- Sep 2020
-
www.medrxiv.org www.medrxiv.org
-
Team, I. C.-19 F., & Hay, S. I. (2020). COVID-19 scenarios for the United States. MedRxiv, 2020.07.12.20151191. https://doi.org/10.1101/2020.07.12.20151191
-
- Aug 2020
-
www.pnas.org www.pnas.org
-
Thurner, S., Klimek, P., & Hanel, R. (2020). A network-based explanation of why most COVID-19 infection curves are linear. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2010398117
-
- Jul 2020
-
-
Brooks, H. Z., Kanjanasaratool, U., Kureh, Y. H., & Porter, M. A. (2020). Disease Detectives: Using Mathematics to Forecast the Spread of Infectious Diseases [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/mvn9z
-
- Jun 2020
-
statmodeling.stat.columbia.edu statmodeling.stat.columbia.edu
-
Tsolaki, Vasiliki, George E. Zakynthinos, and Dimosthenis Makris. ‘The ARDSnet Protocol May Be Detrimental in COVID-19’. Critical Care 24, no. 1 (December 2020): 351. https://doi.org/10.1186/s13054-020-03081-4.
-
-
wellcomeopenresearch.org wellcomeopenresearch.org
-
Friston KJ, Parr T, Zeidman P et al. Dynamic causal modelling of COVID-19 [version 1; peer review: awaiting peer review]. Wellcome Open Res 2020, 5:89 (https://doi.org/10.12688/wellcomeopenres.15881.1)
-