- Jun 2024
-
neilpatel.com neilpatel.com
Tags
Annotators
URL
-
- Oct 2023
-
publications.iadb.org publications.iadb.org
- Apr 2023
-
towardsdatascience.com towardsdatascience.com
-
Now we are getting somewhere. At this point, we also see that the dimensions of W and b for each layer are specified by the dimensions of the inputs and the number of nodes in each layer. Let’s clean up the above diagram by not labeling every w and b value individually.
-
- Dec 2021
-
raspberrypi.stackexchange.com raspberrypi.stackexchange.com
-
Relevant to how to multi-connect a raspi.
-
-
raspberrytips.com raspberrytips.com
-
Relevant to how to multi-connect a raspi.
Tags
Annotators
URL
-
-
raspberrypi.stackexchange.com raspberrypi.stackexchange.com
-
Relevant to how to multi-connect a raspi.
-
- Nov 2021
-
www.tensorflow.org www.tensorflow.org
-
If you don't have that information, you can determine which frequencies are important by extracting features with Fast Fourier Transform. To check the assumptions, here is the tf.signal.rfft of the temperature over time. Note the obvious peaks at frequencies near 1/year and 1/day:
Do a fft with tensorflow
fft = tf.signal.rfft(df['T (degC)']) f_per_dataset = np.arange(0, len(fft)) n_samples_h = len(df['T (degC)']) hours_per_year = 24*365.2524 years_per_dataset = n_samples_h/(hours_per_year) f_per_year = f_per_dataset/years_per_dataset plt.step(f_per_year, np.abs(fft)) plt.xscale('log') plt.ylim(0, 400000) plt.xlim([0.1, max(plt.xlim())]) plt.xticks([1, 365.2524], labels=['1/Year', '1/day']) _ = plt.xlabel('Frequency (log scale)')
-
Now, peek at the distribution of the features. Some features do have long tails, but there are no obvious errors like the -9999 wind velocity value.
indeed, peek. we are looking at test data too.
df_std = (df - train_mean) / train_std df_std = df_std.melt(var_name='Column', value_name='Normalized') plt.figure(figsize=(12, 6)) ax = sns.violinplot(x='Column', y='Normalized', data=df_std) _ = ax.set_xticklabels(df.keys(), rotation=90)
-
It is important to scale features before training a neural network. Normalization is a common way of doing this scaling: subtract the mean and divide by the standard deviation of each feature. The mean and standard deviation should only be computed using the training data so that the models have no access to the values in the validation and test sets. It's also arguable that the model shouldn't have access to future values in the training set when training, and that this normalization should be done using moving averages.
moving average to avoid data leak
-
Similarly, the Date Time column is very useful, but not in this string form. Start by converting it to seconds:
timestamp_s = date_time.map(pd.Timestamp.timestamp)
and then create "Time of day" and "Time of year" signals:
day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year))
Tags
Annotators
URL
-
- Jul 2021
-
iamtrask.github.io iamtrask.github.io
-
If you're serious about neural networks, I have one recommendation. Try to rebuild this network from memory.
-
If you're serious about neural networks, I have one recommendation. Try to rebuild this network from memory.
-
- May 2021
-
khattamicah.online khattamicah.online
-
Right click on the post in the feed to see linked articles and related posts
-
- Oct 2020
-
www.bejakovic.com www.bejakovic.com
-
The 10 Commandments of A-list Copywriters
Tags
Annotators
URL
-
- Jul 2020
-
git-annex.branchable.com git-annex.branchable.com
Tags
Annotators
URL
-
- Nov 2019
-
support.google.com support.google.com
-
Inspect a live URL
Google Indexing
Tags
Annotators
URL
-
- Jun 2019
-
www.macobserver.com www.macobserver.com
-
I ended up turning Documents and & Desktop sync off. I got frustrated with it because my data was constantly being uploaded and downloaded, wasting my bandwidth. But recently I found a tool on Github called iCloud Control. It adds a menu button to Finder that lets you remove local items, download items, and publish a public link to share your files.
-
- Jun 2016
-
hypothes.is hypothes.is
-
Hypothes.is
Still not certain if one has to have phython program running on website the files live on in order for annotation via chrome plugin to work.
Tags
Annotators
URL
-
- Feb 2016
-
uopeoplecty.bplaced.net uopeoplecty.bplaced.net
-
MATH1280
Simply highlight any part and comment here, so your peers can reply.
-
-
matt.aimonetti.net matt.aimonetti.net
-
req.Header.Add("Content-Type", writer.FormDataContentType())
If you're reading this, do not forget the
Content-Type
. It is not on the initial example, but it is important. I don't understand why the author mentions it here but doesn't use it on the initial source.
-