288 Matching Annotations
  1. Last 7 days
  2. Apr 2021
    1. Note: The standard variant of the TextField is no longer documented in the Material Design guidelines (here's why), but Material-UI will continue to support it.
  3. Mar 2021
  4. Feb 2021
  5. parsejournal.com parsejournal.com
    1. Their modes of operating present an image of how thinking takes shape in and through material and embodied practice
    2. Knowles, however, does not make this point by means of an argument expressed in language, like Barad does, but by means of a material discursive formation
  6. Jan 2021
    1. Open About Popover

      I have to say, I like how it looks in their Apple and Desktop preview better than the Android/Material preview. I wish they had the arrow in Android Material too.

      But on https://sveltematerialui.com/demo/menu-surface it doesn't bother me quite as much...

    1. In my opinion, it can sometimes look odd. Very interestingly, this is by design and is part of the Material design specification. This article isn’t to argue whether it should be this way or not, though; it’s just to change yours such that your MenuItem(s) show below the menu selection, like so:
    1. Material is the metaphor The metaphor of material defines the relationship between space and motion. The idea is that the technology is inspired by paper and ink and is utilized to facilitate creativity and innovation. Surfaces and edges provide familiar visual cues that allow users to quickly understand the technology beyond the physical world.
    1. By default, menus open with an entrance animation. However, on desktop, menus can skip the animation and open instantly instead.

      Why only on desktop? That delay drives me crazy. I would like to skip on web/mobile too.

    1. Outlined buttons are also a lower emphasis alternative to contained buttons, or a higher emphasis alternative to text buttons.
    2. Dialogs use text buttons because the absence of a container helps unify the action with the dialog text. Align text buttons to the right edge for left-to-right scripts.
    3. Text buttons are often embedded in contained components like cards and dialogs, in order to relate themselves to the component in which they appear. Because text buttons don’t have a container, they don’t distract from nearby content.
  7. Dec 2020
    1. There is no denying to the fact that Google is one of the biggest influencers in the design trends every year. The designs by Google have a tremendous impact on how new products will be designed and launched.

      in this write up, I will take you through the new material design guidelines introduced by Google. With that, I will even share a few tips for applying the designs in your business and products.

  8. Nov 2020
    1. I love the Material Design System’s buttons just because their principles are really well thought through.
    1. After a few hours experimenting (updated NPM, NODE, ...) I found that renaming _smui-theme.scss to smui-theme.scss (without underscore prefix) solved the problem. I don't understand the mechanics behind (why in documentation is file with prefix).
  9. Oct 2020
  10. Sep 2020
    1. In this study, we focused on MgO ceramic doped with Tb as apotential dosimeter material. MgO ceramics have excellent thermaland mechanical properties with a high melting point (2800C). Upto now, MgO ceramics doped with several different transition andrare earth elements have been studied for dosimeters[17e21]

      En este estudio, nos enfocamos en el cerámico de MgO dopado con Tb como un potencial material dosimétrico. . Los cerámicos de MgO tienen excelentes propiedades térmicas y mecánicas con un alto punto de fusión (2800°C). Hasta ahora, los cerámicos de MgO dopados con varios diferentes transiciones y elementos de tierras raras han sido estudiados para dosímetros.

    Tags

    Annotators

  11. Aug 2020
    1. I found that many people have bad experience when it comes to styling in Material-UI, so I want to help them overcome that point and see the beauty of it.
  12. Jul 2020
  13. Apr 2020
    1. material complementario

      ¿Cómo se define materiales complementarios para obras que recurren a múltiples recursos, como los transmedia?

  14. Feb 2020
  15. Dec 2019
    1. appropriately drafted material transfer agreement (MTA), as there is currently no legal requirement to that effect

      Are there templates available for "appropriately drafted MTAs"?

  16. Nov 2019
    1. Since the checkbox is rendering an input I would work with it rather than focusing on the image. You could do something like this: const checkbox = getByTestId('checkbox-1234').querySelector('input[type="checkbox"]') expect(checkbox).toHaveProperty('checked', true)
    2. the way Material UI works is it renders a different SVG when the checkbox is clicked, and not changing the attributes or anything on the actual input element. So how do I actually test that the element is checked in line with the react-testing-library philosophy?

      These tags belong to entire page. This quote is just supporting evidence for the tags.

  17. Oct 2019
  18. Sep 2019
  19. Aug 2019
    1. Customization of the TextField can be cumbersome with the classes API, where you have to define the the classes prop. It's easier to use the default values, as described above. For example:

      It's surprising that they show an example using styled-components, which is a competing style library to their own @material-ui/styles, and even admit that this might be preferred over using the classes API, which they admit may be cumbersome.

      I like that they are open-minded enough to acknowledge that there are cases where built-in API may be too cumbersome, and even show examples of using styled-components.

    1. Demonstrates how label text will wrap at a point that appears to narrow when shrunk (the label can't even be as wide as the input it is labeling!), and how to work around this problem by adding styles:

        '& label': {
          whiteSpace: 'nowrap'
        }
      

      Of course, you would only want to do this if you are going to only be showing the label in shrunk state (which I think is safe to say is the case for date picker inputs), since it would look bad to actually have text overflowing outside of the input box. But if it's in "shrink" state, then it's actually above the input, so as long as there isn't another input/label directly to the right, and/or as long as we adjust the width so the right side of the label mostly lines up with the right side of the input, then I think we should be safe.

      Reference

      The input label "shrink" state isn't always correct. The input label is supposed to shrink as soon as the input is displaying something. In some circumstances, we can't determine the "shrink" state (number input, datetime input, Stripe input). You might notice an overlap.

      To workaround the issue, you can force the "shrink" state of the label.

      You need to make sure that the input is larger than the label to display correctly.

  20. May 2019
    1. Transformation of calcium-competent cells was carried out by the procedure detailed below: •The competent bacterial cells were thawed briefly and 200 μL of cells was mixed rapidly with plasmid DNA (10-50 ng) in fresh, sterile microcentrifuge tubes and maintained on ice for 30 min. A negative control with competent cells only (no added DNA) was also included. •Cell membranes were disrupted by subjecting cells to heat-pulse (42 °C) for 90 sec. •After heat shock, cells were incubated on ice for 5 min. •Cells were then mixed with 1 mL LB medium and incubated with shaking at 37 °C for 1 h. •For blue/white screening 40 μL of X-gal solution (20 mg mL-1 in dimethylformamide) and 4 μL of the IPTG (200 mg mL-1) was spread on LB-ampicillin (LB-amp) plates with a sterile glass rod. The plate was allowed to dry for 1h at 37 °C prior to spreading of bacterial cells. •Bacterial cells (100-200 μL) were spread and the plate was incubated at 37 °C for overnight. •White colonies were picked from the plates and suspended into LB-amp broth and cultivated to OD600=0.5
    2. 2 mL of an overnight culture of E. coli cells was inoculated into 100 mL LB medium and incubated with vigorous shaking at 30 °C until A600 of 0.8 was reached. •Cells were collected in 50 mL plastic (Falcon) tubes, cooled for 15 min on ice and centrifuged in a pre-cooled centrifuge (4,000 rpm for 10 min at 4 °C). •The pellet was suspended in 20 mL of ice-cold 50 mM CaCl2-15% glycerol solution, maintained on ice for 15 min and centrifuged again at 4,000 rpm for 10 min at 4 °C. •Pellet was resuspended in 2 mL of ice-cold 50 mM CaCl2-15 % glycerol solution, kept on ice for 30 min and aliquoted in 400 μL in microcentrifuge tubes. These were stored at -80 °C until required.
    3. Preparation of electrocompetent cells (E. coli cells) A protocol was employed. The procedure was carried out in cold under sterile conditions as follows: •A single colony of E. coli DH10B/ DH5α/XL1blue was inoculated in 20 mL of LB medium and grown overnight at 30 °C. •500 mL LB medium was inoculated with 5mL of this overnight grown culture of the E. coli and incubated with vigorous shaking (250 rpm) at 30 °C until an A600of 0.5 - 0.8 was achieved. •The cells were chilled in ice for 10-15 min and transferred to prechilled Sorvall® centrifuge tubes and sedimented at 4,000 rpm for 20 min at 4 °C. •The supernatant was decanted and cells were resuspended in 500 mL of sterile ice-cold water, mixed well and centrifuged as described above. •The washing of the cells described above was repeated with 250 mL of sterile ice-cold water, following which cells were washed with 40 mL of ice-cold 10 % (v/v) glycerol and centrifuged at 4,000 rpm for 10 min. •The glycerol solution was decanted and the cell volume was recorded. The cells were resuspended in an equal volume of ice-cold 10 % glycerol. •Cells were then dispensed in 40 μL volumes and stored at -80 °C until required.
    4. In order to minimize self ligation of vector during cloning experiments, the digested DNA was subsequently treated with calf intestinal phosphatase (CIP) [NEB, UK]. The reaction conditions and amount of CIP were optimized and varied from (0.06-1) unit/picomole DNA termini. The dephosphorylation reaction was carried out in 50 μL reaction as follows. Reaction mixture containing no restriction enzyme was treated as control. Reaction was incubated for 1 h at 37 °C and stopped by heat inactivation at 65 °C for 20 min. 2.5.5. Composition of restriction mixture (50 μL) Linearized Plasmid DNA X μL (1 μg) CIP 1 μL (0.06-1 U μL-1) Reaction buffer (10X) 5.0 μL Distilled water Y μL Total volume 50 μL Linearized and dephosphorylated plasmids from each reaction were purified from low melting agarose gel using gel extraction method according to the manufacturer’s protocol (Qiagen gel extraction kit, Germany). 100 ng DNA from each reaction was then ligated in15 μL reaction volume containing 1.5 μL of 10X ligation buffer (NEB, England) and 0.2 μL of T4 DNA ligase to check the efficiency of self ligation after dephosphoryaltion. The ligation mixture was incubated at 16 °C for overnight and transformed into E. coli DH5αcompetent cells.
    5. The isolated DNA was diluted (1:100) with MQ. The concentration (mg mL-1) of the DNA [N] was determined spectrophotometrically by recording absorbance at 260 nm (A260) as: A260 = ε 260[N]where ε 260 is the extinction coefficient of DNA (50 for ds DNA) [N] = concentration (mg mL-1) of DNA The concentration of ds DNA [N] was calculated as [DNA] (mg mL-1) = A260/ε 260 [DNA] (μg mL-1) = A260 × 50 × dilution factor Purity of DNA was checked by measuring absorbance at 260 and 280 nm and calculating the A260/A280 ratio (Sambrook et al., 1989). A DNA sample was considered pure when A260/A280 ranged between 1.8-1.9. An A260/A280 < 1.7 indicated contamination of the DNA preparation with protein or aromatic substances such as phenol, while an A260/A230 < 2.0 indicated possible contamination of high molecular weight polyphenolic compounds like humic substances.
    6. Determination of DNA quantity and purity
    7. as well as commercial methods (MN kit, Germany; Mo-Bio kit, CA, USA; Zymo soil DNA kit, CA, USA) according to the manufacturer’s protocols and compared in terms of DNA yield and purity.
    8. The soil DNA from Pantnagar and Lonar soil samples were also extracted by various manual (Desai and Madamwar, 2007; Agarwal et al., 2001; Yamamoto et al., 1998
    9. Alternatively metagenomic DNA was extracted from the alkaline soil samples by using different commercial kits (UltraClean™, PowerSoil™ [Mo Bio Laboratories Inc., Carlsbad, CA, USA], Nucleospin kit [Macherey-Nagal, Germany] and Zymo soil DNA isolation kit [CA, USA]). The DNA was finally suspended in 100 μL of sterile Milli Q water for further analysis.
    10. Commercial kits
    11. Comparison of yield and purity of crude DNA
    12. Soil (1 gm) was suspended with 0.4 gm (w/w) polyactivated charcoal (Datta and Madamwar, 2006) and 20 μL proteinase K (10 mg mL-1) in 2 mL of modified extraction buffer [N,N,N,N cetyltrimethylammonium bromide (CTAB) 1% w/v, polyvinylpolypyrrolidone (PVPP) 2% w/v, 1.5 M NaCl, 100mM EDTA, 0.1 M TE buffer (pH 8.0), 0.1M sodium phosphate buffer (pH 8.0) and 100 μL RNaseA] [Zhou et al., 1996] in 20 mL centrifuge tubes to homogenize the sample and incubated at 37 °C for 15 min in an incubator shaker at 200 rpm. Subsequently, 200 μL of 10% SDS was added to the homogenate and kept at 60 °C for 2 h with intermittent shaking. DNA was precipitated by adding 0.5 V PEG 8000 (30 % in 1.6 M NaCl) and left at room temperature for an hour (Yeates et al., 1998). The precipitated DNA was collected by centrifugation at 8000 x g at 4 °C. The supernatant was discarded and pellet was dissolved in 1 mL of TE buffer (pH 8.0) and then100 μL of 5 M potassium acetate (pH 4.5) was added and incubated at 4 °C for 15 min. The supernatant was collected after centrifugation at 8000 x g and treated with equal volumes of phenol: chloroform (1:1) followed by chloroform: isoamylalcohol (24:1) at 8000 x g for 15 min
    13. PROTOCOL FOR OPTIMIZATION OF HUMIC ACID-FREE DNA FROM ALKALINE SOILS
    14. Various strains of Escherchia coli (DH5α, XL1Blue, DH10B) were used as hosts for the propagation of recombinant vectors. In addition, Bacillus subtilis was used as a host for the expression of xylanase gene from the recombinant vector pWHMxyl. Different vectors used in this investigation are listed in
    15. BACTERIAL STRAINS
    16. Soil, sediment, effluent, and water samples have been collected from various hot and alkaline regions of India and Japan in sterile polyethylene bags/bottles. The samples were transported to the laboratory and preserved at 4 °C. Temperature and pH of the samples was recorded.
    17. COLLECTION OF SAMPLES
    18. disodium hydrogen phosphate, glacial acetic acid, glucose, glycine, iodine, magnesium sulphate, potassium chloride, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium iodide, potassium nitrate, silver chloride, silver nitrate, sodium bicarbonate, sodium carbonate, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium hydroxide, sodium acetate, sodium molybdate, sodium nitrate, potassium sodium tartarate, and sulphuric acid, yeast extract, beef extract, peptone 7. Kanamycin, ampicillin, tetracycline, chloramphenicol tryptone, urea, guanidine HCl, Luria Bertani medium, Polyvinylpolypyrrolidone (PVPP)HiMedia, India 8. Restriction enzymes, T4 DNA ligase and buffers used in cloning experiments, Taq polymerase, dNTP solution, PCR buffers, PCR grade water, 1 kb and 100 bp DNA ladders, pGEM-Teasy cloning kit New England Biolabs and Promega 9. Isoamyl alcohol, methanol, trichloroacetic acid and Tris, lysozyme, acetone, acetyl-methylcarbinol, anthrone’s reagent, Folin & Ciocalteu’s phenol reagent SRL, India 10. Wheat bran, corncob, rice straw, Prosopis juliflora, Lantana camara and sugarcane bagasse Local market, New Delhi 11. Plasmid isolation, Gel extraction and PCR cleanup kits Machery Nagel, Germany
    19. 1. Agarose, polyacrylamide, ammonium persulphate (APS), N’,N ́-Methylene-bis-acrylamide, bovine serum albumin (BSA), chloroform, β-mercaptoethanol, phenol:chloroform (1:1), protein molecular weight markers (SDS), N-bromosuccinimide (N-BS), Woodwards reagent K (W-RK), dithiothreitol (DTT), iodoacetic acid (IAA), EDTA, EGTA, amylose, amylopectin pullulan, rice starch, sodium dodecylsulphate (SDS), N',N',N',N'- tetramethyl ethylenediamine (TEMED), Xylan, 4-O-methyl-D-glucurono-D-xylan-remazol brilliant blue R (RBB- xylan), xylose, xylobiose, xylotriose, xylotetraose and xylopentaose, p-nitrophenylxylopyranoside, p-nitrophenylacetate and p-nitrophenylarabinofuranoside, oligonucleotides synthesis (primers)Sigma Aldrich Pvt. Ltd., USA 2. Dinitrosalicylic acid (DNS), malachite green sodium sulphite and Congo red, Poly activated charcoal (PAC), Central Drug House, India 4. Agar, ammonium chloride, ammonium nitrate, ammonium sulphate, citric acid, diethyl ether, diammonium hydrogen orthophosphate, ethanol, formaldehyde, glutaraldehyde, glycerol, hydrochloric acid, hydrogen peroxide, manganese chloride, perchloric acid, potassium iodide, phenol, sodium chloride, sodium citrate and sodium acetate, X-gal (5 -bromo-4-chloro-indolyl-β-D-galactopyranoside), IPTG (isopropyl-β-D-1-thiogalactopyranoside), Imidazole Merck, India 6. Acetic acid, Coomassie brilliant blue, calcium chloride, copper sulphate, dipotassium hydrogen phosphate, Qualigens, India
    1. For synchronization, mostly ring stage parasites (10 to 12 h post-invasion) wen~ used. The parasite culture was centrifuged at 200g for 5min and the supernatant was discarded. To the pellet, 4 ml of 5% sorbitol was added, mixed gently and incubated for 15min at 37°C. The mix was shaken 2 or 3 times and centrifuged at 200g followed by washing 3 times in complete medium (list I). The culture was then maintained at 5% hematocrit in a 37°C incubator
    2. orbitol-synchronization 0/ P./alciparum
    3. Parasite culture was used to make a thin blood film on a glass slide. After air drying, the thin smear was fixed in methanol for about 30s. A fresh 5 to 10% , giemsa solution was prepared in phosphate buffer (list I). The slide was placed in a I staining jar and the giemsa solution was poured on the slide for 20 min and' subsequently rinsed thoroughly under running tap water. The stained parasites, were then observed under a light microscope using 100X objective.
    4. Giemsa staining o/thin blood smear o/parasite cultures
    5. medium. The culture volume in 75 cm2 culture flasks, was increased to 25 ml from 12 ml. The flasks were kept at 37°C and the medium was prewarmed before use. The flasks were gassed with a mixture of 5% C02, 3% 02 and 92% N2 for a i minimum of 20 seconds at a pressure of around 5 Ib/in2. The culture medium was changed daily without the addition of RBCs. Blood smears were prepared once or twice a week to check the ~tate of the cultures and the presence of gametocytes. Typically, mature gametocytes were observed after 14-17 days
    6. Fresh stock of parasites was thawed for culture as described above. Thin blood smears were made on the fourth day after setting up the culture. When high , parasitemia with "stressed" parasites was observed, culture volume was increased by the addition of medium. At this stage, fresh RBCs were not added to the culture
    7. Gametocyte cultures
    8. . Jalciparum cultures were maintained as described previously (Trager and Jensen, 1976). Briefly, P. Jalciparum strain 3D7 was cultured at 37°C in RPMI " 1640 medium (list I) in 0+ RBCs supplemented with 10% AB+ human serum or : 0.5% Albumax II (complete medium). All media were preheated to 37°C and care was taken to minimize the handling time outside the 37°C incubator. Cultures were gassed with 5% CO2, 3% O2, and 92% N2 for 20 seconds and maintained at 37°C.
    9. Maintenance of P.falciparum cultures
    10. cryopreserved culture vial was obtained from the liquid nitrogen tank, and thawed quickly at 37°C in a water bath. To the vial, O.lv of 12% NaCl was addeq I slowly, dropwise, while shaking the tube gently. Subsequently, 10v of 1.6% NaCl I was added slowly, dropwise while swirling the tube, followed by centrifugation at 200 g at 20°C for 5 min. The supernatant was discarded and 10v of RPMI 1640 complete media was added, followed by centrifugation at 200 g at 20°C for 5 min.' After removal of the supernatant, pelleted parasites were resuspended in complete I media at 0.5% hematocrit. Cultures were gassed with 5% C02, 3% 02, and 92%' N2 and maintained at 37°C
    11. Revival of cryo-preserved Plasmodiumfalciparum cultures
    12. For cryopreservation of P, Jalciparum cultures, mostly ring stage parasites at a high parasitemia were obtained. The parasites were pelleted by centrifugation at 200 g for 5 min with minimum de-acceleration. To the pellet, 1.5 volume of the freezing solution (list I) was added drop-by-drop, while shaking the vial gently; the ad4ition was completed in ~ 1 min. The medium was then transferred into a sterile cryovial, which was stored in ~he liquid nitrogen tank