects. These experiments demonstrated that DLK overexpression resulted in morphological and synaptic abnormalities.
Strengths:
This study provides interesting new insights into the role of DLK in the normal function of hippocampal neurons. Specifically, the study identifies:
(1) CA1 vs CA3 hippocampal neurons have differing sensitivity to increased DLK signaling.
(2) DLK-dependent signaling in these neurons is similar to but distinct from the downstream factors identified in other cell types, highlighted by the identification of STMN4 as a downstream signal.
(3) DLK overexpression in hippocampal neurons results in signaling that is similar to that induced by neuronal injury.
The study also provides confirmatory evidence that supports previously published work through orthogonal methods, which adds additional confidence to our understanding of DLK signaling in neurons. Taken together, this is a useful addition to our understanding of DLK function.
We thank the reviewer for careful reading and positive comments.
Weaknesses:
There are a few weaknesses that limit the impact of this manuscript, most of which are pointed out by the authors in the discussion. Namely:
(1) It is difficult to distinguish whether the changes in the translatome identified by the authors are DLK-dependent transcriptional changes, DLK-dependent post-transcriptional changes or secondary gene expression changes that occur as a result of the neurodegeneration that occurs in vivo. Additional expression analysis at earlier time points could be one method to address this concern.
We appreciate the reviewer’s comment, and have performed new analysis on c-Jun and p-c-Jun levels in CA1, CA3, and DG in P10 DLK(OE) mice. Our data suggest that in CA3 elevations in p-c-Jun and c-Jun occur separately from cell death in a DLK-dependent manner, though the high elevation of both p-c-Jun and c-Jun in CA1 correlates with cell death.
The data is presented in revised Fig.S7A,B, and described in revised text on pg 9-10:
‘In control mice, glutamatergic neurons in CA1 had low but detectable c-Jun immunostaining at P10 and P15, but reduced intensity at P60; those in CA3 showed an overall low level of c-Jun immunostaining at P10, P15 and P60; and those in DG showed a low level of c-Jun immunostaining at P10 and P15, and an increased intensity at P60 (Fig.S7A,C,E). In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice at P10 when no discernable neuron degeneration was seen in any regions of hippocampus, only CA3 neurons showed a significant increase of immunostaining intensity of c-Jun, compared to control (Fig.S7A). In P15 mice, we observed further increased immunostaining intensity of c-Jun in CA1, CA3, and DG, with the strongest increase (~4-fold) in CA1, compared to age-matched control mice (Fig.S7C). The overall increased c-Jun staining is consistent with RiboTag analysis.’
Also, on pg.10:
In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice, we observed increased p-c-Jun positive nuclei in CA1 at P10, and strong increase in CA1 (~10-fold), CA3 (~6-fold), and DG (~8-fold) at P15 (Fig.S7B,D).
(2) Related to the above, it is difficult to conclusively determine from the current data whether the changes in synaptic proteins observed in vivo are a secondary result of neuronal degeneration or a primary impact on synapse formation. The in vitro studies suggest this has the potential to be a primary effect, though the difference in experimental paradigm makes it impossible to determine whether the same mechanisms are present in vitro and in vivo.
We appreciate the comment, which is related to R1 point 4. We have performed further analysis and revised the text on pg.12 with the following text:
‘To assess effects of DLK overexpression on synapses, we immunostained hippocampal sections from both P10 and P15, with age-matched littermate controls. Quantification of Bassoon and Homer1 immunostaining revealed no significant differences in CA1 SR and CA3 SR and SL in P10 mice of _<_i>Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> and control (Fig.S11A-F, S12A-J). In P15, Bassoon density and size in CA1 SR were comparable in both mice (Fig 5G, H, K), while Homer1 density and size were reduced in DLK(iOE) (Fig.5G,I, L). Overall synapse number in CA1 SR was similar in DLK(iOE) and control mice (Fig.5J). Similar analysis on CA3 SR and SL detected no significant difference from control (Fig.S12M-V).’
We would interpret the data to mean that the effects of DLK(OE) on synapses in CA1 may represent an early step in neuronal death. We hope that future studies will shed clarity on this question.
Additionally, to address whether the same mechanisms are present in vitro, we have performed further analysis on cultured hippocampal neurons. As described in the Methods, we made hippocampal neuron cultures from P1 pups of the following crosses:
For control: Vglut1<sup>Cre/+</sup> X Rosa26<sup>tdT/+</sup>
For DLKcKO: Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup> X Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup>;Rosa26<sup>tdT/+</sup>
For DLKiOE: H11-DLK<sup>iOE/iOE</sup> X Vglut1<sup>Cre/+</sup>;Rosa26<sup>tdT/+</sup>
Dissociated cells from a given litter were pooled into the same culture. Because there were different proportions of neurons with our genotype of interest in each culture, it is not simple to know whether DLK was causing significant cell death.
On pg 13, we stated our observation:
‘We did not notice an obvious effect of DLK(iOE) or DLK(cKO) on neuron density in cultures at DIV2. To assess neuronal type distribution in our cultures, we immunostained DIV14 neurons with antibodies for Satb2, as a CA1 marker (Nielsen et al., 2010), and Prox1, as a marker of DG neurons (Iwano et al., 2012). We did not observe significant differences in the proportion of cells labeled with each marker in DLK(cKO) or DLK(iOE) cultures (Fig.S13E). These data are consistent with the idea that DLK signaling does not have a strong role in neuron-type specification both in vivo and in vitro’.
(3) The phenotype of DLK cKO mice is very subtle (consistent with previous reports) and while the outcome of increased DLK levels is interesting, the relevance to physiological DLK signaling is less clear. What does seem possible is that increased DLK may phenocopy other neuronal injuries but there are no real comparisons to directly address this in the manuscript. It would be helpful for the authors to provide this analysis as well as a table with all of the translational changes along with fold changes.
Thank you for the suggestion. The fold changes of genes showing significantly altered expression in DLK(cKO) and DLK(iOE) are provided in the excel files (Supplementary excel File S1 WT vs DLK(cKO) DEGs and File S2. WT vs DLK(iOE) DEGs, highlighted columns B and F).
On pg 6, we revised the text as following to include comparison of DLK levels in other physiological conditions and our mice:
‘Several studies have reported that DLK protein levels increase under a variety of conditions, including optic nerve crush (Watkins et al., 2013), NGF withdrawal (~2 fold) (Huntwork-Rodriguez et al., 2013; Larhammar et al., 2017), and sciatic nerve injury (Larhammar et al., 2017). Induced human neurons show increased DLK abundance about ~4 fold in response to ApoE4 treatment (Huang et al., 2019). Increased expression of DLK can lead to its activation through dimerization and autophosphorylation (Nihalani et al., 2000)’.
And,
‘Additional analysis at the mRNA level (supplemental excel, File S2. WT vs DLK(iOE) DEGs) and at the protein level (Fig.S8E) suggest that the increase in DLK abundance was around 3 times the control level. The localization patterns of DLK protein appeared to vary depending on region of hippocampus and age of animals in both control and Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice (Fig.S3C).’
In Discussion, we state (pg. 16): ‘The levels of DLK in our DLK(iOE) mice model appear comparable to those reported under traumatic injury and chronic stress.’
(4) For the in vivo experiments, it is unclear whether multiple sections from each animal were quantified for each condition. More information here would be helpful and it is important that any quantification takes multiple sections from each animal into account to account for natural variability.
We apologize this was unclear in the original manuscript.
In the revised methods, under Confocal imaging and quantification (pg 33), we stated: “For brain tissue, three sections per mouse were imaged with a minimum of three mice per genotype for data analysis.”
In revised figure legends, we made it clear that multiple sections from each animal have been used for quantification in all instances, i.e. “Each dot represents averaged thickness from 3 sections per mouse, N≥4 mice/genotype per timepoint.”
In Fig.1F-H: “Each dot represents averaged intensity from 3 sections per mouse”
In Fig.S3B “Data points represent individual mice, averages taken across 3 sections per mouse”
Reviewer #3 (Public Review):
Dr Jin and colleagues revisit DLK and its established multifactorial roles in neuronal development, axonal injury, and neurodegeneration. The ambitious aim here is to understand the DLK-dependent gene network in the brain and, to pursue this, they explore the role of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. They produce evidence that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear unaffected. Then they identify the DLK-dependent translatome featured by conserved molecular signatures and cell-type specificity. Their evidence suggests that increased DLK signaling is associated with possible STMN4 disruptions to microtubules, among else. They also produce evidence on cultured hippocampal neurons showing that expression levels of DLK are associated with changes in neurite outgrowth, axon specification, and synapse formation. They posit that downstream translational events related to DLK signaling in hippocampal glutamatergic neurons are a generalizable paradigm for understanding neurodegenerative diseases.
Strengths
This is an interesting paper based on a lot of work and a high number of diverse experiments that point to the pervasive roles of DLK in the development of select glutamatergic hippocampal neurons. One should applaud the authors for their work in constructing sophisticated molecular cre-lox tools and their expert Ribotag analysis, as well as technical skill and scholarly treatment of the literature. I am somewhat more skeptical of interpretations and conclusions on spatial anatomical selectivity without stereological approaches and also going directly from (extremely complex) Ribotag profiling patterns to relevance based on immunohistochemistry and no additional interventions to manipulate (e.g. by knocking down or blocking) their top Ribotag profile hits. Also, it seems to this reviewer that major developmental claims in the paper are based on gene translational profiling dependent on DLK expression, not DLK activation, despite some evidence in the paper that there is a correlation between the two. Therefore, observed patterns and correlations may or may not be physiologically or pathologically relevant. Generalizability to neurodegenerative diseases is an overreach not justified by the scope, approach, and findings of the paper.
We thank the reviewer for the encouraging and constructive comments on the manuscript.
Weaknesses and Suggestions:
The authors state that the rationale for the translatomic studies is to "to gain molecular understanding of gene expression associated with DLK in glutamatergic neurons" and to characterize the "DLK-dependent molecular and cellular network", However, a problem with the experimental design is the selection of an anatomical region at a time point featured by active neurodegeneration. Therefore, it is not straightforward that the differentially expressed genes or pathways caused by DLK overexpression changes could be due to processes related to neurodegeneration. Indeed, the authors find enrichment of signals related to pathways involved in extracellular matrix organization, apoptosis, unfolded protein responses, the complement cascade, DNA damage responses, and depletion of signals related to mitochondrial electron transport, etc., all of which could be the consequence of neurodegeneration regardless of cause. A more appropriate design to discover DLK-dependent pathways might be to look at a region and/or a time point that is not confounded by neurodegeneration.
We appreciate reviewer’s comment. We included our thoughts in ‘Limitation of the study’ (pg 20):
‘Future studies using cell-type specific RiboTag profiling and other methods at a refined time window will be required to address how DLK dependent signaling interacts with other networks underlying hippocampal regional neuron vulnerability to pathological insults.’
In a related vein, the authors ask "if the differentially expressed genes associated with DLK(iOE) might show correlation to neuronal vulnerability" and, to answer this question, they select the set of differentially expressed genes after DLK overexpression and assess their expression patterns in various regions under normal conditions. It looks to me that this selection is already confounded by neurodegeneration which could be the cause for their downregulation. Therefore, such gene profiles may not be directly linked to neuronal vulnerability. A similar issue also relates to the conclusion that "...the enrichment of DLK-dependent translation of genes in CA1 suggests that the decreased expression of these genes may contribute to CA1 neuron vulnerability to elevated DLK".
We agree with the reviewer’s concern that it is difficult to separate neurodegenerative consequences from changes caused by DLK solely based on our translatomics studies on P15 DLK(iOE) mice. As responded to reviewer 1 (point 4) and reviewer 2 (point 1), we have included new analysis of P10 mice (Fig.S7A,B) when neurons did not show detectable sign of degeneration.
We consider several lines of evidence supporting that some differentially expressed genes in DLK(iOE) vs control may likely be specific for increased DLK signaling.
First, the genes identified in DLK(iOE) vs control represent a small set of genes (260), which is comparable to other DLK dependent datasets (Asghari Adib et al., 2024) but shows cell-type specificity.
Second, our analysis using rank-rank hypergeometric overlap (RRHO) detects a significant correlation between upregulated genes from DLK(iOE) vs downregulated genes in DLK(cKO), and vice versa, suggesting that expression of a similar set of genes is depended on DLK (Fig.3C, S6C-E). Consistently, GO term analysis using the list of genes coordinately regulated by DLK, derived from our RRHO analysis, leads to identification of similar GO terms related to up- and downregulated genes as using DLK(iOE)-RiboTag data alone. SynGO analysis of DLK(iOE) regulated genes and DLK(cKO) regulated genes also identified similar synaptic processes regulated by significantly regulated genes (Fig.3F and S6J).
Third, we performed additional analysis comparing our Vglut1-RiboTag dataset with CamK2-RiboTag and Grik4-RiboTag datasets from 6-week-old wild type mice reported by (Traunmüller et al., 2023; GSE209870). We observed >80% overlap among the top ranked genes (revised Methods). We described this analysis on pg 9 and Fig. S6K-L (and Supplemental Excel File S3):
‘Additionally, we compared our Vglut1-RiboTag datasets with CamK2-RiboTag and Grik4-RiboTag datasets from 6-week-old wild type mice reported by (Traunmüller et al., 2023; GSE209870). We defined a list of genes enriched in CamK2-expressing CA1 neurons relative to Grik4-expressing CA3 neurons (CA1 genes), and those enriched in Grik4-expressing CA3 neurons (CA3 genes) (File S3). When compared with the entire list of Vglut1-RiboTag profiling in our control and DLK(cKO), we found CA1 genes tended to be expressed more in DLK(cKO) mice, compared to control (Fig.S6K), while CA3 genes showed a slight enrichment in control though the trend was less significant, and were less clustered towards one genotype (Fig.S6L). Moreover, many CA1 genes related to cell-type specification, such as FoxP1, Satb2, Wfs1, Gpr161, Adcy8, Ndst3, Chrna5, Ldb2, Ptpru, and Ntm, did not show significant downregulation when DLK was overexpressed. These observations imply that DLK likely specifically down-regulates CA1 genes both under normal conditions and when overexpressed, with a stronger effect on CA1 genes, compared to CA3 genes. Overall, the informatic analysis suggests that decreased expression of CA1 enriched genes may contribute to CA1 neuron vulnerability to elevated DLK, although it is also possible that the observed down-regulation of these genes is a secondary effect associated with CA1 neuron degeneration.’
To understand the role and relevance of the DLK overexpression model, there should be a discussion of to what extent it corresponds to endogenous levels of DLK expression or DLK-MAPK pathway activation under baseline or pathological conditions.
We appreciate the suggestion, which is similar to R2 point 3. We have revised the text and discussion to include how DLK levels may be altered in other physiological conditions vs our mice.
Pg. 6: ‘Several studies have reported that DLK protein levels increase under a variety of conditions, including optic nerve crush (Watkins et al., 2013), NGF withdrawal (~2 fold) (Huntwork-Rodriguez et al., 2013; Larhammar et al., 2017), and sciatic nerve injury (Larhammar et al., 2017). Induced human neurons show increased DLK abundance about ~4 fold in response to ApoE4 treatment (Huang et al., 2019). Increased expression of DLK can lead to its activation through dimerization and autophosphorylation (Nihalani et al., 2000)’.
And,
‘Additional analysis at the mRNA level (supplemental excel, File S2. WT vs DLK(iOE) DEGs) and at the protein level (Fig.S8E) suggest that the increase in DLK abundance was around 3 times the control level. The localization patterns of DLK protein appeared to vary depending on region of hippocampus and age of animals in both control and Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice (Fig.S3C).’
In Discussion (pg. 16): ‘The levels of DLK in our DLK(iOE) mice model appear comparable to those reported under traumatic injury and chronic stress.’
The authors posit that "dorsal CA1 neurons are vulnerable to elevated DLK expression, while neurons in CA3 appear largely resistant to DLK overexpression". This statement assumes that DLK expression levels start at a similar baseline among regions. Do the authors have any such data? Ideally, they should show whether DLK expression and p-c-Jun (as a marker of downstream DLK signaling) are the same or different across regions in both WT and overexpression mice. For example, what are the DLK/p-c-Jun expression levels in regions other than CA1 in Supplementary Figures 2-3 and how do they compare with each other? Normalization to baseline for each region does not allow such a comparison. Also, in Supplementary Figure 6, analyses and comparisons between regions are done at a time point when degeneration has already started. Ideally, these should be done at P10.
We thank the reviewer for raising these points. In the revised manuscript we have included protein expression analysis of DLK (Fig S3), c-Jun, and p-c-Jun at P10 (Fig. S7).
We provided a quantification of DLK immunostaining intensity in CA1 and CA3 in Fig.S3D,E and find roughly comparable levels between regions.
Pg. 6: ‘Additional analysis at the mRNA level (supplemental excel, File S2. WT vs DLK(iOE) DEGs) and at the protein level (Fig.S8E) suggest that the increase in DLK abundance was around 3 times the control level. The localization patterns of DLK protein appeared to vary depending on region of hippocampus and age of animals in both control and Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice (Fig.S3C).’
We provided our quantifications without normalization to baseline in each region for c-Jun and p-c-Jun, and revised the text accordingly:
Pg. 9-10: ‘In control mice, glutamatergic neurons in CA1 had low but detectable c-Jun immunostaining at P10 and P15, but reduced intensity at P60; those in CA3 showed an overall low level of c-Jun immunostaining at P10, P15 and P60; and those in DG showed a low level of c-Jun immunostaining at P10 and P15, and an increased intensity at P60 (Fig.S7A,C,E). In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice at P10 when no discernable neuron degeneration was seen in any regions of hippocampus, only CA3 neurons showed a significant increase of immunostaining intensity of c-Jun, compared to control (Fig.S7A). In P15 mice, we observed further increased immunostaining intensity of c-Jun in CA1, CA3, and DG, with the strongest increase (~4-fold) in CA1, compared to age-matched control mice (Fig.S7C). The overall increased c-Jun staining is consistent with RiboTag analysis’.
Pg. 10: ‘In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice, we observed increased p-c-Jun positive nuclei in CA1 at P10, and strong increase in CA1 (~10-fold), CA3 (~6-fold), and DG (~8-fold) at P15 (Fig.S7B,D).
Illustration of proposed selective changes in hippocampal sector volume needs to be very carefully prepared in view of the substantial claims on selective vulnerability. In 2A under P15 and especially P60, it is difficult to see the difference - this needs lower magnification and a lot of care that anteroposterior levels are identical because hippocampal sector anatomy and volumes of sectors vary from level to level. One wonders if the cortex shrinks, too. This is important.
Thank you for raising the point. We have provided images to view the anteroposterior level in Fig.S2A-C. We have noticed cortex in DLK(OE) mice to become thinner, along with expansion of ventricles in some animals at later timepoints (Fig.S2C).
One cannot be sure that there is selective death of hippocampal sectors with DLK overexpression versus, say, rearrangement of hippocampal architecture. One may need stereological analysis, otherwise this substantial claim appears overinterpreted.
We appreciate the comment.
In the revised manuscript, we included a new supplemental figure (Fig. S2) showing lower magnification images of coronal sections, and used cautionary wording, such as ‘CA3 is less vulnerable, compared to CA1’, to minimize the impression of over-interpretation. By NeuN staining, at P10, P15, P60, we did not observe detectable difference in overall hippocampus architecture, apart from noted cell death of CA1 and DG and associated thinning of each of the layers. At 46 weeks, some animals showed differences in the overall shape of dorsal hippocampus, though this appeared to reflect a disproportionately large CA3 region compared to other regions (Fig S2). Increased GFAP staining (Fig.S5A-C) was detected in CA1 but not in CA3, and microglia by IBA1 staining (Fig.S5E) also displayed less reactivity in CA3, compared to CA1. Thus, based on NeuN staining, GFAP staining, IBA1 staining and analysis of the differentially regulated genes, we infer that the effect of DLK(iOE) in CA1 is different than the effect on CA3.
Is the GFAP excess reflective of neuroinflammation? What do microglial markers show? The presence of neuroinflammation does not bode well with apoptosis. Speaking of which, TUNEL in one cell in Supplementary Figure 4E is not strong evidence of a more widespread apoptotic event in CA1.
We have included staining data for the microglia marker IBA1. Both GFAP and IBA1 showed evidence of reactivity particularly in the CA1 region (S5A-E), supporting the differential vulnerability in different regions, though whether cell death is primarily due to apoptosis is unclear.
We agree that our data of sparse TUNEL staining at P15 (Fig S5F,G) do not rule out whether other mechanisms of cell death may also occur. We have included this in our limitations (pg.20) “While we find evidence for apoptosis, other forms of cell death may also occur.”
In several places in the paper (as illustrated in Figure 4B, Supplementary Figure 2B, etc.): the unit of biological observation in animal models is typically not a cell, but an organism, in which averaged measures are generated. This is a significant methodological problem because it is not easy to sample neurons without involving stereological methods. With the approach taken here, there is a risk that significance may be overblown.
We appreciate the reviewer’s point. We used same region for quantification of RNAscope, genotype-blind when possible. We revised the graphs to show mean values for individual mice in Fig.4B, 4C, and Fig.S3B (previously Fig.S2B).
Other Comments and Questions:
Supplementary Figure 9: The authors state that data points are shown for individual ROIs - ideally, they should also show averages for biological replicates. Can the authors confirm that statistical analyses are based on biological replicates (mice) and not ROIs?
We have revised the graphs to show averages from individual mice in Fig.5B-D, F5E-F (previously Fig.S9G-I), Fig.5H-J, and Fig.5K-L (previously Fig.S9J-L) and Fig.S10B,C,E,F (previously Fig.S9B,C, E,F). The statistical analyses are based on biological replicates of mice.
For in vitro experiments, what is the effect of DLK overexpression on neuronal viability and density? Could these variables confound effects on synaptogenesis/synapse maturation?
As described in the Methods, we made hippocampal neuron cultures from P1 pups of the following crosses:
For control: Vglut1<sup>Cre/+</sup> X Rosa26<sup>tdT/+</sup>
For DLKcKO: Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup> X Vglut1<sup>Cre/+</sup>;DLK(cKO)<sup>fl/fl</sup>;Rosa26<sup>tdT/+</sup>
For DLKiOE: H11-DLK<sup>iOE/iOE</sup> X Vglut1<sup>Cre/+</sup>;Rosa26<sup>tdT/+</sup>
Dissociated cells from a given litter were pooled into the same culture. Because there were different proportions of neurons with our genotype of interest in each culture, it is not simple to know whether DLK was causing significant cell death.
On pg 13, we stated our observation:
‘We did not notice an obvious effect of DLK(iOE) or DLK(cKO) on neuron density in cultures at DIV2. To assess neuronal type distribution in our cultures, we immunostained DIV14 neurons with antibodies for Satb2, as a CA1 marker (Nielsen et al., 2010), and Prox1, as a marker of DG neurons (Iwano et al., 2012). We did not observe significant differences in the proportion of cells labeled with each marker in DLK(cKO) or DLK(iOE) cultures (Fig.S13E). These data are consistent with the idea that DLK signaling does not have a strong role in neuron-type specification both in vivo and in vitro’.
We cannot rule out whether variable factors in our cultures may confound effects on synaptogenesis/synapse maturation, and would hope future studies will shed clarity.
Correlations between c-jun expression and phosphorylation are extremely important and need to be carefully and convincingly documented. I am a bit concerned about Supplementary Figure 6 images, especially 6B-CA1 (no difference between control and KO, too small images) and 6D (no p-c-Jun expression at all anywhere in the hippocampus at P15?).
At P10, P15, and P60 we stained for p-c-Jun using the Rabbit monoclonal p-c-Jun (Ser73) (D47G9) antibody from Cell Signaling (cat# 3270) at a 1:200 dilution and imaged using an LSM800 confocal microscope with a 20x objective. We observed p-c-Jun to be quite low generally in control animals. We have replaced the images in Fig.S7F (previously S6D), and adjusted the brightness/contrast to enable better visualization of the low signal in Fig.S7B,D,F (previously Fig.S6B,D).
We revised our text to present the data carefully as stated above:
Pg. 9-10: ‘In control mice, glutamatergic neurons in CA1 had low but detectable c-Jun immunostaining at P10 and P15, but reduced intensity at P60; those in CA3 showed an overall low level of c-Jun immunostaining at P10, P15 and P60; and those in DG showed a low level of c-Jun immunostaining at P10 and P15, and an increased intensity at P60 (Fig.S7A,C,E). In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice at P10 when no discernable neuron degeneration was seen in any regions of hippocampus, only CA3 neurons showed a significant increase of immunostaining intensity of c-Jun, compared to control (Fig.S7A). In P15 mice, we observed further increased immunostaining intensity of c-Jun in CA1, CA3, and DG, with the strongest increase (~4-fold) in CA1, compared to age-matched control mice (Fig.S7C). The overall increased c-Jun staining is consistent with RiboTag analysis’.
Pg. 10: ‘In Vglut1<sup>Cre/+</sup>;H11-DLK<sup>iOE/+</sup> mice, we observed increased p-c-Jun positive nuclei in CA1 at P10, and strong increase in CA1 (~10-fold), CA3 (~6-fold), and DG (~8-fold) at P15 (Fig.S7B,D).
Recommendations for the authors:
Several major and minor reservations were raised. The major issues are the need for more information about the over-expression of DLK and a need to extrapolate to an in vivo condition with DLK. A considerable amount of useful information is presented with some very nicely done experiments but it is not yet a coherent or integrated story. The lack of impact of DLK overexpression in some neurons is perhaps the most impactful observation of the study and would be great to have more information around the differential transcriptional/signaling response in these cell types. There is also a need for more experimental details and to address several questions about the mouse genetic and translatome analysis. They are valid concerns that require attention by the authors.
We thank the editors and reviewers for their thoughtful evaluation and suggestions. We hope that the editors and reviewers find that the new data and text changes in our revised manuscript, along with above point-to-point response, have addressed the concerns and strengthened our findings.
Minor points:
(1)The authors state that deletion of DLK has no effect on CA1 at 1yr, however, the image of CA1 in Figure S1D shows substantially fewer NeuN+ neurons. Is this a representative field of view?
We have re-examined images, and observed no effect on hippocampal morphology at 1 yr. We now included representative images in the revised Fig S1D.
(2) Is the DLK protein section staining in Figure 2C a real signal? The staining looks like speckles and is purely somatic. Axonal staining is widely expected based on the literature and the authors' own work. There should be a specificity control.
To our knowledge, axonal staining of DLK reported in the literature is mostly based on cultured DRG neurons. In addition to the reported axonal localization, DLK is present in the cell soma, near the golgi (Hirai et al., 2002), and in the post-synaptic density (Pozniak et al., 2013).
In the revised manuscript, we addressed this point by including controls with no primary antibody, and using an antibody against the closely related kinase, LZK. These additional data are shown in (Fig.S3C,D) (previously Fig.S2C), supporting that DLK protein staining represents real signal. At P10 and P15, DLK immunostaining around CA3 showed axonal staining of the mossy fibers, as well as in the soma and dendritic layers (Fig.S3C,D). A similar pattern was also seen in primary cultured neurons (Fig 6A).
(3) The protein expression of DLK in the transgenic overexpressor (Figure S7C) looks, to the resolution of this blot, to be at least 50kD heavier than 'WT' DLK. Can the authors explain this discrepancy?
The Cre-induced DLK(iOE) transgene has T2A and tdTomato in-frame to C-terminus of DLK. It is known that T2A ‘self-cleavage’ is often incomplete. DLK-T2A-tdTomato would be about 50 kD bigger than WT DLK. We now include the transgene design in revised Fig S1D, and also stated in figure legend of Fig.S8C (previously S7C) that ‘Larger molecular weight band of DLK in Vglut1<sup>Cre/+</sup>;H11-DLKiOE/+ would match the predicted molecular weight of DLK-T2A-tdTomato if T2A-peptide induced ‘self-cleavage’ due to ribosomal skipping is ineffective (Fig.S1D).’
(4) Expression changes in DLK affect various aspects of neurites in CA1 cultures (Figure 6), and changes in DLK also modestly affect STMN4 (and 2, perhaps indirectly) levels (Figure S7C), but there is no indication that DLK acts via STMN4 to cause these changes. It is not clear what to make of these data. Of note, Stmn4 levels change in response to DLK in CA3, without DLK affecting cell death in this region.
We appreciate and agree with the comment. Other studies (Asghari Adib et al., 2024; DeVault et al., 2024; Hu et al., 2019; Larhammar et al., 2017; Le Pichon et al., 2017; Shin et al., 2019; Watkins et al., 2013) reported expression changes in Stmn4 mRNAs in other cell types and cellular contexts, which appeared to depend on DLK. Hippocampal neurons express multiple Stmns (Fig.S8A). While we present our analysis on the effects of DLK dosage on Stmn4, and also Stmn2, we do not think that DLK-induced changes of Stmn4 expression per se is a major factor underlying CA1 cell death vs CA3 survival.
In the revised manuscript, we addressed this point in ‘Limitation of our study’ (pg 20):
‘Additional experiments will be needed to elucidate in vivo roles of STMN4 and its interaction with other STMNs’.
-
-
library.achievingthedream.org library.achievingthedream.org
-
very cheerful and persuasive tone
Dialogue tag introducing the conversation
-
“Sylvy takes after him,”
Quite a chunk of monologue with scant tag. Voice/character (grandma and Sylvy).
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
The study by Pudlowski et al. investigates how the intricate structure of centrioles is formed by studying the role of a complex formed by delta- and epsilon-tubulin and the TEDC1 and TEDC2 proteins. For this, they employ knockout cell lines, EM, and ultrastructure expansion microscopy as well as pull-downs. Previous work has indicated a role of delta- and epsilon-tubulin in triplet microtubule formation. Without triplet microtubules centriolar cylinders can still form, but are unstable, resulting in futile rounds of de novo centriole assembly during S phase and disassembly during mitosis. Here the authors show that all four proteins function as a complex and knockout of any of the four proteins results in the same phenotype. They further find that mutant centrioles lack inner scaffold proteins and contain an extended proximal end including markers such as SAS6 and CEP135, suggesting that triplet microtubule formation is linked to limiting proximal end extension and formation of the central region that contains the inner scaffold. Finally, they show that mutant centrioles seem to undergo elongation during early mitosis before disassembly, although it is not clear if this may also be due to prolonged mitotic duration in mutants.
Strengths:
Overall this is a well-performed study, well presented, with conclusions mostly supported by the data. The use of knockout cell lines and rescue experiments is convincing.
Weaknesses:
In some cases, additional controls and quantification would be needed, in particular regarding cell cycle and centriole elongation stages, to make the data and conclusions more robust.
We thank the reviewer for these comments and have improved our analyses of these as detailed below.
Reviewer #2 (Public Review):
Summary:
In this article, the authors study the function of TEDC1 and TEDC2, two proteins previously reported to interact with TUBD1 and TUBE1. Previous work by the same group had shown that TUBD1 and TUBE1 are required for centriole assembly and that human cells lacking these proteins form abnormal centrioles that only have singlet microtubules that disintegrate in mitosis. In this new work, the authors demonstrate that TEDC1 and TEDC2 depletion results in the same phenotype with abnormal centrioles that also disintegrate into mitosis. In addition, they were able to localize these proteins to the proximal end of the centriole, a result not previously achieved with TUBD1 and TUBE1, providing a better understanding of where and when the complex is involved in centriole growth.
Strengths:
The results are very convincing, particularly the phenotype, which is the same as previously observed for TUBD1 and TUBE1. The U-ExM localization is also convincing:
despite a signal that's not very homogeneous, it's clear that the complex is in the proximal region of the centriole and procentriole. The phenotype observed in U-ExM on the elongation of the cartwheel is also spectacular and opens the question of the regulation of the size of this structure. The authors also report convincing results on direct interactions between TUBD1, TUBE1, TEDC1, and TEDC2, and an intriguing structural prediction suggesting that TEDC1 and TEDC2 form a heterodimer that interacts with the TUBD1- TUBE1 heterodimer.
Weaknesses:
The phenotypes observed in U-ExM on cartwheel elongation merit further quantification, enabling the field to appreciate better what is happening at the level of this structure.
We thank the reviewer for these comments and have improved our analyses of cartwheel elongation as detailed below.
Reviewer #3 (Public Review):
Summary:
Human cells deficient in delta-tubulin or epsilon-tubulin form unstable centrioles, which lack triplet microtubules and undergo a futile formation and disintegration cycle. In this study, the authors show that human cells lacking the associated proteins TEDC1 or TEDC2 have these identical phenotypes. They use genetics to knockout TEDC1 or TEDC2 in p53negative RPE-1 cells and expansion microscopy to structurally characterize mutant centrioles. Biochemical methods and AlphaFold-multimer prediction software are used to investigate interactions between tubulins and TEDC1 and TEDC2.
The study shows that mutant centrioles are built only of A tubules, which elongate and extend their proximal region, fail to incorporate structural components, and finally disintegrate in mitosis. In addition, they demonstrate that delta-tubulin or epsilon-tubulin and TEDC1 and TEDC2 form one complex and that TEDC1 TEDC2 can interact independently of tubulins. Finally, they show that the localization of four proteins is mutually dependent.
Strengths:
The results presented here are mostly convincing, the study is exciting and important, and the manuscript is well-written. The study shows that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to build a stable and functional centriole, significantly contributing to the field and our understanding of the centriole assembly process.
Weaknesses:
The ultrastructural characterization of TEDC1 and TEDC2 obtained by U-ExM is inconclusive. Improving the quality of the signals is paramount for this manuscript.
We thank the reviewer for these comments and have improved our imaging of TEDC1 and TEDC2 localization, as detailed below.
Recommendations for the authors:
Reviewing Editor (Recommendations For The Authors):
The reviewers agreed that the conclusions are largely supported by solid evidence, but felt that improving the following aspects would make some of the data more convincing:
(1) The UExM localizations of TEDC1/2 are not very convincing and the reviewers suggest to complement these with alternative super-resolution approaches (e.g. SIM) and/or different labeling techniques such as pre-expansion labeling using STAR red/orange secondaries (also robust for SIM and STED), use of the Halo tag, different tag antibodies, etc
We thank the reviewers for these recommendations and have adapted two of these strategies to improve our imaging of TEDC1 and TEDC2 localization. First, we used an alternative super-resolution approach, a Yokogawa CSU-W1 SoRA confocal scanner (resolution = 120 nm) and imaged cells grown on coverslips (not expanded). We found that TEDC1 and TEDC2 localize to procentrioles and the proximal end of parental centrioles (Fig 2 – Supplementary Figure 1a, b). Second, we used a recently described expansion gel chemistry (Kong et al., Methods Mol Biol 2024) combined with Abberior Star red and orange secondary antibodies. This technique resulted in robust signal at centrosomes and in the cytoplasm and indicated that TEDC1 and TEDC2 localize near the centriole walls of procentrioles and the proximal region of parental centrioles, near CEP44 (Fig 2 – Supplementary Figure 1c, d). These results complement and support our initial observations (Fig 2C, D) and we have edited the text to reflect this (lines 157-163). We also note that these Flag tag and V5 tag primary antibodies are specific and have little background signal in all applications (Fig 2 – Supplementary Fig 1E-J), while other commercially available antibodies against these tags did exhibit non-specific signal.
(2) The cell cycle classifications of centrioles would strongly benefit, apart from a better description, from adding quantifications of average centriole length at a given stage based on tubulin staining (not acTub).
We thank the reviewers for these recommendations. We have added an improved description of our cell cycle analyses (lines 234-237). We have also added new analyses for centriole length as measured by staining with alpha-tubulin (Fig 4 – Supp 3 and Fig 4 – Supp 4). We find that in all mutants, acetylated tubulin elongates along with alpha-tubulin in a similar way as control centrioles.
Reviewer #1 (Recommendations For The Authors):
Specific points:
(1) The introduction is a bit oddly structured. About halfway through it summarizes what is going to be presented in the study, giving the impression that it is about to conclude, but then continues with additional, detailed introduction paragraphs. Overall, the authors may also want to consider making it more concise.
We thank the reviewer for these suggestions and have shortened and restructured the introduction for clarity and conciseness.
(2) The text should explain to the non-expert reader why endogenous proteins are not detected and why exogenously expressed, tagged versions are used. Related to this, the authors state overexpression, but what is this assessment based on? Does expression at the endogenous level also rescue? At least by western blot, these questions should be addressed.
In the text, we have added clarification about why endogenous proteins were not detected for immunofluorescence (lines 149-151). To quantify the overexpression, we have added Western blots of TEDC1 and TEDC2 to Fig 1 – Supplementary Figure 1E,F. We note that endogenous levels of both proteins are very low, and the rescue constructs are overexpressed 20 to 70 fold above endogenous levels.
(3) The figures should clearly indicate when tagged proteins are used and detected.
Currently, this info is only found in the legends but should be in the figure panels as well.
We have made these changes to the figure panels in Fig 2, Fig 2 – Supp 1, and Fig 3.
(4) I could not find a description and reference to Figure 2 Supplement 2 and 3.
We have replaced these supplements with new supplementary figures for TEDC1 and TEDC2 localization (Fig 2 – Supp 1).
(5) The multiple bands including unspecific (?) bands should be labeled to guide the reader in the western blots.
We have labeled nonspecific bands in our Western blots with asterisks (Fig 1 – Supp 1, Fig 3)
(6) The alphafold prediction suggests that TUBD1 can bind to the TED complex in the absence of TUBE1 can this be shown? This would be a nice validation of the predicted architecture of the complex. I also missed a bit of a discussion of the predicted architecture. How could it be linked to triplet microtubule formation? Is the latest alphafold version 3 adding anything to this analysis?
In our pulldown experiments, we found that TUBD1 cannot bind to TEDC1 or TEDC2 in the absence of TUBE1 (Fig 3C, D, IB: TUBD1). We performed this experiment with three biological replicates and found the same result. It is possible that TUBD1 and TUBE1 form an intact heterodimer, similar to alpha-tubulin and beta-tubulin, and this will be an exciting area of future research.
We have added new analysis from AlphaFold3 (Fig 3 – Supp 1B). AlphaFold3 predicts a similar structure as AlphaFold Multimer.
We have also added additional discussion about the AlphaFold prediction to the text (lines 220-222, 365-367). Thanks to the reviewer for pointing out this oversight.
(7) I suggest briefly explaining in the text how cells and centrioles at different cell cycle stages were identified. I found some info in the legend of Figure 1, but no info for other figures or in the text. Related to this, how are procentrioles defined in de novo formation? There is no parental centriole to serve as a reference.
We have added a brief explanation of the synchronization and identification in lines 234237. We have also clarified the text regarding de novo centrioles, and now term these “de novo centrioles in the first cell cycle after their formation” (lines 271-272).
(8) Related to point 7: using acetylated tubulin as a universal length and width marker seems unreliable since it is a PTM. The authors should use general tubulin staining to estimate centriole dimensions, or at least establish that acetylated tubulin correlates well with the overall tubulin signal in all mutants.
We have added two supplementary data figures (Fig 4 – supp 3 and Fig 4 – supp 4) in which we co-stain control and mutant centrioles with alpha-tubulin. We found that acetylated tubulin marked mutant centrioles well and as alpha-tubulin length increased, acetylated tubulin length also increased.
(9) Presence and absence of various centriolar proteins. These analyses lack a clear reference for the precise centriole elongation stage. This is particularly problematic for proteins that are recruited at specific later stages (such as inner scaffold proteins). The staining should be correlated with centriole length measurements, ideally using general tubulin staining.
As described for point 8, we have added two supplementary data figures in which we costain control and mutant centrioles with alpha-tubulin and found that acetylated tubulin also increases as overall tubulin length increases in all mutants. We note that inner scaffold proteins are absent in all our mutant centrioles at all stages of the cell and centriole cycle, as also previously reported for POC5 in Wang et al., 2017.
Reviewer #2 (Recommendations For The Authors):
Here's a list of points I think could be improved:
- As the authors previously published, the centriole appears to have a smaller internal diameter than mature centrioles. Could the authors measure to see if the phenotype is identical? Is the centriole blocked in the bloom phase (Laporte et al. 2024)?
We have added an additional supplementary figure (Fig 4 – supp 5) to show that mutant centrioles have smaller diameters than mature centrioles, as we previously reported for the delta-tubulin and epsilon-tubulin mutant centrioles by EM. We thank the reviewers for the additional question of the bloom phase. Given the comparatively smaller number of centrioles we analyzed in this paper compared to Laporte et al (50 to 80 centrioles per condition here, versus 800 centrioles in Laporte et al), it is difficult to definitively conclude whether there is a block in bloom phase. This would be an interesting area for future research.
- The images of the centrioles in EM are beautiful. Would it be possible to apply a symmetrisation on it to better see the centriolar structures? For example, is the A-C linker present?
We thank the reviewer for this excellent suggestion. Using centrioleJ, we find that the A-C linker is absent from mutant centrioles. The symmetrized images have been added to Fig 1 – Supplementary Fig 2, and additional discussion has been added to the text (line 143-144, line 368-374).
- How many EM images were taken? Did the centrioles have 100% A-microtubule only or sometimes with B-MT?
For TEM, we focused on centrioles that were positioned to give perfect cross-section images of the centriolar microtubules, and thus did not take images of off-angle or rotated centrioles. Given the difficulty of this experiment (centrioles are small structures within the cell, centrosomes are single-copy organelles, and off-angle centrioles were not imaged), we were lucky to image 3 centrioles that were in perfect cross-section – 2 for Tedc1<sup>-/-</sup> and 1 for Tedc2<sup>-/-</sup>. Our images indicate that these centrioles only have A-tubules (Fig 1 – Supp Fig
2).
- In Figure 2 - it would be preferable to write TEDC2-flag or TEDC1-flag and not TEDC2/1.
We have made this change
- It seems that Figures 2C and D aren't cited, and some of the data in the supplemental data are not described in the main text.
We have replaced these supplements with new supplementary figures for TEDC1 and TEDC2 localization (Fig 2 – Supp 1).
- The signal in U-ExM with the anti-Flag antibody is heterogeneous. Did the authors test several anti-FLAG antibodies in U-ExM?
We tested several anti-Flag and anti-V5 antibodies for our analyses, and chose these because they have little background signal in all applications (Fig 2 – Supplementary Fig 1E-J). Other commercially available antibodies against these tags did exhibit non-specific signal.
- The AlphaFold prediction is difficult to interpret, the authors should provide more views and the PDB file.
We have added 2 additional views of the AlphaFold prediction in Fig 3 – Supp 1A.
- In general, but particularly for Figure 4: the length doesn't seem to be divided by the expansion factor, it is therefore difficult to compare with known EM dimensions. Can the authors correct the scale bars?
We have corrected the scale bars for all figures to account for the expansion factor.
- Concerning Gamma-tubulin that is "recruited to the lumen of centrioles by the inner scaffold, had localization defects in mutant centrioles. However, we were unable to reliably detect gamma-tubulin within the lumen of control or de novo-formed centrioles in S or G2-phase (Figure 4 - Supplement 1E), and thus were unable to test this hypothesis". In Laporte et al 2024, Gamma-tubulin arrives later than the inner scaffold and only on mature centrioles, so this result appears to be in line with previous observation. However, the authors should be able to detect a proximal signal under the microtubules of the procentriole, is this the case?
We agree that this is an exciting question. However, in our expansion microscopy staining, we frequently observe that gamma-tubulin surrounds centrioles, corresponding to its role in the pericentriolar material (PCM). In our hands, we find it difficult to distinguish between centriolar gamma-tubulin at the base of the A-tubule from gamma-tubulin within the PCM.
- In the signal elongation of SAS-6, STIL, CEP135, CPAP, and CEP44, would it be possible to quantify the length of these signals (with dimensions divided by the expansion factor for comparison with known TEM distances)?
We have quantified the lengths of SAS-6 and CEP135 in new Fig 4 – Supp 3 and Fig 4 – Supp 4.
- The authors observe that centrin is present, but only as a SFI1 dot-like localization (which is another protein that would be interesting to look at), and not an inner scaffold localization. Can the authors elaborate? These results suggest that the distal part is correctly formed with only a microtubule singlet.
We agree with the reviewer’s interpretation that the centriole distal tip is likely correctly formed with only singlet microtubules, as both distal centrin and CP110 are present. We have added this point to the discussion (line 415).
-The authors observe that CPAP is elongated, but CPAP has two locations, proximal and distal. Is it distal or proximal elongation? Is the proximal signal of CPAP longer than that of CEP44 in the mutants? The authors discuss that the elongation could come from overexpression of CPAP, but here it seems that the centriole is not overlong, just the structures around the cartwheel.
We thank the reviewer for this point. It is difficult for us to conclude whether the proximal or distal region is extended in the mutants, as our mutant centrioles lacks a visible separation between these two regions. It would be interesting to probe this question in the future by testing whether subdomains of CPAP may be differentially regulated in our mutants.
Reviewer #3 (Recommendations For The Authors):
It isn't apparent to me what was counted in Figure 1C. Were all centrioles (mother centrioles and procentrioles) counted? Where is the 40% in control cells coming from? Can this set of data be presented differently?
We apologize for the confusion. In this figure, all centrioles were counted. We have updated the figure legend for clarity. We performed this analysis in a similar way as in Wang et al., 2017 to better compare phenotypes.
Figure 2C. and the text lines 182-187: The ultrastructural characterization of TEDC1 and TEDC2 suffers from the low quality of the TEDC1 and TEDC2 signals obtained postexpansion. In comparison with robust low-resolution immunosignal, it appears that most of the signal cannot be recovered after expansion. Another sub-resolution imaging method to re-analyze TEDC1 and TEDC22 localization would be essential. The same concern applies to Figures 2 - Supplement 2 and 3. Also, Figure 2 - Supplement 2 and Supplement 3 do not seem to be cited.
We thank the reviewer for these recommendations. As also mentioned above, we used an alternative super-resolution approach, a Yokogawa CSU-W1 SoRA confocal scanner (resolution = 120 nm), and found that TEDC1 and TEDC2 localize to procentrioles and the proximal end of parental centrioles (Fig 2 – Supplementary Figure 1a, b). Second, we used a recently described expansion gel chemistry (Kong et al., Methods Mol Biol 2024) combined with Abberior Star red and orange secondary antibodies. This technique resulted in robust signal at centrosomes and in the cytoplasm and indicated that TEDC1 and TEDC2 localize near the centriole walls of procentrioles and the proximal region of parental centrioles, near CEP44 (Fig 2 – Supplementary Figure 1c, d). These stainings complement and support our initial observations (Fig 2C, D) and we have edited the text to reflect this (lines 157-163). We have also removed the supplementary figures that were uncited in the text.
TUBD1 and TUBE1 form a dimer and TEDC2 and TEDC1 can interact. Any speculation as to why TEDC2 does not pull down both TUBE1 and TUBD1?
We apologize for the confusion. TEDC2 does pull down both TUBE1 and TUBD1 (Fig 3D, pull-down, second column, Tedc2-V5-APEX2 rescuing the Tedc2<sup>-/-</sup> cells pulls down TUBD1, TUBE1, and TEDC1).
Figure 4A and B. The authors use acetylated tubulin to determine the length of procentrioles in the S and G2 phases. However, procentrioles are not acetylated on their distal ends in these cell phase phases (as the authors also mention further in the text). Why has alpha tubulin not been used since it works well in U-ExM? The average size of the control, G2 procentrioles, seems too small in Figure 4A and not consistent with other imaging data (for instance, in Figure 4 - Supplement 1 C, Cp110, and CPAP staining). There is no statistical analysis in F4A.
We have added two supplementary data figures (Fig 4 – supp 3 and Fig 4 – supp 4) in which we co-stain control and mutant centrioles with alpha-tubulin. We found that acetylated tubulin correlates well with overall tubulin signal in all mutants. We have added statistical analysis to the figure legend of Fig 4A.
Lines 260 - 262: "These results indicate that centrioles with singlet microtubules can elongate to the same length as controls, and therefore that triplet microtubules are not essential for regulating centriole length." It is hard to agree with this statement. Mutant procentrioles show aberrantly elongated proximal signals of several tested proteins. In addition, in lines 326 - 328, the authors state that "Together, these results indicate that centrioles lacking compound microtubules are unable to properly regulate the length of the proximal end."
We thank the reviewer and have clarified the statement to state that these results indicate that centrioles with singlet microtubules can elongate to the same overall length as control centrioles in G2 phase.
Line 353: The authors suggest that elongated procentriole structure in mitosis may represent intermediates in centriole disassembly. Another interpretation, more in line with the EM data from Wang et al., 2017, would be that these mutant procentrioles first additionally elongate before they disassemble in late mitosis. The aberrant intermediate structure concept would need further exploration. For instance, anti-alpha/beta-tubulin antibodies could be used to investigate centriole microtubules.
We apologize for the confusion and have edited this section for clarity (lines 341-343): “We conclude that in our mutant cells, centrioles elongate in early mitosis to form an aberrant intermediate structure, followed by fragmentation in late mitosis.”
References need to be included in lines 122, 277, 279.
We have added these references
Line 281: Add references PMID: 30559430 and PMID: 32526902.
We have added these references (lines 265-266).
Line 289: "Moreover, our results suggest that centriole glutamylation is a multistep process, in which long glutamate side chains are added later during centriole maturation." This does not seem like an original observation. For instance, see PMID: 32526902.
We have added this reference (lines 273-274).
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public review):
Hotinger et al. explore the population dynamics of Salmonella enterica serovar Typhimurium in mice using genetically tagged bacteria. In addition to physiological observations, pathology assessments, and CFU measurements, the study emphasizes quantifying host bottleneck sizes that limit Salmonella colonization and dissemination. The authors also investigate the genetic distances between bacterial populations at various infection sites within the host.
Initially, the study confirms that pretreatment with the antibiotic streptomycin before inoculation via orogastric gavage increases the bacterial burden in the gastrointestinal (GI) tract, leading to more severe symptoms and heightened fecal shedding of bacteria. This pretreatment also significantly reduces between-animal variation in bacterial burden and fecal shedding. The authors then calculate founding population sizes across different organs, discovering a severe bottleneck in the intestine, with founding populations reduced by approximately 10^6-fold compared to the inoculum size. Streptomycin pretreatment increases the founding population size and bacterial replication in the GI tract. Moreover, by calculating genetic distances between populations, the authors demonstrate that, in untreated mice, Salmonella populations within the GI tract are genetically dissimilar, suggesting limited exchange between colonization sites. In contrast, streptomycin pretreatment reduces genetic distances, indicating increased exchange.
In extraintestinal organs, the bacterial burden is generally not substantially increased by streptomycin pretreatment, with significant differences observed only in the mesenteric lymph nodes and bile. However, the founding population sizes in these organs are increased. By comparing genetic distances between organs, the authors provide evidence that subpopulations colonizing extraintestinal organs diverge early after infection from those in the GI tract. This hypothesis is further tested by measuring bacterial burden and founding population sizes in the liver and GI tract at 5 and 120 hours post-infection. Additionally, they compare orogastric gavage infection with the less injurious method of infection via drinking, finding similar results for CFUs, founding populations, and genetic distances. These results argue against injuries during gavage as a route of direct infection.
To bypass bottlenecks associated with the GI tract, the authors compare intravenous (IV) and intraperitoneal (IP) routes of infection. They find approximately a 10-fold increase in bacterial burden and founding population size in immune-rich organs with IV/IP routes compared to orogastric gavage in streptomycin-pretreated animals. This difference is interpreted as a result of "extra steps required to reach systemic organs."
While IP and IV routes yield similar results in immune-rich organs, IP infections lead to higher bacterial burdens in nearby sites, such as the pancreas, adipose tissue, and intraperitoneal wash, as well as somewhat increased founding population sizes. The authors correlate these findings with the presence of white lesions in adipose tissue. Genetic distance comparisons reveal that, apart from the spleen and liver, IP infections lead to genetically distinct populations in infected organs, whereas IV infections generally result in higher genetic similarity.
Finally, the authors investigate GI tract reseeding, identifying two distinct routes. They observe that the GI tracts of IP/IV-infected mice are colonized either by a clonal or a diversely tagged bacterial population. In clonally reseeded animals, the genetic distance within the GI tract is very low (often zero) compared to the bile population, which is predominantly clonal or pauciclonal. These animals also display pathological signs, such as cloudy/hardened bile and increased bacterial burden, leading the authors to conclude that the GI tract was reseeded by bacteria from the gallbladder bile. In contrast, animals reseeded by more complex bacterial populations show that bile contributes only a minor fraction of the tags. Given the large founding population size in these animals' GI tracts, which is larger than in orogastrically infected animals, the authors suggest a highly permissive second reseeding route, largely independent of bile. They speculate that this route may involve a reversal of known mechanisms that the pathogen uses to escape from the intestine.
The manuscript presents a substantial body of work that offers a meticulously detailed understanding of the population dynamics of S. Typhimurium in mice. It quantifies the processes shaping the within-host dynamics of this pathogen and provides new insights into its spread, including previously unrecognized dissemination routes. The methodology is appropriate and carefully executed, and the manuscript is well-written, clearly presented, and concise. The authors' conclusions are well-supported by experimental results and thoroughly discussed. This work underscores the power of using highly diverse barcoded pathogens to uncover the within-host population dynamics of infections and will likely inspire further investigations into the molecular mechanisms underlying the bottlenecks and dissemination routes described here.
Major point:
Substantial conclusions in the manuscript rely on genetic distance measurements using the Cavalli-Sforza chord distance. However, it is unclear whether these genetic distance measurements are independent of the founding population size. I would anticipate that in populations with larger founding population sizes, where the relative tag frequencies are closer to those in the inoculum, the genetic distances would appear smaller compared to populations with smaller founding sizes independent of their actual relatedness. This potential dependency could have implications for the interpretation of findings, such as those in Figures 2B and 2D, where antibiotic-pretreated animals consistently exhibit higher founding population sizes and smaller genetic distances compared to untreated animals.
Thank you for raising this important point regarding reliance on cord distances for gauging genetic distance in barcoded populations. The reviewer is correct that samples with more founders will be more similar to the inoculum and thus inherently more similar to other samples that also have more founders. However, creation of libraries containing very large numbers of unique barcodes can often circumvent this issue. In this case, the effect size of chance-based similarity is not large enough to change the interpretation of the data in Figures 2B and 2D. In our case, the library has ~6x10<sup>4</sup> barcodes, and the founding populations in Figure 2B are ~10<sup>3</sup>. Randomly resampling to create two populations of 10<sup>3</sup> cells from an initial population with 6x10<sup>4</sup> barcodes is expected to yield largely distinct populations with very little similarity. Thus, the similarity between streptomycin-treated populations in Figure 2D is likely the result of biology rather than chance.
Reviewer #2 (Public review):
In this paper, Hotinger et. al. propose an improved barcoded library system, called STAMPR, to study Salmonella population dynamics during infection. Using this system, the authors demonstrate significant diversity in the colonization of different Salmonella clones (defined by the presence of different barcodes) not only across different organs (liver, spleen, adipose tissues, pancreas, and gall bladder) but also within different compartments of the same gastrointestinal tissue. Additionally, this system revealed that microbiota competition is the major bottleneck in Salmonella intestinal colonization, which can be mitigated by streptomycin treatment. However, this has been demonstrated previously in numerous publications. They also show that there was minimal sharing between populations found in the intestine and those in the other organs. Upon IV and IP infection to bypass the intestinal bottleneck, they were able to demonstrate, using this library, that Salmonella can renter the intestine through two possible routes. One route is essentially the reverse path used to escape the gut, leading to a diverse intestinal population; while the other, through the bile, typically results in a clonal population. Although the authors showed that the STAMPR pipeline improved the ability to identify founder populations and their diversity within the same animal during infections, some of the conclusions appear speculative and not fully supported.
(1) It's particularly interesting how the authors, using this system, demonstrate the dominant role of the microbiota bottleneck in Salmonella colonization and how it is widened by antibiotic treatment (Figure 1). Additionally, the ability to track Salmonella reseeding of the gut from other organs starting with IV and IP injections of the pathogen provides a new tool to study population dynamics (Figure 5). However, I don't think it is possible to argue that the proximal and distal small intestine, Peyer's patches (PPs), cecum, colon, and feces have different founder populations for reasons other than stochastic variations. All the barcoded Salmonella clones have the same fitness and the fact that some are found or expanded in one region of the gastrointestinal tract rather than another likely results from random chance - such as being forced in a specific region of the gut for physical or spatial reasons-and subsequent expansion, rather than any inherent biological cause. For example, some bacteria may randomly adhere to the mucus, some may swim toward the epithelial layer, while others remain in the lumen; all will proliferate in those respective sites. In this way, different founder populations arise based on random localization during movement through the gastrointestinal tract, which is an observation, but it doesn't significantly contribute to understanding pathogen colonization dynamics or pathogenesis. Therefore, I would suggest placing less emphasis on describing these differences or better discussing this aspect, especially in the context of the gastrointestinal tract.
Thank you for helping us identify this area for further clarification. We agree with the reviewer’s interpretation that seeding of proximal and distal small intestine, Peyer's patches (PPs), cecum, colon, and feces with different founder populations is likely caused by stochastic variations, consistent with separate stochastic bottlenecks to establishing these separate niches. To clarify this point we have modified the text in the results section, “Streptomycin treatment decreases compartmentalization of S. Typhimurium populations within the intestine”.
Change to text:
“Except for the cecum and colon, in untreated animals the S. Typhimurium populations in different regions of the intestine were dissimilar (Avg. GD ranged from 0.369 to 0.729, 2D left); i.e., there is little sharing between populations in the intestine. These data suggest that there are separate bottlenecks in different regions of the intestine that cause stochastic differences in the identity of the founders. Interestingly, when these founders replicate, they do not mix, remaining compartmentalized with little sharing between populations throughout the intestinal tract (i.e., barcodes found in one region are not in other regions, Figure S3). This was surprising as the luminal contents, an environment presumably conducive to bacterial movement, were not removed from these samples.”
In this section we are interested in the underlying biology that occurs after the initial bottleneck to preserve this compartmentalization during outgrowth of the intestinal population. In other words, what prevents these separate populations from merging (e.g., what prevents the bacteria replicating in the proximal small intestine from traveling through the intestine and establishing a niche in the distal small intestine)? While we do not explore the mechanisms of compartmentalization, we observe that it is disrupted by streptomycin pretreatment, suggesting a microbiota-dependent biological cause.
(2) I do think that STAMPR is useful for studying the dynamics of pathogen spread to organs where Salmonella likely resides intracellularly (Figure 3). The observation that the liver is colonized by an early intestinal population, which continues to proliferate at a steady rate throughout the infection, is very interesting and may be due to the unique nature of the organ compared to the mucosal environment. What is the biological relevance during infection? Do the authors observe the same pattern (Figures 3C and G) when normalizing the population data for the spleen and mesenteric lymph nodes (mLN)? If not, what do the authors think is driving this different distribution?
Thank you for raising this interesting point. These data indicate that the liver is seeded from the intestine early during infection. The timing and source of dissemination have relevance for understanding how host and pathogen variables control the spread of bacteria to systemic sites. For example, our conclusion (early dissemination) indicates that the immune state of a host at the time of exposure to a pathogen, and for a short period thereafter, are what primarily influence the process of dissemination, not the later response to an active infection.
We observe that the liver and mucosal environments within the intestine have similar colonization behaviors. Both niches are seeded early during infection, followed by steady pathogen proliferation and compartmentalization that apparently inhibits further seeding. This results in the identity of barcodes in the liver population remaining distinct from the intestinal populations, and the intestinal populations remaining distinct from each other.
We observe a similar pattern to the liver in the spleen and MLN (the barcodes in the spleen and MLN are dissimilar to the population in the intestine). To clarify this point, we have modified the text (below) and added this analysis as a supplemental figure (S4).
Change to text:
Genetic distance comparison of liver samples to other sites revealed that, regardless of streptomycin treatment, there was very little sharing of barcodes between the intestine and extraintestinal sites (Avg. GD >0.75, Figure 3C). Furthermore, the MLN and spleen populations also lacked similarity with the intestine (Figure S4). These analyses strongly support the idea that S. Typhimurium disseminates to extraintestinal organs relatively early following inoculation, before it establishes a replicative niche in the intestine.
(3) Figure 6: Could the bile pathology be due to increased general bacterial translocation rather than Salmonella colonization specifically? Did the authors check for the presence of other bacteria (potentially also proliferating) in the bile? Do the authors know whether Salmonella's metabolic activity in the bile could be responsible for gallbladder pathology?
The reviewer raises interesting points for future work. We did not check whether other bacterial species are translocating during S. Typhimurium infection. The relevance of Salmonella’s metabolic activity is also very interesting, and we hope these questions will be answered by future studies.
Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):
Minor points:
(1) P. 9/10 "... the marked delay in shedding after IP and IV relative to orogastric inoculation suggest that the S. Typhimurium population encounters substantial bottleneck(s) on the route(s) from extraintestinal sites back to the intestine.": Can you conclude that from the data? It could also be possible that there is a biological mechanism (other than chance events) that delays the re-entry to the intestine.
We propose that the delay in shedding indicates additional obstacles that bacteria face when re-entering the intestine, and that there are likely biological mechanisms that cause this delay. However, these unknown mechanisms effectively act as additional bottlenecks by causing a stochastic loss of population diversity.
(2) P. 11 "...both organs would likely contain all 10 barcodes. In contrast, a library with 10,000 barcodes can be used to distinguish between a bottleneck resulting in Ns = 1,000 and Ns = 10,000, since these bottlenecks result in a different number of barcodes in output samples. Furthermore, high diversity libraries reduce the likelihood that two tissue samples share the same barcode(s) due to random chance, enabling more accurate quantification of bacterial dissemination.": I agree with the general analysis, but I find it misleading to talk about the presence of barcodes when the analyses in this manuscript are based on the much more powerful comparison of relative abundance of individual tags instead of their presence or absence.
The reviewer raises an excellent point, and the distinction between relative abundance versus presence/absence is discussed extensively in the original STAMPR manuscript. Although relative abundance is powerful, the primary metric used in this study (Ns) is calculated principally from the number of barcodes, corrected (via simulations) for the probability of observing the same barcode across distinct founders. Although this correction procedure does rely on barcode abundance, the primary driver of founding population quantification is the number of barcodes.
(3) P.14 "the library in LB supplemented with SM was not significantly different than the parent strain" and Figure 2C: How was significance tested? How many times were the growth curves recorded? On my print-out, the red color has different shades for different growth curves.
Significance was tested with a Mann-Whitney and growth curves were performed 5 times. Growth curves are displayed with 50% opacity, and as a result multiple curves directly on top of each other appear darker. The legend to S2 has been modified accordingly.
(4) P.16: close bracket in the equation for FRD calculation.
Done
(5) Figure 2C "Average CFU per founder": I found the wording confusing at first as I thought you divided the average bacterial burden per organ by Ns, instead of averaging the CFU/Ns calculated for each mouse.
The wording has been clarified.
(6) Figure 3B: It would be helpful to include expected genetic distances in the schematic as it is difficult to infer the genetic distance when only two of three, respectively, different "barcode colors" are used. While I find the explanation in the main text intuitive, a graphical representation would have helped me.
Thank you for the suggestion. Unfortunately, using colors to represent barcodes is imperfect and limits the diversity that can be depicted. We have modified Figure 3B to further clarify.
(7) Figure 3C: Why do you compare the genetic distance to the liver, when you discuss the genetic distance of the intestinal population? Is it not possible that the intestinal populations are similar to the extraintestinal organs except the liver?
For clarity, we chose to highlight exclusively the liver. However, we observed a similar pattern to the liver in other extraintestinal organs. To clarify the generalizability of this point we have added a supplemental figure with comparisons to MLN and Spleen (Supplemental figure S4) as well as further text.
(8) Figure 3C & S5A: I found "+SM" and "+SM, Drinking" confusing and would have preferred "+SM, Gavage" and "+SM, Drinking" for clarity.
Done, thank you for the suggestion.
(9) Figure 3G&H: I find it worthy of discussion that the bacterial burden increases over time, while the founding population decreases. Does that not indicate that replication only occurs at specific sites leading to the amplification of only a few barcodes and thereby a larger change of the relative barcode abundance compared to the inoculum?
From 5h to 120h the size of the founding population decreases in multiple intestinal sites. This likely indicates that the impact of the initial bottleneck is still ongoing at 5h, although further temporal analysis would be required to define the exact timing of the bottleneck. Notably, the passage time through the mouse intestine is ~5h. Many of the founders observed at 5h could be a population that will never establish a replicative niche, and failing to colonize be shed in the feces, bottlenecking the population between 5h and 120h. To clarify this point we have added the following text:
Section “S. Typhimurium disseminates out of the intestine before establishing an intestinal replicative niche”.
“In contrast to the liver, there were more founders present in samples from the intestine (particularly in the colon) at 5 hours versus 120 hours (Figure 3H). These data likely indicate that many of the founders observed in the intestine at 5 hours are shed in the feces prior to establishing a replicative niche, and demonstrates that the forces restricting the S. Typhimurium population in the intestine act over a period of > 5 hours.”
(10) Figure S2A: I do not understand this figure. Why are there more than 70.000 tags listed? I was under the impression the barcode library in S. Typhimurium had 55.000 tags while only the plasmid pSM1 had more than 70.000 (but the plasmid should not be relevant here). Why are there distinct lines at approximately 10^-5 and a bit lower? I would have expected continuously distributed barcode frequencies.
During barcode analysis, each library is mapped to the total barcode list in the barcode donor pSM1, which contains ~70,000 barcodes. This enables consistent analysis across different bacterial libraries. The designation “barcode number” refers to the barcode number in pSM1, meaning many of the barcodes in the Salmonella library are at zero reads. This graph type was chosen to show there was no bias toward a particular barcode, however there is significant overlap of the points, making individual barcode frequencies difficult to see. We have changed the x-axis to state “pSM1 Barcode Number” and clarified in the figure legend.
Since the y-axes on these graphs is on a log10 scale, the lines represent barcodes with 1 read, 2 reads, 3 reads, etc. As the number of reads per barcode increases linearly, the space between them decreases on logarithmic axes.
(11) There are a few typos in the figure legends of the supplementary material. For example Figure S2: S. Typhimurium not italicized, ~7x105 no superscript. Fig. S4&5 ", Open circles" is "O" is capitalized.
Typos have been corrected.
-
- Jan 2025
-
docs.pkp.sfu.ca docs.pkp.sfu.ca
-
If you receive a PDF that is untagged, or where the tag structure is incomplete or incorrect, it is usually best to return to the source document, make the necessary accessibility repairs, and then re-create the PDF.
Do we have a sense of the workflows journal editing teams are doing to publish galleys / files?
-
IMPORTANT: never “Print to PDF” when exporting a Word Document to PDF. A screen reader user may still be able to access the text of a PDF created in this way, but heading structure, alternative text, and any other tag structure will be lost.
Never use print to PDF
-
-
docs.pkp.sfu.ca docs.pkp.sfu.ca
-
if you publish galleys in PDF, you can set the language tag for the document as follows: Open the Document Properties dialog: Choose File > Properties Select a language from the Language menu in the Reading Options area of the Advanced tab.
Setting default language for PDF galleys in OJS
-
If you use OJS with multiple languages, make sure to use the proper language locale for that language (e.g. French locale for the French language) as the locale determines the language tag for the page.
Expectations for multiple language journals in OJS>
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary: It has been known for many years that some peroxisomal proteins are imported by the major peroxisomal protein import receptor Pex5, which recognises the C terminal targeting signal PTS1, despite either lacking a PTS1 or if the PTS1 is blocked. Some proteins are also able to 'piggyback' into peroxisomes by binding to a partner which possesses a PTS. Eci1, the subject of this study is such a protein. This manuscript identified a PTS1-independent, non-canonical interaction interface between S. cerevisiae PEX5 and imported protein Eci1. Confocal imaging was used to observe the PTS1-independent import of Eci1 into peroxisomes and to establish dependence of Pex5 even in the absence of its piggyback partner Dci1. The authors purified the Pex5-Eci1 complex and used Cryo-EM to provide a structure of the purified PEX5-Eci1 complex. In general, this manuscript is well written and easy to read.
Major points
Most of the experiments presented are well-designed and accompanied with appropriate controls. However, please mention how many times the experiments have been repeated and how many biological samples were used in the analysis.The authors should also consider the following suggestions substantiate their conclusions:
Figure 1A: Include full-length Eci1 with an N-terminal fluorophore, Eci1 PTS1-deletion with N-terminal fluorophore, and the PTS1 deletion with a C-terminal fluorophore, to control for any disturbance of targeting by the C terminal NG tag.
Figure 1C: Confirm the Eci1 and Dci1 levels (if an antibody is available for the latter) by western blot. It is difficult to compare expression levels when comparing just a small number of cells in the microscope. Western blot would give a more robust evaluation of protein levels and help corroborate the claim that Eci1 expression is decreased in the absence of Dci1 if the authors wish to stand by this conclusion.
Figure 2: confirm the deletion and overexpression of PEX9, PEX5, and PEX7 by western blot of the relevant strains. The production of these strains is not described in the manuscript. If they have been previously described this should be referenced if not it should be included.
Figure 2: Validate these strains by checking import of a canonical PTS1 and canonical PTS2 and pex9 dependent protein to ensure they function as they should, unless these strains have been published elsewhere in which case their characterisation can be referenced.
Figure 3: The gel should include a standard of a known amount of the lysate used in the pull down to enable a semi-quantitative estimation of the amount of Eci1 protein captured by PEX5 with and without its PTS1. Also include Eci1 with a C-terminal fluorophore to be comparable with the in vivo data in Figs 1 and 2. A control with no pex5 for background would be useful. A full Coomassie-blue stained gel (not western blot) is required to demonstrate the direct interaction as with the western blot it cannot be excluded that other proteins bridge the interaction since this is a pull down from lysate not purified proteins. OPTIONAL:Interestingly the surface on Eci1 which binds pex5 is where CoA binds in the active enzyme. Would CoA compete for binding to Pex5? (could add it into the pull down expt?)
Figure S2: The complex between pex5 and eci1 is solved by cryo EM. Eci1 is hexameric usually 1 but sometimes 2 or 3 pex5s are bound to the complex. The size-exclusion chromatography figure with calculated molecular weight is required to support the stoichiometry. A native gel to show the complex, as well as a denaturing gel (using the complex) to show the individual proteins will be beneficial.
Figure S9: Would Eci1 compete with Dci1 to bind to Pex5 since they share highly conserved interfaces? If so, why did the deletion of Dci1 impair Eci1 location? Or is this just reduced expression in the dci1 deletion background? (See point 2) This seems counterintuitive/contradictory so please comment.
OPTIONAL: As the authors acknowledge this work is in vitro. It would have been interesting to examine the role of this interface in vivo by mutating one or more of the residues in Eci 1 identified as being important for the interaction. Granted that mutation can affect the folding of the protein, but the binding region is on the surface so it may not, and this can be readily checked e.g by enzyme activity or limited proteolysis.
OPTIONAL: Similarly, it would have been interesting to see if mutating the residues of PEX5 involved in the interface affect the import of other cargoes than eci1 or if reciprocal mutations in pex5 and Eci1 e.g switching charges could restore an import defect.
OPTIONAL If 8 & 9 isn't possible could a co-evolutionary analysis of the interface residues provide further independent evidence for their functional importance? They have looked at conservation of residues in Eci1 but this could be extended to a co-evolution analysis.
Minor points
Figure 1C and throughout the manuscript state clearly whether the same confocal settings are used when comparing fluorescence intensity of different images/samples.
Figure S2B: Please use different colours for PEX5 and Eci1 for clarity.
Figure 4A: please indicate the PTS1 for the other 5 molecules of Eci1. Are they buried? Or not seen? Please add explanation.
Figure 4B, C, and D: please colour the circled helix in PEX5 so that it can be more easily seen.
Please indicate the EBI-mediated interaction in Figure 4C. The relationship between 4C and 4D could be explained better as they are not viewed from the same direction
Figure S3: As the authors indicated, Pex5 binds with multiple conformations and forms a variable interface with an Eci1 subunit. Does this mean different types of non-canonical interface are possible? Please discuss this.
Figure 5A and B: they should be labelled as PEX5 TPR domain
Figure S8 is very helpful in understanding the interface and could be included in Figure 5.
Significance
While cargo recognition by Pex5-PTS1 is well understood in molecular detail there are proteins which either lack a PTS1 or have a nonessential PTS1 that still require Pex5 for import into peroxisomes. This study provides a structural view of interaction between Pex5 and its cargo Eci1, a protein that does have a PTS1 but which is not essential for import. It's not the first example of a PEX5-cargo structure to show a non-canonical binding interface and the results are compared to the human pex5-AGT structure. It is an important addition to understanding how so-called PTS context dependent or non1 non2 proteins can be imported. Is this the first structure showing Pex5 bound to an oligomer cargo? Previous work is appropriately cited in the manuscript.
The study will be of interest to audiences interested in protein-protein interaction and in protein targeting to organelles. This manuscript presents additional knowledge on how an oligomeric PTS1-independent protein can be imported into peroxisomes. The potential of other proteins using the similar importing mechanism can be tested to understand how one receptor can use apparently multiple binding modes to import a wide range of different proteins.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
Proteins are imported into peroxisomes by mobile receptors such as PEX5. PEX5 recognizes cargo proteins in the cytosol by their peroxisome targeting signal (PTS) and then shuttles them across the peroxisomal membrane into the matrix. While most peroxisomal proteins contain well-characterized signals that bind to PEX5 either directly (PTS1) or through PEX7 (PTS2), some proteins interact with PEX5 independently of these canonical signals. The molecular basis of these unconventional interactions has been poorly understood.
The manuscript by Peer et al. deals with one such protein called Eci1 in yeast. Eci1 has a PTS1 signal at its C terminus and a putative PTS2 signal at its N terminus, yet the authors show that neither of these signals is required for import of Eci1 into peroxisomes. They also show that import of Eci1 cannot be entirely explained by piggy-backing on its paralog Dci1. Regardless, import of Eci1 depends entirely on PEX5, indicating that Eci1 can bind to PEX5 unconventionally. To identify this additional interface, the authors solve the cryo-EM structure of PEX5 bound to Eci1 (which is a hexamer). Surprisingly, the structure reveals that PEX5 binds to only one of the six Eci1 subunits, and that two distinct interfaces are apparent. One reflects the canonical interaction between the PTS1 signal of Eci1 and the receptor's cognate PTS1-binding TPR domain. The other interface is novel and of potential interest. It involves a region of Eci1 that engages a segment of PEX5 upstream of the TPR domain. This segment has not been previously implicated in binding protein cargo.
Major issues:
- The major issue with the paper is that the novel interface between Eci1 and PEX5 has not been demonstrated to be important for import into peroxisomes. Specifically, mutagenesis of both sides of the interface is required to demonstrate that this interaction mediates import of Eci1 lacking the canonical PTS1 signal (and also in the absence of the paralog Dci1). Such data are indisputably a precondition for publication of this paper. Pull-down experiments should also be performed to demonstrate that the interface is sufficient for interacting with PEX5 in the absence of the PTS1 signal on Eci1.
- The paper hinges on the demonstration of a residual interaction between PEX5 and Eci1 lacking its PTS1 signal. However, the pull-down experiment in Figure 3 that allegedly shows this result lacks a critical control for non-specific binding of Eci1 to the nickel beads alone. Also, this experiment does not show a direct interaction between PEX5 and Eci1, since the two proteins are co-expressed in bacteria and then pulled down using an engineered His-tag in PEX5. This experiment should be repeated using PEX5 and Eci1 purified separately and then mixed in vitro. Please show a coomassie-stained SDS-PAGE gel to assess protein purity in addition to the immunoblot, and please show the pull-down in a more conventional way comparing the input and the bound fraction (it is unclear what is meant by soluble and elution fractions).
- The presentation of the structure in Figure 4 should be improved. An overview of the complex should be shown first, and then each interface should be pointed out in a different view (and accordingly labeled). It is distracting and not necessary to show all six subunits of Eci1 in different colors. The non-conventional interface should be shown more clearly, with key amino acids numbered and labeled, and the configurations of their side chains highlighted. Please also highlight the salt bridges and hydrogen bonds at this interface that are mentioned in the text but never illustrated.
- The data in Figs. S2 and S3 raise doubts about the reported resolution of PEX5 in the cryo-EM structure. Please provide examples of the density map and the fit to the model.
- Please provide data for the purification of the complex between PEX5 and Eci1, including a gel-filtration chromatogram and an SDS-PAGE gel of the purified sample used for cryo-EM.
- OPTIONAL: The observation that the non-conventional interface between PEX5 with Eci1 corresponds to the site of CoA binding is interesting. This interaction might keep the enzyme inactive while in the cytosol and bound to PEX5, until it would be correctly delivered into peroxisomes and released from the receptor. Alternatively, it could also reflect regulation of Eci1 import by CoA. This idea could easily be tested by pull-down experiments performed with or without CoA, or perhaps by an in vitro Eci1 activity assay in the presence or absence of PEX5. The significance of the paper would be considerably improved if this interaction reflected a mechanism to regulate Eci1 activity or import.
Minor issues:
- The manuscript has many grammatical mistakes which should be addressed. The absence of line numbers precludes us from indicating specific issues.
- In general, when referring to a single subunit from the Eci1 hexamer, please use the terms subunit or protomer, and avoid the use of the term monomer which is misleading.
- In Fig. 1C, it is unclear whether the experiment was performed in the absence or presence of PEX11. Since the paper hinges on the demonstration of an unconventional interaction between Eci1 and PEX5, perhaps this experiment should be performed in pex11 knockout cells (to enlarge peroxisomes as in Fig. 1B) to show that the residual peroxisomal localization indeed corresponds to the matrix.
- In Fig. 6, it would help to show each structure individually and then the overlay.
- Fig. S4 should include a scale bar and box size.
- Why are phosphorylation sites indicated in Fig. S6?
- In Fig. S8, please show the structures of Eci1 bound to PEX5 and to CoA individually, and then the overlay. The figure is very diffucult to understand otherwise.
- In Fig. S9, please label the homologous interface residues on Eci1 and Dci1 in individual views, and then show the overlay.
Significance
The main finding of the paper is a noncanonical interaction between Eci1 and the peroxisomal import receptor PEX5. This interaction could solve a longstanding mystery about how Eci1 can be targeted to peroxisomes in the absence of its canonical peroxisome targeting signal. Because the authors have not demonstrated that this interaction is sufficient for import of Eci1 in vivo, this key conclusion of the paper remains unconfirmed. If this omission were corrected, the paper would add another example to the growing list of proteins that are imported into peroxisomes by binding unconventionally to PEX5.
The authors employ an interesting strategy to confirm that Eci1 is correctly imported into the peroxisomal matrix in vivo (and not just recruited to the cytosolic surface of the peroxisomal membrane). This strategy involves enlarging peroxisomes (which normally are diffraction limited) by knocking out a factor required for peroxisome division, allowing the matrix to be resolved from the limiting membrane by light microscopy. Failure to adequately demonstrate import into the matrix had plagued many earlier studies on protein targeting to peroxisomes. The strategy employed in this paper could therefore be useful to other researchers.
In its current form, the manuscript would be of some interest to the peroxisomal community and perhaps also to researchers studying protein targeting to membrane-bounded organelles. However, if the authors could show that the novel interface between PEX5 and Eci1 functions in part to regulate Eci1 enzymatic activity (or conversely, Eci1 import by CoA), then the paper would be of much broader interest to the fields of metabolism and metabolic regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
Summary:
This paper details a study of endothelial cell vessel formation during zebrafish development. The results focus on the role of aquaporins, which mediate the flow of water across the cell membrane, leading to cell movement. The authors show that actin and water flow together drive endothelial cell migration and vessel formation. If any of these two elements are perturbed, there are observed defects in vessels. Overall, the paper significantly improves our understanding of cell migration during morphogenesis in organisms.
Strengths:
The data are extensive and are of high quality. There is a good amount of quantification with convincing statistical significance. The overall conclusion is justified given the evidence.
Weaknesses:
There are two weaknesses, which if addressed, would improve the paper.
(1) The paper focuses on aquaporins, which while mediates water flow, cannot drive directional water flow. If the osmotic engine model is correct, then ion channels such as NHE1 are the driving force for water flow. Indeed this water is shown in previous studies. Moreover, NHE1 can drive water intake because the export of H+ leads to increased HCO3 due to the reaction between CO2+H2O, which increases the cytoplasmic osmolarity (see Li, Zhou and Sun, Frontiers in Cell Dev. Bio. 2021). If NHE cannot be easily perturbed in zebrafish, it might be of interest to perturb Cl channels such as SWELL1, which was recently shown to work together with NHE (see Zhang, et al, Nat. Comm. 2022).
(2) In some places the discussion seems a little confusing where the text goes from hydrostatic pressure to osmotic gradient. It might improve the paper if some background is given. For example, mention water flow follows osmotic gradients, which will build up hydrostatic pressure. The osmotic gradients across the membrane are generated by active ion exchangers. This point is often confused in literature and somewhere in the intro, this could be made clearer.
Reviewer #1 (Recommendations For The Authors):
(1) The paper focuses on aquaporins, which while mediating water flow, cannot drive directional water flow. If the osmotic engine model is correct, then ion channels such as NHE1 are the driving force for water flow. Indeed this water is shown in previous studies. Moreover, NHE1 can drive water intake because the export of H+ leads to increased HCO3 due to the reaction between CO2+H2O, which increases the cytoplasmic osmolarity (see Li, Zhou and Sun, Frontiers in Cell Dev. Bio. 2021). If NHE cannot be easily perturbed in zebrafish, it might be of interest to perturb Cl channels such as SWELL1, which was recently shown to work together with NHE (see Zhang, et al, Nat. Comm. 2022).
We thank Reviewer #1 for this very important comment and the suggestion to examine the function of ion channels in establishing an osmotic gradient to drive directional flow. We have taken on board the reviewer’s suggestion and examined the expression of NHE1 and SWELL1 in endothelial cells using published scRNAseq of 24 hpf ECs (Gurung et al, 2022, Sci. Rep.). We found that slc9a1a, slc9a6a, slc9a7, slc9a8, lrrc8aa and lrrc8ab are expressed in different endothelial subtypes. To examine the function of NHE1 and SWELL1 in endothelial cell migration, we used the pharmacological compounds, 5-(N-ethyl-Nisopropyl)amiloride (EIPA) and DCPIB, respectively. While we were unable to observe an ISV phenotype after EIPA treatment at 5, 10 and 50µM, we were able to observe impaired ISV formation after DCPIB treatment that was very similar to that observed in Aquaporin mutants. We were very encouraged by these results and proceeded to perform more detailed experiments whose results have yielded a new figure (Figure 6) and are described and discussed in lines 266 to 289 and 396 to 407, respectively, in the revised manuscript.
(2) In some places the discussion seems a little confusing where the text goes from hydrostatic pressure to osmotic gradient. It might improve the paper if some background is given. For example, mention water flow follows osmotic gradients, which will build up hydrostatic pressure. The osmotic gradients across the membrane are generated by active ion exchangers. This point is often confused in literature and somewhere in the intro, this could be made clearer.
Thank you for pointing out the deficiency in explaining how osmotic gradients drive water flow to build up hydrostatic pressure. We have clarified this in lines 50, 53 - 54 and 385.
The two recommendations listed above would improve the paper. They are however not mandatory. The paper would be acceptable with some clarifying rewrites. I am not an expert on zebrafish genetics, so it might be difficult to perturb ion channels in this model organism. Have the authors tried to perturb ion channels in these cells?
We hope that our attempts at addressing Reviewer’s 1 comments are satisfactory and sufficient to clarify the concerns outlined.
Reviewer #2 (Public Review):
Summary:
Directional migration is an integral aspect of sprouting angiogenesis and requires a cell to change its shape and sense a chemotactic or growth factor stimulus. Kondrychyn I. et al. provide data that indicate a requirement for zebrafish aquaporins 1 and 8, in cellular water inflow and sprouting angiogenesis. Zebrafish mutants lacking aqp1a.1 and aqp8a.1 have significantly lower tip cell volume and migration velocity, which delays vascular development. Inhibition of actin formation and filopodia dynamics further aggravates this phenotype. The link between water inflow, hydrostatic pressure, and actin dynamics driving endothelial cell sprouting and migration during angiogenesis is highly novel.
Strengths:
The zebrafish genetics, microscopy imaging, and measurements performed are of very high quality. The study data and interpretations are very well-presented in this manuscript.
Weaknesses:
Some of the mechanobiology findings and interpretations could be strengthened by more advanced measurements and experimental manipulations. Also, a better comparison and integration of the authors' findings, with other previously published findings in mice and zebrafish would strengthen the paper.
We thank Reviewer #2 for the critique that the paper can be strengthened by more advanced measurements and experimental manipulations. One of the technical challenges that we face is how to visualize and measure water flow directly in the zebrafish. We have therefore taken indirect approaches to assess water abundance in endothelial cells in vivo. One approach was to measure the diffusion of GEM nanoparticles in tip cell cytoplasm in wildtype and Aquaporin mutants, but results were inconclusive. The second was to measure the volume of tip cells, which should reflect water in/outflow. As the second approach produced clear and robust differences between wildtype ECs, ECs lacking Aqp1a.1 and Aqp8a.1 and ECs overexpressing Aqp1a.1 (revised Fig. 5), we decided to present these data in this manuscript.
We have also taken Reviewer 2 advice to better incorporate previously published data in our discussion (see below and lines 374 to 383 of the revised manuscript).
Reviewer #2 (Recommendations For The Authors):
I have a few comments that the authors may address to further improve their manuscript analysis, quality, and impact.
Major comments:
(1) Citation and discussion of published literature
The authors have failed to cite and discuss recently published results on the role of aqp1a.1 and aqp8a.1 in ISV formation and caliber in zebrafish (Chen C et al. Cardiovascular Research 2024). That study showed a similar impairment of ISV formation when aqp1a.1 is absent but demonstrated a stronger phenotype on ISV morphology in the absence of aqp8a.1 than the current manuscript by Kondrychyn I et al. Furthermore, Chen C et al show an overall decrease in ISV diameter in single aquaporin mutants suggesting that the cell volume of all ECs in an ISV is affected equally. Given this published data, are ISV diameters affected in single and double mutants in the current study by Kondrochyn I et al? An overall effect on ISVs would suggest that aquaporin-mediated cell volume changes are not an inherent feature of endothelial tip cells. The authors need to analyse/compare and discuss all differences and similarities of their findings to what has been published recently.
We apologise for having failed and discussed the recently published paper by Chen et al. This has been corrected and discussed in lines 374 to 383.
In the paper by Chen et al, the authors describe a role of Aqp1a.1 and Aqp8a.1 in regulating ISV diameter (ISV diameter was analysed at 48 hpf) but they did not examine the earlier stages of sprouting angiogenesis between 20 to 30 hpf, which is the focus of our study. We therefore cannot directly compare the ISV phenotypes with theirs. Nevertheless, we recognise that there are differences in ISV phenotypes from 2 dpf. For example, they did not observe incompletely formed or missing ISVs at 2 and 3 dpf, which we clearly observe in our study. This could be explained by differences in the mutations generated. In Chen et al., the sgRNA used targeted the end of exon 2 that resulted in the generation of a 169 amino acid truncated aqp1a.1 protein. However, in our approach, our sgRNA targeted exon 1 of the gene that resulted in a truncated aqp1a.1 protein that is 76 amino acid long. As for the aqp8a.1 zebrafish mutant that we generated, our sgRNA targeted exon 1 of the gene that resulted in a truncated protein that is 73 amino acids long. In Chen et al., the authors did not generate an aqp8a.1 mutant but instead used a crispant approach, which leads to genetic mosaicism and high experimental variability.
Following the reviewer’s suggestion, we have now measured the diameters of arterial ISVs (aISVs) and venous ISVs (vISVs) in aqp1a.1<sup>-/-</sup>, aqp8a.1<sup>-/-</sup> and aqp1a.1<sup>-/-</sup>;aqp8a.1<sup>-/-</sup> zebrafish. In our lab, we always make a distinction between aISVs and vISVs are their diameters are significantly different from each other. The results are in Fig S11A. While we corroborate a decrease in diameter in both aISVs and vISVs in single aqp1a.1<sup>-/-</sup> and double aqp1a.1<sup>-/-</sup>;aqp8a.1<sup>-/-</sup>.zebrafish, we observed a slight increase in diameter in both aISVs and vISVs in aqp8a.1<sup>-/-</sup> zebrafish at 2 dpf. We also measured the diameter of aISV and vISV in Tg(fli1ep:aqp1a.1-mEmerald) and Tg(fli1ep:aqp8a.1-mEmerald) zebrafish at 2 dpf (Fig S11B) and unlike in Chen et al., we could not detect a difference in the diameter between control and aqp1a.1- or aqp8a.1-overexpressing endothelial cells.
We also would also like to point out that, because ISVs are incompletely formed or are missing in aqp1a.1<sup>-/-</sup>;aqp8a.1<sup>-/-</sup> zebrafish (Fig. 3G – L), blood flow is most likely altered in the zebrafish trunk of these mutants, and this can have a secondary effect on blood vessel calibre or diameter. In fact, we often observed wider ISVs adjacent to unperfused ISVs (Fig. 3J) as more blood flow enters the lumenized ISV. Therefore, to determine the cell autonomous function of Aquaporin in mediating cell volume changes in vessel diameter regulation, one would need to perform cell transplantation experiments where we would measure the volume of single aqp1a.1<sup>-/-</sup>;aqp8a.1<sup>-/-</sup> endothelial cells in wildtype embryos with normal blood flow. As this is beyond the scope of the present study, we have not done this experiment during the revision process.
(2) Expression of aqp1a.1 and aqp8a.1
The quantification shown in Figure 1G shows a relative abundance of expression between tip and stalk cells. However, it seems aqp8a.1 is almost never detected in most tip cells. The authors could show in addition, the % of Tip and stalk cells with detectable expression of the 2 aquaporins. It seems aqp8a1 is really weakly or not expressed in the initial stages. Ofcourse the protein may have a different dynamic from the RNA.
We would like to clarify that aqp8a.1 mRNA is not detected in tip cells of newly formed ISVs at 20hpf. At 22 hpf, it is expressed in both tip cells (22 out of 23 tip cells analysed) and stalk cells of ISVs at 22hpf. This is clarified in lines 107 - 109. We also include below a graph showing that although aqp8a.1 mRNA is expressed in tip cells, its expression is higher in stalk cells.
Author response image 1.
Could the authors show endogenously expressed or tagged protein by antibody staining? The analysis of the Tg(fli1ep:aqp8a.1-mEmerald)rk31 zebrafish line is a good complement, but unfortunately, it does not reveal the localization of the endogenously expressed protein. Do the authors have any data supporting that the endogenously expressed aqp8a.1 protein is present in sprouting tip cells?
We tested several antibodies against AQP1 (Alpha Diagnostic International, AQP11-A; ThermoFisher Scientific, MA1-20214; Alomone Labs, AQP-001) and AQP8 (Sigma Aldrich, SAB 1403559; Alpha Diagnostic International, AQP81-A; Almone Labs, AQP-008) but unfortunately none worked. As such, we do not have data demonstrating endogenous expression and localisation of Aqp1a.1 and Aqp8a.1 proteins in endothelial cells.
Could the authors perform F0 CRISPR/Cas9 mediated knockin of a small tag (i.e. HA epitope) in zebrafish and read the endogenous protein localization with anti-HA Ab?
CRISPR/Cas9 mediated in-frame knock-in of a tag into a genomic locus is a technical challenge that our lab has not established. We therefore cannot do this experiment within the revision period.
Given the double mutant phenotypic data shown, is aqp8a.1 expression upregulated and perhaps more important in aqp1a.1 mutants?
In our analysis of aqp1a.1 homozygous zebrafish, there is a slight down_regulation in _aqp8a.1 expression (Fig. S5C). Because the loss of Aqp1a.1 leads to a stronger impairment in ISV formation than the loss of Aqp8a.1 (see Fig. S6F, G, I and J), we believe that Aqp1a.1 has a stronger function than Aqp8a.1 in EC migration during sprouting angiogenesis.
Regarding the regulation of expression by the Vegfr inhibitor Ki8751, does this inhibitor affect Vegfr/ERK signalling in zebrafish and the sprouting of ISVs significantly?
ki8751 has been demonstrated to inhibit ERK signalling in tip cells in the zebrafish by Costa et al., 2016 in Nature Cell Biology. In our experiments, treatment with 5 µM ki8751 for 6 hours from 20 hpf also inhibited sprouting of ISVs.
The data presented suggest that tip cells overexpressing aqp1a.1-mEmerald (Figure 2C) need more than 6 times longer to migrate the same distance as tip cells expressing aqp8a.1mEmerald (Figure 2D). How does this compare with cells expressing only Emerald? A similar time difference can be seen in Movie S1 and Movie S2. Is it just a coincidence? Could aqp8a.1, when expressed at similar levels than aqp1a, be more functional and induce faster cell migration? These experiments were interpreted only for the localization of the proteins, but not for the potential role of the overexpressed proteins on function. Chen C et al. Cardiovascular Research 2024 also has some Aqp overexpression data.
The still images prepared for Fig. 2 C and D were selected to illustrate the localization of Aqp1a.1-mEmerald and Aqp8a.1-mEmerald at the leading edge of migrating tip cells. We did not notice that the tip cell overexpressing Aqp1a.1-mEmerald (Figure 2C) needed more than 6 times longer to migrate the same distance as the tip cell expressing aqp8a.1-mEmerald (Figure 2D), which the reviewer astutely detected. To ascertain whether there is a difference in migration speed between Aqp1a.1-mEmerald and Aqp8a.1-mEmerald overexpressing endothelial cells, we measured tip cell migration velocity of three ISVs from Tg(fli1ep:aqp1a.1-mEmerald) and Tg(fli1ep:aqp8a.1-mEmerald) zebrafish during the period of ISV formation (24 to 29 hpf) using the Manual Tracking plugin in Fiji. As shown in the graph, there is no significant difference in the migration speed of ECs overexpressing Aqp1a.1-mEmerald and Aqp8a.1-mEmerald, suggesting that Aqp8a.1-overexpressing cells migrate at a similar rate as Aqp1a.1-overexpressing cells. As we have not generated a Tg(fli1ep:mEmerald) zebrafish line, we are unable to determine whether endothelial cells migrate faster in Tg(fli1ep:aqp1a.1mEmerald) and Tg(fli1ep:aqp8a.1-mEmerald) zebrafish compared to endothelial cell expressing only mEmerald. As for the observation that tip cells overexpressing aqp1a.1mEmerald (Figure 2C) need more than 6 times longer to migrate the same distance as tip cells expressing aqp8a.1-mEmerald, we can only surmise that it is coincidental that the images selected “showed” faster migration of one ISV from Tg(fli1ep:aqp8a.1-mEmerald) zebrafish. We do not know whether the Aqp1a.1 and Aqp8a.1 are overexpressed to the same levels in Tg(fli1ep:aqp1a.1mEmerald) and Tg(fli1ep:aqp8a.1-mEmerald) zebrafish.
We would also like to point out that when we analysed the lengths of ISVs at 28 hpf in aqp1a.1<sup>-/-</sup> and aqp8a.1<sup>-/-</sup> zebrafish, ISVs were shorter in aqp1a.1<sup>-/-</sup> zebrafish compared to aqp8a.1<sup>-/-</sup> zebrafish (Fig. S6 F to J). These results indicate that the loss of Aqp1a.1 function causes slower migration than the loss of aqp8a.1 function, and suggest that Aqp1a.1 induces faster endothelial cell migration that Aqp8a.1.
Author response image 2.
The data on Aqps expression after the Notch inhibitor DBZ seems unnecessary, and is at the moment not properly discussed. It is also against what is set in the field. aqp8a.1 levels seem to increase only 24h after DBZ, not at 6h, and still authors conclude that Notch activation inhibits aqp8a.1 expression (Line 138-139). In the field, Notch is considered to be more active in stalk cells, where aqp8a.1 expression seems higher (not lower). Maybe the analysis of tip vs stalk cell markers in the scRNAseq data, and their correlation with Hes1/Hey1/Hey2 and aqp1 vs aqp8 mRNA levels will be more clear than just showing qRT-PCR data after DBZ.
As our scRNAseq data did not include ECs from earlier during development when ISVs are developing, we have analysed of scRNAseq data of 24 hpf endothelial cells published by Gurung et al, 2022 in Scientific Reports during the revision of this manuscript. However, we are unable to detect separate clusters of tip and stalk cells. As such, we are unable to correlate hes1/hey1/hey2 expression (which would be higher in stalk cells) with that of aqp1a.1/aqp8a.1. Also, we have decided to remove the DBZ-treatment results from our manuscript as we agree with the two reviewers that they are unnecessary.
The paper would also benefit from some more analysis and interpretation of available scRNAseq data in development/injury/disease/angiogenesis models (zebrafish, mice or humans) for the aquaporin genes characterized here. To potentially raise a broader interest at the start of the paper.
We thank the reviewer for suggesting examining aquaporin genes in other angiogenesis/disease/regeneration models to expand the scope of aquaporin function. We will do this in future studies.
(3) Role of aqp1a.1 and aqp8a.1 on cytoplasmic volume changes and related phenotypes
In Figure 5 the authors show that Aqp1/Aqp8 mutant endothelial tip cells have a lower cytoplasmic volume than tip cells from wildtype fish. If aquaporin-mediated water inflow occurs locally at the leading edge of endothelial tip cells (Figure 2, line 314-318), why doesn't cytoplasmic volume expand specifically only at that location (as shown in immune cells by Boer et al. 2023)? Can the observed reduction in cytoplasmic volume simply be a side-effect of impaired filopodia formation (Figure 4F-I)?
We believe that water influx not only expands filopodia but also the leading front of tip cells (see bracket region in Fig. 4D), where Aqp1a.1-mEmerald/Aqp8a.1-mEmerald accumulate (Fig. 2), to generate an elongated protrusion and forward expansion of the tip cell. The decrease in cytoplasmic volume observed in the aqp1a.1;aqp8a.1 double mutant zebrafish is a result of decreased formation of these elongated protrusions at the leading front of migration tip cells as shown in Fig. 4E (compare to Fig. 4D), not from just a decrease in filopodia number. In fact, in the method used to quantify cell volume, mEmerald/EGFP localization is limited to the cytoplasm and does not label filopodia well (compare mEmerald/EGFP in green with membrane tagged-mCherry in Fig. 5A - C). The volume measured therefore reflects cytoplasmic volume of the tip cell, not filopodia volume.
Do the authors have data on cytoplasmic volume changes of endothelial tip cells in latrunculin B treated fish? The images in Figures 6 A,B suggest that there is a difference in cell volume upon lat b treatment only.
No, unfortunately we have not performed single cell labelling and measurement of tip cells in Latrunculin B-treated embryos. We can speculate that as there is a decrease in actindriven membrane protrusions in this experiment, one would also expect a decrease in cell volume as the reviewer has observed.
(4) Combined loss of aquaporins and actin-based force generation.
Lines 331-332 " we show that hydrostatic pressure is the driving force for EC migration in the absence of actin-based force generation"....better leave it more open and stick to the data. The authors show that aquaporin-mediated water inflow partially compensates for the loss of actin-based force generation in cell migration. Not that it is the key driving/rescuing force in the absence of actin-based force.
We have changed it to “we show that hydrostatic pressure can generate force for EC migration in the absence of actin-based force generation” in line 348.
(5) Aquaporins and their role in EC proliferation
In the study by Phnk LK et al. 2013, the authors have shown that proliferation is not affected when actin polymerization or filopodia formation is inhibited. However, in the current manuscript by Kondrychyn I. et al. this has not been analysed carefully. In Movie S4 the authors indicate by arrows tip cells that fail to invade the zebrafish trunk demonstrating a severe defect of sprouting initiation in these mutants. Yet, when only looking at ISVs that reach the dorsal side in Movie S4, it appears that they are comprised of fewer EC nuclei/ISV than the ISVs in Movie S3. At the beginning of DLAV formation, most ISVs in control Movie S3 consist of 3-4 EC nuclei, while in double mutants Movie S4 it appears to be only 2-3 EC nuclei. At the end of the Movie S4, one ISV on the left side even appears to consist of only a single EC when touching the dorsal roof. The authors provide convincing data on how the absence of aquaporin channels affects sprouting initiation and migration speed, resulting in severe delay in ISV formation. However, the authors should also analyse EC proliferation, as it may also be affected in these mutants, and may also contribute to the observed phenotype. We know that effects on cell migration may indirectly change the number of cells and proliferation at the ISVs, but this has not been carefully analysed in this paper.
We thank the reviewer for highlighting the lack of information on EC number and division in the aquaporin mutants. We have now quantified EC number in ISVs that are fully formed (i.e. connecting the DA or PCV to the DLAV) at 2 and 3 dpf and the results are displayed in Figure S10A and B. At 2 dpf, there is a slight but significant reduction in EC number in both aISVs and vISVs in aqp1a.1<sup>-/-</sup> zebrafish and an even greater reduction in the double aqp1a. aqp1a.1<sup>/-</sup>;aqp8a.1<sup>-/-</sup> zebrafish. No significant change in EC number was observed in aqp8a.1<sup>-/-</sup> zebrafish. EC number was also significantly decreased at 3 dpf for aqp1a.1<sup>-/-</sup>, aqp8a.1<sup>-/-</sup> and aqp1a.1<sup>-/-</sup>;aqp8a.1<sup>-/-</sup> zebrafish. The decreased in EC number per ISV may therefore contribute to the observed phenotype.
We have also quantified the number of cell divisions during sprouting angiogenesis (from 21 to 30 hpf) to assess whether the lack of Aquaporin function affects EC proliferation. This analysis shows that there is no significant difference in the number of mitotic events between aqp1a.1<sup>+/-</sup>; aqp8a.1<sup>+/-</sup> and aqp1a.1<sup>-/-</sup>;aqp8a.1<sup>-/-</sup> zebrafish (Figure S10 C), suggesting that the reduction in EC number is not caused by a decrease in EC proliferation.
These new data are reported on lines 198 to 205 of the manuscript.
Minor comments:
- Figure 3K data seems not to be necessary and even partially misleading after seeing Figure 3E. Fig. 3E represents the true strength of the phenotype in the different mutants.
Figure 3K has been removed from Figure 3.
- Typo Figure 3L (VII should be VI).
Thank you for spotting this typo. VII has been changed to VI.
- Line 242: The word "required" is too strong because there is vessel formation without Aqps in endothelial cells.
This has been changed to “ …Aqp1a.1 and Aqp8a.1 regulate sprouting angiogenesis…” (lines 238 - 239).
- From Figure S2, the doublets cluster should be removed.
We have performed a new analysis of 24 hpf, 34hpf and 3 dpf endothelial cells scRNAseq data (the previous analysis did not consist of 24 hpf endothelial cells). The doublets cluster is not included in the UMAP analysis.
- Better indicate the fluorescence markers/alleles/transgenes used for imaging in Figures 6A-D.
The transgenic lines used for this experiment are now indicated in the figure (this figure is now Figure 7).
Reviewer #3 (Public Review):
Summary:
Kondrychyn and colleagues describe the contribution of two Aquaporins Aqp1a.1 and Aqp8a.1 towards angiogenic sprouting in the zebrafish embryo. By whole-mount in situ hybridization, RNAscope, and scRNA-seq, they show that both genes are expressed in endothelial cells in partly overlapping spatiotemporal patterns. Pharmacological inhibition experiments indicate a requirement for VEGR2 signaling (but not Notch) in transcriptional activation.
To assess the role of both genes during vascular development the authors generate genetic mutations. While homozygous single mutants appear normal, aqp1a.1;aqp8a.1 double mutants exhibit defects in EC sprouting and ISV formation.
At the cellular level, the aquaporin mutants display a reduction of filopodia in number and length. Furthermore, a reduction in cell volume is observed indicating a defect in water uptake.
The authors conclude, that polarized water uptake mediated by aquaporins is required for the initiation of endothelial sprouting and (tip) cell migration during ISV formation. They further propose that water influx increases hydrostatic pressure within the cells which may facilitate actin polymerization and formation membrane protrusions.
Strengths:
The authors provide a detailed analysis of Aqp1a.1 and Aqp8a.1 during blood vessel formation in vivo, using zebrafish intersomitic vessels as a model. State-of-the-art imaging demonstrates an essential role in aquaporins in different aspects of endothelial cell activation and migration during angiogenesis.
Weaknesses:
With respect to the connection between Aqp1/8 and actin polymerization/filopodia formation, the evidence appears preliminary and the authors' interpretation is guided by evidence from other experimental systems.
Reviewer #3 (Recommendations For The Authors):
Figure 1 H, J:
The differential response of aqp1/-8 to ki8751 vs DBZ after 6h treatment is quite obvious. Why do the authors show the effect after 24h? The effect is more likely than not indirect.
We agree with the reviewer and we have now removed 24 hour Ki8751 treatment and all DBZ treatments from Figure 1.
Figure 2:
According to the authors' model anterior localization of Aqp1 protein is critical. The authors perform transient injections to mosaically express Aqp fusion proteins using an endothelial (fli1) promoter. For the interpretation, it would be helpful to also show the mCherry-CAAX channel in separate panels. From the images, it is not possible to discern how many cells we are looking at. In particular the movie in panel D may show two cells at the tip of the sprout. A marker labelling cell-cell junctions would help. Furthermore, the authors are using a strong exogenous promoter, thus potentially overexpressing the fusion protein, which may lead to mislocalization. For Aqp1a.1 an antibody has been published to work in zebrafish (e.g. Kwong et al., Plos1, 2013).
We would like to clarify that we generated transgenic lines - Tg(fli1ep:aqp1a.1-mEmerald) and Tg(fli1ep:aqp8a.1-mEmerald) - to visualize the localization of Aqp1a.1 and Aqp8a.1 in endothelial cells, and the images displayed in Fig. 2 are from the transgenic lines (not transient, mosaic expression).
To aid visualization and interpretation, we have now added mCherry-CAAX only channel to accompany the Aqp1a.1/Aqp8a.1-mEmerald channel in Fig. 2A and B. To discern how many cells there are in the ISVs at this stage, we have crossed Tg(fli1ep:aqp1a.1-mEmerald) and Tg(fli1ep:aqp8a.1-mEmerald) zebrafish to TgKI(tjp1a-tdTomato)<sup>pd1224</sup> (Levic et al., 2021) to visualize ZO1 at cell-cell junction. However, because tjp1-tdTomato is expressed in all cell types including the skin that lies just above the ISV and the signal in ECs in ISVs is very weak at 22 to 25 hpf, it was very difficult to obtain good quality images that can properly delineate cell boundaries to determine the number of cells in the ISVs at this early stage. Instead, we have annotated endothelial cell boundaries based on more intense mCherryCAAX fluorescence at cell-cell borders, and from the mosaic expression of mCherryCAAX that is intrinsic to the Tg(kdrl:ras-mCherry)<sup>s916</sup> zebrafish line.
In Fig. 2D, there are two endothelial cells in the ISV during the period shown but there is only 1 cell occupying the tip cell position i.e. there is one tip cell in this ISV. Unlike the mouse retina where it has been demonstrated that two endothelial cells can occupy the tip cell position side-by-side (Pelton et al., 2014), this is usually not observed in zebrafish ISVs. This is demonstrated in Movie S3, where it is clear that one nucleus (belonging to the tip cell) occupies the tip of the growing ISV. The accumulation of intracellular membranes is often observed in tip cells that may serve as a reservoir of membranes for the generation of membrane protrusions at the leading edge of tip cells.
We agree that by generating transgenic Tg(fli1ep:aqp1a.1-mEmerald) and Tg(fli1ep:aqp8a.1mEmerald) zebrafish, Aqp1a.1 and Aqp8a.1 are overexpressed that may affect their localization. The eel anti-Aqp1a.1 antibody used in (Kwong et la., 2013) was a gift from Dr. Gordon Cramb, Univ. of St Andrews, Scotland and it was first published in 2001. This antibody is not available commercially. Instead, we have tried to several other antibodies against AQP1 (Alpha Diagnostic International , AQP11-A; ThermoFisher Scientific, MA120214; Alomone Labs, AQP-001) and AQP8 (Sigma Aldrich, SAB 1403559; Alpha Diagnostic International, AQP81-A; Almone Labs, AQP-008) but unfortunately none worked. As such, we cannot compare localization of Aqp1a.1-mEmerald and Aqp8a.1-mEmerald with the endogenous proteins.
Figure 3:
E: the quantification is difficult to read. Wouldn't it be better to set the y-axis in % of the DV axis? (see also Figure S6).
We would like to show the absolute length of the ISVs, and to illustrate that the ISV length decreases from anterior to posterior of the zebrafish trunk. We have increased the size of Fig. 3E to enable easier reading of the bars.
K: This quantification appears arbitrary.
We have removed this panel from Figure 3.
G-J: The magenta channel is difficult to see. Is the lifeact-mCherry mosaic? In panel J there appears to be a nucleus between the sprout and the DLAV. It would be helpful to crop the contralateral side of the image.
No, the Tg(fli1:Lifeact-mCherry) line is not mosaic. The “missing” vessels are not because of mosaicism in transgene but because of truncated ISVs that is a phenotype of loss Aquaporin function. We have changed the magenta channel to grey and hope that by doing so, the reviewer will be able to see the shape of the blood vessels more clearly. We would like to leave the contralateral side in the images, as it shows that the defective vessel is only on one side of body. Furthermore, when we tried to remove it (reducing the number of Z-stacks) neighbour ISV looks incomplete because the embryos were not mounted flat. To clarify what the nucleus between the sprout and the DLAV is, we have indicated that it is that of the contralateral ISV.
L: I do not quite understand the significance of the different classes of phenotypes. Do the authors propose different morphogenetic events or contexts of how these differences come about?
Here, we report the different types of ISV phenotypes that we observe in 3 dpf aqp1a.1<sup>-/-</sup>; aqp8a.1<sup>-/-</sup> zebrafish (Fig. 3 and Fig. S7). As demonstrated in Fig. 4, most of the phenotypes can be explained by the delayed emergence of tip cells from the dorsal aorta and slower tip cell migration. However, in some instances, we also observed retraction of tip cells (Movie S4) and failure of tip cells to emerge from the dorsal aorta or endothelial cell death (see attached figure on page 14), which can give rise to the Class II phenotype. In the dominant class I phenotype (in contrast to class II), secondary sprouting from the posterior cardinal vein is unaffected, and the secondary sprout migrates dorsally passing the level of horizontal myoseptum but cannot complete the formation of vISV (it stops beneath the spinal cord). The Class III phenotype appears to result from a failure of the secondary sprout to fuse with the regressed primary ISV. In the Class IV phenotype, the ventral EC does not maintain a connection to the dorsal aorta. We did not examine how Class III and IV phenotypes arise in detail in this current study.
Author response image 3.
Figure 4:
This figure nicely demonstrates the defects in cell behavior in aqp mutants.
In panel F it would be helpful to show the single channels as well as the merge.
We have now added single channels for PLCd1PH and Lifeact signal in panels F and G.
In Figure 1 the authors argue that the reduction of Aqp1/8 by VEGFR2 inhibition may account for part of that phenotype. In turn, the aqp phenotype seems to resemble incomplete VEGFR2 inhibition. The authors should check whether expression Aqp1Emerald can partially rescue ki8751 inhibition.
To address the reviewer’s comment, we have treated Tg(fli1ep:Aqp1-Emerald) embryos with ki8751 from 20 hpf for 6 hours but we were unable to observe a rescue in sprouting. It could be because VEGFR2 inhibition also affects other downstream signalling pathways that also control cell migration as well as proliferation.
Based on previous studies (Loitto et al.; Papadopoulus et al.) the authors propose that also in ISVs aquaporin-mediated water influx may promote actin polymerization and thereby filopodia formation. However, while the effect on filopodia number and length is well demonstrated, the underlying cause is less clear. For example, filopodia formation could be affected by reduced cell polarization. This can be tested by using a transgenic golgi marker (Kwon et al., 2016).
We have examined tip cell polarity of wildtype, aqp1a.1<sup>-/-</sup> and aqp8a. 1<sup>-/-</sup> embryos at 24-26 hpf by analysing Golgi position relative to the nucleus. We were unable to analyze polarity in aqp1a.1<sup>rk28/rk28</sup>; aqp8a.1<sup>rk29/rk29</sup> embryos as they exist in an mCherry-containing transgenic zebrafish line (the Golgi marker is also tagged to mCherry). The results show that tip cell polarity is similar, if not more polarised, in aqp1a.1<sup>-/-</sup> and aqp8a. 1<sup>-/-</sup> embryos when compared to wildtype embryos (Fig. S10D). This new data is discussed in lines 234 to 237.
Figure 5:
Panel D should be part of Figure 4.
Panel 5D is now in panel J of Figure 4 and described in lines 231 and 235.
-
-
library.achievingthedream.org library.achievingthedream.org
-
a dialogue tag is not always necessary once it is established who is speaking.
Dialogue tags become redundant once the speaker's identity is clear, allowing for a more fluid and natural conversation in writing. The hypothesis suggests that minimizing unnecessary tags enhances readability and maintains the story’s pacing without disrupting immersion.
-
-
www.frontiersin.org www.frontiersin.org
-
The single juvenile seal was instrumented with a Wildlife Computers SPOT6 tag, which only provided Argos satellite tracking data
Elaborate as to why there was as single juvenile in the study.
-
-
www.bbc.com www.bbc.com
-
- "Images or graphics published on BBC Online should include a brief written description (alt-tag or alt-text), which are read by screen-readers." - https://www.bbc.co.uk/editorialguidelines/guidance/visually-and-hearing-impaired-audiences I am unable to annotate alt-text, but as mentioned on BBC Editorial Guidelines 'Guidance: Visually impaired and hearing impaired audiences,' all images and graphics on BBC have alt-text for people with visual disabilities.
-
-
www.biorxiv.org www.biorxiv.org
-
Author response:
The following is the authors’ response to the original reviews.
eLife Assessment
This study uses state-of-the-art methods to label endogenous dopamine receptors in a subset of Drosophila mushroom body neuronal types. The authors report that DopR1 and Dop2R receptors, which have opposing effects in intracellular cAMP, are present in axons termini of Kenyon cells, as well as those of two classes of dopaminergic neurons that innervate the mushroom body indicative of autocrine modulation by dopaminergic neurons. Additional experiments showing opposing effects of starvation on DopR1 and DopR2 levels in mushroom body neurons are consistent with a role for dopamine receptor levels increasing the efficiency of learned food-odour associations in starved flies. Supported by solid data, this is a valuable contribution to the field.
We thank the editors for the assessment, but request to change “DopR2” to “Dop2R”. The dopamine receptors in Drosophila have confusing names, but what we characterized in this study are called Dop1R1 (according to the Flybase; aka DopR1, dDA1, Dumb) and Dop2R (ibid; aka Dd2R). DopR2 is the name of a different dopamine receptor.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
This is an important and interesting study that uses the split-GFP approach. Localization of receptors and correlating them to function is important in understanding the circuit basis of behavior.
Strengths:
The split-GFP approach allows visualization of subcellular enrichment of dopamine receptors in the plasma membrane of GAL4-expressing neurons allowing for a high level of specificity.
The authors resolve the presynaptic localization of DopR1 and Dop2R, in "giant" Drosophila neurons differentiated from cytokinesis-arrested neuroblasts in culture as it is not clear in the lobes and calyx.
Starvation-induced opposite responses of dopamine receptor expression in the PPL1 and PAM DANs provide key insights into models of appetitive learning.
Starvation-induced increase in D2R allows for increased negative feedback that the authors test in D2R knockout flies where appetitive memory is diminished.
This dual autoreceptor system is an attractive model for how amplitude and kinetics of dopamine release can be fine-tuned and controlled depending on the cellular function and this paper presents a good methodology to do it and a good system where the dynamics of dopamine release can be tested at the level of behavior.
Weaknesses:
LI measurements of Kenyon cells and lobes indicate that Dop2R was approximately twice as enriched in the lobe as the average density across the whole neuron, while the lobe enrichment of Dop1R1 was about 1.5 times the average, are these levels consistent during different times of the day and the state of the animal. How were these conditions controlled and how sensitive are receptor expression to the time of day of dissection, staining, etc.
To answer this question, we repeated the experiment in two replicates at different times of day and confirmed that the receptor localization was consistent (Figure 3 – figure supplement 1); LI measurements showed that Dop2R is enriched more in the lobe and less in the calyx compared to Dop1R1 (Figure 3D). The states of animals that could affect LI (e.g. feeding state and anesthesia for sorting, see methods) were kept constant.
The authors assume without discussion as to why and how presynaptic enrichment of these receptors is similar in giant neurons and MB.
In the revision, we added a short summary to recapitulate that the giant neurons exhibit many characteristics of mature neurons (Lines #152-156): "Importantly, these giant neurons exhibit characteristics of mature neurons, including firing patterns (Wu et al., 1990; Yao & Wu, 2001; Zhao & Wu, 1997) and acetylcholine release (Yao et al., 2000), both of which are regulated by cAMP and CaMKII signaling (Yao et al., 2000; Yao & Wu, 2001; Zhao & Wu, 1997)." In addition, we found punctate Brp accumulations localized to the axon terminals of the giant neurons (former Figure 4D and 4E). Therefore, the giant neuron serves as an excellent model to study the presynaptic localization of dopamine receptors in isolated large cells.
Figures 1-3 show the expensive expression of receptors in alpha and beta lobes while Figure 5 focusses on PAM and localization in γ and β' projections of PAM leading to the conclusion that presynaptic dopamine neurons express these and have feedback regulation. Consistency between lobes or discussion of these differences is important to consider.
In the revised manuscript, we show data in the γ KCs (Figure 4C, Figure 5 - figure supplement 1) in addition to α/β KCs, and demonstrate the consistent synaptic localization of Dop1R1 and Dop2R as in α/β KCs (Figure 4B and 5A).
Receptor expression in any learning-related MBONs is not discussed, and it would be intriguing as how receptors are organized in those cells. Given that these PAMs input to both KCs and MBONs these will have to work in some coordination.
The subcellular localization of dopamine receptors in MBONs indeed provides important insights into the site of dopaminergic signaling in these neurons (Takemura et al., 2017; Pavlowsky et al., 2018; Pribbenow et al., 2022). Therefore, we added new data for Dop1R1 and Dop2R in MBON-γ1pedc>αβ (Figure 6). Interestingly, these receptors are localized to in the dendritic projection in the γ1 compartment as well as presynaptic boutons (Figure 6).
Although authors use the D2R enhancement post starvation to show that knocking down receptors eliminated appetitive memory, the knocking out is affecting multiple neurons within this circuit including PAMs and KCs. How does that account for the observed effect? Are those not important for appetitive learning?
In the appetitive memory experiment (Figure 9C), we knocked down Dop2R only in the select neurons of the PPL1 cluster, and this manipulation does not directly affect Dop2R expression in PAMs and KCs.
Starvation-induced enhancement of Dop2R expression in the PPL1 neurons (Figure 8F) would attenuate their outputs and therefore disinhibit expression of appetitive memory in starved flies (Krashes et al., 2009). Consistently, Dop2R knock-down in PPL1 impaired appetitive memory in starved flies (Figure 9C). We revised the corresponding text to make this point clearer (Lines #224227).
The evidence for fine-tuning is completely based on receptor expression and one behavioral outcome which could result from many possibilities. It is not clear if this fine-tuning and presynaptic feedback regulation-based dopamine release is a clear possibility. Alternate hypotheses and outcomes could be considered in the model as it is not completely substantiated by data at least as presented.
The reviewer’s concern is valid, and the presynaptic dopamine tuning by autoreceptors may need more experimental support. We therefore additionally discussed another possibility (Lines #289-291): “Alternatively, these presynaptic receptors could potentially receive extrasynaptic dopamine released from other DANs. Therefore, the autoreceptor functions need to be experimentally clarified by manipulating the receptor expression in DANs.”
Reviewer #2 (Public Review):
Summary:
Hiramatsu et al. investigated how cognate neurotransmitter receptors with antagonizing downstream effects localize within neurons when co-expressed. They focus on mapping the localization of the dopaminergic Dop1R1 and Dop2R receptors, which correspond to the mammalian D1- and D2-like dopamine receptors, which have opposing effects on intracellular cAMP levels, in neurons of the Drosophila mushroom body (MB). To visualize specific receptors in single neuron types within the crowded MB neuropil, the authors use existing dopamine receptor alleles tagged with 7 copies of split GFP to target reconstitution of GFP tags only in the neurons of interest as a read-out of receptor localization. The authors show that both Dop1R1 and Dop2R, with differing degrees, are enriched in axonal compartments of both the Kenyon Cells cholinergic presynaptic inputs and in different dopamine neurons (DANs), which project axons to the MB. Co-localization studies of dopamine receptors with the presynaptic marker Brp suggest that Dop1R1 and, to a larger extent Dop2R, localize in the proximity of release sites. This localization pattern in DANs suggests that Dop1R1 and Dop2R work in dual-feedback regulation as autoreceptors. Finally, they provide evidence that the balance of Dop1R1 and Dop2R in the axons of two different DAN populations is differentially modulated by starvation and that this regulation plays a role in regulating appetitive behaviors.
Strengths:
The authors use reconstitution of GFP fluorescence of split GFP tags knocked into the endogenous locus at the C-terminus of the dopamine receptors as a readout of dopamine receptor localization. This elegant approach preserves the endogenous transcriptional and post-transcriptional regulation of the receptor, which is essential for studies of protein localization.
The study focuses on mapping the localization of dopamine receptors in neurons of the mushroom body. This is an excellent choice of system to address the question posed in this study, as the neurons are well-studied, and their connections are carefully reconstructed in the mushroom body connectome. Furthermore, the role of this circuit in different behaviors and associative memory permits the linking of patterns of receptor localization to circuit function and resulting behavior. Because of these features, the authors can provide evidence that two antagonizing dopamine receptors can act as autoreceptors within the axonal compartment of MB innervating DANs. The differential regulation of the balance of the two receptors under starvation in two distinct DAN innervations provides evidence of the role that regulation of this balance can play in circuit function and behavioral output.
Weaknesses:
The approach of using endogenously tagged alleles to study localization is a strength of this study, but the authors do not provide sufficient evidence that the insertion of 7 copies of split GFP to the C terminus of the dopamine receptors does not interfere with the endogenous localization pattern or function. Both sets of tagged alleles (1X Venus and 7X split GFP tagged) were previously reported (Kondo et al., 2020), but only the 1X Venus tagged alleles were further functionally validated in assays of olfactory appetitive memory. Despite the smaller size of the 7X split-GFP array tag knocked into the same location as the 1X venus tag, the reconstitution of 7 copies of GFP at the C terminus of the dopamine receptor, might substantially increase the molecular bulk at this site, potentially impeding the function of the receptor more significantly than the smaller, single Venus tag. The data presented by Kondo et al. 2020, is insufficient to conclude that the two alleles are equivalent.
In the revision, we validated the function of these engineered receptors by a new set of olfactory learning experiments. Both these receptors in KCs were shown to be required for aversive memory (Kim et al., 2007, Scholz-Kornehl et al., 2016). As in the anatomical experiments, we induced GFP110 expression in KC of the flies homozygous for 7xGFP<sub>11</sub>-tagged receptors using MB-Switch and 3 days of RU486 feeding o. We confirmed STM performance of these flies were not significantly different from the control (Figure 2 – figure supplement 1). Thus, these fusion receptors are functional.
The authors' conclusion that the receptors localize to presynaptic sites is weak. The analysis of the colocalization of the active zone marker Brp whole-brain staining with dopamine receptors labeled in specific neurons is insufficient to conclude that the receptors are localized at presynaptic sites. Given the highly crowded neuropil environment, the data cannot differentiate between the receptor localization postsynaptic to a dopamine release site or at a presynaptic site within the same neuron. The known distribution of presynaptic sites within the neurons analyzed in the study provides evidence that the receptors are enriched in axonal compartments, but co-labeling of presynaptic sites and receptors in the same neuron or super-resolution methods are needed to provide evidence of receptor localization at active zones. The data presented in Figures 5K-5L provides compelling evidence that the receptors localize to neuronal varicosities in DANs where the receptors could play a role as autoreceptors.
Given the highly crowded environment of the mushroom body neuropil, the analysis of dopamine receptor localization in Kenyon cells is not conclusive. The data is sufficient to conclude that the receptors are preferentially localizing to the axonal compartment of Kenyon cells, but co-localization with brain-wide Brp active zone immunostaining is not sufficient to determine if the receptor localizes juxtaposed to dopaminergic release sites, in proximity of release sites in Kenyon cells, or both.
To better resolve the microcircuits of KCs, we triple-labeled the plasma membrane and DAR::rGFP in KCs, and Brp, and examined their localizations with high-resolution imaging with Airyscan. This strategy revealed the receptor clusters associated with Brp accumulation within KCs (Figure 4). To further verify the association of DARs and active zones within KCs, we co-expressed Brp<sup>short</sup>::mStraw and GFP<sub>1-10</sub> and confirmed their colocalization (Figure 5A), suggesting presynaptic localization of DARs in KCs. With these additional characterizations, we now discuss the significance of receptors at the presynaptic sites of KCs.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
This is an important and interesting study that uses the split-GFP approach. Localization of receptors and correlating them to function is important in understanding the circuit basis of behavior.
For Figure 1, the authors show PAM, PPL1 neurons, and the ellipsoid body as a validation of their tools (Dop1R1-T2A-GAL4 and Dop2R-T2A-GAL4) and the idea that these receptors are colocalized. However, it appears that the technique was applied to the whole brain so it would be great to see the whole brain to understand how much labelling is specific and how stochastic. Methods could include how dissection conditions were controlled and how sensitive are receptor expression to the time of day of dissection, staining, etc.
The expression patterns of the receptor T2A-GAL4 lines (Figure 1A and 1B) are consistent in the multiple whole brains (Kondo et al., 2020, Author response image 1).
Author response image 1.
The significance of the expression of these two receptors in an active zone is not clearly discussed and presynaptic localization is not elaborated on. Would something like expansion microscopy be useful in resolving this? It would be important to discuss that as giant neurons in culture don't replicate many aspects of the MB system.
In the revised manuscript, we elaborated discussion regarding the function of the two antagonizing receptors at the AZ (Lines #226-275).
Does MB-GeneSwitch > GFP1-1 reliably express in gamma lobes? Most of the figures show alpha/beta lobes.
Yes. MB-GeneSwitch is also expressed in γ KCs, but weakly. 12 hours of RU486 feeding, which we did in the previous experiments, was insufficient to induce GFP reconstitution in the γ KCs. By extending the time of transgene induction, we visualized expression of Dop1R1 and Dop2R more clearly in γ KCs. Their localization is similar to that in the α/β KCs (Figure 4C, Figure 5 - figure supplement 1).
Figure 6, y-axis says protein level. At first, I thought it was related to starvation so maybe authors can be more specific as the protein level doesn't indicate any aspect of starvation.
We appreciate this comment, and the labels on the y-axis were now changed to “rGFP levels” (Figure 8C and 8F, Figure 8 - figure supplement 1B, 1D and 1F).
Reviewer #2 (Recommendations For The Authors):
Title:
The title of the manuscript focuses on the tagging of the receptors and their synaptic enrichment.
Given that the alleles used in the study were generated in a previously published study (Kondo et al, 2020), which describes the receptor tagging and that the data currently provided is insufficient to conclude that the receptors are localizing to synapses, the title should be changed to reflect the focus on localizing antagonistic cognate neurotransmitter receptors in the same neuron and their putative role as autoreceptors in DANs.
Following this advice, we removed the methodology from the title and revised it to “Synaptic enrichment and dynamic regulation of the two opposing dopamine receptors within the same neurons”.
Minor issues with text and figures:
Figure 1
A conclusion from Figure 1 is that the two receptors are co-expressed in Kenyon cells. Please provide panels equivalent to the ones shown in D-G, with Kenyon cells cell bodies, or mark these cells in the existing panels, if present. Line 111 refers to panel 1D as the Kenyon cells panel, which is currently a PAM panel.
We added images for coexpression of these receptors in the cell bodies of KCs (Figure 1 - figure supplement 1) and revised the text accordingly (Lines #89-90).
Given that most of the study centers on visualizing receptor localization, it would benefit the reader to include labels in Figure 1 that help understand that these panels reflect expression patterns rather than receptor localization. For instance, rCD2::GFP could be indicated in the Dop1R1-LexA panels.
As suggested, labels were added to indicate the UAS and lexAop markers (Figure 1D, 1E, 1G-1I and Figure 1 – figure supplement 1).
Given that panels D-E focus on the cell bodies of the neurons, it could be beneficial for the reader to present the ellipsoid body neurons using a similar view that only shows the cell bodies. Similarly, one could just show the glial cell bodies .
We now show the cell bodies of ring neurons (Figure 1G) and ensheathing glia (Figure 1I).
For panel 1E, please indicate the subset of PPL1 neurons that both expressed Dop1R1 and Dop2R, as indicated in the text, as it is currently unclear from the image.
Dop1R1-T2A-LexA was barely detected in all PPL1 (Figure 1E). We corrected the confusing text (Lines #95-96).
Figure 2
The cartoon of the cell-type-specific labeling should show that the tag is 7XFP-11 and the UAScomponent FP-10, as the current cartoon leads the reader to conclude that the receptors are tagged with a single copy of split GFP. The detail that the receptors are tagged with 7 copies of split GFP is only provided through the genotype of the allele in the resource table. This design aspect should be made clear in the figure and the text when describing the allele and approach used to tag receptors in specific neuron types.
We now added the construct design in the scheme (Figure 2A) and revised the corresponding text (Line #101-103).
Panel A. The arrow representing the endogenous promoter in the yellow gene representation should be placed at the beginning of the coding sequence. Currently, the different colors of what I assume are coding (yellow) and non-coding (white) transcript regions are not described in the legend. I would omit these or represent them in the same color as thinner boxes if the authors want to emphasize that the tag is inserted at the C terminus within the endogenous locus.
The color scheme was revised to be more consistent and intuitive (Figure 2A).
Figure 3
Labels of the calyx and MB lobes would benefit readers not as familiar with the system used in the study. In addition, it would be beneficial to the reader to indicate in panel A the location of the compartments analyzed in panel H (e.g., peduncle, α3).
Figure 3A was amended to clearly indicate the analyzed MB compartments.
Adding frontal and sagittal to panels B-E, as in Figure 2, would help the reader interpret the data.
In Figure 3B, “Frontal” and “Sagittal” were indicated.
Panel F-G. A scale bar should be provided for the data shown in the insets. Could the author comment on the localization of Dop1R1 in KCs? The data in the current panel suggests that only a subset of KCs express high levels of receptors in their axons, as a portion of the membrane is devoid of receptor signals. This would be in line with differential dopamine receptor expression in subsets of Kenyon cells, as shown in Kondo et al., 2020, which is currently not commented on in the paper.
We confirmed that the majority of the KCs express both Dop1R1 and Dop2R genes (Figure 1 - figure supplement 1). LIs should be compared within the same cells rather than the differences of protein levels between cell types as they also reflect the GAL4 expression levels.
Panel H. Some P values are shown as n.s. (p> 0.05). Other non-significant p values in this panel and in other figures throughout the paper are instead reported (e.g. peduncle P=0.164). For consistency, please report the values as n.s. as indicated in the methods for all non-significant tests in this panel and throughout the manuscript.
We now present the new dataset, and the graph represents the appropriate statistical results (Figure 3D; see the methods section for details).
The methods of labeling the receptors through the expression of the GeneSwitch-controlled GFP1-10 in Kenyon cells induced by RU486 are not provided in the methods. Please provide a description of this as referenced in the figure legend and the genotypes used in the analysis shown in the panels.
The method of RU486 feeding has been added. We apologize for the missing method.
Figure 4
Please provide scale bars for the inset in panels A-B.
Scale bars were added to all confocal images.
The current analysis cannot distinguish between postsynaptic and presynaptic dopamine receptors in KCs, and the figure title should reflect this.
We now present the new data dopamine receptors in KCs and clearly distinguish Brp clusters of the KCs and other cell types (Figure 4, Figure 5).
The reader could benefit from additional details of using the giant neuron model, as it is not commonly used, and it is not clear how to relate this to interpret the localization of dopaminergic receptors within Kenyon cells. The use of the venus-tagged receptor variant should be introduced in the text, as using a different allele currently lacks context. Figures 4F-4J show that the receptor is localizing throughout the neuron. Quantifying the fraction of receptor signal colocalizing with Brp could aid in interpreting the data. However, it would still not be clear how to interpret this data in the context of understanding the localization of the receptors in neurons within fly brain circuits. In the absence of additional data, the data provided in Figure 4 is inconclusive and could be omitted, keeping the focus of the study on the analysis of the two receptors in DANs. Co-expressing a presynaptic marker in Kenyon cells (e.g., by expressing Brp::SNAP) in conjunction with rGFP labeled receptor would provide additional evidence of the relationship of release sites in Kenyon cells and tagged dopamine receptors in these same cells and could add evidence in support to the current conclusion.
Following the advice, we added a short summary to recapitulate that the giant neurons exhibit many characteristics of mature neurons (Lines #152-156): "Importantly, these giant neurons exhibit characteristics of mature neurons, including firing patterns (Wu et al., 1990; Yao & Wu, 2001; Zhao & Wu, 1997) and acetylcholine release (Yao et al., 2000), both of which are regulated by cAMP and CaMKII signaling (Yao et al., 2000; Yao & Wu, 2001; Zhao & Wu, 1997)." Therefore, the giant neuron serves as an excellent model to study the presynaptic localization in large cells in isolation.
To clarify polarized localization of Brp clusters and dopamine receptors but not "localizing throughout the neuron", we now show less magnified data (Figure 5C). It clearly demonstrates punctate Brp accumulations localized to the axon terminals of the giant neurons (former Figure 4D and 4E). This is the same membrane segment where Dop1R1 and Dop2R are localized (Figure 5C). Therefore, the association of Brp clusters and the dopamine receptors in the isolated giant neurons suggests that the subcellular localization in the brain neurons is independent of the circuit context.
As the giant neurons do not form intermingled circuits, venus-tagged receptors are sufficient for this experiment and simpler in genetics.
Following the suggestion to clarify the AZ association of the receptors in KCs, we coexpressed Brpshort-mStraw and GFP1-10 in KCs and confirmed their colocalization (Figure 5A).
Figure 6
The data and analysis show that starvation induces changes in the α3 compartment in PPL1 neurons only, while the data provided shows no significant change for PPL1 neurons innervating other MB compartments. This should be clearly stated in lines 174-175, as it is implied that there is a difference in the analysis for compartments other than α3. Panel L of Figure 6 - supplement 1 shows no significant change for all three compartments analyzed and should be indicated as n.s. in all instances, as stated in the methods.
We revised the text to clarify that the starvation-induced differences of Dop2R expression were not significant (Lines #217-219). The reason to highlight the α3 compartment is that both Dop1R1 and Dop2R are coexpressed in this PPL1 neuron (Figure 8D).
Additional minor comments:
There are a few typos and errors throughout the manuscript. The text should be carefully proofread to correct these. Here are the ones that came to my attention:
Please reference all figure panels in the text. For instance, Figure 3A is not mentioned and should be revised in line 112 as Figure 3A-E.
Lines 103-104. The sentence "LI was visualized as the color of the membrane signals" is unclear and should be revised.
Figure 4 legend - dendritic claws should likely be B and C and not B and E.
Lines 147 - Incorrect figure panels, should be 5C-L or 5D-E.
Line 241 - DNAs should be DANs.
Methods - please define what the abbreviation CS stands for.
We really appreciate for careful reading of this reviewer. All these were corrected.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
The manuscript by Zhu et al describes a novel role for MED26, a subunit of the Mediator complex, in erythroid development. The authors have discovered that MED26 promotes transcriptional pausing of RNA Pol II, by recruiting pausing-related factors.
Strengths:
This is a well-executed study. The authors have employed a range of cutting-edge and appropriate techniques to generate their data, including: CUT&Tag to profile chromatin changes and mediator complex distribution; nuclear run-on sequencing (PRO-seq) to study Pol II dynamics; knockout mice to determine the phenotype of MED26 perturbation in vivo; an ex vivo erythroid differentiation system to perform additional, important, biochemical and perturbation experiments; immunoprecipitation mass spectrometry (IP-MS); and the "optoDroplet" assay to study phase-separation and molecular condensates.
This is a real highlight of the study. The authors have managed to generate a comprehensive picture by employing these multiple techniques. In doing so, they have also managed to provide greater molecular insight into the workings of the MEDIATOR complex, an important multi-protein complex that plays an important role in a range of biological contexts. The insights the authors have uncovered for different subunits in erythropoiesis will very likely have ramifications in many other settings, in both healthy biology and disease contexts.
Weaknesses:
There are almost no discernible weaknesses in the techniques used, nor the interpretation of the data. The IP-MS data was generated in HEK293 cells when it could have been performed in the human CD34+ HSPC system that they employed to generate a number of the other data. This would have been a more natural setting and would have enabled a more like-for-like comparison with the other data.
-
Author response:
Public Reviews:
Reviewer #1 (Public review):
Summary:
In this study from Zhu and colleagues, a clear role for MED26 in mouse and human erythropoiesis is demonstrated that is also mapped to amino acids 88-480 of the human protein. The authors also show the unique expression of MED26 in later-stage erythropoiesis and propose transcriptional pausing and condensate formation mechanisms for MED26's role in promoting erythropoiesis. Despite the author's introductory claim that many questions regarding Pol II pausing in mammalian development remain unanswered, the importance of transcriptional pausing in erythropoiesis has actually already been demonstrated (Martell-Smart, et al. 2023, PMID: 37586368, which the authors notably did not cite in this manuscript). Here, the novelty and strength of this study is MED26 and its unique expression kinetics during erythroid development.
Strengths:
The widespread characterization of kinetics of mediator complex component expression throughout the erythropoietic timeline is excellent and shows the interesting divergence of MED26 expression pattern from many other mediator complex components. The genetic evidence in conditional knockout mice for erythropoiesis requiring MED26 is outstanding. These are completely new models from the investigators and are an impressive amount of work to have both EpoR-driven deletion and inducible deletion. The effect on red cell number is strong in both. The genetic over-expression experiments are also quite impressive, especially the investigators' structure-function mapping in primary cells. Overall the data is quite convincing regarding the genetic requirement for MED26. The authors should be commended for demonstrating this in multiple rigorous ways.
Thank you for your positive feedback.
Weaknesses:
(1) The authors state that MED26 was nominated for study based on RNA-seq analysis of a prior published dataset. They do not however display any of that RNA-seq analysis with regards to Mediator complex subunits. While they do a good job showing protein-level analysis during erythropoiesis for several subunits, the RNA-seq analysis would allow them to show the developmental expression dynamics of all subunit members.
Thank you for this helpful suggestion. While we did not originally nominate MED26 based on RNA-seq analysis, we have analyzed the transcript levels of Mediator complex subunits in our RNA-seq data across different stages of erythroid differentiation (Author response image 1). The results indicate that most Mediator subunits, including MED26, display decreased RNA expression over the course of differentiation, with the exception of MED25, as reported previously (Pope et al., Mol Cell Biol 2013. PMID: 23459945).
Notably, our study is based on initial observations at the protein level, where we found that, unlike most other Mediator subunits that are downregulated during erythropoiesis, MED26 remains relatively abundant. Protein expression levels more directly reflect the combined influences of transcription, translation and degradation processes within cells, and are likely more closely related to biological functions in this context. It is possible that post-transcriptional regulation (such as m6A-mediated improvement of translational efficiency) or post-translational modifications (like escape from ubiquitination) could contribute to the sustained levels of MED26 protein, and this will be an interesting direction for future investigation.
Author response image 1.
Relative RNA expression of Mediator complex subunits during erythropoiesis in human CD34+ erythroid cultures. Different differentiation stages from HSPCs to late erythroblasts were identified using CD71 and CD235a markers, progressing sequentially as CD71-CD235a-, CD71+CD235a-, CD71+CD235a+, and CD71-CD235a+. Expression levels were presented as TPM (transcripts per million).
(2) The authors use an EpoR Cre for red cell-specific MED26 deletion. However, other studies have now shown that the EpoR Cre can also lead to recombination in the macrophage lineage, which clouds some of the in vivo conclusions for erythroid specificity. That being said, the in vitro erythropoiesis experiments here are convincing that there is a major erythroid-intrinsic effect.
Thank you for this insightful comment. We recognize that EpoR-Cre can drive recombination in both erythroid and macrophage lineages (Zhang et al., Blood 2021, PMID: 34098576). However, EpoR-Cre remains the most widely used Cre for studying erythroid lineage effects in the hematopoietic community. Numerous studies have employed EpoR-Cre for erythroid-specific gene knockout models (Pang et al, Mol Cell Biol 2021, PMID: 22566683; Santana-Codina et al., Haematologica 2019, PMID: 30630985; Xu et al., Science 2013, PMID: 21998251.).
While a GYPA (CD235a)-Cre model with erythroid specificity has recently been developed (https://www.sciencedirect.com/science/article/pii/S0006497121029074), it has not yet been officially published. We look forward to utilizing the GYPA-Cre model for future studies. As you noted, our in vivo mouse model and primary human CD34+ erythroid differentiation system both demonstrate that MED26 is essential for erythropoiesis, suggesting that the regulatory effects of MED26 in our study are predominantly erythroid-intrinsic.
(3) Te donor chimerism assessment of mice transplanted with MED26 knockout cells is a bit troubling. First, there are no staining controls shown and the full gating strategy is not shown. Furthermore, the authors use the CD45.1/CD45.2 system to differentiate between donor and recipient cells in erythroblasts. However, CD45 is not expressed from the CD235a+ stage of erythropoiesis onwards, so it is unclear how the authors are detecting essentially zero CD45-negative cells in the erythroblast compartment. This is quite odd and raises questions about the results. That being said, the red cell indices in the mice are the much more convincing data.
Thank you for your careful and thorough feedback. We have now included negative staining controls (Author response image 2A, top). We agree that CD45 is typically not expressed in erythroid precursors in normal development. Prior studies have characterized BFU-E and CFU-E stages as c-Kit+CD45+Ter119−CD71low and c-Kit+CD45−Ter119−CD71high cells in fetal liver (Katiyar et al, Cells 2023, PMID: 37174702).
However, our observations indicate that erythroid surface markers differ during hematopoiesis reconstitution following bone marrow transplantation. We found that nearly all nucleated erythroid progenitors/precursors (Ter119+Hoechst+) express CD45 after hematopoiesis reconstitution (Author response image 2A, bottom).
To validate our assay, we performed next-generation sequencing by first mixing mouse CD45.1 and CD45.2 total bone marrow cells at a 1:2 ratio. We then isolated nucleated erythroid progenitors/precursors (Ter119+Hoechst+) by FACS and sequenced the CD45 gene locus by targeted sequencing. The resulting CD45 allele distribution matched our initial mixing ratio, confirming the accuracy of our approach (Author response image 2B).
Moreover, a recent study supports that reconstituted erythroid progenitors can indeed be distinguished by CD45 expression following bone marrow transplantation (He et al., Nature Aging 2024, PMID: 38632351. Extended Data Fig. 8).
In conclusion, our data indicate that newly formed erythroid progenitors/precursors post-transplant express CD45, enabling us to identify nucleated erythroid progenitors/precursors by Ter119+Hoechst+ and determine their origin using CD45.1 and CD45.2 markers.
Author response image 2.
Representative flow cytometry gating strategy of erythroid chimerism following mouse bone marrow transplantation. A. Gating strategy used in the erythroid chimerism assay. B. Targeted sequencing result of Ter119+Hoechst+ cells isolated by FACS. The cell sample was pre-mixed with 1/3 CD45.2 and 2/3 CD45.1 bone marrow cells. Ptprc is the gene locus for CD45.
(4) The authors make heavy use of defining "erythroid gene" sets and "non-erythroid gene" sets, but it is unclear what those lists of genes actually are. This makes it hard to assess any claims made about erythroid and non-erythroid genes.
Thank you for this helpful suggestion. We defined "erythroid genes" and "non-erythroid genes" based on RNA-seq data from Ludwig et al. (Cell Reports 2019. PMID: 31189107. Figure 2 and Table S1). Genes downregulated from stages k1 to k5 are classified as “non-erythroid genes,” while genes upregulated from stages k6 to k7 are classified as “erythroid genes.” We will add this description in the revised manuscript.
(5) Overall the data regarding condensate formation is difficult to interpret and is the weakest part of this paper. It is also unclear how studies of in vitro condensate formation or studies in 293T or K562 cells can truly relate to highly specialized erythroid biology. This does not detract from the major findings regarding genetic requirements of MED26 in erythropoiesis.
Thank you for the rigorous feedback. Assessing the condensate properties of MED26 protein in primary CD34+ erythroid cells or mouse models is indeed challenging. As is common in many condensate studies, we used in vitro assays and cellular assays in HEK293T and K562 cells to examine the biophysical properties (Figure S7), condensation formation capacity (Figure 5C and Figure S7C), key phase-separation regions of MED26 protein (Figure S6), and recruitment of pausing factors (Figure 6A-B) in live cells. We then conducted functional assays to demonstrate that the phase-separation region of MED26 can promote erythroid differentiation similarly to the full-length protein in the CD34+ system and K562 cells (Figure 5A). Specifically, overexpressing the MED26 phase-separation domain accelerates erythropoiesis in primary human erythroid culture, while deleting the Intrinsically Disordered Region (IDR) impairs MED26’s ability to form condensates and recruit PAF1 in K562 cells.
In summary, we used HEK293T cells to study the biochemical and biophysical properties of MED26, and the primary CD34+ differentiation system to examine its developmental roles. Our findings support the conclusion that MED26-associated condensate formation promotes erythropoiesis.
(6) For many figures, there are some panels where conclusions are drawn, but no statistical quantification of whether a difference is significant or not.
Thank you for your thorough feedback. We have checked all figures for statistical quantification and added the relevant statistical analysis methods to the corresponding figure legends (Figure 2L and Figure S4C) to clarify the significance of the observed differences. The updated information will be incorporated into the revised manuscript.
Reviewer #2 (Public review):
Summary:
The manuscript by Zhu et al describes a novel role for MED26, a subunit of the Mediator complex, in erythroid development. The authors have discovered that MED26 promotes transcriptional pausing of RNA Pol II, by recruiting pausing-related factors.
Strengths:
This is a well-executed study. The authors have employed a range of cutting-edge and appropriate techniques to generate their data, including: CUT&Tag to profile chromatin changes and mediator complex distribution; nuclear run-on sequencing (PRO-seq) to study Pol II dynamics; knockout mice to determine the phenotype of MED26 perturbation in vivo; an ex vivo erythroid differentiation system to perform additional, important, biochemical and perturbation experiments; immunoprecipitation mass spectrometry (IP-MS); and the "optoDroplet" assay to study phase-separation and molecular condensates.
This is a real highlight of the study. The authors have managed to generate a comprehensive picture by employing these multiple techniques. In doing so, they have also managed to provide greater molecular insight into the workings of the MEDIATOR complex, an important multi-protein complex that plays an important role in a range of biological contexts. The insights the authors have uncovered for different subunits in erythropoiesis will very likely have ramifications in many other settings, in both healthy biology and disease contexts.
Thank you for your thoughtful summary and encouraging feedback.
Weaknesses:
There are almost no discernible weaknesses in the techniques used, nor the interpretation of the data. The IP-MS data was generated in HEK293 cells when it could have been performed in the human CD34+ HSPC system that they employed to generate a number of the other data. This would have been a more natural setting and would have enabled a more like-for-like comparison with the other data.
Thank you for your positive feedback and insightful suggestions. We will perform validation of the immunoprecipitation results in CD34+ derived erythroid cells to further confirm our findings.
Reviewer #3 (Public review):
Summary:
The authors aim to explore whether other subunits besides MED1 exert specific functions during the process of terminal erythropoiesis with global gene repression, and finally they demonstrated that MED26-enriched condensates drive erythropoiesis through modulating transcription pausing.
Strengths:
Through both in vitro and in vivo models, the authors showed that while MED1 and MED26 co-occupy a plethora of genes important for cell survival and proliferation at the HSPC stage, MED26 preferentially marks erythroid genes and recruits pausing-related factors for cell fate specification. Gradually, MED26 becomes the dominant factor in shaping the composition of transcription condensates and transforms the chromatin towards a repressive yet permissive state, achieving global transcription repression in erythropoiesis.
Thank you for your positive summary and feedback.
Weaknesses:
In the in vitro model, the author only used CD34+ cell-derived erythropoiesis as the validation, which is relatively simple, and more in vitro erythropoiesis models need to be used to strengthen the conclusion.
Thank you for your thoughtful suggestions. We have shown that MED26 promotes erythropoiesis using the primary human CD34+ differentiation system (Figure 2 K-M and Figure S4) and have demonstrated its essential role in erythropoiesis through multiple mouse models (Figure 2A-G and Figure S1-3). Together, these in vitro and in vivo results support our conclusion that MED26 regulates erythropoiesis. However, we are open to further validating our findings with additional in vitro erythropoiesis models, such as iPSC or HUDEP erythroid differentiation systems.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, "PAbFold: Linear Antibody Epitope Prediction using AlphaFold2", the authors generate a python wrapper for the screening of antibody-peptide interactions using AlphaFold, and test the performance of AlphaFold on 3 antibody-peptide complexes. In line with previous observations regarding the ability of AlphaFold to predict antibody structures and antigen binding, the results are mixed. While the authors are able to use AlphaFold to identify and experimentally validate a previously characterized broad binding epitope with impressive precision, they are unable to consistently identify the proper binding registers for their control [Myc-tag, HA-tag] peptides. Further, it appears that the reproducibility and generality of these results are low, with new versions of AlphaFold negatively impacting the predictive power. However, if this reproducibility issue is solved, and the test set is greatly increased, this manuscript could contribute strongly towards our ability to predict antibody-antigen interactions.
Strengths:
Due to the high significance, but difficulty, of the prediction of antibody-antigen interactions, any attempts to break down these predictions into more tractable problems should be applauded. The authors' approach of focusing on linear epitopes (peptides) is clever, reducing some of the complexities inherent to antibody binding. Further, the ability of AlphaFold to narrow down a previously broadly identified experimental epitope is impressive. The subsequent experimental validation of this more precisely identified epitope makes for a nice data point in the assessment of AlphaFold's ability to predict antibody-antigen interactions.
Weaknesses:
Without a larger set of test antibody-peptide interactions, it is unclear whether or not AlphaFold can precisely identify the binding register of a given antibody to a given peptide antigen. Even within the small test set of 3 antibody-peptide complexes, performance is variable and depends upon the scFv scaffold used for unclear reasons. Lastly, the apparent poor reproducibility is concerning, and it is not clear why the results should rely so strongly on which multi-sequence alignment (MSA) version is used, when neither the antibody CDR loops nor the peptide are likely to strongly rely on these MSAs for contact prediction.
Major Point-by-Point Comments:
(1) The central concern for this manuscript is the apparent lack of reproducibility. The way the authors discuss the issue (lines 523-554) it sounds as though they are unable to reproduce their initial results (which are reported in the main text), even when previous versions of AlphaFold2 are used. If this is the case, it does not seem that AlphaFold can be a reliable tool for predicting antibody-peptide interactions.
(2) Aside from the fundamental issue of reproducibility, the number of validating tests is insufficient to assess the ability of AlphaFold to predict antibody-peptide interactions. Given the authors' use of AlphaFold to identify antibody binding to a linear epitope within a whole protein (in the mBG17:SARS-Cov-2 nucleocapsid protein interaction), they should expand their test set well beyond Myc- and HA-tags using antibody-antigen interactions from existing large structural databases.
(3) As discussed in lines 358-361, the authors are unsure if their primary control tests (antibody binding to Myc-tag and HA-tag) are included in the training data. Lines 324-330 suggest that even if the peptides are not included in the AlphaFold training data because they contain fewer than 10 amino acids, the antibody structures may very well be included, with an obvious "void" that would be best filled by a peptide. The authors must confirm that their tests are not included in the AlphaFold training data, or re-run the analysis with these templates removed.
(4) The ability of AlphaFold to refine the linear epitope of antibody mBG17 is quite impressive and robust to the reproducibility issues the authors have run into. However, Figure 4 seems to suggest that the target epitope adopts an alpha-helical structure. This may be why the score is so high and the prediction is so robust. It would be very useful to see along with the pLDDT by residue plots a structure prediction by residue plot. This would help to see if the high confidence pLDDT is coming more from confidence in the docking of the peptide or confidence in the structure of the peptide.
(5) Related to the above comment, pLDDT is insufficient as a metric for assessing antibody-antigen interactions. There is a chance (as is nicely shown in Figure S3C) that AlphaFold can be confident and wrong. Here we see two orange-yellow dots (fairly high confidence) that place the peptide COM far from the true binding region. While running the recommended larger validation above, the authors should also include a peptide RMSD or COM distance metric, to show that the peptide identity is confident, and the peptide placement is roughly correct. These predictions are not nearly as valuable if AlphaFold is getting the right answer for the wrong reasons (i.e. high pLDDT but peptide binding to a non-CDR loop region). Eventual users of the software will likely want to make point mutations or perturb the binding regions identified by the structural predictions (as the authors do in Figure 4).
Comments on revisions:
I have read the author's responses and the revised manuscript. The authors did not sufficiently address my comments, nor the fundamental issue with the manuscript.
By the authors' own admission, many of the results presented in the current version of the manuscript cannot be reproduced without relying on locally saved MSAs. In other words, there is almost no evidence presented that this pipeline will predict antibody-antigen interactions using currently publicly available software. This manuscript is reduced to essentially a case study (N=1) in how one might go about making such predictions coupled with pretty good experimental evidence backing up this singular prediction.
-
Author response:
The following is the authors’ response to the original reviews.
Reviewer 1 (Public Comments):
(1) The central concern for this manuscript is the apparent lack of reproducibility. The way the authors discuss the issue (lines 523-554) it sounds as though they are unable to reproduce their initial results (which are reported in the main text), even when previous versions of AlphaFold2 are used. If this is the case, it does not seem that AlphaFold can be a reliable tool for predicting antibody-peptide interactions.
The driving point behind the multiple sequence alignment (MSA) discussion was indeed to point out that AlphaFold2 (AF2) performance when predicting scFv:peptide complexes is highly dependent upon the MSA, but that is a function of MSA generation algorithm (MMseqs2, HHbiltz, jackhmmer, hhsearch, kalign, etc) and sequence databases, and less an intrinsic function of AF2. It is important to report MSA-dependent performance precisely because this results in changing capabilities with respect to peptide prediction.
Performance also significantly varies with the target peptide and scFv framework changes. By reporting the varying success rates (as a function of MSA, peptide target, and framework changes) we aim to help future researchers craft modified algorithms that can achieve increased reliability at protein-peptide binding predictions. Ultimately, tracking down how MSA generation details vary results (especially when the MSA’s are hundreds long) is significantly outside the scope of this paper. Our goal for this paper was to show a general method for identification of linear antibody epitopes using only sequence information, and future work by us or others should focus on optimization of the process.
(2) Aside from the fundamental issue of reproducibility, the number of validating tests is insufficient to assess the ability of AlphaFold to predict antibody-peptide interactions. Given the authors' use of AlphaFold to identify antibody binding to a linear epitope within a whole protein (in the mBG17:SARS-Cov-2 nucleocapsid protein interaction), they should expand their test set well beyond Myc- and HA-tags using antibody-antigen interactions from existing large structural databases.
Performing the calculations at the scale that the reviewer is requesting is not feasible at this time. We showed in this manuscript that we were able to predict 3 of 3 epitopes, including one antigen and antibody pair that have not been deposited into the PDB with no homologs. While we feel that an N=3 is acceptable to introduce this method to the scientific community, we will consider adding more examples of success and failure in the future to optimize and refine the method as computational resources become available. Notably, future efforts that attempt high-throughput predictions of this class using existing databases should take particular care to avoid contamination.
(3) As discussed in lines 358-361, the authors are unsure if their primary control tests (antibody binding to Myc-tag and HA-tag) are included in the training data. Lines 324-330 suggest that even if the peptides are not included in the AlphaFold training data because they contain fewer than 10 amino acids, the antibody structures may very well be included, with an obvious "void" that would be best filled by a peptide. The authors must confirm that their tests are not included in the AlphaFold training data, or re-run the analysis with these templates removed.
First, we address the simpler question of templates.
The reruns of AF2 with the local 2022 rebuild, the most reproducible method used with results most on par with the MMSEQS server in the Fall of 2022, were run without templates. This is because the MSA was generated locally; no templates were matched and generated locally. The only information passed then was the locally generated MSA, and the fasta sequence of the unchanging scFv and the dynamic epitope sequence. Because of how well this performed despite the absence of templates, we can confidently say the inclusion of the template flag is not significant with respect to how universally accurately PAbFold can identify the correct epitope.
Second, we can partially address the question of whether the AlphaFold models had access to models suitable, in theory, for “memorization” of pertinent structural details.
With respect to tracking the exact role and inclusion of specific PDB entries, the AF2 paper provides the following:
“Structures from the PDB were used for training and as templates (https://www.wwpdb.org/ftp/pdb-ftp-sites; for the associated sequence data and 40% sequence clustering see also https://ftp.wwpdb.org/pub/pdb/derived_data/ and https://cdn.rcsb.org/resources/sequence/clusters/bc-40.out). Training used a version of the PDB downloaded 28 August 2019, while the CASP14 template search used a version downloaded 14 May 2020. The template search also used the PDB70 database, downloaded 13 May 2020 (https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/).”
Three of these links are dead. As such, it is difficult to definitively assess the role of any particular PDB entry with respect to AF2 training/testing, nor what impact homologous training structures given the very large number of immunoglobin structures in the training set. That said, we can summarize information for the potentially relevant PDB entries (l 2or9, which is shown in Fig. 1 and 1frg), and believe it is most conservative to assume that each such entry was within the training set.
PDB entry 2or9 (released 2008): the anti-c-myc antibody 9E10 Fab fragment in complex with an 11-amino acid synthetic epitope: EQKLISEEDLN. This crystal structure is also noteworthy for featuring a binding mode where the peptide is pinned between two Fab. The apo structure (2orb) is also in the database but lacks the peptide and a resolved structure for CDR H3.
PDB entry 1a93 (released 1998): a c-Myc-Max leucine zipper structure, where the c-Myc epitope (in a 34-amino acid protein) adopts an alpha helical conformation completely different from the epitope captured in entry 2or9.
PDB entries 5xcs and 5xcu (released 2017): engineered Fv-clasps (scFv alternatives) in complex with the 9-amino acid synthetic HA epitope: YPYDVPDYA.
PDB entry 1frg (released 1994): anti-HA peptide Fab in complex with HA epitope subset Ace-DVPDYASL-NH2.
Since the 2or9 entry has our target epitope (10 aa) embedded within an 11aa sequence, we have revised this line in the manuscript:
The AlphaFold2 training set was reported to exclude chains of less than 10, which would eliminate the myc and HA epitope peptides. => The AlphaFold2 training set was reported to exclude chains of less than 10, which would eliminate the HA epitope peptide from potential training PDB entries such as 5xcs or 5xcu”
It is important to note that we obtained the best prediction performance for the scFv:peptide pair that had no pertinent PDB entries (mBG17). Specifically, doing a Protein Blast against the PDB using the mBG17 scFv revealed diverse homologs, but a maximum sequence identity of 89.8% for the heavy chain (to an unrelated antibody) and 93.8% for the light chain (to an unrelated antibody). Additionally, while it is possible that the AF2 models might have learned from the complex in pdb entry 2or9, Supplemental Figure 3 shows how often the peptide is “misplaced”, and the performance does not exceed the performance for mBG17.
(4) The ability of AlphaFold to refine the linear epitope of antibody mBG17 is quite impressive and robust to the reproducibility issues the authors have run into. However, Figure 4 seems to suggest that the target epitope adopts an alpha-helical structure. This may be why the score is so high and the prediction is so robust. It would be very useful to see along with the pLDDT by residue plots a structure prediction by residue plot. This would help to see if the high confidence pLDDT is coming more from confidence in the docking of the peptide or confidence in the structure of the peptide.
The reviewer is correct that target mBG17 epitope adopts an alpha helical conformation, and we concur that this likely contributes to the more reliable structure prediction performance. When we predict the structure of the epitope alone without the mBG17 scFv, AF2 confidently predicts an alpha helix with an average pLDDT of 88.2 (ranging from 74.6 to 94.4).
Author response image 1.
The AF2 prediction for the mBG17 epitope by itself.
However, as one interesting point of comparison, a 10 a.a. poly-alanine peptide is also consistently folded into an alpha-helical coil by AF2. The A<sub>10</sub> peptide is also predicted to bind among the traditional scFv CDR loops, but the pLDDT scores are very poor (Supplemental Figure 5J). We also observed the opposite case; when a peptide has a very unstructured region in the binding domain but is nonetheless still be placed confidently, as seen in Supplemental Figure 3 C&D. Therefore, while we suspect peptides with strong alpha helical propensity are more likely to be accurately predicted, the data suggests that that alpha helix adoption is neither necessary nor sufficient to reach a confident prediction.
(5) Related to the above comment, pLDDT is insufficient as a metric for assessing antibody antigen interactions. There is a chance (as is nicely shown in Figure S3C) that AlphaFold can be confident and wrong. Here we see two orange-yellow dots (fairly high confidence) that place the peptide COM far from the true binding region. While running the recommended larger validation above, the authors should also include a peptide RMSD or COM distance metric, to show that the peptide identity is confident, and the peptide placement is roughly correct. These predictions are not nearly as valuable if AlphaFold is getting the right answer for the wrong reasons (i.e. high pLDDT but peptide binding to a nonCDR loop region). Eventual users of the software will likely want to make point mutations or perturb the binding regions identified by the structural predictions (as the authors do in Figure 4).
We agree with the reviewer that pLDDT is not a perfect metric, and we are following with great interest the evolving community discussion as to what metrics are most predictive of binding affinity (e.g. pAE, or pITM as a decent predictor for binding, but not affinity ranking). To our knowledge, there is not yet a consensus for the most predictive metrics for protein:protein binding nor protein:peptide binding. Intriguingly, since the antigen peptides are so small in our case, the pLDDT of the peptide residues should be mostly reporting on the confidence of the distances to neighboring protein residues.
As to the suggestion for a RMSD or COM distance metric, we agree that these are useful -with the caveat that these require a reference structure. The goal of our method is to quickly narrow down candidate linear epitopes and thereby guide experimentalists to more efficiently determine the actual binding sequence of an antibody-antigen sequence. Presumably this would not be necessary if a reference structure were known.
It may also be possible to invent a method to filter unlikely binding modes that is specific to antibodies and peptide epitopes that does not require a known reference structure, but this would be an interesting problem for subsequent study.
Reviewer 1 (Recommendations for the Authors):
(1) "Linear epitope" should be more precisely defined in the text. It isn't clear whether the authors hope that they can use AlphaFold to predict where on a given protein antigen an antibody will bind, or which antigenic peptide the antibody will bind to. The authors discuss both problems, and there is an important distinction between the two. If the authors are only concerned with isolated antigenic peptides, rather than linear epitopes in their full length structural contexts, they should be more precise in the introduction and discussion.
We thank the reviewer for the prompt towards higher precision. We are using the short contiguous antigen definition of “linear epitope” that depends on secondary rather than tertiary structure. The linear epitopes this paper considers are short “peptides” that form secondary structure independent of their structure in the complete folded antigen protein. We have clarified our definition of “linear epitope” in the text (lines 64-66).
(2) Line 101: "Not all portions of the antibody are critical". First, this is not consistent with the literature, particularly where computational biology is concerned.
See https://pubs.acs.org/doi/10.1021/acs.jctc.7b00080 . Second, while I largely agree with what I think the authors are trying to say (that we can largely reduce the problem to the CDR loops), this is inconsistent with what the authors later find, which is that inexplicably the VH/VL scaffold used alters results strongly.
We have adopted verbiage that should be less provocative: “Fortunately, with respect to epitope specificity, antibody constant domains are less critical than the CDR loops and the remainder of the variable domain framework regions.”
(3) Related to the above comment, do the authors have any idea why epitope prediction performance improved for the chimeric scFvs? Is this due to some stochasticity in AlphaFold? Or is there something systematic? Expanding the test dataset would again help answer this question.
We agree that future study with a larger test set could help address this intriguing result, for which we currently lack a conclusive explanation. Part of our motivation for this publication was to bring to light this unexpected result. Notably, these framework differences are not only implicated as a factor in driving AF2 performance, but also changing experimental intracellular performance as reported by our group (DOI: 10.1038/s41467-019-10846-1 ). We can generate a variety of hypotheses for this phenomenon. Just as MSA sub-sampling has been a popular approach to drive AF2 to sample alternative conformations, sequence recombination may be a generically effective way to generate usefully different binding predictions. However, it is difficult to discriminate between recombination inducing subtle structural tweaks that increase protein intracellular fitness and binding, from recombination causing changes to the MSA that affect the likelihood of sampling a good epitope binding conformation. It is also possible that the chimeras are more deftly predicted by AF2 due to differences in sequence representation during the training of the AF2 models (e.g. more exposure to models containing 15F11 or 2E2 structures). We attempted to deconvolute MSA differences by using single-sequence mode (Supplementary Figure 13) but this ablated performance.
(4) Figure 2: The reported consensus pLDDT scores are actually quite low here, suggesting low confidence in the result. This is in strong contrast to the reported consensus scores for mBG17. Again, a larger test dataset would help set a quantitative cutoff for where to draw the line for "trustworthy" AlphaFold predictions in antibody-peptide binding applications.
We agree that a larger dataset will be useful to begin to establish metrics and thresholds and will contribute to the aforementioned community discussion about reliable predictors of binding. Our current focus is not structure prediction per se. In the current work we are more focused on relative binding likelihood and increasing the efficiency of experimental epitope verification by flagging the most likely linear epitopes. Thus, while the pLDDT scores are low for Myc in Figure 2, it is remarkable (and worth reporting) that there is still useful signal in the relative variation in pLDDT. The utility of the signal variation is evident in the ability to short-list correct lead peptides via the two methods we demonstrate (consensus and per-residue max).
(5) Figure 4: if the authors are going to draw conclusions from the actual structure predictions of AlphaFold (not just the pLDDT scores), the side-chain accuracy placement should be assessed in the test dataset (RMSD or COM distance).
We agree with the reviewer that side-chain placement accuracy is important when evaluating the accuracy of AF2 structure predictions. However, here our focus was relative binding likelihood rather than structure prediction. The one case where we attempted to draw conclusions from the structure prediction was in the context of mBG17, where there is not yet an experimental reference structure. Absolutely, if we were to obtain a crystal structure for that complex, we would assess side-chain placement accuracy.
(6) Lines 493-508: I am not sure that this assessment for why AlphaFold has difficulty with antibody-antigen interactions is correct. If the authors' interpretation is correct (larger complicated structures are more challenging to move) then AlphaFold-Multimer (https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) wouldn't perform as well as it does. Instead, the issue is likely due to the incredibly high diversity in antibody CDR loops, which reduces the ability of the AlphaFold MSA step (which the authors show is quite critical to predictions: Figure S13) to inform structure prediction. This, coupled with the importance of side chain placement in antibody and TCR interactions, which is notoriously difficult (https://elifesciences.org/articles/90681), are likely the largest source of uncertainty in antibody-antigen interaction prediction.
We agree with the reviewer that CDR loop diversity (and associated side chain placement challenges) are a major barrier to successfully predict antibody-antigen complexes. Presumably this is true for both peptide antigens and protein antigens. Indeed, the authors of AlphaFold-multimer admit that the updated model struggles with antibody-antigen complexes, saying “As a limitation, we observe anecdotally that AlphaFold-Multimer is generally not able to predict binding of antibodies and this remains an area for future work.” The point about how loop diversity could reduce MSA quality is well taken. We have included the following thanks to the guidance of the reviewer when discussing MSA sensitivity is discussed later on in lines 570-572.:
“These challenges are presumably compounded by the incredible diversity of the CDR loops in antibodies which could decrease the useful signal from the MSA as well as drive inconsistent MSA-dependent performance”.
With respect to lines 493-508, we have also rephrased a key sentence to try to better explain that we are comparing the often-good recognition performance for short epitopes to the never-good performance when those epitopes are embedded within larger sequences. Instead of saying, “In contrast, a larger and complicated structure may be more challenging to move during the AlphaFold2 structure prediction or recycle steps.” we now say in lines 520-522 , “In contrast, embedding the epitope within a larger and more complicated structure appears to degrade the ability of AlphaFold2 to sample a comparable bound structure within the allotted recycle steps.”
(7) Related to major comment 1: Are AlphaFold predictions deterministic? That is, if you run the same peptide through the PAbFold pipeline 20 times, will you get the same pLDDT score 20 times? The lack of reproducibility may be in part due to stochasticity in AlphaFold, which the authors could actually leverage to provide more consistent results.
This is a good question that we addressed while dissecting the variable performance. When the random seed is fixed, AF2 returns the same prediction every time. After running this 10 times with a fixed seed, the mBG17 epitope was predicted with an average pLDDT of 88.94, with a standard deviation of 1.4 x 10<sup>-14</sup>. In contrast, when no seed is specified, AF2 did not return an *identical* result. However, the results were still remarkably consistent. Running the mBG17 epitope prediction 10 times with a different seed gave an average pLDDT of 89.24, with a standard deviation of 0.49.
(8) Related to major comment 2: The authors could use, for example, this previous survey of 1833 antibody-antigen interactions (https://www.sciencedirect.com/science/article/pii/S2001037023004725) the authors could likely pull out multiple linear epitopes to test AlphaFold's performance on antibody peptide interactions. A large number of tests are necessary for validation.
We thank the reviewer for this report of antibody-antigen interactions and will use it as a source of complexes in a future expanded study. Given the quantity and complexity of the data that we are already providing, as well as logistical challenges for compute and personnel the reviewer is asking for, we must defer this expansion to future work.
(9) Related to major comment 3: Apologies if this is too informal for a review, but this Issue on the AlphaFold GitHub may be useful: https://github.com/googledeepmind/alphafold/issues/416 .
We thank the reviewer for the suggestion – per our response above we have indeed run predictions with no templates. Since we are using local AlphaFold2 calculations with localcolabfold, the use or non-use of templates is fairly simple: including a “—templates” flag or not.
(10) Related to major comment 4: I am not sure if AlphaFold outputs by-residue secondary structure prediction by default, but I know that Phyre2 does http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index .
To our knowledge, AF2 does not predict secondary structure independent of the predicted tertiary structure. When we need to analyze the secondary structure we typically use the program DSSP from the tertiary structure.
(11) The documentation for this software is incomplete. The GitHub ReadMe should include complete guidelines for users with details of expected outputs, along with a thorough step-by-step walkthrough for use.
We thank the reviewer for pointing this out, but we feel that the level of detail we provide in the GitHub is sufficient for users to utilize the method described.
Stylistic comments:
(1) I do not think that the heatmaps (as in 1C, top) add much information for the reader. They are largely uniform across the y-axis (to my eyes), and the information is better conveyed by the bar and line graphs (as in 1C, middle and bottom panels).
We thank the reviewer for this feedback but elect to leave it in on the premise of more data presented is (usually) better. Including the y-axis reveals common patterns such as the lower confidence of the peptide termini, as well as the lack of some patterns that might have occurred. For example, if a subset of five contiguous residues was necessary and sufficient for local high confidence this could be visually apparent as a “staircase” in the heat map.
(2) A discussion of some of the shortcomings of other prediction-based software (lines 7177) might be useful. Why are these tools less well-equipped than AlphaFold for this problem? And if they have tried to predict antibody-antigen interactions, why have they failed?
We agree with the reviewer that a broader review of multiple methods would be interesting and useful. One challenge is that the suite of available methods is evolving rapidly, though only a subset work for multimeric systems. Some detail on deficiencies of other approaches was provided in lines 71-77 originally, although we did not go into exhaustive detail since we wanted to focus on AF2. We view using AF2 in this manner is novel and that providing additional options predict antibody epitopes will be of interest to the scientific community. We also chose AF2 because we have ample experience with it and is a software that many in the scientific community are already using and comfortable with. Additionally, AF2 provided us with a quantification parameter (pLDDT) to assess the peptides’ binding abilities. We think a future study that compares the ability of multiple emerging tools for scFv:peptide prediction will be quite interesting.
(3) Similar to the above comment, more discussion focused on why AlphaFold2 fails for antibodies (lines 126-128) might be useful for readers.
We thank the reviewer for the suggestion. The following line has been added shortly after lines 135-137:
“Another reason for selecting AF2 is to attempt to quantify its abilities the compare simple linear epitopes, since the team behind AF-multimer reported that conformational antibody complexes were difficult to predict accurately (14).”
Per earlier responses, we also added text that flags one particular possible reason for the general difficulty of predicting antibody-antigen complexes (the diversity of the CDR loops and associated MSA challenges).
(4) The first two paragraphs of the results section (lines 226-254) could likely be moved to the Methods. Additionally, details of how the scores are calculated, not just how the commands are run in python, would be useful.
Per the reviewer suggestion, we moved this section to the end of the Methods section. Also, to aid in the reader’s digestion of the analysis, the following text has been added to the Results section (lines 256-264):
“Both the ‘Simple Max’ and ‘Consensus’ methods were calculated first by parsing every pLDDT score received by every residue in the antigen sequence sliding window output structures. From the resulting data structure, the Simple Max method simply finds the maximum pLDDT value ever seen for a single residue (across all sliding windows and AF2 models). For the Consensus method, per-residue pLDDT was first averaged across the 5 AF2 models. These averages are reported in the heatmap view, and further averaged per sliding window for the bar chart below.
In principle, the strategy behind the Consensus method is to take into account agreement across the 5 AF2 models and provide insight into the confidence of entire epitopes (whole sliding windows of n=10 default) instead of disconnected, per-residue pLDDT maxima.”
(5) Figure 1 would be more useful if you could differentiate specifically how the Consensus and Simple Max scoring is different. Providing examples for how and why the top 5 peptide hits can change (quite significantly) using both methods would greatly help readers understand what is going on.
Per the reviewer suggestion, we have added text to discuss the variable hit selection that results from the two scoring metrics. The new text (lines 264-271) adds onto the added text block immediately above:
“Having two scoring metrics is useful because the selection of predicted hits can differ. As shown in Figure 2, part of the Myc epitope makes it into the top 5 peptides when selection is based on summing per-residue maximum pLDDT (despite there being no requirement that these values originate in the same physical prediction). In contrast, a Consensus method score more directly reports on a specific sliding window, and the strength of the highest confidence peptides is more directly revealed with superior signal to noise as shown in Figure 3. Variability in the ranking of top hits between the two methods arises from the fundamental difference in strategy (peptide-centric or residue-centric scoring) as well as close competition between the raw AF2 confidence in the known peptide and competing decoy sequences.”
(6) Hopefully the reproducibility issue is alleviated, but if not the discussion of it (lines 523554) should be moved to the supplement or an appendix.
The ability of the original AF2 model to predict protein-protein complexes was an emergent behavior, and then an explicit training goal for AF2.multimer. In this vein, the ability to predict scFv:peptide complexes is also an emergent capability of these models. It is our hope that by highlighting this capacity, as well as the high level of sensitivity, that this capability will be enhanced and not degraded in future models/algorithms (both general and specialized). In this regard, with an eye towards progress, we think it is actually important to put this issue in the scientific foreground rather than the background. When it comes to improving machine learning methods negative results are also exceedingly important.
Reviewer 2 (Recommendations for the Author):
- Line 113, page 3 - the structures of the novel scFv chimeras can be rapidly and confidently be predicted by AlphaFold2 to the structures of the novel scFv chimeras can be rapidly and confidently predicted by AlphaFold2.
The superfluous “be” was removed from the text.
- Line 276 and 278 page 9 - peptide sequences QKLSEEDLL and EQKLSEEDL in the text are different from the sequences reported in Figures 1 and 2 (QKLISEEDLL and EQKLISEEDL). Please check throughout the manuscript and also in the Figure caption (as in Figure 2).
These changes were made throughout the text.
- I would include how you calculate the pLDDT score for both Simple Max approach and Consensus analysis.
Good suggestion, this should be covered via the additions noted above.
-
-
Local file Local file
-
支持相联方式:4WAY
将缓存分为多个组(Set),每组中有固定数量的缓存块(Block)。一个内存地址只能映射到特定的组,但可以存储在该组内的任意块中 而其中的4-way 相连方式(4-way set associative)是一种缓存组织方式。 4-way 相连方式是一种权衡性能与成本的缓存设计方案,适用于大多数处理器的 L1 缓存(如 ICache 或 DCache)。它在直接映射缓存和全相连缓存之间提供了折中点,既提升了缓存命中率,又保持了相对较低的硬件复杂性
include <stdio.h>
include <stdlib.h>
include <stdbool.h>
define CACHE_SIZE 16 // 缓存总块数
define BLOCK_SIZE 4 // 每组内的块数(4-way)
define NUM_SETS (CACHE_SIZE / BLOCK_SIZE) // 组数
typedef struct { int valid; // 有效位 int tag; // 地址标签 int last_used; // LRU 计数 } CacheBlock;
// 定义缓存(二维数组,每组包含多个块) CacheBlock cache[NUM_SETS][BLOCK_SIZE];
// 全局计数器用于 LRU 替换策略 int global_time = 0;
// 计算组索引 int get_set_index(int address) { return address % NUM_SETS; // 简单取模 }
// 计算标签 int get_tag(int address) { return address / NUM_SETS; // 地址除以组数 }
// 缓存查找和替换 bool access_cache(int address) { int set_index = get_set_index(address); int tag = get_tag(address);
// 查找对应的组 for (int i = 0; i < BLOCK_SIZE; i++) { if (cache[set_index][i].valid && cache[set_index][i].tag == tag) { // 缓存命中,更新 LRU cache[set_index][i].last_used = global_time++; return true; // 命中 } } // 缓存未命中,需要替换 // 找到需要替换的块(使用 LRU 策略) int lru_index = 0; for (int i = 1; i < BLOCK_SIZE; i++) { if (cache[set_index][i].last_used < cache[set_index][lru_index].last_used) { lru_index = i; } } // 替换 LRU 块 cache[set_index][lru_index].valid = 1; cache[set_index][lru_index].tag = tag; cache[set_index][lru_index].last_used = global_time++; return false; // 未命中
}
int main() { // 初始化缓存 for (int i = 0; i < NUM_SETS; i++) { for (int j = 0; j < BLOCK_SIZE; j++) { cache[i][j].valid = 0; cache[i][j].tag = -1; cache[i][j].last_used = 0; } }
// 模拟访问 int addresses[] = {0, 0, 8, 12,4, 8, 20, 12, 4, 32}; int n = sizeof(addresses) / sizeof(addresses[0]); for (int i = 0; i < n; i++) { int address = addresses[i]; if (access_cache(address)) { printf("Address %d: Cache HIT\n", address); } else { printf("Address %d: Cache MISS\n", address); } } return 0;
}
-
-
jungle.world jungle.world
-
Als 2010 am Tag des Gedenkens an die Opfer des Nationalsozialismus der israelische Staatspräsident Shimon Peres im Bundestag sprach, erhoben sich anschließend alle Abgeordneten – bis auf Sahra Wagenknecht (damals noch Linkspartei) und Buchholz.
Und Sevim Dagdelen.
-